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ABSTRACT
The use of IoT and AI/ML to extract insights for Data-Driven
Decision-Making (DDDM) in Intelligent Traffic Systems (ITS) is
becoming increasingly popular. While simulation is a cost-effective
and safe way to evaluate such approaches, existing simulators are
often impractical due to inefficient control interfaces. In this work,
we propose a Discrete-Event, Aggregating, and Relational Control
Interfaces (DAR-CI) framework for achieving efficient traffic man-
agement simulations through a coupled approach. It enables a
non-blocking interaction mode based on a discrete-event synchro-
nization architecture. The overhead caused by data exchange is
substantially reduced by supporting the direct retrieval of temporal
metrics, data batch processing and customized in-situ aggrega-
tion. Combined with flexible, extendable, easy-to-understand, and
implementation-friendly semantic specifications, we propose DAR-
CI to serve as a universal tool for the traffic simulation community,
taking the use and control of traffic simulation to a new level. A
proof-of-concept study on the simulation of an adaptive traffic light
control system demonstrates a 9.53X speedup compared to TraCI,
a widely used protocol for controlling traffic simulators.
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1 INTRODUCTION
The Internet of Things (IoT) has facilitated the collection of data
through physical devices, which can then be processed using tech-
nologies such as Artificial Intelligence (AI) and Machine Learning
(ML) to extract valuable insights for Data-Driven Decision-Making
(DDDM). In Intelligent Traffic Systems (ITS), this approach has
gained popularity, enabling traffic engineers and researchers to
utilize up-to-the-minute traffic data collected from road sensors,
cameras, and floating vehicles to identify traffic patterns and bot-
tlenecks. Real-time adjustments, such as optimizing traffic signals
[2, 4, 16, 18], adjusting speed limits [15, 33], and rerouting traffic
[13], can then bemade, even automatically, to improve the efficiency
and safety of transportation systems.

Prior to implementing these algorithms in real-world traffic man-
agement systems, thorough testing and evaluation must be con-
ducted. Using simulations is a cost-effective and safe approach for
this purpose. A mature simulator, under the control of external
systems, can be used to execute the algorithms being tested within
a closed-loop environment. However, today’s simulators are often
impractical for the task at hand due to their inefficient control in-
terfaces. The challenges can be divided into two primary areas: the
requirement for efficient synchronization, and the need for flexible
and scalable data processing during runtime.

In terms of the synchronization model, state-of-the-art trans-
portation simulators primarily use a conservative step-based ap-
proach, which needs synchronization at every interaction point.
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However, in a DDDM scenario, the high frequency of interactions
caused by data collection can result in an overwhelming amount of
message flow, leading to significant overhead. Alternatively, an op-
timistic approach that allows for full asynchronicity and causality
violations exists [9, 14], but implementing a rollback mechanism to
address missing decision-making or data collection times is com-
plex, error-prone, and not supported by most traffic simulators.
Predicting when to roll back in a dynamic interactive simulation
is difficult as well, and storing too many snapshots may result in
high memory usage, which is impractical for large-scale scenarios.

Processing simulation data during runtime poses another chal-
lenge. The objective is to dynamically instruct the running simu-
lation, allowing it to store and output the data of interest while
avoiding any redundancy. However, due to the temporal and dy-
namic nature of simulation data, achieving accurate guidance can be
challenging, which gives rise to the targeted and online simulation
data extraction problem [25]. An essential yet challenging aspect
of this problem is performing temporal operations and on-the-fly
data-processing within queries. For example, filtering or computing
data to retrieve results over a specific time interval.

Moreover, the existing query approaches often rely on an ID-
based key-value approach without considering the relationships
between data objects. For example, to retrieve the speed of cars on
a specific road in a traffic simulation often involves two separate
queries: first, querying the IDs of the cars on the road, and then
sending another query to retrieve the speed of each car with the
given IDs. A relational database can provide a structured repre-
sentation of the relationships between data objects, which would
result in more efficient querying. However, it is typically designed
to manage static data which does not change frequently. In order
to cope with the dynamic, volatile data generated by simulations
in real time, additional treatments should be taken into account.

In this study, we propose Discrete-Event, Aggregating, and Re-
lational Control Interfaces (DAR-CI) to address the two aforemen-
tioned challenges. First, we use a discrete-event-based approach
to enable a non-blocking interaction with the running simulation.
It enables the simulation to run asynchronously with the coupled
controller when feasible, especially during data collection. To pre-
vent the need for rollback, we incorporate events at critical time
points, such as data collection and decision-making, to avoid missed
opportunities. Our second contribution is the definition of generic
control interfaces that enable users to adapt this framework to
their specific needs. We introduce a query mechanism based on
relational algebra logic which enables the extraction, selection, and
aggregation of simulation data at runtime as needed. In addition,
we provide a well-defined semantic specification, i.e., a language
and platform-neutral protocol under a non-restrictive license1 that
standardizes communication between the traffic simulation and
external applications.

The rest of this paper is organized as follows: Section 2 reviews
related work, while Section 3 and 4 provide details on the system
architecture and semantics of DAR-CI, respectively. We evaluate
DAR-CI by comparing its performance to the state-of-the-art tool

1DAR-CI protocol repository is hosted on Zenodo: https://doi.org/10.5281/zenodo.
7842682

TraCI in a simulation of two practical use cases (Section 5). Finally,
we conclude the paper in Section 6.

2 RELATEDWORK
2.1 State-of-the-Art Controllable Traffic

Simulators
This section presents the current state of controllable traffic sim-
ulation2, noting that there is a high demand for interacting with
and controlling a traffic simulation during runtime [28], but only
a few established simulators offer built-in support for this feature.
These simulators include VISSIM [8], AIMSUN [3], SUMO [17], and
CityMoS [36]. VISSIM and AIMSUN provide API-based solutions
that require controller code to be embedded in the same process
space as the traffic simulator. This in-process architecture is not
horizontally scalable and lacks language independence. In contrast,
SUMO and CityMoS use a client-server architecture with a pub-
lic, standardized protocol specification known as Traffic Control
Interface (TraCI) [35]. Due to its open source nature, TraCI has
been widely adopted by researchers and practitioners in the traf-
fic simulation community and beyond (e.g., network simulators
[19, 26]).

However, all these simulators can only interact synchronously
in the step-based approach (see Section 1), and lack flexibility and
scalability in data processing. We illustrate this limitation using
TraCI as an example. The controller first requests the simulation
to advance to a specific time step (𝑡1) and waits. When the sim-
ulation has advanced to 𝑡1, the controller is notified and then it
treats the simulation snapshot as a static database, sending queries
accordingly. After processing the queries, the controller requests
the simulation to unpause and advance to the next time step of in-
terest (𝑡2) and repeats the query process. However, between 𝑡1 and
𝑡2, the simulation is non-interoperable. This step-based interaction
mode has some advantages, such as simplicity, but its disadvantages
become apparent when applied to DDDM applications. In order to
collect data over a period of time, the TraCI controller must pause
the simulation at each time step to retrieve the simulation state,
resulting in frequent communication between the controller and
the simulation, and hence, major impact on performance.

From a semantic perspective, TraCI requests have a limited scope
because they can only access one mobility primitive at a time, with
the object of interest identified solely by its ID. For example, a
moving vehicle may have multiple attributes describing its state,
including its speed, location, direction, and route. However, only
one attribute of an object can be retrieved or modified within each
TraCI request. The scalability is thus limited, resulting in significant
network overhead in large-scale simulations.

2.2 Approaches Towards Simulation
Interoperability

Our research is relevant to the concept of interoperability, which
involves the seamless exchange of information and collaboration
among different systems or components. In this section, we inves-
tigate various techniques to attain interoperability in simulation

2Only microscopic simulators, which can provide details of vehicle dynamics, traffic
lights, etc., are under consideration
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systems, utilizing the three-layer model proposed by Tolk [29],
which includes the technical layer, informational layer, and organi-
zational layer.

The technical layer concerns the physical ability of the simulator
to facilitate information exchange. First of all, it is essential to dif-
ferentiate between synchronous and asynchronous communication.
Synchronous communication involves the client and server wait-
ing for the completion of any outstanding requests before issuing
new requests. However, asynchronous communication does not
require this kind of waiting. For our specific requirements, the use
of asynchronous communication is more appropriate because the
controller requests typically do not require an immediate response,
e.g., acquisition of simulation data for a future time. Recent trends in
this layer also include the use of web-based service-oriented archi-
tecture (SOA) [34], involving various communication technologies
such as RESTful [1, 7], SOAP [31], and gRPC3 [11].

The information layer requires a common understanding of the
data being exchanged, as seen in examples such as Protocol Data
Unit (PDU) in the Distributed Interactive Simulation (DIS) stan-
dard [6] utilized in the warfare domain, and the Federation Object
Model (FOM) in the High-Level Architecture (HLA) standard [5].
While TraCI remains the exclusive protocol for traffic simulation,
its binary format can present challenges in implementation and
debugging. Instead of implementing protocols in programming
languages on all target platforms, Interface Description Language
(IDL) are used to define protocols once and generate code in vari-
ous languages automatically, such as the use of Google’s Protocol
Buffers (protobuf)4 in [21, 22].

The coordination and collaboration of inter-organizational pro-
cesses is managed by the organizational layer. The DEVS specifi-
cation [30] provides a formalism for coupling event-based simula-
tions that is applicable to the majority of traffic simulations [32].
Within DEVS specification, simulations maintain a chronologically
ordered list of events based on their execution time. Interoperabil-
ity is achieved by dynamically manipulating the composition and
ordering of events within this list, such as inserting or removing
events.

Additionally, there exist general architecture frameworks such
as HLA that offer a standardized approach for integrating multiple
simulators through the use of the Runtime Infrastructure (RTI)
middleware. This is particularly well suited for DEVS-based co-
simulation [10] and is widely used in traffic simulation. MOSAIC
[23], which follows the HLA concept but tailored specifically for
traffic domain, enables various simulations to work together to
simulate ITS. While our research aims to improve the efficiency of
control interfaces in traffic simulation, especially for data collection,
it does not seek to provide an alternative to HLA or MOSAIC.
Instead, our efforts contribute to simplifying and optimizing the
integration of traffic simulation into the standard co-simulation
frameworks mentioned above.

2.3 Online Simulation Data Extraction
With respect to data extraction techniques for simulations, Schützel
and Uhrmacher [25] consider simulation data from two dimensions:

3https://grpc.io/
4https://protobuf.dev/
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Figure 1: The DAR-CI system architecture allows for client-
server interaction, where the client sends requests that are
transformed into events and added to the simulator’s updated
event list.

structural and sequential (i.e., time). They emphasize that the data
should be selectable, extractable, and aggregatable at runtime in
both dimensions, but designing a query language that incorporates
all of these functions is a challenging task. They have also proposed
two different query languages in [24] and [12], respectively. How-
ever, neither of them can perform tasks such as time windowed
aggregation.

Particularly interesting is the work of Zehe et al. [37], who use
SimuSQL, a SQL-like query language, to reduce the cost of storing
simulation data in the cloud. They proposed an optimization ap-
proach to track data status and transfer only updated data, thereby
reducing I/O overhead. However, the query language still lacks
support for temporal operations. The study also does not address
synchronization, as online intervention in the simulation is beyond
the scope of the research.

Another example is the HLA, where essential data is prede-
termined and sent to RTI during simulation. Nevertheless, this
approach is inflexible when it comes to selecting data of interest
and frequently leads to the transmission of redundant data. Also,
transferring data to the middleware can result in additional com-
munication and synchronization overhead.

3 SYSTEM ARCHITECTURE
Fig. 1 illustrates the proposed system architecture, which employs
a client-server approach. Within the traffic simulator, a DAR-CI
server is integrated to handle requests from external controller
clients and to provide corresponding responses. Asynchronous
operation is a key feature of the system for efficiency, but it also
poses challenges due to synchronization issues. Ensuring that the
system works as intended requires careful consideration and design.
The four-step process, inspired by [27], outlines the steps that the
simulation should follow when receiving a request, and it includes
the following:

Admission: Verify the validity of the received request.
Operation: Determine the operations included in the request.
Sequencing: Establish when the operations should be per-

formed.
Responding: Determine what and how the responses (e.g., sim-

ulation data) should be sent.
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Moreover, it is important to have a synchronization mech-
anism in place to prevent the coupling approach from missing
critical simulation time points. The following sections provide a
comprehensive overview of DAR-CI’s design and how it addresses
the challenges for handling external requests in the asynchronous
coupling approach.

3.1 Admission
The event-based approach is widely used in traffic simulation, also
including fixed time-step based traffic simulators. These simulators
typically maintain a sorted event list that contains internal events
representing state changes in the simulated system, such as vehicle
arrivals, lane changes, and traffic signal changes, as illustrated in
Fig. 1. The simulation process progresses by continuously executing
events from this list in the order of their scheduled execution time.

To enable run-time interoperability with these simulations, we
introduce external control events (also known as input events ac-
cording to DEVS formalism [30]) in addition to the internal events.
Each control event represents an atomic external operation that
the simulation can allow, such as VehicleStateRetrievalEvent
and VehicleStateUpdateEvent. By placing these control events
in their proper positions (i.e., at the appropriate execution time)
within the event list, we can manipulate the simulation’s behavior.

The basic process of DAR-CI is as follows (see Fig. 1): a request
receiver constantly listens for requests asynchronously to the exe-
cution of the simulation. Upon receiving a request, it is first parsed
and converted into multiple control events based on its semantics.
Each control event must have an explicit execution time speci-
fied in the request, indicating when the operations should occur.
The Control event scheduler is then responsible for scheduling
these control events into the event list, making the operations are
performed with the simulation update.

Since optimistic synchronization with rollback is not suitable
for our purposes (see Section 1) and to avoid causality violations,
operations in a DAR-CI request are restricted to be executed only
later than the current simulation time. Therefore, the time values
specified in the request are compared to the current simulation
time 𝑡𝑛𝑜𝑤 (i.e., the time value of the previously executed event). All
time values in the request must be greater than 𝑡𝑛𝑜𝑤 for the request
to be considered valid. Otherwise, the scheduling will fail because
some operations are too late to be served.

The Streaming response sender will immediately notify the
requester of the scheduling result. This can help the requester to
better organize the remaining requests, for example, an exception
can be thrown when the client receives a failure message.

3.2 Operation and Sequencing
The inserted control events are executed in chronological order,
along with internal events that are generated by the simulation
system itself. However, the execution order of events that have
the same execution time requires special consideration. A straight-
forward method is to use the First In - First Out (FIFO), which
means that the first event received will be executed first. However,
this approach can introduce ambiguity and inconsistency, causing
simulation results to vary unpredictably from run to run.
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Figure 2: Apply rules to resolve race conditions due to uncer-
tain execution order of same time step event.

For example, as shown in Figure 2, the simulation has three
control events at 𝑡𝑖 , each from one concurrent controller client.
𝐶𝑙𝑖𝑒𝑛𝑡1 and𝐶𝑙𝑖𝑒𝑛𝑡2 are trying to retrieve the value of 𝑎 and𝐶𝑙𝑖𝑒𝑛𝑡3
is setting it equal to 3. The order in which these events are received
is uncontrollable. An internal event that performs a++ has also been
scheduled at 𝑡𝑖 , and using the FIFO method eventually leads to a
race condition (see Case 1 and Case 2), resulting in a completely
different simulation behavior.

To solve this problem, we define a rule that controls execution
order of these "same time step" control events. In our framework,
we first categorize the control events according to their operations
into Get-events (read only) and Set-events (read and write), which
retrieve simulation data and modify it, respectively. To avoid the
race condition, Set-events should be executed first within the same
time step. After that, internal events should be executed, followed
by Get-events. Events within the same category can be executed
in any order, but an object can only be modified once in a single
time step for all Set-events to prevent conflicting updates. If a
conflict occurs, the simulation will notify the sending system to
handle the exception. By following this rule, the simulation remains
deterministic regardless of the receiving order, as shown in Fig. 2.

3.3 Synchronization
In DAR-CI, the controller and simulation operate independently
using an asynchronous approach. As previously mentioned, any
control event that arrives after its execution time with respect to
the simulation time will not be scheduled because it is already "too
late". However, in a coupled simulation, certain critical time points,
such as those related to decision-making or data collection, must
not be missed. Failure to meet these time points could cause the
entire integrated system to fail in achieving its intended simulation
purpose.

To avoid this, we define a new type of control event, the Pause-
event. It allows the simulation progress to be suspended at a speci-
fied time, giving participating controllers the opportunity to "catch
up", and the controllers can use continue requests to resume the
simulation.

The order where the Pause-event should be placed is also crucial,
because it could lead to deadlocks if a Pause-event is executed
before the other control events at the same execution time step.
Therefore, we place the Pause-event at the end of its time step to
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be executed. Additionally, if multiple pause requests are received
targeting at the same simulation time step, only one Pause-event is
inserted, and a pause counter (pc) is used to track the status after
receiving multiple concurrent continue requests. The simulation
will resume when pc reaches to zero.

3.4 Data Movement
With the event-driven approach, a request can collect a large
amount of data over time by inserting multiple events at differ-
ent times. However, sending every piece of raw data as soon as it
is generated would lead to significant network overhead, which is
also often unnecessary since the data may not be needed at that
moment.

Hence, by using DAR-CI, we allow the requester to specify the
desired way of returning data in the request, which facilitates the
streaming of data in batches. The Reply data manager shown
in Fig. 1 is responsible for this. It collects the retrieved data from
the running simulation, packages it according to the request, and
then sends it in batches via the Streaming response sender. This
not only reduces network overhead by reducing the frequency
of data transfers, but also facilitates parallel computing, as the
data requester can process data from the previous batch while the
simulation produces the next batch.

Additionally, the Reply data manager also supports in-situ
data processing, which enables the computation of pre-defined
traffic statistics and customized data aggregation using an SQL-like
approach (see Section 4.4) after the requested data is generated
from the simulation.

In summary, DAR-CI provides users with a flexible and efficient
approach to data processing and management. It allows users to tai-
lor their data analysis strategies to their specific needs and require-
ments, while effectively managing network traffic and resources
for better performance.

4 SEMANTICS
In this section, we focus on semantically structuring the request and
response of DAR-CI to address the informational challenges that
arise when interacting with heterogeneous simulation systems, as
noted in Section 2. Specifically, we address how to formally describe
requests to express the control operations and how to structure
responses to provide accurate and meaningful information. Our
approach is also a solution to the targeted and online simulation
data extraction problem [25], as we can build precise and focused
requests to query simulation data at runtime.

The design of the semantics is based on the event-based approach,
but is not strictly limited to it. As our goal is to provide a universal
control protocol for the traffic community, it should be semantically
simple, efficient, and flexible. Existing traffic simulators can easily
create a wrapper that matches their interface to DAR-CI with very
little effort to implement. This can help standardize traffic simu-
lation communication, foster a more collaborative and productive
traffic simulation research community, and ultimately lead to more
effective and efficient traffic management solutions.
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Figure 3: The organization of simulation databases involves
updating them with time. Tables representing simulation
data for each time step are located above the time line, while
aggregated attributes are below.

4.1 Simulation Databases
Fig. 3 illustrates how, at each timestamp, simulation data can be
organized into multiple tables containing columns and rows as a re-
lational database. Each table represents a specific type of simulation
object, such as a vehicle, lane, or traffic light. Each row represents
an instance of that type with a unique identifying key (i.e., ID) and
variables for each attribute (e.g., speed, position) written in each
column. The state of any simulation data can thus be represented
by the combination of Table name, Object ID, Attribute name, and
Time step.

Another important but often overlooked type of attribute is
the temporally aggregated attributes, such as traffic volume, road
emissions, and energy consumption. These attributes are based on a
time interval instead of a single time step and are frequently used as
standard "domain-specific statistics" in the traffic domain. Including
them in the simulation data representation would be beneficial to
improve simulation performance and semantic clarity, as shown
in Fig. 3. The state of these data can be indicated as Table name,
Object Id, Temporally attribute name, and a time interval, e.g., from
𝑡𝑖 to 𝑡𝑛 .

The distinction between simulation data and a conventional
database is quite significant. In a database, the data is typically static,
while in a simulation, only previously generated and saved data is
accessible. Therefore, when requesting information in a simulation,
it is critical to provide temporal details to ensure that the simulator
can allocate resources for transmission or post-processing.

4.2 Unary Request-Response
The fundamental component of the DAR-CI request is the unary-
request, which is composed by five segments that must be com-
pleted in a left-to-right order:

< Operation, Time, Table name, Reference by,Attributes >

Details are as follows.
1) Operation:

Four types of operations can be performed on the simulation
side as requested: data retrieval, data updating, pause simula-
tion, and continue simulation. Selecting continue simulation
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Figure 4: Entity Relation (ER) model of traffic simulation
data.

as the operation will complete the request, as it immediately
tries to wake up the sleeping simulation thread and is not
considered an event. Otherwise, it is necessary to fill in the
next parameter, i.e., time before sending the request.

2) Time:
It determines the timing of the operation, i.e., when the op-
eration will occur. Note that for data retrieval operation, the
time value can also be a 2-tuple, e.g., (𝑡𝑠 , 𝑡𝑒 ), which indicates
that this request is intended to retrieve temporally aggre-
gated attributes that are computed over this time intervals.

3) Table name:
During this step, the operations are either data retrieval or
data updating. As discussed in Section 4.1, simulation data
can be modeled as a collection of tables representing the
states of various simulation objects at any given timestamp
(or time interval). Therefore, the relevant table for the query
must be specified.

4) Reference by:
This step is to narrow down the relevant data by specifying
the rows representing the simulation instances (also known
as agents). In contrast to the traditional approach of locating
agents solely by their IDs, DAR-CI employs a predefined rela-
tion between simulated objects to support locating instances
by the IDs of other associated objects, as illustrated in Fig.
4. For example, if we select the [vehicle] table and specify
[Road IDs] as the references, along with the relation from
Road - Lane - Vehicle, we can filter out vehicles driving on
lanes of these roads as the instances of interest. This design
is particularly useful in cases such as rerouting all vehicles
on some congested Roads, which can be then expressed in a
single request.
In addition, DAR-CI also supports the selection of objects
with other relevant information. For instance, it enables
the selection of agents within a specific region by sending
polygons in a standard format, such as the well-known text
(WKT) format.

5) Attributes:
In this step, the targeted data is further refined by speci-
fying the names of the attributes that are of interest. This
process is known as projection in the relational database
domain, where the required columns are selected from the
filtered table generated in the previous step. By specifying
the relevant attributes, the dataset is further narrowed down,
providing more focused and specific results that match the
requirements of the query. For data retrieval, the name of all

Table 1: Example of a Compound-Request with data return
times in 𝑡𝑖+1 and 𝑡𝑖+5.

Req Operation Time Table name Reference by Attributes
𝑅𝑒𝑞1 data retrieval 𝑡𝑖 A A_IDs=[1, 2] [attr_1]
𝑅𝑒𝑞2 data retrieval 𝑡𝑖 A A_IDs=[2, 3] [attr_2]
𝑅𝑒𝑞3 data retrieval 𝑡𝑖 B B_IDs=[1, 2] [attr_3, attr_4]
𝑅𝑒𝑞4 data retrieval 𝑡𝑖+5 A A_IDs=[1, 2] [attr_1]
𝑅𝑒𝑞5 pause simulation 𝑡𝑖+5 N/A N/A N/A

the interested attributes is required, i.e.,

[attributeName1, attributeName2, ...]

For data updating, the replacement value should also be
given, i.e.,

[(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑁𝑎𝑚𝑒1, 𝑣𝑎𝑙𝑢𝑒1), (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑁𝑎𝑚𝑒2, 𝑣𝑎𝑙𝑢𝑒2), ...]

Regarding the responses, the data changing, pause simulation,
and continue simulation operations have the same response, which
doesn’t carry any semantic meanings. The purpose of this response
is simply to inform the requester that the operation has been per-
formed successfully. In contrast, for data retrieval, the response
is the extracted target data. As the extracted data is a subset of a
relational data table, it can be easily described in CSV, XML, or
other data interchange formats. It is important to note that when
responding to a data retrieval request, the time value describing
when the data was fetched must always be attached to the response.
This ensures that the requester is aware of the specific point in time
that the data corresponds to, allowing them to accurately interpret
and utilize the retrieved data.

4.3 Compound Request-Response
Unary-requests in DAR-CI have some limitations. For example, it
cannot cover multiple objects or span across different times, as it
is restricted to a single data table. To overcome this limitation, we
propose the concept of Compound-Request. Formally expressed
as follows:

< Reqs, Tret >

Where Reqs is a set of unary-requests that can have different
operations, times, table names, and attributes. Tret is a set of data
return times, representing when the generated responses (e.g., re-
trieved data) will be batched and sent.

Tab. 1 provides an example of a compound-request, which con-
tains four data retrieval unary-requests. While 𝑅𝑒𝑞1 and 𝑅𝑒𝑞2 oper-
ate on the same table with the same time step, they retrieve different
combinations of instances and attributes. In contrast, 𝑅𝑒𝑞3 targets
another table (i.e., B), and 𝑅𝑒𝑞4 fetches data from a different time.
This demonstrates how a compound-request can offer complete
access to the entire simulation data, i.e, across different tables and
time series. It also illustrates how the requester can precisely spec-
ify the desired data by using the data retrieval unary-requests and
arranging their combinations.

In addition, a compound-request can include different types
of unary-requests, such as the pause simulation request shown
in Tab. 1. This request schedules a pause event that will halt the
simulation’s progress at time 𝑡𝑖+5.
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Tret provides flexibility for retrieving data in batches, as discussed
in section 3.4. The Reply data manager component utilizes these
time values to send out the queried data in batches. In the example
from Tab. 1, the specified return times are 𝑡𝑖+1 and 𝑡𝑖+5. Therefore, at
𝑡𝑖+1, unary responses for 𝑟𝑒𝑞1, 𝑟𝑒𝑞2, and 𝑟𝑒𝑞3 (whichwere generated
before 𝑡𝑖+1) are batched and transmitted together. Following that,
when the simulation reaches 𝑡𝑖+5, responses of 𝑟𝑒𝑞4 and 𝑟𝑒𝑞5 are
sent. Essentially, this feature enables users to tailor the timing and
content of the returned data in batches in the request, as opposed
to using a fixed frequency and batch size.

Finally, the semantic structure of DAR-CI requests is well-suited
for the event-driven approach described in section 3. Each unary-
request can be easily mapped to a control event with the time value
indicating the execution time, resulting in a relatively straightfor-
ward implementation.

4.4 Possible Extension: In-situ Data Aggregation
DAR-CI is designed such that it is easy and natural to extend. As
we have already described, the response of a unary-request is a
subset of a relational data table with a time value, and the response
of a compound request is a collection of these subsets, which it-
self becomes a static temporal relational database. This opens
the possibility for any user defined query acting on the database
collected by a compound-request, which can enable in-situ data
aggregation, further reducing transfer overhead.

Fig. 5 illustrates how to use a standard SQL statement to perform
second query on the data obtained from a compound request. The
compound request consists of three unary-requests, each retrieving
hourly traffic volumes for lanes with id 1 and 2 for the time intervals
0:00 to 1:00, 1:00 to 2:00, and 2:00 to 3:00, respectively. The collected
data from each unary response is first stored (①) and then integrated
into a data table, the table "Lane", and use a time column to label
each row, indicating when the data corresponded to (②). With the
following SQL statement, the peak traffic volumes and the times
when the peaks occurred in both lanes during these three hours
are filtered out (③):
SELECT ID, Time, MAX(TrafficVolume) FROM Lane GROUP BY ID

Compared to sending the entire data table out, the cost of trans-
ferring the aggregated data directly is significantly smaller. Given
that query languages in static (temporal) databases are quite well
established, our study does not include how to implement them in
DAR-CI. Instead, what DAR-CI provides is a way to extract data
across different objects and time series during dynamic simulations
and form them into a static database, laying the groundwork for
further use of the existing query languages.

5 CASE STUDY
We conducted two case studies to assess the advantages and disad-
vantages of DAR-CI: a dynamic Lane Traffic Volume Data (LTVD)
query system and an adaptive traffic light control system. Both
cases were tested on a grid road network with 100 intersections and
5000 lanes. DAR-CI is implemented on top of the traffic simulator
CityMoS [36], using gRPC as the communication framework.

The baseline for our tests is a simulation of a day-long traffic
without any runtime interaction, which takes 339 seconds to finish,
resulting in a speedup of 255 times compared to the physical time

Id
MAX

(TrafficVolume)
Time

1 150 (2,3)

2 140 (0,1)

Res1: Lane, Time = (0,1)

ID TrafficVolume

1 100

2 140

Res3: Lane, Time = (2,3)

ID TrafficVolume

1 150

2 110

Res2: Lane, Time = (1,2)

ID TrafficVolume

1 130

2 120

Lane

ID TrafficVolume Time

1 100 (0,1)

2 140 (0,1)

1 130 (1,2)

2 120 (1,2)

1 150 (2,3)

2 110 (2,3)

1 2 3

Figure 5: Using SQL to do a second query on data collected
from a compound-request. Hourly traffic volume data with
units of vehicles is first integrated into one table. The SQL
statement filters the data to find the peak traffic volumes and
corresponding times for lanes 1 and 2 over the three-hour
period. The time column in the table is with the unit hour.

(24 hours). A time step for the simulation is 250 milliseconds. We
will refer to the time steps with 𝑡𝑖 = 𝑖 · time step for 𝑖 ∈ [0, 𝑛]. The
controller client and the simulator are placed on separate machines
with identical hardware configurations (Intel(R) Xeon(R) CPU E5-
2630 v3 and 32GB of memory), connected by a local network. The
order of magnitude of the network latency is 0.2 milliseconds and
the bandwidth is 1 Gbits/sec. We also ran each use case using TraCI
for comparison.

5.1 Lane Traffic Volume Data Query
LTVD refers to the number of vehicles that pass through a given
lane in a given time period 𝑇 ∈ (𝑡𝑠 , 𝑡𝑒 ]. This scenario is testing
the impact of repeatedly retrieving the LTVD value at fixed time
intervals Δ𝑇 from the running simulation. For instance, if Δ𝑇 = 5𝑠 ,
the LTVD value will be generated for each period of 0-5 seconds,
5-10 seconds, 10-15 seconds, and so on. Consequently the time
intervals will correspond to 𝑇𝑗 = ( 𝑗 · Δ𝑇, ( 𝑗 + 1)Δ𝑇 ] for 𝑗 ∈ (0, 𝑛).

The LTVD for a lane is calculated by counting the number of
vehicles which have left the lane in the specified time interval, or
formally expressed

∑𝑡𝑒
𝑡=𝑡𝑠

|𝑉𝑡𝑖 \𝑉𝑡𝑖+1 |, where𝑉𝑡𝑖 is the set of vehicles
in the 𝑡𝑖 time step, and 𝑉𝑡𝑖+1 is the set of vehicles of the subsequent
time step. Therefore, to compute this metric for a lane, the list of
vehicles present on it for each time step in the time interval is
required. If there is a missing time step, a vehicle leaving the lane
could be missed from the count.

Four controllers were implemented and evaluated:
TraCI_norm is implemented with TraCI (see Section 2.1). At

each time step, and for each interested lane, LastStepVehicleIds5
is sent individually to retrieve the IDs of the vehicles present on
that lane. Subsequently, the controller calculates the LTVD incre-
mentally using the methods described above.

TraCI_sub is also a TraCI-based approach but uses the sub-
scription6 feature for better performance. Instead of continuously
active querying, it subscribes to LastStepVehicleIds for all rel-
evant lanes after the simulation starts. The subscribed data (i.e.,
5https://sumo.dlr.de/docs/TraCI/Lane_Value_Retrieval.html
6https://sumo.dlr.de/docs/TraCI/Object_Variable_Subscription.html
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Table 2: Compound Request for retrieving Data for DAR-
CI_raw in Time Interval (𝑡𝑠 , 𝑡𝑒 ]. Data return at 𝑡𝑠+𝑡𝑒

2 and 𝑡𝑒 .

Operation Time Table name Reference by Attributes
Data Retrieval 𝑡𝑠+1 Lane Lanes’ IDs LastStepVehicleIds
Data Retrieval 𝑡𝑠+2 Lane Lanes’ IDs LastStepVehicleIds

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Data Retrieval 𝑡𝑒 Lane Lanes’ IDs LastStepVehicleIds
Pause Simulation 𝑡𝑒 N/A N/A N/A

Table 3: Compound Request for retrieving Data for DAR-
CI_opt in Time Interval (𝑡𝑠 , 𝑡𝑒 ]. Data return at 𝑡𝑒 .

Operation Time Table name Reference by Attributes
Data Retrieval (𝑡𝑠 , 𝑡𝑒 ] Lane Lanes’ IDs TrafficVolume

Pause Simulation 𝑡𝑒 N/A N/A N/A

vehicles’ IDs on each lane) of the just-finished time step are then
automatically sent back in one message to the requester when-
ever the simulation is paused. However, this still requires that the
simulation be paused at each time step to collect the data for the
entire time period.

DAR-CI_raw uses DAR-CI to interact with the simulation. It
collects the same data and uses the same algorithm as TraCI_norm
and TraCI_sub to compute the LTVD. The data is collected by a
compound request for each time interval. As shown in Tab. 2, it
consists of a series of unary requests, with each request querying
the vehicle IDs on the lanes at each time step. A pause request is
also added at the end of the interval to ensure that the simulator
will not run further than 𝑡𝑒 , which guarantees that the simulator
will not reject the next requests. Once the computation is done and
the request for the next interval is scheduled, the controller sends
a continue request to resume the simulation. To facilitate efficient
data processing, the returned data is split as evenly as possible
into two batches to be returned. The first batch is returned at the
midpoint of the current time interval, and the second batch is sent
at the end of the interval.

DAR-CI_opt operates similarly to DAR-CI_raw, but the dif-
ference lies in the content of the compound request (see Tab. 3).
As the LTVD is a commonly used metric, we integrated the afore-
mentioned computation logic directly into the DAR-CI server. In
this case, the LTVD value is requested directly by DAR-CI_opt by
giving the desired time interval and lane IDs, and the calculation is
performed in-situ within the simulation.

5.2 Performance Analysis
To evaluate the performance of different controllers for retrieving
the LTVD value, we conducted a series of experiments where we
varied the length of Δ𝑇 and the number of lanes (𝑛𝑙 ). The results
of these experiments are presented in Figure 6.

TraCI uses a step-based synchronous approach. Therefore, it
provides consistent speedup values at different Δ𝑇 for the same 𝑛𝑙 .
DAR-CI shows better performance as Δ𝑇 increases. This is because
a longer Δ𝑇 results in fewer requests and lower overhead. We
observed that for Δ𝑇 greater than or equal to 5 seconds, DAR-CI
consistently outperforms TraCI. For example, when we compared

Table 4: Scalability analysis: The values represent the ad-
ditional time required to retrieve the data of an increased
number of lanes relative to retrieve a single lane. The closer
the value to one, the better the scalability of the controller.

Controller 𝑑25 𝑑50

TraCI_norm 6.60 11.57
TraCI_sub 1.42 1.71

DAR-CI_raw 1.11 1.21
DAR-CI_opt 1.02 1.05

DAR-CI_raw and TraCI_sub with Δ𝑇 = 300𝑠 and 𝑛𝑙 = 50, DAR-
CI_raw exhibited a remarkable 223% improvement in performance
over TraCI_sub, even though both of them actually received the
same data.

However, when dealing with small intervals, DAR-CI must pause
the simulation at a very fine granularity to validate requests for
the next time interval. In the extreme case, i.e., Δ𝑇 = 250𝑚𝑠 , the
control strategy falls back to the "time step mechanism". Due to its
more complex request-response behavior, DAR-CI underperforms
compared to TraCI under such cases. For example, each DAR-CI
request always has at least two responses, with the first response
providing information about the validity of the request and the rest
with the actual contents. Whereas in TraCI, it is not needed for its
synchronous approach since the request is always assumed to be
valid. This additional overhead may make DAR-CI unsuitable for
use cases that require high-frequency synchronization. However, in
the context of our targeted Data-Driven Decision-Making (DDDM)
scenarios, which typically involve long-term data collection with
Δ𝑇 on the order of seconds and minutes, this is not a limitation.

Another aspect to consider is the scalability. In the context of
our experiment, it refers to the ability of the integrated simulation
system to handle an increasing number of queried lanes without
sacrificing performance. Tomeasure it quantitatively, for each client,
we compare the additional time required for the simulation as the
number of queried lanes increases. The following formula is used:

𝑑𝑁 =

∑𝑛
𝑖=1𝑊𝐶𝑇 (𝑛𝑙 = 𝑁,Δ𝑇𝑖 )∑𝑛
𝑖=1𝑊𝐶𝑇 (𝑛𝑙 = 1,Δ𝑇𝑖 )

where𝑊𝐶𝑇 denotes the wall clock time used for the simulation of
retrieving LTVD with 𝑁 queried lanes and the different used time
intervals Δ𝑇𝑖 . The results is depicted in Tab. 4.

The TraCI_norm is particularly sensitive to scale and exhibits
the most significant decrease in degradation. This is due to its
limitation of allowing only a single object to be queried per request,
which leads to an increased number of messages exchanged as
the number of lanes queried increases. In contrast, the TraCI_sub
has better scalability due to its ability to consolidate data from all
lanes of each time step into a single message to be sent, ensuring
consistent number of messages exchanged in all the runs. However,
the performance degradation is still notable due to larger message
sizes and higher computational efforts.

While the DAR-CI_raw can also encounter challenges in scaling
with an increase in data size and computational requirements, it
demonstrates better scalability than TraCI_sub due to its batch pro-
cessing capability. In our experiment, we divided the data for each
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Figure 6: Speedup of simulating LTVD retrieval scenarios with different controllers. The LTVD was varied with different Δ𝑇
and 𝑛𝑙 . The Speedup is the ratio of the simulation wall clock time and the physical time (i.e., 24 hours). As a baseline, the
simulation was run without any runtime interaction, and it achieved a speedup of 255 times.

time interval into two evenly sized batches for transmission. This
approach not only reduces the frequency of information exchange
compared to TraCI_sub, but also enables parallel computing. Specif-
ically, the communication and computation overhead for issuing
the first batch of data can be overlapped with simulation updating,
minimizing the performance degradation due to scaling. The DAR-
CI_opt performs the best in terms of scalability. This is because it
allows computations to be performed in-situ, only the calculated
results need to be transferred. As a result, variations in message
size between different lanes numbers are relatively minor and do
not significantly impact performance.

5.3 An Adaptive Traffic Light System
In the previous section, we illustrate how DAR-CI can significantly
improve performance through LTVD experiments. In this section,
we present a practical application of DAR-CI in a real-world DDDM
scenario. Specifically, a complete pipeline is shown where DAR-CI
is used not only to retrieve data from the simulation, but also to
perform interventions at specific points in time.

In our previous research [20], we introduced an algorithm that
uses real-time data and machine learning to dynamically optimize
the timing of traffic lights at intersections. The algorithm takes
collected traffic metrics (e.g., LTVD) as input and adjusts the traffic
light programs accordingly at the beginning of each traffic light
cycle7. To evaluate this optimization approach, we used DAR-CI to
reproduce and evaluate the algorithm in a coupled simulation envi-
ronment. Specifically, a controller client is created for each traffic
light that uses the optimization algorithm, and then these clients are
coupled with the CityMoS traffic simulator. A sequence diagram, as
shown in Fig.7, illustrates the interaction flow between the traffic
light clients and the simulation. It shows how DAR-CI’s multi-client
support enables seamless coordination and synchronization in a
complex simulation environment.

We conducted experiments assuming that LTVD is the input
for the optimization algorithm. Specifically, the client collected the
7A traffic light cycle is a time interval consisting of a sequence of traffic signal phases,
with each phase allowing traffic to flow in a particular direction or stopping it to allow
traffic from other directions to proceed.

Table 5: Speedup of simulating adaptive traffic light systems
with different controllers.

Intersections TraCI_norm TraCI_sub DAR-CI_raw DAR-CI_opt

5 23.41 95.87 227.56 243.73
100 1.01 17.35 101.60 165.39

LTVD value for each lane at the intersection during each signal
cycle. At the end of each cycle, a new signal timing plan for the
next cycle is sent back to the simulation. Similar to our previous
experiments, in addition to querying the LTVD data directly in
the request (i.e., DAR-CI_opt), three additional approaches were
implemented: using TraCI without subscription (TraCI_norm),
using TraCI with subscription (TraCI_sub), and querying raw
data with DAR-CI (DAR-CI_raw). For each approach, we tested
2 scenarios in different scale, i.e., with 5 optimized intersections
and 100 intersections, respectively. Each intersection has 12 lanes.
The optimized traffic light cycle is constrained within a duration
of 200 ± 30 seconds. As a result, with 100 intersections, on average
every 4.3 seconds a traffic light ends its cycle. All the approaches
were single-threaded, including the two with DAR-CI, which use a
coroutine for each traffic light client, and therefore did not benefit
from hardware parallelism.

The results, shown in Tab. 5, show that DAR-CI outperforms
TraCI in all tested approaches. When requesting the same data
and performing the same computations, DAR-CI_raw is 100 times
faster than TraCI_norm and almost 6 times faster than TraCI_sub.
As expected, DAR-CI_opt proves to be the best performing con-
troller due to its ability to directly retrieve LTVD with in-situ data
processing. With 100 intersections, it achieves a speedup of 165.39,
representing 64.85% of the baseline, and is 9.53 times faster than
TraCI_sub. Also, DAR-CI_opt is the least affected by scale of all the
approaches.

6 CONCLUSION AND FUTUREWORK
This paper presents Discrete-Event, Aggregating, and Relational Con-
trol Interfaces (DAR-CI) to improve the flexibility and efficiency
of coupled traffic simulation, particularly in the context of Data-
Driven Decision-Making (DDDM) scenarios. We propose to use
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Figure 7: At the initial stage, the traffic simulator pauses and
sets the pause count (𝑝𝑐) to the number of traffic light con-
troller clients (2 in this case). Each controller client sends a
compound-request, which includes three operations: updat-
ing the traffic light signal timings for the upcoming cycle,
querying data for the cycle, and requesting the simulation to
pause at the end of the cycle. The DAR-CI server schedules
the requests and sends a confirmation message to the con-
troller clients. Once the controller clients receive the confir-
mation message, they send a continue request, reducing the
𝑝𝑐 by 1. The simulation continues only when the 𝑝𝑐 reaches
0. During the simulation, queried data is sent back to the
controller clients, and the clients can perform computation
in parallel. If a traffic light cycle ends, the simulation pauses,
and the corresponding controller client optimizes the signal
timings with a new compound request to the traffic simu-
lator. Due to space limitation, the diagram is only shown
up to TL_2 cycle ends. The life bar is color-coded to provide
visual cues: green means the simulation is running, blue for
client-side data processing, and white for others.

a discrete-event-based approach that allows for asynchronous in-
teractions. Unlike existing approaches, the simulation can keep
running without having to wait for data to be queried, reducing the
idle processing time and the communication overhead, thus result-
ing in higher performance. In addition, DAR-CI utilizes rich and
flexible semantic expressions to construct requests and responses. It
incorporates a relational data model that facilitates precise data re-
trieval, ensuring that only the required simulation data is retrieved
and transmitted. Moreover, DAR-CI allows for greater control over
the data processing strategy (batching with customized size or in-
situ computation) to optimally meet the requirements of different
use cases. These features have been implemented in the CityMoS
traffic simulator, resulting in improved and more efficient traffic
management scenarios simulations.

Other use cases can also benefit from DAR-CI. For instance,
its asynchronous model allows for plug-and-play and human-in-
the-loop simulation, meaning that any intervention can be made
during the runtime, without the need for pre-definition. This can be
used to create immersive simulations of traffic scenarios, enabling
transportation authorities and planners to observe and understand
simulation results in real-time and experiment with What-If strate-
gies in a controlled environment.

Although DAR-CI has shown promising results in traffic simula-
tions, there are limitations to our current approach that we plan
to address in future research. One such limitation is the current
time-based constraints of DAR-CI. Each unary request must explic-
itly have a time value to indicate when the operation should occur.
However, this approach can be challenging in situations where
the timing is uncertain, such as in cases of traffic congestion or
accidents. In such scenarios, a time step-based condition check is
still required to determine whether the request should be applied or
not, which is cumbersome and limits the performance of DAR-CI.
Another area of research we are pursuing is extending DAR-CI to
serve as a control system for distributed traffic simulations, which
is a common practice for large-scale simulations. However, this is
a challenging task due to the inherent complexity of distributed
systems. Multiple event lists are simulated simultaneously under
non-shared memory conditions, making it difficult to coordinate
interventions accurately and efficiently. Data queries may also span
different simulation instances, which requires an efficient and flex-
ible semantics for distributed simulation databases. In addition,
we’re also prioritizing optimal query processing as part of our re-
search. This includes identifying and reducing redundant queries
to the same data, as well as implementing caching mechanisms to
minimize duplicate data output.
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