
Towards Evaluating Multipath TCP using Linux Tools and Utilities
Suvam Mukherjee, Abhinaba Rakshit, Dayma Khan, Mohit P. Tahiliani

Wireless Information Networking Group (WiNG)
National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka - 575025, India
(suvammukherjee.217cs011,abhinaba.212cs002,daymakhan.212cs006,tahiliani)@nitk.edu.in

ABSTRACT
Multipath TCP (MPTCP) is a transport protocol standardized in
RFC 8684 and is an ongoing research topic at IETF. The implemen-
tation of MPTCP is under active development in the Linux network
community. Performing experiments with MPTCP using the Linux
network stack requires installing external tools and utilities. This
paper analyzes the tools and utilities that are popularly used for
MPTCP experimentation using the Linux network stack. Subse-
quently, using these tools and utilities, we perform a deep-dive
analysis of the implementation of the connection establishment
phase of MPTCP in the Linux kernel by conducting experiments
and comparing whether this implementation is in line with the
RFC. We leverage Linux network namespaces to perform experi-
ments because they provide a lightweight alternative to setting up
physical testbeds or virtual machines. Moreover, it makes our ex-
periments easily reproducible across different Linux platforms. Our
experiments show that the Linux implementation of the connection
establishment phase of MPTCP closely follows RFC 8684.

CCS CONCEPTS
• Networks → Transport protocols; Network experimenta-
tion.

KEYWORDS
Multipath TCP, Path Manager, Linux Network Namespaces
ACM Reference Format:
Suvam Mukherjee, Abhinaba Rakshit, Dayma Khan, Mohit P. Tahiliani.
2023. Towards Evaluating Multipath TCP using Linux Tools and Utilities.
In 24th International Conference on Distributed Computing and Networking
(ICDCN 2023), January 4–7, 2023, Kharagpur, India. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3571306.3571426

1 INTRODUCTION
Over the years, there have been multiple ways of improving the
performance of TCP. Extending the support of multi-homed and
mobile devices has been one such effort. However, traditional TCP
uses a single interface per connection for communication. Hence,
to leverage the capability of using multiple interfaces simultane-
ously to obtain a higher throughput, approaches such as VPN bond-
ing [1], Linux bonding [1], and Multipath TCP (MPTCP) [2] can be
leveraged. L2 VPN and 802.3ad/LACP (Link Aggregation Control
Protocol) features are combined in VPN bonding. LACP is used

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ICDCN 2023, January 4–7, 2023, Kharagpur, India
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9796-4/23/01. . . $15.00
https://doi.org/10.1145/3571306.3571426

for Ethernet aggregation. VPN bonding allows VPN tunnels to be
added into one logical link and aggregate the total bandwidth of
all the VPN links. VPN bonding increases throughput for a single
stream and for numerous streams of connection. In Linux bond-
ing, administrators can combine multiple network interfaces into
a single logical interface, called a channel bonding interface. The
aggregated network interfaces are called controlled devices, and the
bonded logical interface is called the controller device [1]. Using
Linux bonding, we can see that the controlled device collaboratively
works so that the controller device gets more throughput than it
used to get in the network. MPTCP also uses the available interfaces
between the client and the server and gets more throughput than
using a single interface. However, the main difference between
MPTCP, VPN bonding, and Linux bonding is that the interfaces in
case of MPTCP can be added and removed dynamically. But in the
case of Linux bonding, controlled devices have to be aggregated
(or bonded) before the data transfer begins. The same holds true
for VPN bonding as well. This is one of the primary reasons we
explore more about the MPTCP approach in this work. It allows us
to simultaneously use multiple interfaces between two end hosts.
Using MPTCP, we can use the cumulatively added-up bandwidth
of various interfaces, thus providing enhanced performance.

Multipath TCP is a transport layer protocol and its implementa-
tion exists in Linux Kernel, which is still an ongoing project. There
exist two implementations of MPTCP, namely out-of-tree and up-
stream. The out-of-tree implementation supports both MPTCPv0
(RFC 6824) and MPTCPv1 (RFC 8684) [8]. This implementation
makes significant modifications to Linux’s TCP implementation,
and hence is challenging to maintain. Thus, the community de-
signed a new upstream implementation based on MPTCPv1. It has
been merged in the Linux kernel from v5.6 onwards [8]. Therefore,
we have considered the upstream implementation for this work.

Despite being natively supported in the Linux kernel, enabling
and configuring MPTCP for running experiments is still a chal-
lenging task. Several tools and supporting packages have been
developed for Linux, and are still being designed by the commu-
nity for the ease of running MPTCP on Linux platforms. In this
work, we analyze the tools and utilities that are popularly used
for MPTCP experimentation using the Linux network stack. Sub-
sequently, using these tools and utilities, we perform an in-depth
analysis of the implementation of the connection establishment
phase of MPTCP in the Linux kernel by carrying out experiments
and comparing whether it is in line with the RFC.We leverage Linux
network namespaces to perform experiments because they provide
a lightweight alternative to setting up physical testbeds or virtual
machines. Moreover, it makes our experiments easily reproducible
across different Linux platforms. Our experiments show that the
Linux implementation of the connection establishment phase of
MPTCP closely follows RFC 8684.

305

https://doi.org/10.1145/3571306.3571426
https://doi.org/10.1145/3571306.3571426
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571306.3571426&domain=pdf&date_stamp=2023-01-04

ICDCN 2023, January 4–7, 2023, Kharagpur, India Suvam Mukherjee, Abhinaba Rakshit, Dayma Khan, Mohit P. Tahiliani

This paper makes the following three contributions: (i) We dis-
cuss the popular tools and utilities required for experimenting with
MPTCP (mptcp-tools, mptcpize, ip mptcp, and mptcpd) using Linux
kernel, briefly explaining their working details, use-cases, and the
difference between them. (ii) We practically demonstrate how these
tools can be used for MPTCP socket creation and path management
while performing MPTCP-related experiments using the Linux net-
work namespaces, which are lightweight and scalable alternatives
to a physical testbeds or virtual machines. (iii) We verify whether
the connection establishment phases of the upstream implementa-
tion of MPTCP is in compliance with RFC 8684 [2].

2 LINUX TOOLS AND UTILITIES FOR MPTCP
This section discusses the working of popular tools and utilities that
are required for experimenting with MPTCP using Linux network
stack. The list includes: mptcp-tools, and mptcpize, which enable
native applications to create MPTCP sockets. In addition, tools like
ip mptcp and mptcpd (MPTCP Daemon) allow users to configure
MPTCP for their sub-flows. Besides, we briefly describe the in-
kernel and userspace Path Manager and highlight their differences.

2.1 mptcp-tools and mptcpize
MPTCP in the Linux kernel can be enabled using sysctl variables.
By default, ‘net.mptcp.enabled’ is set in the Linux kernel. However,
this is not sufficient to use MPTCP because the applications gener-
ally, by default, create TCP sockets. In the Linux kernel, the socket
API is used to create sockets, and it expects three parameters to
be passed. One of the parameters passed to socket API is ‘Protocol
Number’. Legacy TCP-only applications use the ‘Protocol Number’
as - IPPROTO_TCP (6) or IPPROTO_IP (0). Popularly used tools for
traffic generation in Linux, like iperf3 and netperf, can create UDP
or TCP traffic by calling the socket API with Protocol numbers 5
(IPPROTO_UDP) and 6 (IPPROTO_TCP). Similarly, they support
several other protocols using the IANA standardized protocol num-
bers. The Linux network community has assigned protocol number
262 for MPTCP, declared as a variable IPPROTO_MPTCP, [3]-[4],
using which an application can create an MPTCP socket. How-
ever, currently, iperf3 and netperf do not support the creation of
MPTCP sockets. Hence, an external application is required to create
the MPTCP sockets explicitly. The tools such as mptcp-tools and
mptcpize allow the applications to create MPTCP sockets instead of
TCP sockets. The flowchart describing the working of mptcp-tools
and mptcpize is shown in Fig. 1.

Since mptcp-tools is an external utility not directly linked with
iperf3/netperf, we need to use the usemptcp.sh script, which is
provided by the developers of mptcp-tools, to start using mptcp-
tools. On executing usemptcp.sh script, a C file wrapper is compiled,
generating a library file usemptcp.so as an output. The wrapper file
redefines the socket API, which transparently replaces the creation
of any TCP sockets by MPTCP sockets. This library file is loaded
in the runtime environment of iperf3/netperf using LD_PRELOAD.
Once it sets LD_PRELOAD to the path of the object module (library
usemptcp.so), this library is loaded into the program before any
other library. It also overrides any other standard C libraries. Hence,
subsequently, any call to the socket API would make a call to the
custom API defined in the wrapper file.

As a result, if there is a request to create TCP sockets (Protocol
Number = 6) or default sockets (Protocol Number = 0), the API
updates the protocol number to (256 + IPPROTO_TCP) and executes
a system call for MPTCP socket creation. For protocols other than
TCP, it will create a socket as specified without any update.

Unlike mptcp-tools, mptcpize comes as a package that can be
installed into the kernel. Installing it adds a binary into the /usr/bin
directory, so it can be used as a command and executed from any
location in the system. mptcpize provides several options (such as
run, enable and disable) to be used along with it. The run() API is
used to enable an application to create MPTCP sockets. It achieves
the objective of converting the TCP socket creation to MPTCP
sockets using the same technique of LD_PRELOAD as mentioned
earlier. mptcpize also provides a pre-compiled library file called
libmptcpwrap.so in its package, which internally redefines the socket
API. This library file is loaded by the run() API to LD_PRELOAD.
Finally, the application is executed by execvpe(). This causes any
call to socket API to be redirected to the custom API, which then un-
dertakes the task of creating MPTCP sockets similar to mptcp-tools
as shown in the Fig. 1. The primary difference between mptcp-tools
and mptcpize is that mptcp-tools is to be used explicitly whereas
mptcpize can be installed into the kernel.

Figure 1: Flow-chart of mptcpize and mptcp-tools

306

Towards Evaluating Multipath TCP using Linux Tools and Utilities ICDCN 2023, January 4–7, 2023, Kharagpur, India

2.2 ip mptcp and mptcpd
One of the essential aspects of MPTCP is that it generates multi-
ple sub-flows, which need to be managed efficiently. To achieve
this, the MPTCP path manager plays a crucial role in setting up
numerous sub-flows. Path manager (PM) is an essential component
of MPTCP which determines when the additional sub-flows are to
be created or removed, and controls the advertisement of available
addresses to the peers. It also determines the addresses used to
create the sub-flows [9]. mptcpd [7] and ip mptcp are the tools that
can configure several aspects of the MPTCP path manager. The
upstream implementation of MPTCP supports two types of PM:
in-kernel and userspace. A new sysctl variable called ‘pm_type’
has been introduced in the kernel version 5.19, which specifies the
type of PM to be used. For example, ‘pm_type = 0’ (in-kernel path
manager) and ‘pm_type = 1’ (userspace path manager). Fig. 2 shows
the difference between the in-kernel and userspace PM.

Figure 2: In-kernel vs Userspace Path Manager

In-kernel PM is implemented in the kernel-space and covers the
common use cases (e.g., default, full-mesh). In case of an in-kernel
path manager, the kernel applies the same configuration to all the
MPTCP connections. It is controllable via ip mptcp. ip mptcp is a
part of the ‘iproute2’ suite in Linux. It can be used to configure the
number of sub-flows a host can create or accept using the limits
object, and can also initiate the sub-flow creation and signal the
availability of new addresses using the ‘ADD_ADDR’ subtype.

In order to avoid maintaining multiple path managers in the ker-
nel space, the customization part is moved into the userspace. This
makes it easier to develop custom path managers without affecting
the stability of the kernel. Userspace Path Manager can communi-
cate with the kernel using MPTCP generic ‘Netlink APIs’ [4]. Using
this, the userspace application, like mptcpd, can ask the kernel to
create new sub-flows per connection. It gives users the flexibility
to cover more specific use cases.

mptcpd is a tool that allows the users to implement and use
userspace path managers. It makes use of plugins to be loaded
during the run-time. The communication between the userspace
path manager and kernel takes place using MPTCP generic ‘Netlink
APIs’. The kernel informs the plugins about the kernel events (e.g.,

addition of new sub-flow, advertisement of new sub-flow) [4]. The
plugins can also command the kernel to carry out path manage-
ment related activities based on these events. Currently, mptcpd
supports sspi (single-subflow-per-interface) and addr_adv (address-
advertisement) plugins and several features in it are still under
development [7]. Users can implement their own plugins as per the
required behavior and use it as PM logic.

3 EMULATING MPTCP USING LINUX KERNEL
In this section, we evaluate the connection establishment phase of
MPTCP using the Linux kernel. We use the tools and utilities dis-
cussed in the previous section to perform experiments with MPTCP.
Network emulations can be performed in different ways. The most
commonly used approach is to set up a physical testbed or by using
Virtual Machines (VMs) that resembles the desired network. How-
ever, they are very expensive in terms of resources, and hence not
preferred for large network topologies. Linux network namespaces
are a cost-effective and scalable alternative to physical testbeds and
VMs. Using Linux network namespaces, we can quickly replicate
the network components and reproduce the results.

In our experiments, we use the topology as shown in Fig. 3
containing two distinct paths between the client and server. Hence,
it provides an ideal set up for verifying the working of MPTCP.

Figure 3: Network Topology

Prior to running experiments, MPTCP should be enabled in the
kernel of both end hosts. Besides, reverse path filtering is enabled
by default in the Linux kernel. It must be disabled to prevent the
kernel from dropping packets that are not routable through the
given interface so that packets reach their destination interface.
Hence, we configured the ‘rp_filter’ variable using sysctl to disable
the reverse path filtering.

In the case of MPTCP, a routing table needs to be created for each
address. Hence, we created two routing tables for both: the client
and the server [5]. Client (H1) consists of two routing tables, table 1
for address - 10.0.0.1 (A1) and table 2 for address - 192.168.0.1 (A2),
such that any packet with source address A1 will refer to routing
table 1 for forwarding the packet, and packets with source address
A2 will refer to routing table 2. Similarly, server (H2) consists of
two routing tables, table 3 for address - 10.0.1.2 (B1) and table 4 for
address - 192.168.1.2 (B2). The script developed by us for setting up
this topology is provided in this GitHub repository1.
1https://github.com/abhinaba-fbr/mptcp_linux_kernel_experiments

307

ICDCN 2023, January 4–7, 2023, Kharagpur, India Suvam Mukherjee, Abhinaba Rakshit, Dayma Khan, Mohit P. Tahiliani

Initially, we used mptcp-tools to force the application to create
an MPTCP socket. However, we noticed that the same thing can
be achieved using mptcpize in a more straightforward way. Hence,
we switched to using mptcpize subsequently. iperf3 is used for
generating traffic between the client and the server. After running
the experiment, we observe the following behavior, as depicted in
the following figures: Fig. 4, Fig. 6 and Fig. 7.

Figure 4: MPTCP connection establishment phase

The primary distinction between TCP and MPTCP connection
establishment is that TCP options field is used for MPTCP as shown
in the Fig. 5. Any subsequent MPTCP related communication is
done through the MPTCP option. The Kind field is 8 bits, and a
value of 30 has been assigned for the MPTCP option.

Figure 5: MPTCP option with MP_CAPABLE subtype

The initial MPTCP connection establishment process is described
in Fig. 4. When the client wishes to connect, it sends a SYN packet
to the server. According to RFC 8684, IANA maintains a new sub-
registry using the 4-bit subtype field in the MPTCP option. The
subtype field in the initial SYN packet consists of MP_CAPABLE.
The MP_CAPABLE option is mainly used for two purposes. First, it
checks whether both endpoints support MPTCP or not. Second, it is
used to exchange authentication keys and cryptographic materials
between peers. Hence, in the SYN packet, alongwithMP_CAPABLE,
the version number and certain flags are also shared with the server.

On receiving the SYN packet, the server generates a random
key (H2’s key) to be sent along with the SYN+ACK packet. The
key generation process could be implementation specific. A 32-bit
token is generated using this key. This token is subsequently used
to identify the connection for all the future sub-flows.

On receiving the SYN+ACK packet, the client knows whether
the server is also MPTCP capable or not, and it gets the server’s
key if it is MPTCP capable. Subsequently, the client makes use of
the ACK packet to share its own generated random key (H1’s key)
with the server, which is later used for authentication purposes.
The client can piggyback data, along with the ACK packet, if it has
some data to be sent immediately.

The client and server perform a three-way shake to initiate the
MPTCP connection by adding the MP_CAPABLE subtype in its
header. In our experiment, addresses 10.0.0.1 (client) and 10.0.1.2
(server) are used for setting up the initial sub-flow (also called mas-
ter sub-flow). The exchange of packets observed during the initial
connection establishment phase is shown in Fig. 4 on capturing the
traffic in Wireshark. The observed behavior is the same as defined
in RFC 8684.

When new sub-flows are set up between the same sender and re-
ceiver, the keys exchanged in the MP_CAPABLE option during the
initial connection establishment play an important role in authen-
ticating the connection. The additional sub-flows also begin with
the same SYN, SYN+ACK, and ACK packets, but there is a differ-
ence in the MPTCP subtype that is used while setting up additional
sub-flows. Instead of using the MP_CAPABLE subtype, a separate
MPTCP option subtype called MP_JOIN is used. Firstly, it is used
to authenticate the connection using the tokens and authentication
algorithms. Once the authentication is successful, a new subflow is
set up between the client and the server.

In order to use the additional interfaces, we tried to create an
additional sub-flow using the MP_JOIN subtype. There can be two
scenarios for setting up a new sub-flow: (1) Server advertises its
unused IP address to the client. Subsequently, the client tries to
initiate a new sub-flow creation using this advertised address. (2)
Client can initiate a new sub-flow creation itself using its unused
IP address. However, in both scenarios, we observed a failure in
setting up a new sub-flow, as shown in Fig. 6 and Fig. 7. The reason
for failure is explained below.

The Fig. 6 demonstrates Scenario 1 in detail. Once the initial
connection is established, and the master flow is created between
address A1 (on the client side) and address B1 (on the server side),
the server identifies its additional address and advertises it to the
client. Here, H2 (server) has an unused address, B2. So, H2 advertises
the unused address to the client using the ADD_ADDR subtype.
The ADD_ADDR subtype is used for advertising addresses to peers.

308

Towards Evaluating Multipath TCP using Linux Tools and Utilities ICDCN 2023, January 4–7, 2023, Kharagpur, India

Figure 6: First failure of sub-flow addition

The address B2 is encapsulated along with the ADD_ADDR subtype
in the options field and sent via the initial subflow.

The client maintains a list of all the available IP addresses of
the server. On receiving the advertised address, the client includes
address B2 in this list. It then tries to create a new subflow using
this advertised address, using MP_JOIN. Hence, B2 is used as a
destination address in the IP header.

However, the other address (source address) is determined based
on a special component of MPTCP called the Path Manager. Since
the path manager requires explicit configuration, the Default Path
Manager is used in Linux. The Default Path Manager does not
actively manage any subflows. It picks the other address from the
addresses used in the initial subflow setup. Therefore, address A1
is selected as the source address in this case. The source address
10.0.0.1 (A1) is routed as per routing table 1 to router R1. R1 does
not find any route for the destination address B2, so it drops the
packet and sends back an ICMP (destination unreachable) message.
This is the primary cause of failure in Scenario 1.

Figure 7: Second failure of sub-flow addition

In Scenario 2, the client proactively initiates a new subflow with-
out any indication from the server. In this case, we configured the
client to initiate a new subflow using the unused address A2. So,
the client sends a MP_JOIN packet with A2 as the source address.
But, similar to the previous scenario, the Default Path Manager
will select the initial sub-flow address B1 as the destination address
for subflow creation. Due to the source address being 10.0.0.1 (A2),
as per routing table 2, the packet is routed to R2. Again, R2 does
not find any route for the destination address B1, and the packet
is dropped, thus leading to the failure of Scenario 2. This clearly

shows that configuring the MPTCP path manager is a crucial step
for the appropriate functioning of MPTCP.

There are two ways of configuring the path manager. In-kernel
PM can be configured using ip mptcp and userspace PM can be con-
figured using mptcpd. Currently, in-kernel path manager supports
‘fullmesh’, the most commonly used PM. It tries to create sub-flows
to all the known server IP addresses using the client’s specified
address. The support for configuring ‘fullmesh’ PM using ip mptcp
has been added recently. On setting the ‘fullmesh PM’ for sub-flow
creation, we observed the expected behavior as shown in the Fig. 8.

Figure 8: Successful joining of additional sub-flow

Once the initial connection is established, the server advertises
its unused address (B2) to the client through the initial connection.
The client stores the address in its address list. Since the Full-mesh
PM is configured with A2 as the source address, the client now tries
to initiate subflow to both the addresses B1 and B2. In this situation,
twoMP_JOIN packets will be sent with the same source address (A2)
and different destination addresses (B1 and B2). Since the source
address is the same, both will be routed to R2. The packet having
destination address B1 will be dropped (destination unreachable).
However, the packet with destination address B2 will be correctly
routed to the server H2. Subsequently, a new subflow is created
between addresses A2 and B2 successfully.

Since two subflows are now set up via different routes, their
cumulative bandwidth can be used to achieve higher throughput.

Inferences
From our experiments, we draw the following inferences: first, we
observed an increase in throughput on running the above experi-
ments using MPTCP. We obtained an average throughput of 13.4
Mbits (89.3% of bottleneck bandwidth) on running the experiment
for 20 iterations, which is higher than what is obtained using tra-
ditional TCP. This shows the usefulness of MPTCP in terms of
aggregating the bandwidth available on multiple paths.

Table 1: Throughput observed using iperf3

Interval (Sec) Bitrate (Mbits/sec) Host

0.00-10.00 16 Sender

0.00-10.70 13.4 Receiver

309

ICDCN 2023, January 4–7, 2023, Kharagpur, India Suvam Mukherjee, Abhinaba Rakshit, Dayma Khan, Mohit P. Tahiliani

Figure 9: Snapshot of a SYN packet with MPTCP option

Second, we validated the MPTCP option fields in the packets
transmitted between the client and the server using Wireshark.
We specifically validated whether the connection establishment
phase of MPTCP in the Linux kernel is in compliance with the RFC.
As per RFC 8684, the kind value is 30 in the MPTCP option field,
and MP_CAPABLE (0x01) is used as a MPTCP subtype message to
specify initial connection establishment. The packet shown in the
Fig. 9 is an instance of a SYN packet for the MPTCP connection
establishment phase captured during our experiment.

Lastly, we verified the negotiation of several flags used in the con-
nection establishment phase. MP_CAPABLE consists of flags from
A-H. According to RFC 8684 [2], flag A is used for checksum negotia-
tion, B is currently reserved for extensibility, and flag C set indicates
the sender will not accept further sub-flow additions using this ad-
dress. Flags from D-H indicate the use of cryptographic algorithms
for authentication. Currently, D-G is unused, and H refers to the
use of the HMAC algorithm. Fig. 9 shows a SYN packet having flags
A and C set to 0. These flags can also be configured using the sysctl
variables (checksum_enabled and allow_join_initial_addr_port).

4 CONCLUSIONS AND FUTUREWORK
In this work, we explored various popular tools and utilities that
can be used to experiment with MPTCP in the Linux kernel. Specif-
ically, we discussed four tools and their working details and even
showed practical experimentation using them. The scripts devel-
oped for these experiments have been made openly available in the
GitHub repository2. We leveraged Linux network namespaces to
demonstrate a convenient way to perform MPTCP-related experi-
ments. This verifies that MPTCP could indeed be emulated in the
Linux network namespaces. Subsequently, we verified the connec-
tion establishment phase of MPTCP Linux kernel implementation
and checked its compliance with RFC 8684. Our experimentation
shows that upstream Linux kernel implementation of connection

2https://github.com/abhinaba-fbr/mptcp_linux_kernel_experiments

establishment phase of MPTCP is in line with the RFC 8684. We
believe that this work can help the research community to quickly
understand the tools and utilities related to MPTCP in Linux, and
effectively perform experiments using them.

Furthermore, the userspace path manager could be configured
using mptcpd. As part of our future work, we plan to implement
plugins so that the topology used in our work can be emulated
using mptcpd as well. Lastly, we can explore the cryptographic
keys, flags, and authentication algorithms which plays an essential
role in the sub-flow addition process.

ACKNOWLEDGMENTS
We would like to thank Addhyan Malhotra, Ishaan Singh, Rak-
shita Varadarajan and Gaurang Velingkar from National Institute
of Technology Karnataka, Surathkal, India for helping us with the
preliminary scripts to perform the experiments.

REFERENCES
[1] S. Aust, J. -O. Kim, P. Davis, A. Yamaguchi and S. Obana, Evaluation of Linux Bond-

ing Features, “2006 International Conference on Communication Technology”,
2006, pp. 1-6, doi: 10.1109/ICCT.2006.341935

[2] A. Ford, C.Raiciu, M.Handley, O.Bonaventure, C.Paasch TCP Extensions for Multi-
path Operation with Multiple Addresses. “RFC 8684”, United States, 2020

[3] B. Hesmans, O. Bonaventure An Enhanced Socket API for Multipath TCP.
[4] M. Martineau and O. Othman Using Upstream MPTCP in Linux Systems. “Intel”,

United States of America
[5] Paasch, C., Barre, S., ET AL. Multipath TCP in the Linux Kernel. Available from

https://www.multipath-tcp.org/
[6] P Abeni, mptcp-tools Available from https://github.com/pabeni/mptcp-tools.
[7] Intel Multipath TCP Daemon, Available from https://github.com/intel/mptcpd.
[8] Upstream Linux kernel implementation Available from

https://github.com/multipath-tcp/mptcp_net-next/wiki/.
[9] Martineau, Mat, and Matthieu Baerts. Multipath TCP Upstreaming. “In Indico".

2019.
[10] Server Security Reverse Path Forwarding, Security Guide, Red Hat Enterprise

Linux Available from Reverse Path Forwarding
[11] iperf3 Manual, Oracle Available from https://docs.oracle.com/cd/E88353

_01/html/E37839/iperf3-1.html

310

https://www.multipath-tcp.org/
https://github.com/pabeni/mptcp-tools
https://github.com/intel/mptcpd
https://github.com/multipath-tcp/mptcp_net-next/wiki/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-server_security-reverse_path_forwarding
https://docs.oracle.com/cd/E88353_01/html/E37839/iperf3-1.html
https://docs.oracle.com/cd/E88353_01/html/E37839/iperf3-1.html

	Abstract
	1 Introduction
	2 Linux Tools and Utilities for MPTCP
	2.1 mptcp-tools and mptcpize
	2.2 ip mptcp and mptcpd

	3 Emulating MPTCP using Linux Kernel
	4 Conclusions and Future Work
	Acknowledgments
	References

