
Prototype of a parking system with path recommendation
Tuan Linh Dang

linhdt@soict.hust.edu.vn
Hanoi University of Science and

Technology
HaNoi, VietNam

Tran Sy Dat
dat.ts183885@sis.hust.edu.vn

Hanoi University of Science and
Technology

HaNoi, VietNam

Thuy Ha Hoang
ha.ht184251@sis.hust.edu.vn

Hanoi University of Science and
Technology

HaNoi, VietNam

Trong Nghia Nguyen
nghia.nt184297@sis.hust.edu.vn
Hanoi University of Science and

Technology
HaNoi, VietNam

Tuan Minh Vu
minh.vt194334@sis.hust.edu.vn
Hanoi University of Science and

Technology
HaNoi, VietNam

ABSTRACT
With the growth of population and vehicles, parking is a significant
problem people face in modern life, especially in developed coun-
tries. It is often time-consuming and inconvenient for the driver
to find a parking space in the parking lot, especially during rush
hour. Therefore, this paper suggested a parking prototype that uses
the YOLOv5s algorithm to detect vehicles and empty slots, and
the Deep SORT algorithm will track the detected cars in moving
frames. In addition, this prototype may use the BFS algorithm to
recommend the path to the nearest available parking space for a
user through a developed user interface. Our experimental results
with different video situations showed that the proposed prototype
achieved 0.906 mAP for average accuracy and an operating speed
of 18 FPS for ten vehicles using Nvidia GTX 1080 GPU in the demo
application.

CCS CONCEPTS
•Computingmethodologies→Object detection and tracking;
Supervised learning; • Computer systems organization →
Neural networks; Realtime system.

KEYWORDS
Object detection, Object tracking, Parking system, Path recommen-
dation, YOLO, DeepSORT, BFS

ACM Reference Format:
Tuan Linh Dang, Tran Sy Dat, Thuy Ha Hoang, Trong Nghia Nguyen,
and Tuan Minh Vu. 2022. Prototype of a parking system with path recom-
mendation. In The 11th International Symposium on Information and Com-
munication Technology (SoICT 2022), December 1–3, 2022, Hanoi, Vietnam.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3568562.3568611

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoICT 2022, December 1–3, 2022, Hanoi, Vietnam
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9725-4/22/12. . . $15.00
https://doi.org/10.1145/3568562.3568611

1 INTRODUCTION
Object tracking is a significant subdomain of computer vision that
works with the video stream of cameras. Object tracking aims
to identify the target object’s position in the video frame. Object
tracking has recently been used widely in some domains, primarily
vehicle surveillance. The smart parking system (SPS) is widespread
in this domain.

SPS is the system applying technologies to manage moving
vehicles in the parking lot. The traditional SPS often uses sensors in
each parking space to detect vehicles. Next, this sensor will send the
data to the management system. If that parking is taken by a car, the
management system will store all that vehicle’s information, such
as time and license plate number. Nowadays, with the increase in
population and vehicles, the solution to parking issues has become
more critical. Therefore, SPS was an absolute necessity. SPS aims
to save users fuel and time and avoid vehicle congestion. With SPS,
drivers can effortlessly find parking spaces in the parking lot.

For the last few years, many SPS have been proposed. A widely
used solution is to use the Internet of Things. A famous study for
this approach is IoT-based SPS [19]. However, this method requires
a large number of sensors which is facing difficulties in finance and
human resources. Besides, some other proposals suggest designing
smart parking systems based on cameras with different views or
sensors and some deep learning algorithms. These systems [12, 15]
will notify the user about available spaces in the parking lot. Never-
theless, the similarities of these above systems can not suggest the
path from the user’s location to these spaces. In practice, the most
common parking management systems, especially in basements of
shopping malls or apartment buildings, only have the function of
calculating the number of available spaces. A particular method
is Basement Parking System [4]. This automatic system uses sen-
sors in each parking space, then sends information about available
parking spaces via the led board. Although there may have some
direction boards or traffic signs, the driver can not know the exact
location of the empty slots by visualization, causing difficulties if
the parking lot is too large.

The previous studies suffer two main issues: they take a lot of
time and effort and can not recommend a path to the parking slot.
To deal with these problems, the goal of our proposed prototype is
to help the driver finds the shortest path to the free slot with few
resources. There will be three main phases in our SPS. In the first

309

https://doi.org/10.1145/3568562.3568611
https://doi.org/10.1145/3568562.3568611
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3568562.3568611&domain=pdf&date_stamp=2022-12-01

SoICT 2022, December 1–3, 2022, Hanoi, Vietnam Linh et al.

phase, our proposed prototype will use object detection algorithms
to identify the location of parking spaces and moving vehicles in
the parking lot. Next, we use object-tracking algorithms to track
vehicles from the entrance. These state-of-the-art deep learning
algorithms above can give good results in bad conditions and com-
plex backgrounds. We not only avoid using complex sensors for
each slot but also balance speed and accuracy properties. Then,
our shortest path algorithm will suggest the optimal path to the
parking space for users. This approach may solve the drawbacks of
the previous study. In addition, our proposed prototype also allows
the administrator to modify the parameters of the parking lot. The
data transformation between users and the system is processed via
socket.

Another problem encountered when researching this problem
is data scarcity. The datasets dedicated to training the empty slot
detection and car detection with the top-view in the parking lot
to cover the whole context of the parking lot are few or almost
none published by the other authors. Therefore, it is necessary to
collect a dataset that meets this problem’s requirements and be
made public so that further studies can also use it.

Our manuscript has three main contributions. First, we collected
data for the training object detection model in the parking lot.
In addition, we built a complete parking prototype that suggests
the path to the nearest empty slot for users and provided a demo
application for the users.

This paper is presented as follows. Section 2 focuses on related
works and algorithms of object detection, object tracking, and find-
ing the shortest path. Section 3 demonstrates our proposed parking
application and each block’s function. Our experimental results
are shown in section 4. Finally, section 5 is the conclusion of our
manuscript.

2 RELATEDWORK
2.1 Existing Smart Parking Systems
The population is increasing at an alarming rate, and the need for
transportation is also rising rapidly. That leads to the growth of
vehicles, but the number of parking slots is limited. Therefore, cre-
ative solutions for the parking system are necessary. Many studies
are being introduced to handle this problem.

Previous researches used Radio Frequency Identification (RFID)
to manage parking space [21]. RFID was frequently utilized in
previous studies for parking management [4]. RFID is the non-
contact wireless use of Radio Frequency Electromagnetic Fields
to identify and track tags affixed to things automatically. RFID
technology uses RFID readers, RFID labels, computers, barriers,
and software as its primary components. The program has been
implemented for the management, control, transaction reporting,
and operation of parking lots throughout the city. RFID readers,
labels, and obstacles will govern parking lot check-ins and check-
outs. This technology is used to control the entry and exit of cars,
but it does not provide information on the number of empty slots
available.

For extracting more information about a vehicle, utilizing Inter-
net of Things (IoT)-integrated parking spaces is one of the most
common methods. Smart parking management based on IoT con-
tains parking sensors, processing units, mobile applications, and

the cloud. The sensors, namely ultrasonic sensors, are used to de-
termine the vacancy of parking slots. These sensors are connected
wirelessly to the Raspberry Pi through an ESP8266 chip. The pro-
cessing unit consists of a Raspberry Pi, an intermediate between
sensors and the cloud. Data collected from sensors is sent to the
Raspberry Pi via an ESP8266 chip. After that, the Raspberry Pi sends
this data to the IBM MQTT Server. Besides, the mobile application
is an interface for end users to interact with the systems. This appli-
cation connects to the IBM MQTT Server and provides information
on parking spaces [19]. The limitation of this system is the large
number of sensors required to detect an object. It leads to difficulty
in deploying and expanding the parking system.

To reduce the number of sensors, a system based on computer
vision consists of two phases: detecting the available parking space
and notifying users of this status in real-time [15]. In the parking
slot detection period, the system also uses many sensors or cameras
to spot parking slot occupancy. The data for this status is then sent
to the user via the notification system. This system supports real-
time monitoring and visualization of the parking spaces; however, it
does not navigate the users to the free parking slots. In cases where
the parking space is large, users could struggle to find the shortest
path. In another study, a distributed network of cameras, plenty of
edge devices, and a deep learning model are used to monitor the
parking space [12]. For more detail, some cameras with zoom lenses
and motorized heads capture the license plate numbers and track
the vehicles entering or leaving the parking lot. Other cameras
with a wide-angle fish-eye lens detect occupied parking spaces.
Deep learning models are used to determine available parking slots
based on parked slots. Nevertheless, this system does not suggest
the shortest route to the available parking slot. Furthermore, the
deep learning system necessitates many edge devices and cameras,
making deployment difficult.

To design a suitable parking prototype, we propose to monitor
the parking spaces through a camera, mobile application, and deep
learning model combined with finding the shortest path algorithm.

2.2 Theoretical background
2.2.1 Object detection. One of the most popular object detection
algorithms is you only look once (YOLO). YOLO is an algorithm
that uses a convolutional neural network (CNN) to detect objects
in real-time [18]. The appearance of YOLO has improved accuracy
and processing speed in comparison with other state-of-the-art
algorithms. One strength of the YOLO algorithm is to detect an
object in one phase, divided into two parts: finding the object’s
location and assigning a corresponding class to that detected object.

For the operation, the YOLO model takes the image pixel as
input and divides it into S × S grid of cells. The value of S affects
the performance of the model. Each cell contains information about
only one object by predicting M bounding boxes for that object. A
bounding box is a rectangle that captures an object in an image
with five elements: (x,y,w,h, confidence), where x and y are the
center coordinates of the bounding box, and w and h are the width
and height of the bounding box, respectively. The confidence is the
confidence score for each bounding box. It is based on conditional
class probabilities, which the cell predicts.

310

Prototype of a parking system with path recommendation SoICT 2022, December 1–3, 2022, Hanoi, Vietnam

YOLO has many versions, and the previous version updates the
later version. For example, the fifth version, YOLOv5, was devel-
oped by the architecture of YOLOv4. In practice, the YOLOv5 is
proposed with different sizes. In details, they are extra-large (v5x),
large (v5l), middle (v5m) and small (v5s). These models keep the
based architecture of YOLOv5, and among them, YOLOv5s [25]
gives the highest speed. This model only contains 27 layers, 7.2
million parameters, and the size of the training weight is about 15
megabytes accounting for 8% of the largest model.

From the above background of ideas and architectures, our pro-
posal did use YOLOv5s to detect objects in one frame. In detail, they
are empty slots and vehicles in the parking lot.

2.2.2 Object tracking. The object tracking algorithms aim to follow
the moving object in each frame in the video stream. There will be
two phases in the tracking operation: the detection phase and the
tracking phase. The first phase is object detection which finds the
location of object instances in an image frame. Then, the tracking
operation will re-identify that object until the end of the video
stream.

Simple Online and Real-time Tracking (SORT) is a well-known
multiple-object tracking approach. SORT algorithmuses the Kalman
filter to predict the new position of object bounding boxes [8]. How-
ever, the biggest problem of SORT is the high number of identity
switches. This phenomenon often happens with occlusion and dif-
ferent viewpoints, which causes a decrease in the efficiency of the
SORT algorithm. Deep SORT is an extension of the SORT algorithm.
The authors of the Deep SORT algorithm use the Kalman Filter,
the Hungarian algorithm, and new distance metrics to track the
objects. The operation of the Deep SORT algorithm can be sum-
marized as follows [22]. The combination of the YOLO algorithm
for object detection and Deep SORT for object tracking has created
many potential opportunities for research, such as Vehicle Analysis
System [16], People Tracking System [9], and Vehicle Detection
and Tracking [10]. This combination is widely used because its
robustness and implementation are simple.

2.2.3 Finding shortest path. The single-source shortest path prob-
lem is defined as finding the shortest paths in a given graph𝐺 (𝑉 , 𝐸)
from a given node 𝑣 to other nodes. Some basic search algorithms
are commonly used, such as breadth-first search, Dijkstra’s algo-
rithm, the Bellman-Ford algorithm, the A* algorithm, the Floyd-
Warshall [14]

Dijkstra’s algorithm is the same as A* when the heuristic func-
tion equals zero for every case. In addition, if all edge weights
are equal to or greater than zero, it is a specialized and optimized
version of Bellman-Ford. Furthermore, breadth-first search is a spe-
cialized and optimized version of Dijkstra’s algorithm when all
edge costs are uniform.

3 PROPOSAL SMART PARKING APPLICATION
An overview of our prototype can be seen in Fig. 1. The proposed
prototype includes three main blocks are Image acquisition block,
Processing center block, and Application block. Image acquisition
block (IAB) captures the parking lot images as input for later blocks.
The processing center block (PCB) receives images from IAB as its
input. After that, PCB processes images to output the path direction

images for the tracked cars. This process consists of three stages:
object detection, object tracking, and shortest path finding. Each
corresponding stage uses a different algorithm. Specifically, the ob-
ject detection stage uses YOLOv5s [3] to detect cars and empty slots
in the parking lot. The object tracking stage uses Deep SORT [22] to
track cars that are being suggested paths. And shortest path-finding
stage uses BFS algorithm [5] to find paths to the nearest empty
slots of those cars. In the end, the application block (AP) receives
output images of the PCB and sends them to user applications. The
details of each block are depicted in the three following sections.

Figure 1: An overview of our proposed prototype

3.1 Image acquisition block
IAB is the block in which a camera is used to capture the parking
lot. The camera is placed on the top of the parking lot to ensure
that it can capture the entire scene. These captured images are then
used as inputs for later blocks.

3.2 Processing center block
PCB consists of three stages: object detection, object tracking, and
shortest path finding. Each step is explicitly described below.

Object detection - The task of this block is to detect vehicles
and empty locations in the parking lot. These detections are es-
sential in our proposed prototype because it has to determine the
location and the number of remaining empty slots and the location
of the cars that have just entered the gate to make input for the
shortest path-finding algorithm. Besides, the number of empty slots
can also be used to display the status information of the parking
lot. This helps customers who want to use the parking services
consider whether to go to the parking lot. In addition, to limit the
false detection of empty locations outside the parking area, we have
also developed a tool to determine the coordinates of the parking
areas, the moving areas, and the gate areas. The details of this tool
can be seen in the section 4.3. After obtaining the coordinates of
the parking areas, the system can quickly check for an empty slot
whether it belongs to those areas. Hence, our system can produce
the exact quantity of the remaining open slots. In this research,
we used the YOLOv5s algorithm to detect the empty slots and the
cars in the parking lot. YOLOv5s is the most lightweight version of

311

SoICT 2022, December 1–3, 2022, Hanoi, Vietnam Linh et al.

YOLOv5 that has been released. Because of the small number of lay-
ers and parameters, this model can quickly handle the input to give
the corresponding output results. However, along with the higher
increase in the processing speed, the accuracy of this model is par-
tially reduced. In short, the reasons for using YOLOv5s in this study
instead of other versions can be listed as follows. Firstly, YOLOv5s
is a lightweight version of YOLOv5. Therefore, the computation
complexity required for the training and prediction of the model
is relatively small. Secondly, despite the trade-off between speed
and accuracy compared to other versions, YOLOv5s still ensures
good prediction performance. Among the achieved results provided
by the author-published YOLOv5, YOLOv5s achieved 0.45 (AP) on
COCO dataset [20] with inference time only 6.4 (ms) for an image
on GPU V100. In contrast, the more complicated YOLOv4 version
gives the accuracy quite equivalent. The outputs of this stage are
the bounding box coordinates, labels, and probability scores of all
the objects that belong to two classes, consisting of vehicles and
empty slots. Our system can display this information to the user
application from the total number of labels that belong to the empty
slot class.

Object tracking - Object tracking is an essential task in our
proposed method. It is necessary to track the car when suggest-
ing the shortest path because this helps to determine which path
belongs to which vehicle. SORT and Deep SORT are two track-
ing algorithms that have recently received much attention from
researchers. SORT is the simpler and faster version that uses the
IoU metric to associate the predicted tracks and the detections with
determining the identity of each object. On the other hand, Deep
SORT is the algorithm that simultaneously uses three metrics IoU,
Mahalanobis distance, and cosine appearance distance. This man-
uscript used Deep SORT [22] to track cars in the parking lot. The
use of Deep SORT instead of more lightweight algorithms can be
explained as follows. Firstly, when moving in the parking lot, the
cars can overlap in the frame; if only using the IoU metric as the
SORT algorithm to associate the tracks and the detections, this
can lead to more identity confusion. In addition, if both bounding
boxes contain the same object, their feature vectors will be more
similar. Deep SORT uses a deep learning model to extract features
of all objects and uses those features to calculate the cosine distance
between tracks and detection for the association. This makes the
association more precise when objects are obscured or entirely out
of the frame. Several architectures were proposed to extract fea-
tures of the objects in Deep SORT. In this study, we used OSNet, a
lightweight model, to complete this mission. OSNet was built with
multiple streams. Each stream has several convolution layers with
different kernel sizes to learn features from various proportions.
Secondly, despite the greater computation complexity than SORT,
Deep SORT still achieves a fast enough inference time in case the
hardware requirements are met.

However, not all cars in the parking lot need to suggest paths,
such as the cars in the parking area. The system only needs to
suggest paths for cars that have just entered the gate and are in
the moving area. Eliminating the number of vehicles to track also
increases the speed of the object-tracking algorithm. Therefore, it is
necessary only to follow any car that has just entered the gate and
any vehicle in the moving area. To check these conditions, after ob-
taining the detections of vehicles in the parking lot using YOLOv5s

in the object detection stage, we still used the tool 4.3 mentioned
above. In addition, to overcome the context of a car standing in the
moving area for too long which affects the suggestion of paths for
the others, a time threshold is also set to eliminate the suggestion
for these vehicles.

Shortest path finding algorithm - After tracking the new
vehicles that have entered the gate, our prototype will apply the
shortest path-finding problems. This problem is often modeled in
graphs with vertexes being destinations and edges being the path
between them, and then finding a path for each vehicle by finding a
path on the graph. We found that the BFS algorithm is an algorithm
that meets the requirements set out for the quick time. Besides, the
graph which we used in this stage is a graph without weights; the
BFS algorithm is more useful than the others.

First, to apply the BFS algorithm, each frame is divided into𝑛×𝑚
grids along the length and width so that each empty slot has at least
one grid. Illustrative examples can be seen in Fig. 2. The problem is
to find the shortest path from one source to multiple targets, called
the B1 problem. Hence, the suggestion for 𝑁 cars simultaneously
becomes the application of B1 with 𝑛 times consecutively. Another
issue that needs to be concerned is that in an actual parking lot, cars
can not go through all the areas in the parking lot; the proposed
algorithm also has to solve this problem.

Problem B1 can be stated as follows. The frame captures the
parking lot and is divided into𝑚 × 𝑛 grids. Each grid is assigned
a value in the set -1, 0, 1 that corresponds to the meaning of im-
passable, passable, and empty slot. Each source car is marked by a
grid in which the car’s center belongs to that grid and has a value
from two onward. The problem is to find the shortest path from
these sources to the destinations so that each destination is only
suggested for one source. The order of precedence of suggestions
for those sources corresponds to the order of the values assigned to
them. From the coordinates of the detected empty slots, including
the upper left and bottom right corner coordinates, the system can
determine the grids within those areas; those grids are numbered 1
to imply the targets. Similarly, the parking area grids are numbered
−1, and the moving area grids are numbered 0. After that, the BFS
algorithm is applied to each vehicle. When it comes to the first 1
grid position, the algorithm immediately locks this empty area by
filling the value −1 to prevent the suggestion of this empty slot for
the others. The suggestion is made the same for all the remaining
vehicles. Besides, the algorithm also makes it easy to add path di-
rections to an empty slot pre-selected by the user. In this case, the
grids in the selected slot will be marked and locked; the algorithm
will implement from the grid that contains the source until the first
marked grid of that slot is encountered.

During the process, the algorithm also carried out the trace to
trace the path when the first empty slot was found, whereby the
algorithm used an array named Trace to save the path for each vehi-
cle. Specifically, let (𝑥𝑡−1, 𝑦𝑡−1) is the coordinate of the preceding
grid according to BFS, the trace to the current grid (𝑥𝑡 , 𝑦𝑡) is stored
as follows:

𝑇𝑟𝑎𝑐𝑒 [𝑥𝑡] [𝑦𝑡] = 𝑥𝑡−1 ∗𝑚 + 𝑦𝑡−1 (1)

Because this study used C++ programming language to implement
BFS algorithm, converting from (𝑥𝑡−1, 𝑦𝑡−1) to 𝑥𝑡−1∗𝑚+𝑦𝑡−1 helps

312

Prototype of a parking system with path recommendation SoICT 2022, December 1–3, 2022, Hanoi, Vietnam

optimize memory. However, the rest of the system is installed in
Python language, so we have used the Pybind11 library [7] to embed
the C++ code into the processing stream. Algorithm 1 outlines this
shortest path-finding algorithm.

Figure 2: Example of grids on the frame

3.3 Application block
The purpose of building the application block is to provide a demo
that is a suitable interface on both web and mobile platforms, sup-
porting displaying the current status of the parking lot and the
path to the nearest empty slot over time for new cars to enter the
parking lot. The shortest path results of each vehicle returned by
the AI systemwill be sent to those cars separately. Another function
supported by this demo app is calculating parking fees when the
cars leave the parking lot. This function is implemented based on
logging each vehicle’s entry and exit times in the database. The
application block can be divided into two main components: the
client and the server. The client was built using the ReactJS frame-
work by javascript language to design the user interface. Data from
the server is sent and received by the client through the socket. The
server was built using the NodeJS framework and included many
APIs that help the client call and receive data. However, a problem
when using the app with the above method is that when two or
more people open the app at the same time when a vehicle has just
entered the gate, the system cannot determine which app belongs
to the user who has entered. Our solution, in this case, is to send a
default image showing all the suggested paths of all vehicles at the
initial time when opening the application until the system returns
the proposed image of each car.

When users enter the gate of the parking lot, if they want to
get information about the parking lot and see directions to the
nearest empty slot, they should turn on the apps that the system
can associate their apps with their corresponding ID to send and
receive results during their parking processes. When leaving the
parking lot, if users want to consult the fee they have to pay, they
can choose the payment function in their apps, and the cost will be
displayed on the screen.

Algorithm 1: Shortest Path Finding (BFS)
Input: n tracking sources, their corresponding coordinates,

and showed the path. List of TARGET that are
available slots and their corresponding coordinates.

Output: paths
1 𝑞𝑢𝑒𝑢𝑒 < 𝑖𝑛𝑡 > 𝑞

2 𝑣𝑒𝑐𝑡𝑜𝑟 < 𝑣𝑒𝑐𝑡𝑜𝑟 < 𝑖𝑛𝑡 >> 𝑝𝑎𝑡ℎ𝑠

3 for 𝑖𝑠𝑜𝑢𝑟𝑐𝑒 ∈ 𝑛_𝑠𝑜𝑢𝑟𝑐𝑒𝑠 do
4 𝑞.𝑝𝑢𝑠ℎ(𝑐𝑢𝑟_𝑐𝑜𝑜𝑟_𝑖𝑠𝑜𝑢𝑟𝑐𝑒)
5 𝑡𝑎𝑟𝑔𝑒𝑡 ← −1
6 while 𝑞 ≠ 𝑒𝑚𝑝𝑡𝑦 do
7 𝑠𝑡𝑜𝑝 ← False

/* Position of the current source */
8 𝑐𝑢𝑟_𝑐𝑜𝑜𝑟_𝑖𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑞.𝑓 𝑟𝑜𝑛𝑡 ()
9 𝑞.𝑝𝑜𝑝 ()

/* iterate all around directions that can go through */
10 for 𝑐𝑜𝑜𝑟_𝑑𝑖𝑟 ∈ 𝑛_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 do
11 𝑛𝑒𝑥𝑡_𝑐𝑜𝑜𝑟 ← 𝑐𝑢𝑟_𝑐𝑜𝑜𝑟_𝑖𝑠𝑜𝑢𝑟𝑐𝑒 + 𝑐𝑜𝑜𝑟_𝑑𝑖𝑟

/* if the first target is found */
12 if 𝑛𝑒𝑥𝑡_𝑐𝑜𝑜𝑟 = 𝑇𝐴𝑅𝐺𝐸𝑇 then
13 𝑇𝑟𝑎𝑐𝑒 [𝑛𝑒𝑥𝑡_𝑐𝑜𝑜𝑟] ← 𝑐𝑢𝑟_𝑐𝑜𝑜𝑟_𝑖𝑠𝑜𝑢𝑟𝑐𝑒
14 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑛𝑒𝑥𝑡_𝑐𝑜𝑜𝑟
15 𝑠𝑡𝑜𝑝 ← True
16 break

/* Push next found coordinate in the queue */
17 𝑞.𝑝𝑢𝑠ℎ(𝑛𝑒𝑥𝑡_𝑐𝑜𝑜𝑟)

/* Store the trace to current coordinate */
18 𝑇𝑟𝑎𝑐𝑒 [𝑛𝑒𝑥𝑡_𝑐𝑜𝑜𝑟] ← 𝑐𝑜𝑜𝑟𝑑𝑖𝑟

19 end
20 if 𝑠𝑡𝑜𝑝 then
21 𝑏𝑟𝑒𝑎𝑘

22 end
23 𝑞 ← 𝑒𝑚𝑝𝑡𝑦

/* Trace the path of isource */
24 𝑣𝑒𝑐𝑡𝑜𝑟 < 𝑖𝑛𝑡 > 𝑝𝑎𝑡ℎ

25 while 𝑡𝑎𝑟𝑔𝑒𝑡 ≠ −1 do
26 𝑝𝑎𝑡ℎ.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑡𝑎𝑟𝑔𝑒𝑡)
27 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑇𝑟𝑎𝑐𝑒 [𝑡𝑎𝑟𝑔𝑒𝑡]
28 end

/* list paths of all the tracking cars */
29 𝑝𝑎𝑡ℎ𝑠.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑝𝑎𝑡ℎ)
30 end
31 return 𝑝𝑎𝑡ℎ𝑠

4 EXPERIMENTS
4.1 Dataset
To our knowledge, the number of datasets for empty slot detection
in the parking lots from the top view is minimal. In the past, some
authors proposed a dataset [23] which has the top view of slots,
but they are zoomed in very close without bounding box labels, so
it is hard to use in the detection task. The CARPK dataset [17] is
also a top-view dataset but does not contain empty slot labels. The

313

SoICT 2022, December 1–3, 2022, Hanoi, Vietnam Linh et al.

PK-LOT dataset [13] is a dataset that meets the requirements of
this research with about 12416 images collected from two parking
lots from three different angles. All the images in this dataset were
assigned empty and occupied slot notation. Therefore, we used this
dataset for training the empty slot detection. However, it can be
seen that although the number of images in this data set is quite
large, the diversity of the background and surrounding context is
not too abundant, with only two parking lots.

There are currently several published datasets for car detection
data, but not all are suitable for object detection. For example, a
dataset [24] was published by Linjie Yang, and his partners only
provide images with close-ups of cars and do not contain bounding
box labels, so it cannot be used in this task. Two other datasets [2],
[1] supply bounding box labels, but the capture angle of all images
is low compared to the cars.

Therefore, this study decided to use the PK-LOT dataset men-
tioned above with additional vehicle bounding box labels and col-
lect more data from external parking lots on the Istock website
[6] to create a more complete and diverse parking dataset of three
available class labels including empty slot, occupied slots, and car,
respectively 0, 1, and 2. Specifically, we only randomly took out 3725
images from the PK-LOT dataset to avoid data imbalance. Besides,
we collected videos of 30 other parking lots on the IStock website
with abundant backgrounds, different light conditions, and multiple
camera angles. After that, each video is cut into frames to label the
bounding box of objects and their corresponding class. This part of
the data also contains three available labels, as mentioned above.
For self-collected data, we used several mobile cameras with the
same resolution of 12 megapixels to capture top-view videos from
some parking lots and then processed them as videos collected from
IStock. The final dataset has 4855 images of 32 different parking lots
with three available classes. In this research, we only used two class
labels, including empty slot and car, to train the object detection
model.

4.2 Experimental setup
YOLOv5s - The object detection algorithm was implemented in the
Pytorch framework. YOLOv5s was trained for 300 epochs. Input
images were resize to 640 × 640. We adopted a batch size of 64
in the training stage. The optimizer used was Stochastic Gradient
Descent [11] with an initial learning rate of 0.01 and a weight decay
of 5× 10−4. An IOU threshold of 0.5 was set for the NMS algorithm
to remove multiple overlapping bounding boxes of the same object.
The above parameters are suggested by default from the original
author [3].

Deep SORT - Because of the difficulties in collecting and char-
acteristics of the car re-identification dataset, this study directly
used the pre-trained supplied by the author who proposed the OS-
Net for feature extraction task in Deep SORT without any further
modification. Input images were resized to 256 × 128. In addition,
as mentioned in section 3.2, a threshold time of 300 seconds was
set to eliminate tracking of the vehicles standing in the moving
area for too long. This threshold can be easily modified by the
administrators.

Shortest path finding algorithm - The BFS algorithm was
implemented in the C++ programming language. According to

our experimental data, because all the parking lots in the data
have a number of slots in width or length less than 40, we divided
each frame into 40 × 40 grids. In fact, this division can be changed
arbitrarily based on the condition of each parking lot. In order to
evaluate this algorithm more thoroughly, our research conducted
several experiments with changing parameters, such as the number
of grids for each frame and the number of suggested cars each time.
These results are presented in the section 4.3.

4.3 Experimental results
Coordinates determination tool - As mentioned in section 3.2,
not all objects need to be tracked; the application will only focus
on new vehicles that have entered the gate to speed up the infer-
ence process. To solve this problem, this research built a tool by
the PyQt5 framework to help administrators easily determine the
coordinates of the areas, including the parking area, the moving
area, and the gate area. The application can easily determine which
objects need to be tracked from those coordinates. Fig.3 visualize
the user interface of this tool.

Our coordinates determination tool supports selecting coordi-
nates from both videos and images corresponding to the function
load video and load image. After clicking on the above function,
the image of the parking lot appears in the dialog box; because
the camera position is fixed, the frames have the same observation
angle from the camera, so the selection function will randomly
select one image in the video to display. This image is then used to
determine the required coordinates directly. The functions (Gate
Area 1, Gate Area 2), Travel Area, and Parking Area are the func-
tions respectively to select the coordinates of the gate, the moving
area, and the parking area. The administrator will use the mouse to
click on the pixels on the image so that joining them in the order
of that click will form the smallest contour around the area to be
selected. The administrator can choose many different areas of the
gate, parking, and moving in the same parking lot without limit
on the number. These coordinates will be stored for use when the
system reboots without any further intervention from the adminis-
trator. When selecting the coordinates of a gate, the administrator
selects Gate Area 1 first and then selects Gate Area 2; these two
areas should be adjacent to each other and, in that order form the
direction to enter the parking lot from the gate, this is to help the
system can confirm the vehicle entering or leaving the parking
lot. To determine which vehicle has just entered the gate or check
whether the vehicle has entered the parking area or whether the
empty slot is in the parking area, or whether the vehicle is in the
moving area, the system checks whether the center of that object
belongs to the polygon of the area under consideration. In this case,
the polygon is created by joining all the points that the administra-
tor selected about that area in order. For convenience, this study
used the Matplotlib.Polygon library to check if a point is within a
polygon. Finally, after clicking the coordinates of any area in the
parking lot frame, the administrator can click the Save button to
save its coordinates. In order to select some different areas that
have the same function in the parking lot, the administrator can
click the OK button between those areas. The tool is also useful in
case the camera’s position or any parking lot parameter changes,
such as changing the parking location or the number of gates. In

314

Prototype of a parking system with path recommendation SoICT 2022, December 1–3, 2022, Hanoi, Vietnam

this case, the administrator can easily modify the coordinates so
that the system can run with these new coordinates.

Figure 3: User interface of coordinates determination tool

YOLOv5s - The results of YOLOv5s on the evaluation set are
shown in Table 1. It can be seen that the mAP of both empty slots
and vehicle labels achieved good results. The average mAP of these
two labels reached 90.6%, giving a good detection performance in
the actual assessment. However, in some complicated conditions,
for example, when other objects largely hide the vehicle because
of the camera angle, vehicle detection becomes more challenging,
reducing the certainty of YOLOv5s. In addition, other factors, such
as poor image resolution and dark or glare lighting conditions, also
lessen the detection results. Besides, the time for processing a frame

Table 1: YOLOV5 detection results on

Class Precision Recall mAP@.5 mAP
Empty slot 0.994 0.960 0.979 0.923
Vehicle 0.974 0.947 0.971 0.888
Average 0.984 0.954 0.975 0.906

to give the prediction is quite small. Specifically, YOLOv5s takes
about 0.045(s) to produce the result with a corresponding input
image, which means the detection speed is about 22 FPS on the
Nvidia GTX 1080 GPU. The time spent for training an epoch of
YOLOv5s was approximately 51 seconds. The computational com-
plexity was about 15.8 Giga floating-point operations per second
(GFLOPs). And the memory complexity when training with the
hyper-parameters mentioned in section 4.2 was about 5.6 gigabytes.

Deep SORT - Table 2 shows the experimental prediction speed
of the Deep SORT algorithm, including the detection stage on the
Nvidia GTX 1080 GPU. It can be seen that the prediction speed
of Deep SORT depends largely on the number of vehicles that are
tracked. In our experiments, we found that Deep SORTworks pretty
well because of the following reasons: Our proposed method only

concerns vehicles that have just entered the gate and are in the
moving area. Therefore, the number of vehicles to be tracked is
not too large for the context of an actual parking lot. This makes
it easy for the system to track vehicles and avoid being confused
with other vehicles of no interest in the moving area, even if their
trajectories overlap. However, in some complicated cases where
the objects disappear from the frame for a long time, Deep SORT
re-identifies them. Thus, the returned results of the latter phase are
affected.

Table 2: Inference speed of Deep SORT on GPU GTX 1080

Number of objects FPS
50 5 FPS
10 18 FPS

BFS - We conducted experiments with a number of different
parameter values, based on the context of the available videos, to
evaluate the speed of the BFS algorithm. The results of these experi-
ments can be seen in Table 3. It can be seen that when increasing or
decreasing the number of grids to ensure the existence of grids in
the parking slots, the processing time of BFS also tends to increase
or decrease, respectively, although not significantly. In general, the
calculation speed is still fast enough. Comparing the running time
when suggesting 4 or 12 vehicles simultaneously, the speed for 12
vehicles is somewhat faster than 4 vehicles, which can be explained
by the computational speed of the algorithm depending a lot on the
layout of the grids on the graph, such as the position of the source
relative to the destination and surrounding obstacles.

Table 3: Experimental results of the shortest path finding
algorithm. Runtime averaged over the whole video

Number of vehicles Number of grids Runtime (second)

3
40 0.0013
60 0.0025
80 0.0043

4
40 0.0016
60 0.0031
80 0.0049

12
40 0.0018
60 0.0029
80 0.0047

Application - The experimental response speed of the applica-
tion achieves 14 FPS on the Nvidia GTX 1080 GPU when suggesting
5 cars simultaneously. It can be seen that in the processing stream
of the application, the object tracking stage is the one that takes the
most time. Fig.4 shows an example result of our proposed method
with the user interface of the demo app.

From the results obtained above, it can be seen that this system
has solved the set objectives. Specifically, the object detection stage
combined with post-processing has quickly given the number of
empty slots in the parking lot. And the object tracking stage and

315

SoICT 2022, December 1–3, 2022, Hanoi, Vietnam Linh et al.

the BFS algorithm gave each user the path to the nearest empty
slot. In addition, a demo of a user interface with experimental
functions such as support for viewing expenses to be paid and
viewing parking status is also provided. From these functions, the
system can completely develop other functions or combine them
with the RFID card system to establish a complete parking system
and apply them in practice.

Figure 4: Example result of proposed method

5 CONCLUSION
This manuscript proposes a new multifunctional parking prototype
that overcomes the parking obstacles of previous studies. The de-
velopment process of the proposed prototype can be summarized
as follows: The first point concerns vacant slot detection, vehicle
detection, and vehicle tracking. Training has been conducted with
YOLO, unlike the other studies that used the IoT method. YOLO
allows our prototype to obtain good accuracy at high speed before
forwarding to the Deep SORT components. From the experiment,
the speed of Deep SORT is based mostly on the number of empty
slots and tracking vehicles. The second point relates to the short-
est path to vacant space. In general, the speed of BFS is still fast
enough based on the dividing grid. In addition, this manuscript
published collected data for vehicle detection and vehicle tracking
in the parking lot and designed a demo application to make clear
visualization for users.

In the future, we expect to continue collecting data from different
environments and viewpoints of the camera to make the original
dataset more diverse and investigate multiple situations. The speed
of application still depends heavily on the Deep SORT component,
so another avenue for future proposals is to improve the Deep SORT
algorithm.

ACKNOWLEDGMENTS
This research is funded by Hanoi University of Science and

Technology (HUST) under project number T2022-PC-052.

REFERENCES
[1] 2020. Car object detection dataset by Balraj. https://www.kaggle.com/code/

balraj98/yolo-v5-car-object-detection. Accessed: 2022-08-28.
[2] 2020. Car object detection dataset by Sshika Maru. https://www.kaggle.com/

datasets/sshikamaru/car-object-detection. Accessed: 2022-08-28.

[3] 2021. YOLOv5 published by Ultralytics. https://github.com/ultralytics/yolov5.
Accessed: 2022-07-29.

[4] 2022. Basement parking occupancy and location system. https:
//baigiuxethongminh.vn/chi-tiet-dich-vu/he-thong-bao-cho-trong-va-vi-
tri-do-xe-tang-ham. Accessed: 2022-09-04.

[5] 2022. BFS algorithm from Geeksforgeeks. https://www.geeksforgeeks.org/
breadth-first-search-or-bfs-for-a-graph. Accessed: 2022-09-04.

[6] 2022. Istock website. https://www.istockphoto.com. Accessed: 2022-08-28.
[7] 2022. Pybind11 library. https://github.com/pybind/pybind11. Accessed: 2022-09-

04.
[8] Zongyuan Ge Alex Bewley, Fabio Ramos Lionel Ott, and Ben Upcroft. 2016.

Simple online and realtime tracking. In 2016 IEEE International Conference on
Image Processing. IEEE, 3464–3468. https://doi.org/10.48550/arXiv.1602.00763

[9] Muhamad Izham Hadi Azhar, Fadhlan Hafizhelmi Kamaru Zaman,
Nooritawati Md. Tahir, and Habibah Hashim. 2020. People Track-
ing System Using DeepSORT. In 2020 10th IEEE International Confer-
ence on Control System, Computing and Engineering (ICCSCE). 137–141.
https://doi.org/10.1109/ICCSCE50387.2020.9204956

[10] Muhammad Azhad Bin Zuraimi and Fadhlan Hafizhelmi Kamaru Zaman. 2021.
Vehicle Detection and Tracking using YOLO and DeepSORT. In 2021 IEEE 11th
IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). 23–29.
https://doi.org/10.1109/ISCAIE51753.2021.9431784

[11] Léon Bottou et al. 1991. Stochastic gradient learning in neural networks. Pro-
ceedings of Neuro-Nımes 91, 8 (1991), 12.

[12] Harshitha Bura, Nathan Lin, Naveen Kumar, Sangram Malekar, Sushma Nagaraj,
and Kaikai Liu. 2018. An edge based smart parking solution using camera
networks and deep learning. In 2018 IEEE International Conference on Cognitive
Computing (ICCC). IEEE, 17–24.

[13] Paulo RL De Almeida, Luiz S Oliveira, Alceu S Britto Jr, Eunelson J Silva Jr, and
Alessandro L Koerich. 2015. PKLot–A robust dataset for parking lot classification.
Expert Systems with Applications 42, 11 (2015), 4937–4949.

[14] Stefan Edelkamp and Stefan Schrodl. 2011. Heuristic search: theory and applica-
tions. Elsevier.

[15] Robin Grodi, Danda B Rawat, and Fernando Rios-Gutierrez. 2016. Smart parking:
Parking occupancy monitoring and visualization system for smart cities. In
SoutheastCon 2016. IEEE, 1–5.

[16] Fuheng Guo and Yi Xu. 2022. Vehicle Analysis System Based on DeepSORT and
YOLOv5. In 2022 3rd International Conference on Computer Vision, Image and Deep
Learning and International Conference on Computer Engineering and Applications.
175–179. https://doi.org/10.1109/CVIDLICCEA56201.2022.9824363

[17] Meng-Ru Hsieh, Yen-Liang Lin, and Winston H. Hsu. 2017. Drone-based Object
Counting by Spatially Regularized Regional Proposal Networks. In The IEEE
International Conference on Computer Vision (ICCV). IEEE.

[18] Santosh Divvala Joseph Redmon and Ali Farhadi Ross Girshick. 2016. You only
look once: Unified, real-time object detection. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 779–788. https://doi.org/10.
48550/arXiv.1506.02640

[19] Abhirup Khanna and Rishi Anand. 2016. IoT based smart parking system. In
2016 international conference on internet of things and applications (IOTA). IEEE,
266–270.

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[21] Zeydin Pala and Nihat Inanc. 2007. Smart parking applications using RFID
technology. In 2007 1st Annual RFID Eurasia. IEEE, 1–3.

[22] NicolaiWojke, Alex Bewley, and Dietrich Paulus. 2017. Simple online and realtime
tracking with a deep association metric. In 2017 IEEE international conference on
image processing (ICIP). IEEE, 3645–3649.

[23] Zizhang Wu, Weiwei Sun, Man Wang, Xiaoquan Wang, Lizhu Ding, and Fan
Wang. 2020. Psdet: Efficient and universal parking slot detection. In 2020 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 290–297.

[24] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2015. A large-scale
car dataset for fine-grained categorization and verification. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 3973–3981.

[25] Y. Wu Z. Wang, A. Thirunavukarasu L. Yang, and Y. Zhao C. Evison. 2021. Fast
personal protective equipment detection for real construction sites using deep
learning approaches, Vol. 21. Sensors, 3478. https://doi.org/10.3390/s21103478

316

https://www.kaggle.com/code/balraj98/yolo-v5-car-object-detection
https://www.kaggle.com/code/balraj98/yolo-v5-car-object-detection
https://www.kaggle.com/datasets/sshikamaru/car-object-detection
https://www.kaggle.com/datasets/sshikamaru/car-object-detection
https://github.com/ultralytics/yolov5
https://baigiuxethongminh.vn/chi-tiet-dich-vu/he-thong-bao-cho-trong-va-vi-tri-do-xe-tang-ham
https://baigiuxethongminh.vn/chi-tiet-dich-vu/he-thong-bao-cho-trong-va-vi-tri-do-xe-tang-ham
https://baigiuxethongminh.vn/chi-tiet-dich-vu/he-thong-bao-cho-trong-va-vi-tri-do-xe-tang-ham
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph
https://www.istockphoto.com
https://github.com/pybind/pybind11
https://doi.org/10.48550/arXiv.1602.00763
https://doi.org/10.1109/ICCSCE50387.2020.9204956
https://doi.org/10.1109/ISCAIE51753.2021.9431784
https://doi.org/10.1109/CVIDLICCEA56201.2022.9824363
https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/10.3390/s21103478

	Abstract
	1 Introduction
	2 Related Work
	2.1 Existing Smart Parking Systems
	2.2 Theoretical background

	3 Proposal smart parking application
	3.1 Image acquisition block
	3.2 Processing center block
	3.3 Application block

	4 Experiments
	4.1 Dataset
	4.2 Experimental setup
	4.3 Experimental results

	5 Conclusion
	Acknowledgments
	References

