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Distributed Simulation has still to be adopted significantly by the wider simulation community. Reasons for

this might be that distributed simulation applications are difficult to develop and access to multiple computing

resources are required. Cloud computing offers low-cost on-demand computing resources. Developing appli-

cations that can use cloud computing can be also complex, particularly those that can run on different clouds.

Cloud-based Distributed Simulation (CBDS) is potentially attractive, as it may solve the computing resources

issue as well as other cloud benefits, such as convenient network access. However, as possibly shown by the

lack of sustainable approaches in the literature, the combination of cloud and distributed simulation may

be far too complex to develop a general approach. E-Infrastructures have emerged as large-scale distributed

systems that support high-performance computing in various scientific fields. Workflow Management Sys-

tems (WMS) have been created to simplify the use of these e-Infrastructures. There are many examples of

where both technologies have been extended to use cloud computing. This article therefore presents our in-

vestigation into the potential of using these technologies for CBDS in the above context and the WORkflow

architecture for cLoud-based Distributed Simulation (WORLDS), our contribution to CBDS. We present an

implementation of WORLDS using the CloudSME Simulation Platform that combines the WS-PGRADE/gUSE

WMS with the CloudBroker Platform as a Service. The approach is demonstrated with a case study using an

agent-based distributed simulation of an Emergency Medical Service in REPAST and the Portico HLA RTI on

the Amazon EC2 cloud.
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1 INTRODUCTION

Distributed simulation techniques can link and interoperate models over a network to build larger
models, share the processing demands of simulation execution across multiple computers, and
potentially speed up simulation execution [1, 2]. Apart from defense applications, the field has
yet to be adopted by the mainstream simulation community. Reasons for this might be that dis-
tributed simulation applications are difficult and complex to develop. Access to multiple computing
resources is also needed to run these applications. Cloud computing offers convenient access to
rapidly provisioned, on-demand computing resources [3]. Cloud computing support for distributed
simulation, or Cloud-based Distributed Simulation (CBDS), is attractive, as it would eliminate
the need for local computing resources and facilitate remotely accessible deployment. However,
multiple clouds with different APIs and characteristics, different middleware and service models
mean that developing cloud-based applications can be difficult and complex. The development of
a generalized approach to CBDS may be significantly challenging.

There has been large-scale investment in the development of distributed systems for science (or
e-Science). These e-Infrastructures (cyberinfrastructures) are widely used by many scientific com-
munities and make use of a range of Distributed Computing Infrastructures (DCIs) including
computational grids, high-performance computing and, more recently, clouds. Application devel-
opment for e-Infrastructures is also complex. Workflow Management Systems (WMS) have
been created to simplify the use of these systems for end-users. Workflows consisting of a net-
work of tasks are developed in dedicated programming languages or via graphical user interfaces.
These tasks are translated into jobs that are run on specified computing infrastructures. This ap-
proach to the simplification of complex technologies has been highly successful as shown by the
widespread adoption in some scientific communities [4].

Given the success of e-Infrastructures and WMS, we wanted to investigate if CBDS could benefit
from this approach. This article reports on the results of this investigation and the development
of our WORkflow architecture for cLoud-based Distributed Simulation (WORLDS).

The article is structured as follows: A review of distributed simulation, cloud computing, and
related CBDS work is presented in Section 2. The limitations of CBDS systems and applications
as well as the issues involved in creating a general approach are discussed. Section 3 introduces
e-Infrastructures and WMS and considers how these could be used for CBDS. This section then
presents our WORLDS architecture. In Section 4, we give a proof-of-concept implementation of
WORLDS. This implementation is demonstrated in Section 5 with a case study using an agent-
based distributed simulation of an Emergency Medical Service in REPAST and the Portico RTI on
the Amazon EC2 cloud. Section 6 discusses the limitations and potential of WORLDS and concludes
the article with future work.

2 BACKGROUND

This section presents the background to the main concepts in this article by first introducing dis-
tributed simulation and cloud computing. Related work in CBDS is then presented. The limitations
of these approaches and how the state-of-the-art could be extended to developing a generalized
architecture for CBDS are then discussed.

2.1 Distributed Simulation

Distributed simulation can be defined as “the distribution of the execution of a simulation program
across multiple processors” [2]. Using distributed simulation techniques, it is possible to simulate a
single model by dividing it across several processors or to simulate multiple models by joining to-
gether the different processors on which they run. A significant reason for the reluctance to adopt
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Fig. 1. The High Level Architecture.

distributed simulation is the high degree of technical expertise necessary for implementing appli-
cations. A long-term goal in this field has been to simplify the development of these applications
[5]. Standardizing distributed simulation practices might help to overcome this obstacle to formal-
ize simulation protocols and improve reusability and interoperability of components [6]. Different
standards for distributed simulation have been established, including Distributed Interactive
Simulation (DIS) [7] and the High Level Architecture (HLA) [8]. Both were developed by the
US Department of Defense with the initial objective of supporting military training simulations.
These simulations could involve thousands of objects (representing soldiers, vehicles, aircraft, etc.)
that need to be connected together for the exchange of information. The standard continues to be
updated with the last version released in 2010 [9]. As shown in Figure 1, in the HLA an object or
collection of objects is termed federate and the collection of federates is termed the federation. Fed-
erates are able to interact with each other via middleware called the Run-Time Infrastructure
(RTI). This implements the HLA’s Federate Interface Specification and interacts with federates
via RTI and Federate Ambassador implementations. The Object Model Template (OMT) allows
information exchange to be defined. The Simulation Object Model (SOM) defines this for a
federate and the Federation Object Model (FOM) defines this for the entire federation. Other
forms of distributed simulation exist [10]. However, we shall restrict our discussions to HLA-based
distributed simulation in this article.

2.2 Cloud Computing

The term “cloud” refers to the provisioning of services that are highly elastic in terms of network-
ing scope, computing power, storage facilities, or application range. The US National Institute of
Standards and Technology (NIST) proposed a definition that is widely accepted: “Cloud com-
puting is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service provider
interaction” [3]. Resource demand is matched rapidly at any specific time by using fast provision-
ing facilities to operate those resources. This “elasticity” means that cloud computing can scale
resources to meet the user demands in terms of both computational resources and storage [11].
Resources are usually fixed at the point of use although new approaches are being developed to
auto-scale cloud resources according to some performance metric [12]. Billing is applied using a
pay-per-use policy. Cloud therefore reduces costs by “hiring” computational resources rather than
having local computing facilities. However, cloud can have additional costs such as data trans-
fer. There are well-known service models. Software as a Service (SaaS) involves the software

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 2, Article 15. Publication date: February 2022.



15:4 N. R. Chaudhry et al.

applications running on the cloud infrastructure accessed via thin clients, web browsers, or pro-
gram interface. Platform as a Service (PaaS) facilitates the deployment and execution of software
applications and the management of cloud infrastructure. Infrastructure as a Service (IaaS) pro-
vides services to provision cloud resources, operating systems, firewalls, and so on. There are also
several cloud types including private (single organization use), community (multiple organizations
use), public (open use), and hybrid (multiple clouds presented as a single cloud). The service par-
adigm has roots in Service-Oriented Architecture (SOA) and has led to many variants (e.g.,
“everything” as a service (XaaS)) [13]. Most applications developed as services tend to be de-
ployed to single clouds (e.g., Amazon, Azure) and can be prone to “vendor lock-in,” as different
clouds have different APIs. Given the growth in the number of cloud providers, locked-in ser-
vices cannot easily take advantage of competitive pricing of an emerging cloud market without
potentially costly redevelopment. Also, national data protection laws and government/corporate
policies can restrict the choice of cloud.

2.3 Distributed Simulation Architectures

The late 1990s and early 2000s saw three technological advances: the original architecture for grid
computing (the pre-cursor to e-Infrastructures) along with the Globus grid computing toolkit
(GT) [14], SOA and web services, and the HLA. Research into developing service-oriented services
for distributed simulation or service-oriented simulation arguably began in the early 2000s with
the Extensible Modeling and Simulation Framework (XMSF) that proposed the extension of
the HLA with web service technologies to support simulation development and interoperability
[15]. At the same time, approaches to service-oriented grid computing were being developed that
resulted in the Open Grid Service Architecture (OGSA) and grid services [16]. The use of these
in the context of XMSF was discussed by Pullen et al. [17]. Xie et al. [18] implemented these in the
HLAGrid prototype that investigated the feasibility of using GT3 grid services to run HLA-based
distributed simulation. Theodoropoulos et al. [19] extended this to support agent-based simula-
tion using REPAST [20]. HLAGrid was further developed using GT4 resulting in the SOAr-DSGrid
to support general distributed simulation [21]. This research continued with the Decoupled Fed-
erate Architecture that added fault tolerance and simulation cloning functionality [22]. Building
on experiences with SOAr-DSGrid led to the more comprehensive Service-Oriented HLA RTI
framework (SOHR) that added more HLA services [23]. This was used to investigate optimistic
protocols running over networks of virtual machines [24]. Feng et al. [25] and Zhang et al. [26]
presented early examples of how an RTI with GT4 services could be realized as a PaaS.

2.4 Related Work: Cloud-based Distributed Simulation

With the emergence of cloud computing and cloud service models, researchers began to investi-
gate how distributed simulation could take advantage of this technology. He et al. [27] proposed
a secure cloud-based HLA RTI that could run on a cloud using on-demand computing resources.
It demonstrated several key features of a cloud-based RTI using a local cluster. Vanmechelen, De
Munck, and Broeckhove [28] developed a conservative distributed simulation using Amazon EC2
services using a manager-worker approach to scale the simulation over the resources of a single
image. Performance results were reported that compared different variants of their conservative
protocol. Guan, De Grande, and Boukerche [29] proposed a cloud architecture to enable HLA-based
distributed simulations on cloud that used virtual resource management to use cloud computing
resources if local computing resources were not sufficient. A comparison between a local grid com-
puting implementation versus a cloud implementation demonstrated lower energy consumption
for cloud and comparable performance (Portico RTI, 15 physical hosts versus 15 virtual ones). It
appears that a single cloud instance was used (actual cloud not specified). This work was further
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developed into a multi-layered elastic cloud simulation scheme supporting the capability of auto-
matic deployment, reduction of energy consumption, and local to cloud resource scaling using a
deployment management scheme [30]. It argued that this approach could support multiple clouds
by using an architecturally layered approach. Experiments were performed for several distributed
simulation protocols including the HLA and again compared local grid to cloud resources (a single
Amazon EC2 instance mapping several virtual CPUs). The paper reported acceptable comparative
performance results (slower due to virtualization overheads) on cloud balanced with low costs,
energy consumption, and so on. D-Mason is the distributed version of the agent-based modelling
library MASON [31]. The simulation is partitioned into cells that are mapped onto logical pro-
cesses (LPs). Each LP synchronizes with its neighbors using a publish/subscribe mechanism. The
cloud-based version of D-Mason was conceptualized as a simulation as a service environment
where a D-MASON simulation is mapped to Amazon EC2 cloud resources using StarCluster [32].
GridSpice was a simulation platform for the distributed agent-based simulation of smart power
grids consisting of a transmission network, distribution networks, and power generators. These
elements are mapped onto the Amazon EC2 cloud using StarCluster. The simulation was imple-
mented in REPAST and used its time synchronization features to synchronize time across the
distributed simulation. The Scalable Electro-Mobility Simulation (SEMSim) platform was de-
veloped to study the impact of large-scale electromobility schemes on a city’s infrastructure [33].
The SEMSim Cloud Service consisted of a distributed simulation with two parts: an agent-based
traffic simulation and a discrete-event power system simulation. A Dispatch Server managed sim-
ulation experiment submission to cloud. The service was deployed on the Google Compute Engine
and reported good performance with respect to dedicated HPC. Megaffic was another distributed
agent-based simulation that simulated traffic networks [34]. It used Bulk Synchronous Process-
ing to synchronize between the elements of the distributed simulation. Checkpoints were used
to rebalance processing load. The simulator was implemented using the Google Compute Engine
cloud. Zaheer et al. [35] demonstrated how locality-aware logical process placement could reduce
network overheads in busy cloud data centers. General concerns of data security, service reliabil-
ity, and slower execution due to potential sharing of instances on physical machines with other
users have also been discussed in this area [36, 37]. Simulation partitioning and load balancing
difficulties involved in using on-demand multi-instance multi-core systems such as cloud can also
be encountered [38].

Several authors have also explored Modelling & Simulation as a Service (MSaaS). For ex-
ample, Liu et al. [39] (Simulation as a Service (SIM as a service) as well as Modelling as a
Service (MaaS), Execution as a Service (EaaS), Analysis as a Service (AaaS), and Simula-
tion Resource as a Service (SRaaS)) and Zehe et al. [40] (Simulation Software as a Service
(SSaaS)). Siegfried et al. [41], Cayirci [42], Taylor et al. [43], and Kiss et al. [44] have proposed
forms of MSaaS. While useful in advancing the discussion of what cloud-based simulation ser-
vices could achieve, these contributions tend to be conceptual in nature, discussing the potential
of some form of simulation-related service, or focus on one issue (e.g., theoretical architecture,
security, business models, grand challenges).

2.5 Discussion

There have been several attempts at developing CBDS. A range of cloud resource management
schemes have been investigated. Those that use multiple cloud instances tend to demonstrate re-
sults using a local cluster and not cloud. Examples that provision actual cloud instances appear
to focus on single instance use and not multiple instances. Some have discussed how multiple
instances could be used but have not implemented this feature. This may be due to the costs in-
volved as, although cloud computing is cheaper than purchasing equivalent distributed computing
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systems, extensive investigation using multiple cloud instances might be prohibitively costly to re-
searchers. Several works have investigated how HLA federations can be run on cloud and several
have focused on other variants of distributed simulation. There is evidence of a small number of
approaches continue to be developed. Only one of these approaches could be considered generaliz-
able (for HLA-based distributed simulation). The others focus on a specific technique (distributed
agent-based simulation) or domain (power systems, electromobility). Work on MSaaS and associ-
ated concepts have explored issues in this area but are conceptual in nature.

To summarize our observations, distributed simulation applications are difficult and complex
to develop. Federates may need to run on their own “computer” and therefore accessing multiple
computing resources is desirable. This need is especially true if multiple experiments are to be
carried out that could run multiple federations with different parameters in parallel. Cloud com-
puting is a possible approach to multiple computing resource provision. It also has the benefit of
remote network access. Application development with cloud computing is also complex. How-
ever, it is possible that once a cloud-based application has been developed, end-users can easily
and repeatedly access and run it remotely with computing resources being provisioned automat-
ically. End-users might also be able to choose which cloud they would prefer to use. Currently,
although we cannot claim that our review is exhaustive (e.g., advances made by vendors), apart
from a small number of domain-specific examples, there does not appear to be a generalizable
approach to CBDS.

To summarize the above limitations, current approaches to CBDS have the following issues:

• Demonstrations/performance tests are conducted on a local cluster and not an actual cloud;
• Demonstrations/performance tests are conducted with a single instance and not multiple

instances;
• There are many approaches to CBDS with, currently, no single approach emerging;
• Some approaches to CBDS investigate how HLA federations can run on cloud;
• Most approaches focus on a specific type of simulation technique and domain of application;
• MSaaS has been considered in terms of CBDS but is mostly conceptual in nature with no

real demonstrations;
• These approaches to CBDS are highly complex and require advanced computing skills to de-

velop and implement—they also develop technologies that are unique to the article/project
with little evidence of reusing existing technologies (apart from RTIs, for example);

• No evidence of a supporting community (apart from specific simulation technologies (e.g.,
MASON, Portico);

• Most approaches are tied to one cloud (i.e., no “multi-cloud” approach);
• There is little or no research into a generic CBDS approach that can support a range of

simulation techniques and domains;

In the next section, we present an approach that has had some success with cloud-based appli-
cation development and discuss how this approach could be used for CBDS.

3 A WORKFLOW ARCHITECTURE FOR CLOUD-BASED DISTRIBUTED SIMULATION

The previous section discussed cloud-based approaches to distributed simulation. Pre-cloud re-
search investigated how grid services could be used as the basis for some form of distributed
simulation service. Arguably, cloud took researchers in a different direction. However, work
on grid computing continued and matured into e-Infrastructures (sometimes called digital re-
search infrastructures, e-Science infrastructures, or cyberinfrastructures). These have been devel-
oped to support the needs of different research communities to share common data, simulations,
software, and computing resources across organizations [45]. An e-Infrastructure brings these
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Fig. 2. Workflow Architecture for Cloud-based Distributed Simulation (WORLDS).

together as a virtual organization and provides single sign-on access (e.g., through eduGAIN
[46]). Computing resources are managed as DCIs and can include clusters, networks of PCs,
cloud, and high-performance computing facilities [47]. Users submit and manage jobs across these
DCIs via grid computing job submission systems such as HTCondor [48]. e-Infrastructures have
benefited from over 20 years of development, and there is a large worldwide community. Sci-
entific Workflow Management Systems (WMS) have emerged as a means to process work-
flows and organize data sets for many scientific computing scenarios [49, 70]. Examples include
Askalon [50], Chiron [51], Galaxy [52], Kepler [53], Pegasus [54], Swift [55], Taverna [56], Tri-
ana [57], and WS-PGRADE/gUSE [58] and are used extensively in fields such as astronomy, bi-
ology, computational engineering, and Modeling & Simulation (M&S) [4]. There are exam-
ples of where e-Infrastructures and WMS/Science Gateways have been extended to incorporate
cloud (e.g., Pegasus and Amazon EC2 [59], Taverna and multiple clouds (Amazon EC2, Azure,
Rackspace, clouds running OpenStack) [60], Galaxy and multiple clouds (Amazon EC2, clouds
running OpenStack/OpenNebula) [61], the Distributed Application Runtime Environment
(DARE) science gateway framework and multiple clouds (Amazon EC2, Eucalyptus, and Nimbus)
[62] and WS-PGRADE/gUSE (via CloudBroker integration to multiple clouds (Amazon EC2, Azure,
CloudSIGMA clouds running OpenStack/OpenNebula), and HPC Center resources deployed as
clouds) [63]. Could these technologies be used to create distributed simulation applications?

WMS and supporting architectures introduced above, generally have elements of workflow
management, job management, and cloud deployment. Figure 2 shows our Workflow Architec-
ture for Cloud-based Distributed Simulation (WORLDS) based on a generalized workflow
architecture. Users create the workflow in the User Interface Portal Layer. A workflow takes the
form of a Directed Acyclic Graph (DAG) consisting of an array of nodes in which each node
represents a specific task. An edge represents input and output (i.e., file transfer or external param-
eters). Once defined, workflows can be configured with application/platform-specific information
for each task (e.g., the specific algorithm (script), input data, method of communicating outputs,
cloud infrastructure) Ideally, users could also choose which cloud and resources to use for their
federation (e.g., using one cloud instance with multiple CPUs, multiple cloud instances with single
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CPUs) Once a workflow is configured, it can be submitted to the Distributed Simulation (DS)
Platform layer. The DS Platform Layer provides services to manage and execute the workflow. To
do this, the layer consists of five services. The Workflow Management Service (WMS) converts
the workflow task to jobs. It composes jobs by adding specified software from a repository (the
Software Deployment Service (SDS)) and converting associated shellscripts, parameters, and
input/output communication requirements. It then manages the execution of these jobs following
the dependencies defined in the workflow. The Job Submission Service (JSS) takes these indi-
vidual jobs and their cloud requirements and submits these to the appropriate cloud resources. It
takes any application specific deployment images (e.g., virtual machines, containers) specified in
the task from the SDS. The service maintains status information for each job and, when completed,
downloads the outputs from the cloud infrastructure. It also has some fault tolerance functionality
(e.g., when jobs fail and require resubmission). The Distributed Simulation Service (DSS) de-
ploys and runs the DS Manager on cloud. This is called by the DSS task in the workflow and directly
runs the Central RTI Component (CRC) on cloud (via images and software from the Software
Deployment Service). This must be directly deployed and executed as the federates require the
IP address of the CRC to connect and join the federation. Once deployed, the DSS provides this
IP address as an input parameter to the federate composition tasks of the workflow. Additionally,
many simulation applications are used to perform experiments. These experiments typically sim-
ulate the same model with different parameters. To reflect this, a Parameter Study Service would
require dedicated workflow tasks that generate the experiments and collect the results. The gen-
erator task would also be capable of specifying the maximum number of resources to be used to
process the experiments in parallel. This allows users to easily translate experimentation specifi-
cations into the workflow. This is not shown in the example distributed simulation workflow but
could be used to generate multiple federations running in parallel. Finally, the Cloud Resources
Layer (Cld) contains the resources from different clouds.

Figure 3 shows a federation and a possible workflow. The federation is composed of several
federates and an RTI. The aim of the workflow is to automate federation deployment and execu-
tion and could be composed of several steps [10]: Initialize (set up each federate with its model
and data), Compose (to bring the federation together with the RTI/DS Manager and map these to
DCI resources), Execute (to run the federation on the DCI, possibly running many federations in
parallel), and Collect (of the results of multiple federations that have run in parallel). Figures 4 and
5 show how WORLDS would process this workflow. The workflow (WF) tasks are identified by
labels.

Initialize: The task and data Init(Names, FedData) is sent to the WMS. Names consists of the
names of the federates and FedData consists of the data, parameters, models, and so on, that will
be used to update the federate software stored in the SDS. The WMS splits this into two messages.
Init(Names) is passed to the DSS to begin the initialization of the DS software. On receipt, the
DSS instructs the cloud management software to commission a cloud resource that will host the
CRC (InitCRCRes) and to pass back the IP address of this resource (CRCIP). The DSS also validates
the Names of the federates and passes this and the CRCIP back to the WMS (DSData). The WMS
then instructs SDS via Init(DSData, FedData) and instructs it to update the relevant federations
(InitFeds). When this is complete, the WMS returns the new DSData back to the WMS completing
this task.

Compose: This task consists of two activities: the composition of the CRC and the composition
of the Federates. This is shown as a parallel task, as these can potentially be done in parallel if
the WMS allows this. Both follow a similar pattern. The WF sends Names and CRCIP to the WMS.
The WMS forwards this to the DSS and instructs it to begin the composition of the CRC software.
Relevant installation scripts, etc. and the CRC are then passed as CRCSw to the JSS and onto Cloud
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Fig. 3. A federation and possible distributed simulation workflow.

to execute and return the composed CRCComp software to the DSS. The DSS informs the WMS
with the message Ready. The Federates are composed in a similar manner with the SDS instead of
the DSS. When the process has finished, the WMS will return Done to note the end of the task.

Execute: The WMS first instructs the DSS to start the CRC with ExecCRC. The DSS sends the
composed CRC software with the instruction to deploy and start the CRC to the JSS via CRC-

CompExec. The JSS then manages the deployment and execution of this on Cloud (CRCRun). The
WMS then instructs the SDS to send each Federate software for deployment and execution (Ex-

ecFed). The SDS sends the composed federates to the JSS with their own instruction to deploy and
run to the JSS (FedExec). The JSS also then manages the deployment and execution of these on
Cloud. The Federate software when executed will register with the CRC, synchronize (Fed*Synch)
and begin execution (DSRun). When complete (DSTermination), the CRC and Federates will return
DSTermination to the DSS to note the end of the DS.

Results: Once the Federates have finished their simulations they return their results back to the
WMS via the JSS. The JSS can then decommission cloud resources, and so on.

It should be noted that the above could be represented as a general WMS architecture with a
management layer containing a dedicated distributed simulation service. However, we wanted to
present our conceptualization to emphasize the use of contemporary workflow technologies in the
context of distributed simulation. This is similar to previous works that have taken existing archi-
tectures and applied them to distributed simulation (e.g., References [15, 19, 23]). We have also
presented our architecture with general features common to virtually all WMS. All WMS have
some method to create, configure, and submit workflows, either by a GUI (i.e., a science gateway)
or by some dedicated WMS language. Workflow management, job submission, and software de-
ployment services are common to all. Only WS-PGRADE [58] has a dedicated parametric study
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Fig. 4. WORLDS architecture sequence diagram (part 1).

service—other WMS rely on external experimentation management to perform parameter sweep
experimentation. It appears that no dedicated DS Service has been created for any WMS to date.

Comparing our architecture to other works in CBDS, References [27] and [29] (extended in
Reference [30]) propose comprehensive architectures with services similar to ours in terms of dis-
tributed simulation experimentation management, job submission to cloud, job management on
cloud, and cloud resource management. However, neither use any form of workflow or indeed
the ability to choose which cloud or cloud resources to use. References [31–35] use variants of
manager-worker schemes where distributed simulations are submitted to a manager for distribu-
tion to cloud workers mapped onto one or more cloud instances. These are essentially the same as
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Fig. 5. WORLDS architecture sequence diagram (part 2).

the job submission/management elements of the CBDS architecture of ours and the above works.
All examples of CBDS use either single cloud (or cluster-based) instances with multiple CPUs or
multiple single instances with a single CPU. We could not identify a similar CBDS approach to
ours that facilitates distributed simulation deployment using different cloud resource schemes via
workflow.

The next section discusses how WORLDS can be implemented using an existing WMS/e-
Infrastructure/Cloud technology stack.

4 WORLDS PROOF OF CONCEPT

To give a proof of concept of how the WORLDS architecture could be implemented, we needed
an e-Infrastructure that could access cloud as a DCI and a WMS, ideally one with some form
of Science Gateway. As discussed in the previous section, there are several candidate systems.
WS-PGRADE/gUSE is a well-known WMS [64]. Previous research had investigated how multi-
cloud functionality could be added to WS-PGRADE/gUSE via the integration of the CloudBroker
Platform [65]. This work was significantly extended for commercial applications to create the
CloudSME Simulation Platform (CSSP) [63]. This has been used by over 30 European SMEs
to develop cloud-based simulation applications and is a core technology in several large Euro-
pean projects. It has also been used to develop web-based cloud portals for agent-based simula-
tion (REPAST) and discrete-event simulation (JaamSIM) [66]. We chose the CSSP as the vehicle to
demonstrate WORLDS partly due to the platform having all the components we needed but also
our familiarity with it. We now briefly describe the relevant aspects of the CSSP.
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Fig. 6. WORLDS demonstration with the CloudSME simulation platform.

The CSSP is shown in Figure 6 with its mapping to WORLDS. WS-PGRADE/gUSE consists of
three tiers: a presentation tier consisting of WS-PGRADE that enables users to create and pop-
ulate workflows using a graphical editor for applications to run on DCIs, a middle tier of gUSE
services to save, deploy, and manage workflows, and an architectural tier that uses the DCI Bridge
job submission service and allows gUSE to submit and monitor jobs on a DCI. WS-PGRADE has
a graphical editor that can be used to build workflows and specify job configurations using typ-
ical directed acyclic graph semantics. gUSE has services to support workflow management and
execution (e.g., file storage, workflow repository, and workflow interpreter to manage the exe-
cution of workflows). The DCI Bridge has various plug-ins to manage job submission, as speci-
fied in the workflow using the OGSA Basic Execution Service interface. Workflows are created
in WS-PGRADE and managed in gUSE. gUSE creates jobs that are submitted and executed on a
DCI through the DCI Bridge. The CloudBroker Platform is a PaaS that allows developers to imple-
ment, manage, and bill applications on different clouds. It is a web-based store for applications that
deploy and execute compute-intensive applications on a cloud. It is suitable for any kind of batch-
oriented command line software, both Linux- and Windows-based, and either serial or parallel
processing. It provides several development options, including web browser deployment and/or
various APIs (REST, Java, etc.). Access to different clouds is provided by various cloud adaptors.
CloudBroker stores SaaS application patterns (typically application code and any associated in-
stallation/launch scripts), instantiates these on demand and launches/manages these through the
cloud adaptors on different cloud resources. CloudBroker also deals with fault-tolerance, errors
and exception handling through its Scalability and Fault Tolerance Handler module. The CSSP
also has an App Center—this was not used in this work, as there was no requirement for billing
and user management over and above the services available in WS-PGRADE.

The CSSP has been used to create SaaS M&S applications. To run on cloud, the executable part of
the application needs to be able to run headless and take command line parameters, as it needs to be
remotely executed. This is stored as an application pattern with deployment and runtime scripts on
CloudBroker. Specific implementations need to be created for single/multi-core cloud instances. A
workflow is then created/reused in WS-PGRADE. Versions of the workflow are then parameterized
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Fig. 7. Demonstration workflows.

for the different simulation application patterns and different clouds/instances. The workflow can
be executed directly or called by the simulation application deployed as a desktop or web-based
application via the WS-PGRADE REST API. When executed, WS-PGRADE calls gUSE to run the
different tasks of the workflow. gUSE instructs CloudBroker via the DCI Bridge to instantiate the
relevant application pattern for each task. CloudBroker then deploys the application to cloud via
the appropriate Cloud Adaptor to whatever cloud and instance type have been selected and then
runs it. The CloudBroker Platform and WS-PGRADE/gUSE then monitor the execution of the
application, coordinate the return of the results and the transfer of data/files between the tasks
until the workflow is complete.

The Workflow Management Service maps to WS-PGRADE, the Job Submission Service to gUSE
and the Software Deployment Service to CloudBroker. The DS Manager and Federate application
patterns are first stored on CloudBroker for each cloud and instance type needed by the end-user.
These are the deployments of the RTI CRC and supporting application software, respectively (see
Section 5 for further details). When called, CloudBroker would request a specific cloud/resource
type via a cloud-specific adaptor. It would then deploy these images via this cloud adaptor to the re-
source and initialize them. WS-PGRADE supports the Parametric Study Service by providing ded-
icated workflow tasks (generator/collector). The Distributed Simulation Service is split between
WS-PGRADE and CloudBroker. In WS-PGRADE this would be ideally implemented in a similar
manner to the Parametric Study Service. To demonstrate how WORLDS could be realized, the DS
Manager was split into two parts. The DS Manager patterns were stored on CloudBroker as noted
above. Prior to running the workflow, CloudBroker would be used manually to boot the specific
cloud resource so the external IP address could be obtained. This is then manually entered in the
workflow. The specific workflow DS Manager task would still instruct CloudBroker to deploy the
CRC software on the dedicated cloud resource.

As part of this demonstration, as shown in Figure 7, three workflows were developed to show
how different cloud resource types could be used. These are:

• Single Instance, Single CPU (SISC) – cloud resource with one CPU (the federation runs
on a single core instance);

• Single Instance, Multiple CPU (SIMC) – cloud resource with many CPUs (all federates
run on their own CPUs within a single instance);

• Multiple Instances, Single CPU (MISC) – multiple cloud resources with one CPU each
(the federates run on separate single core instances and communicate via a TCP/IP network
on cloud).
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The SI workflows require four stages: initialize, compose, execute, and collect. The initialize task
takes as input the list of federates in the distributed simulation, validates it, and passes it to the
next task. This task could do more, depending on the application (such as updating probability
distributions, lookup tables, and so on, used in the simulation). There is one compose task for each
federate and one for the DS Manager. These bring together the model files, federate names, sup-
porting software/scripts, data, and so on, for each federate. The DS Manager task brings together
the RTI software, federate names, and any other supporting software/scripts. Each task outputs a
zipped file to the execute task. The execute task unzips each file (DS Manager first and then in the
order of the federate names) and runs each associated process (the RTI CRC and then each feder-
ate in order). The SISC execute task would do this on a single CPU. The SIMC execute task would
require some method of allocating the DS Manager and the federates to specific CPUs. When the
DS Manager runs, a synchronization point labelled “ReadyToRun” is registered with the Register
Federation Synchronization Point service. As a federate registers with the DS Manager, it invokes
the RTI Announce Synchronization Point service to inform the federate of a new synchronization
point “ReadyToRun.” Federates then set a corresponding synchronization point and inform the DS
Manager through the RTI Synchronization Point Achieved service. Once the DS Manager records
that all federates have invoked this service, it then invokes the Synchronization Point “Ready-
ToRun” Achieved service and the federates will begin to execute their models. Once execution
has finished, the federates zip their results to be passed on to the final task. Collect receives all
result zips, brings them together, and outputs the final results. This task could also do some form
of analysis of the results.

The MISC workflow is similar but does not have the execute task, as its function is merged
with the distributed compose tasks. The IP address of the CRC is added to the list of inputs of the
initialize task to be passed on each compose task. These prepare the zip file for execution with
a different scriptfile to the SI workflows. This script actually runs the DS Manager and federates
once they have been booted on their cloud instance. The DS Manager would be done first on the
specified IP address followed by each federate (which has the IP address of the DS Manager). A
multiple instances, multiple CPUs (MIMC) workflow is possible, if a “hierarchical” mapping
of federates to instances and CPUs is needed, by combining the MISC and SIMC workflows.

5 EXPERIMENTS AND RESULTS

5.1 Motivation for the Experiments and Case Study

To demonstrate the CSSP implementation of the WORLDS architecture, we used the agent-based
Emergency Medical Service (EMS) distributed simulation developed in previous work [67, 68].
The motivation behind the case study selection was the scaling flexibility of the EMS in terms of
federation size. We ran experiments for all workflow configurations to investigate the performance
and scalability. This section briefly describes the EMS and the associated workflows for SISC, SIMC,
and MISC. Results are then presented from running these on the Amazon EC2 cloud.

5.2 Case Study

Figure 8 shows the concept of the EMS distributed simulation. It was originally developed to show
how distributed simulation could be used to develop large-scale models of city-wide emergency
services. The federation consists of one ambulance model and several Accident & Emergency
(A&E) (Emergency Room) models. The EMS was implemented using REPAST [20] and the Portico
RTI [69]. The distributed simulation advances time at regular intervals. Essentially, at each “tick”
each A&E federate updates its patient capacity and sends an interaction to the Ambulance federate
to specify the number of patients it can take. The Ambulance federate updates the current state
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Fig. 8. Agent-based Emergency Medical Service distributed simulation [67, 68].

Table 1. Configuration of Amazon EC2 Cloud Resources for Each Workflow Task

Task Workflow CPU Specification CPUs RAM

Initialize SISC, SIMC, MISC Intel(R) Xeon(R) E5-2650 2.00 GHz 1 1 GB

DS Manager SISC, SIMC (compose) Intel(R) Xeon(R) E5-2650 2.00 GHz 1 1 GB

MISC (compose and execute) Intel(R) Xeon(R) E5-2650 2.00 GHz 1 2 GB

EMS Federates SISC, SIMC (compose) Intel(R) Xeon(R) E5-2650 2.00 GHz 1 1 GB

MISC (compose and execute) Intel(R) Xeon(R) E5-2650 2.00 GHz 1 2 GB

Execute SISC Intel(R) Xeon(R) E5-2650 2.00 GHz 1 2 GB

SIMC Intel(R) Xeon(R) E5-2666 V3 2.9GHz 2 3.75 GB

Intel(R) Xeon(R) E5-2666 V3 2.9GHz 4 7.5 GB

Intel(R) Xeon(R) E5-2666 V3 2.9GHz 8 15 GB

Intel(R) Xeon(R) E5-2666 V3 2.9GHz 16 30 GB

Collect SISC, SIMC, MISC Intel(R) Xeon(R) E5-2650 2.00 GHz 1 1GB

of the emergency, the demand for ambulances, and the current ambulance loading. On receipt of
the patient number interactions, it decides where to place patients. Interactions are then sent to
the A&E federates to update their patient numbers (i.e., the patients have arrived at A&E) and the
details of those patients (currently one patient per interaction). These are derived from the hourly
emergency call distribution and the percentage of these requiring ambulance services. In this case
study, time in the EMS was fixed to advance hourly, one interaction is sent by each A&E federate
to the Ambulance federate, and approximately 14 interactions are sent from the ambulance to the
A&E federates (random distribution).

5.3 Experimental Setup

Two types of experiments were carried out: the first to show how each federation performed
over time and the second to show the scalability when increasing the number of federates. The
aim of both is to show indicative results and should be considered as the first steps in a larger
study. All experiments were repeated five times, and we use the average of these runs in our
results.

We used the Amazon EC2 cloud. The configuration of the resources that we used in our ex-
periments are shown in Table 1. All cloud instances installed the 64-bit Ubuntu Server 16.04 LTS
Operating System. Initialize and Collect tasks run on a single CPU with 1 GB RAM in all three
workflows. In all SI workflows, the Compose tasks ran on a single CPU with 1 GB RAM. The Exe-
cute task requires a larger instance in the SI workflows, as it has to run the federation and requires
adequate memory and compute resources. We therefore ran the SIMC on different instance types
with 2, 4, 8, and 16 CPUs with 3.75, 7.5, 15, and 30 GB RAM, respectively (i.e., the DS Manager and
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Fig. 9. Workflow for SISC and SIMC.

Fig. 10. Workflow for MISC.

the EMS federates are allocated to specific CPUs). In MISC, Compose is merged with Execute. The
DS Manager and each of the EMS federates in the MISC workflow run on instances with 1 CPU
with 2 GB RAM. The SISC and SIMC workflows are shown in Figure 9 and the MISC in Figure 10 as
they appear in the WS-PGRADE graphical editor. The amber squares indicate the workflow nodes.
Attached to the nodes are the input ports (small green squares) and the output ports (small gray
squares). The arrows indicate the dataflow between nodes. Table 2 shows the inputs, outputs, and
scripts used in our workflows. For example, the Initialize node in the SI workflows takes as input a
text file that lists all federates (0: federateslist.txt in Table 2). The file is transferred via the Initialize
output port (1: federateslist.txt in Table 2) to the Manager node’s input port (0: federateslist.txt in
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Table 2. Workflow Configuration of Distributed Hybrid ABS-DES EMS

Job Node
Configuration

Parameters
SI Workflows MI Workflow

Initialize

Software initialize.sh initialize.sh

Instance Type See Table 1 See Table 1

Argument String IP address of the CRC

Input Ports 0: federateslist.txt (end-user uploads)

Output Ports 1: federateslist.txt Output-port 0: CRCIP.txt

Manager,
Ambulance,
AE-1,
AE-2,
etc.

Software
manager.sh for DS Manager
model.sh for Ambulance, AE-1, AE-2, etc.

manager.sh for DS Manager
model.sh for Ambulance, AE-1,
AE-2, etc.

Instance Type See Table 1 See Table 1

Argument String
Name of the federate, i.e., Ambulance for
Ambulance job node, AE1 for AE-1 job
node, and AE2 for AE-2 job node

Input Ports

0: federateslist.txt
1: model.tar
2: batch_params.xml
3: data.tar (Only in Ambulance)

0: federateslist.txt
1: model.tar
2: batch_params.xml
3: data.tar (Only in
Ambulance)

Output Ports

3: fManager.tar for the Manager
3: AE1.tar for the AE-1, AE2.tar for the
AE-2, etc.
4: Ambulance.tar for Ambulance

3: fManager.tar for the
Manager 3: AE1.tar for the
AE-1, and AE2.tar for the
AE-2, etc.
4: Ambulance.tar for
Ambulance

Execute

Software
repastmulti.sh (to map federates on to
different CPUs)

Does not run on MI

Instance Type See Table 1

Input Ports

0: fManager.tar
1: Ambulance.tar
2: AE1.tar
3: AE2.tar

Output Ports 4: output.tar

Collect
Results

Software results.sh results.sh

Instance Type See Table 1 See Table 1

Input Ports 0: output.tar

0: fManager.tar
1: Ambulance.tar
2: AE1.tar
3: AE2.tar

Table 2). The Initialize node when executes runs the initialize.sh script. The SI and MI workflows
and their dependencies are openly available.1

5.4 Performance Metrics and Results

5.4.1 Performance. The first set of experiments investigated the performance of the federa-
tion and the cloud overhead in relation to the total cloud runtime. These two metrics are used to
calculate the speedup and the speedup/cost ratio of the examined workflow configurations. In

1https://doi.org/10.17633/rd.brunel.14853666.
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Fig. 11. Total average cloud execution time by workflow/experiment.

these experiments the federation was fixed at 15 federates—1 ambulance federate and 14 A&E
federates.

5.4.1.1 Total Cloud Execution Time and Speedup. To examine how the federation ran over time,
four experiments were performed—the federation was run separately for one to four weeks of
simulation time for each of the experimental configurations. Figure 11 shows the average total
workflow execution time on the cloud for all 24 experiments. Taking as point of reference the
SISC workflow, the speedup is calculated for all workflows. Figure 12 depicts the speedup gained
when running the federation on more than one CPU and for the four examined simulation times.
The SISC workflow is used as reference and therefore the speedup is one. As expected, the execu-
tion time increases as the simulation runtime increases. However, the increase in SISC and MISC
is significantly larger, while we observe a very small increase in execution time for all SIMC work-
flows. This behavior is expected, since both SISC and MISC run on instances with 2 GB RAM while
SIMC experiments use larger single instances. This demand on resources comes from the number
of patients in the simulation—in the first few weeks of the emergency the number of patients grows
and the details of each patient need to be stored in the system and transferred via interactions. The
performance gets better as larger instances are used. In SISC, all 15 federates run on a single in-
stance, and the single instance has to handle the processing of the entire federation. This performs
worse than the other experiments. In MISC, each federate runs on the same instance type as SISC.
Performance arguably reflects the balance of dividing the processing/memory load of the simula-
tion across different instances and the communication overhead of the interactions passed to and
from the RTI. Similar behavior is observed in the speedup, as shown in Figure 12. Generally, SIMC
workflows perform better. The highest speedup is observed in the SIMC (16 CPUs) workflow when
the simulation runs for four weeks. However, for one-week simulation time, SIMC (4 CPUs) and
SIMC (8 CPUs) outperform the largest instance. Interestingly, we observe a drop in speedup in the
SIMC (2 CPUs) workflow when the simulation runs for two weeks. This behavior is due to the high
variation in the cloud resources setup time for the specific experiment. It is worth mentioning that
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Fig. 12. Speedup by workflow experiment.

the cloud resources used were not dedicated and therefore it was expected to see wide variability
in cloud setup times. Nonetheless, the standard deviation of all simulation runtimes is small and
shows that once the cloud resources are created the federation runs consistently on this cloud. The
data that the performance graphs are based on is openly available.2

5.4.1.2 Cloud Overhead and Speedup-cost Relationship. To examine the extra computing cost of
the different workflow configurations, we measured the cloud overhead that represents the setup
time required to request and commission cloud resources. Figure 13 shows the proportion of run-
time split into cloud overhead and workflow execution time. The figures were obtained through
the CSSP’s monitoring system. These are shown again for the ongoing execution of the federa-
tion. As can be seen, as a proportion of total execution time, the cloud overhead for SISC is lowest
followed by MISC and then the various SIMC configurations. This is expected, since the cloud over-
head as an absolute value is similar for all workflows. However, the actual simulation execution
time in the single CPU instances, both in SI and MI, is longer than that of the multi-CPU instances
and therefore the cloud overhead is more significant. All multi-CPU instances have more RAM
than the single CPU instances, which explains why we observe better simulation performance.
MISC takes longer than SISC, which is because this workflow requires different cloud instances
to be set up. This behavior reflects the general behavior of shared tenancy cloud resources pro-
visioning in which the spin up time can vary, depending on general demand. As the simulation
progresses, the relative proportion of cloud overhead reduces. This would be expected from the
“one-off” cost of setting up the instances against computation time. Overall, it does appear in this
limited investigation that the largest multi-CPU instance used in the SIMC workflow produces the
best performance in terms of cloud overhead proportion. To understand the effectiveness of the
studied workflow configurations, we examined the speedup cost relationship, too. Table 3 shows
the speedup/cloud overhead ratio. This analysis shows that the cost-effectiveness differs for the
examined simulation times. For example, the SIMC (eight CPUs) is the most cost-effective con-
figuration for one week simulation time, while the SIMC (four CPUs) is the most cost-effective

2https://doi.org/10.17633/rd.brunel.14852466.
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Fig. 13. Average relative cloud overhead by workflow/experiment.

Table 3. Speedup/Cloud Overhead Ratio by Workflow

Workflow 1 Week 2 Weeks 3 Weeks 4 Weeks
SISC 6.37 12.71 17.89 22.81
SIMC (2 CPUs) 5.56 12.53 19.19 33.42
SIMC (4 CPUs) 7.83 5.67 18.74 42.22
SIMC (8 CPUs) 9.63 14.72 17.99 28.51
SIMC (16 CPUs) 6.29 13.44 18.69 38.88
MISC 5.04 7.88 11.26 16.53

configuration for four weeks’ simulation time. This leads to the conclusion that instance type se-
lection should be carefully considered for different federation sizes and experimentation setup. It
would be interesting to see if better performance could be obtained with a larger instance type
used in the MISC workflow as well as partitioning the simulation to use larger instances a MIMC
workflow (e.g., four instances running four federates).

5.4.2 Scalability. The second set of experiments investigated the scalability of the federation.
For these experiments, we used federations of different “size” and ran them on all six workflow
configurations. Federation size ranged from 3 to 15 federates (i.e., 1 ambulance with 2, 4, 6, 8, 10, 12,
14 A&E federates). The interactions remained the same but were equally split between A&Es (e.g.,
7/7 per hour for the 1+2 federation). All 42 experiments ran for four weeks’ EMS simulation time.
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Fig. 14. Execution time by federation size (1 ambulance + 2n A&E federates)/workflow/configuration.

Figure 14 shows the average execution time of all experiments. The execution time for the SISC
workflow increases as the number of federates increases. All SIMC experiments perform better
than the others with the two-CPU configuration showing a small decrease in performance with
larger workloads. There is virtually no decrease with the other SIMC configurations. This suggests
that the four-CPU configuration is the best for this simulation. MISC is similarly unaffected by
larger workloads and, as noted above, is probably due to sharing the processing/memory load for
the simulation. The communication overhead appears to have little effect. The standard deviation
again is small for all experiments. This may give different results if the number of patients increases
significantly (again to be investigated as part of a larger study). Overall, it appears that using
single instances with larger resources gives the best performance for these experiments up to
a point. Given that cloud instances vary in cost, this highlights the need to profile federation
performance to give the best performance/cost ratio for a particular cloud. This is especially true
if the distributed simulation will be run many times as part of a simulation study. The data that
the scalability graphs are based on is openly available.3

6 CONCLUSIONS

This article has investigated a novel approach to CBDS that has attempted to simplify the com-
plexity of using distributed simulation on cloud. It has reviewed contemporary approaches to
CBDS and identified the limitations of these approaches. E-Infrastructures/WMS were then in-
troduced and the general approach used to run applications on cloud using workflows. The
WORLDS architecture was then presented that essentially added a distributed simulation service
to e-Infrastructure/WMS. Different workflows reflecting different deployment strategies were then
presented to illustrate how WORLDS might be used. A possible implementation of WORLDS was
then discussed using the CloudSME Simulation Platform. A case study demonstrated how this im-
plementation could be used with the different workflows using the Amazon EC2 cloud and the
distributed Emergency Medical Service simulation.

3https://doi.org/10.17633/rd.brunel.14852580.
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In this article, we have asked two questions: Could these technologies be used to create DS
applications and to what extent does this approach simplified CBDS? We have shown how DS
can be successfully implemented by adding a DS Service to a generalized WMS/e-Infrastructure
architecture and have then demonstrated this using one example of this technology stack, the
CloudSME Simulation Platform. As noted below, further work needs to be carried out to determine
if this approach is generalizable to other WMS technologies. However, as we have attempted to
start from a general WMS architecture, we anticipate that our approach will be translatable.

In terms of simplifying CBDS, the main issue with previous work is that while most approaches
have advanced understanding of what is needed for CBDS, there is little evidence of their contin-
ued use. GridSpice and SEMSim are exceptions to this, as they have been used to study problems in
their application domains. These do simplify the use of CBDS in their areas. It may be that both are
generalizable to other applications. Our work has added to these examples by demonstrating that
e-Infrastructures/WMS can be used for CBDS. This is attractive, as these technology stacks are sup-
ported by large worldwide communities rather than a single research project. Our demonstration
is limited to one example of this technology. However, it does seem reasonable to assume that our
WORLDS architecture and workflow could be implemented using other e-Infrastructures/WMS.
It must be noted that in our approach distributed simulations still need to be created along with
deployment packages for cloud installation. However, once this has been done, workflows can be
used to automate deployment and e-Infrastructures, such as the CloudSME Platform, can simply
cloud implementation, especially with different clouds.

Our case study demonstrated how CBDS could be deployed using different workflows and dif-
ferent cloud resources. One result of this showed that using larger, more costly, single instances
does not necessarily mean faster simulations. Work will continue to investigate how federates or
LPs can be profiled to ensure the optimal selection of resource. We are also interested in multi-
ple, parallel DS experimentation, as would be done using a Parameter Study Service. Studies have
been done using an auto-scaling approach on cloud with sequential simulations [12]. Extending
this to investigate how CBDS could auto-scale distributed processing during parameter studies
experimentation would be desirable, as it could optimize cloud use and reduce costs. Another is-
sue is how CBDS could be run over different clouds. If simulations lie under different national
or commercial data protection authorities, then it may be that federates have to run on specific
clouds (e.g., within national boundaries). It would be interesting to see the performance impact
of federate mapping onto sets of resources from different clouds. This would certainly be possi-
ble using CloudBroker. Finally, we are also interested in how workflows could be integrated with
proposed extensions to the HLA Distributed Simulation Engineering and Execution Process
(DSEEP) [68].
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