
Interactive Simulation of Disease Contagion in Dynamic Crowds
Alon Flor∗

Chengguizi Han∗
Tao Xue∗

af656@cs.rutgers.edu
chengguizi.han@rutgers.edu

tx57@cs.rutgers.edu
Rutgers, The State University of New Jersey

Piscataway, NJ 08854, United States of America

Mridul Aanjaneya
ma635@cs.rutgers.edu

Rutgers, The State University of New Jersey
Piscataway, NJ 08854, United States of America

From left to right: Crowd interaction, Unprotected, Social distancing, Immunity, and Vaccination.

Figure 1: Our novel disease spreading model at the agent-to-agent scale provides specific information about the infectivity
within moving crowds, and also supports different health interventions. The number of infected people is significantly small
in crowds with social distancing and vaccination. The infectivity is visualized with colors from green (low) to red (high).

ABSTRACT
We propose an agent-to-agent contagion-immunity formulation
that can simulate detailed COVID-19 spreading within moving
crowds. Specifically, we develop a diffusion-based disease conta-
gion model for discrete systems that considers the effect of health
interventions, such as social distancing, immunity, and vaccination.
We integrate our contagion-immunity formulation with the govern-
ing equations of motion for crowd dynamics for investigating the
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distribution of disease in crowds with different numbers of people.
For the same crowd simulation, our model can interactively simu-
late virus spread for different initial distributions of infected people.
To the best of our knowledge, our work is the first to simulate the
disease contagion within moving crowds in computer graphics. Our
numerical results for the number of infected people in unprotected
dense crowds agree with the SIS model, while our model provides
richer information for disease spread and shows that vaccination is
the best health intervention to prevent infection.

CCS CONCEPTS
•Computingmethodologies→ Computer graphics; Physical sim-
ulation.
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1 INTRODUCTION
Over the last two years, we have experienced the historic, global
outbreak of Coronavirus Disease 2019 (COVID-19) which, along
with the measures taken to mitigate it, have struck at everyday life
worldwide [Bock et al. 2020; Chowdhury et al. 2020; Walker et al.
2020]. Each country had to find its own way to keep the rapid virus
spread under control, to “flatten the curve”, and to avoid a break-
down of its healthcare system. The main strategies recommended
by epidemiologists are wearing masks and maintaining social dis-
tancing. Recently, with the successful development of COVID-19
vaccines, getting vaccinated has been added to the list [Cartaud
et al. 2020; Qian and Jiang 2020; Xu and Cheng 2021].

To date, numerous mathematical studies have focused on mod-
eling the outbreak dynamics of COVID-19, predicting its future
course, and providing scientific reasoning for political decisions.
Traditional epidemiology models represent epidemics of communi-
cable diseases using a population-based, non-spatial approach [Bian
2004]. The conceptual framework for this approach is rooted in the
general population model which divides a population into different
segments [Kermack and McKendrick 1927], including Suscepti-
ble, Infected, and Removed (SIR), among others, and formulates
their coupled evolution with a set of ordinary differential equa-
tions (ODEs). These SIR-based deterministic models [Comunian
et al. 2020; Conejero et al. 2019; Ehrhardt et al. 2019; Giudici et al.
2020] assume that populations are completely mixed and ignore the
spatial effects involved in the spread of epidemics. These models
also neglect the interactions between individuals since they model
populations as continuous entities [Di Stefano et al. 2000].

In contrast to SIR-based epidemic simulations, agent-based for-
mulations [Connell et al. 2009; Newman 2002; Perez and Dragicevic
2009] are stochastic and spatially explicit, permitting the modeller
to study specific spatial aspects of the spread of epidemics. Mod-
eling in epidemiology using an agent-based approach pursues the
progression of a disease through each individual, and tracks the
contacts of each individual with others in the relevant social net-
works and geographical areas (e.g., co-workers, schoolmates). Thus,
populations become highly heterogeneous by health status during
simulations. All the rules for individual agent movement (e.g., to
and from workplace and/or school) and for contacts with and trans-
missions to other people are explicit [Epstein et al. 2012; Salam
et al. 2021]. Moreover, agent-based models can produce emergent
macro-effects from micro-rules and have played an important role
in the development of different methodological frameworks in epi-
demiology [Connell et al. 2009]. However, the disease spreading
model embedded in the dynamical interaction among agents still
relies heavily upon the SIR-based model, which only depicts the
statistical characteristics of disease spreading, such as the percent-
age of infected population members. The specific infectivity of each
individual agent in real-life scenarios, such as concerts, football
games, and parades, appears to be impossible to regain from the

prior agent-based simulations with SIR-based disease spreading
(see Section 2.3 for more details).

According to the latest epidemic report1, COVID-19 is recog-
nized to be a highly contagious disease, and regular gatherings
and events, such as in supermarkets, schools, and concerts, appear
to be dangerous activities that may lead to a massive increase in
the number of infected people. Therefore, instead of studying the
disease spreading over a large domain, such as globally, it appears
to be more vital to investigate the disease spreading pattern within
a limited domain where the individuals can be modelled directly.

In this paper, we propose a novel disease spreading model at the
agent-to-agent scale and investigate the COVID-19 spreading in a
moving crowd. Our disease spreading model starts from a discrete
diffusion process [Wang et al. 2016; Xue et al. 2019], demonstrating
the disease transmission from one agent to its neighboring agents.
We consider the disease as a “predator” and the inner immune sys-
tems of agents as “prey”, and use the predator-prey relationship to
describe the general loss-win interactions between infectivity and im-
munity. Our agent-to-agent based contagion-immunity formulation
integrates agent-based discrete crowd simulation [Jiang et al. 2010;
Kolivand et al. 2021; Narain et al. 2009], the predator-prey equa-
tion [Berryman 1992; Chattopadhyay and Arino 1999], and discrete
diffusion modeling [Wang et al. 2016; Xue et al. 2019], provides
specific information about how risky these mass events can be, and
supports the recommended intervention measures (i.e., wearing
masks, social distancing, and getting vaccinated). In summary, our
main contributions are as follows:

(1) An agent-to-agent contagion-immunity formulation that
provides detailed COVID-19 spreadingwithinmoving crowds.

(2) End-to-end simulations with social distancing, immunity,
and vaccination to highlight the versatility of our method.

2 RELATEDWORK
2.1 Crowd Simulation
Simulations of virtual crowds have been extensively studied in
several fields, including computer graphics, robotics, traffic en-
gineering, and social sciences. We refer the readers to excellent
surveys [Pelechano et al. 2008; Thalmann et al. 2007].

In the present work, we utilize collision avoidance algorithms to
simulate crowds. Collision avoidance algorithms can be generally
classified into continuum and discrete approaches. Continuum ap-
proaches formulate the dynamics of crowds based on continuumme-
chanics, and the behavior of pedestrians presents fluid-like behavior.
The governing equations of these continuum approaches are usually
partial differential equations (PDEs) that involve equations for den-
sity and mean velocity of the flow, and are particularly suitable for
dense, homogeneous crowds and complex environments [Bellomo
and Dogbe 2011; Etikyala et al. 2014; Helbing 1998].

On the contrary, discrete approaches simulate individuals and the
crowds that naturally form by agent interactions, in which agents
are usually approximated by disks. Most collision-avoidance algo-
rithms for agent-based simulations are based on social forces [Hel-
bing and Molnar 1995; Kang et al. 2019], velocity selection [Kim
et al. 2015; Van den Berg et al. 2008] or vision [Dutra et al. 2017],

1https://www.cdc.gov/coronavirus/2019-ncov/community/large-events/
considerations-for-events-gatherings.html
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Figure 2: Crowd simulations. Top: sparse passing. Bottom: dense passing. Our simulations capture group interactions in both
the sparse and dense passing scenarios, and they agree with other position-based crowd simulations [Weiss et al. 2019].

and the influence of emotion evolution/contagion [Jiang et al. 2018;
Xu et al. 2019]. To enhance the agent-based model, Kim et al. [2015]
have added detailed physical interaction forces (such as pushing) to
simulate a crowded pilgrimage scenario. Hesham andWainer [2021]
have given agents a dynamic personal space that adapts to their
current speed. Smoothed Particle Hydrodynamics (SPH) [van Toll
et al. 2021] has been integrated with the agent-based force to al-
low agents to blend between individual navigation and fluid-like
interactions depending on the SPH density. Position-Based Dy-
namics (PBD) [Weiss et al. 2019] has also been applied for crowd
simulations. In the present work, we use the simple social force
formulation proposed in [Helbing and Molnar 1995] to simulate the
dynamics of crowds, which provides us an agent-to-agent discrete
system that our disease-immunity model is embedded on.

2.2 Disease Simulation
Numerous mathematical studies regarding disease spreading have
been conducted during the last few decades. Below, we only review
those prior models that have been used to model the spread of
COVID-19, since our focus is on the current pandemic, and models
for other diseases more or less follow the same methodology.

The well-known SIR (susceptible-infectious–removed, or recov-
ered) model has been extensively analyzed [Hethcote 2000] and
extended to finer compartments (see [Pastor-Satorras et al. 2015]
for an overview) that mimic the described course of disease spread,
deaths, and immunity buildup. SIR-based models have been abun-
dantly applied to locally analyze COVID-19 outbreak dynamics in
various countries [Pedersen and Meneghini 2020; Peirlinck et al.
2020]. However, models to predict the temporal and spatial spread-
ing of the virus have so far been rather limited.

Another category of population disease spreading models simu-
late the state of individual people, known as agents, over a number
of discrete time steps. Recent studies of agent-based disease sim-
ulations for COVID-19 can be found in [Gomez et al. 2020; Kerr
et al. 2021; Shamil et al. 2021]. While agent-based models [Eubank
et al. 2004] successfully cover the “high-resolution end” at the level
of individual people and their movement, the “zoomed-out view”
on a state- or county-level is understudied territory, even though
statistics at this scale are the ones that influence political decisions

the most. A variant of the SIR model has previously been coupled
to a reaction-diffusion model [Yamazaki and Wang 2017] to mathe-
matically study disease spreading dynamics with partial differential
equations (PDEs). Colizza et al. [2006] have focused on the impor-
tance of the air travel network as a basis for global diffusion at a
pandemic outbreak. Following this strategy, an air travel network
model coupled to an SIR-based model was developed in [Linka et al.
2020; Peirlinck et al. 2020] to understand the spatial spreading of the
virus. The global epidemic and mobility (GLEAM) model [Balcan
et al. 2009] includes air travel as the major source of wide-range dis-
ease spreading; it also models more localized commuting patterns
that correspond well to traffic data in Germany, among other coun-
tries. The model has explained a great deal of COVID-19 spreading
at the national scale [Chinazzi et al. 2020].

Models coupling crowd motion and contagion dynamics are far
less investigated. We refer to Ref. [Kim and Quaini 2020] for a re-
cent investigation coupling a crowd motion model with a contagion
model in a one-dimensional situation. [Abdul Salam et al. 2021]
proposed a PDE-based model to investigate the disease contagion
within a moving crowd, where an SIR-based model is used for the
disease contagion and a continuum approach is used for crowd sim-
ulation. To the best of our knowledge, none of the prior works have
studied the specific disease contagion at the agent-to-agent scale
within moving crowds. It is worth nothing that studies regarding
disease spreading at the agent-to-agent scale are vital, as they use
the most basic element of disease transmissions, and they are more
intuitive than those at larger scales. Large-scale simulations need
to satisfy statistical requirements, such as the size of the overall
population in an SIR-based model and the condition of continuity
in fluid-like crowd simulations, to guarantee their reliability.

2.3 Our Approach vs. State-of-the-Art
As described above, state-of-the-art disease models primarily fall
into two categories: a) SIR-based models, and b) agent-based models.
SIR-based models use a set of ordinary differential equations and
mainly focus on the evolution of the overall number of susceptible
(S), infected (I), and recovered/removed (R) people in a population.
They do not provide detailed information regarding individual
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Figure 3: Disease spreading in crowdswithout protection in sparse (top) and dense (bottom) settings. Unlike classical SIR-based
simulations, our model provides detailed disease propagation in space and illustrates that being in a dense gathering results
in a high risk of infection. The infectivity β is visualized with colors from green (β = 0) to red (β ≥ 0.5) for increasing values.

spatial distributions of S, I, and R people. This is also reflected in
their mathematical models which have no spatial derivatives.

In contrast to SIR-based models, agent-based disease models can
show the distribution of S, I, and R people geometrically [Kergaßner
et al. 2020; Skvortsov et al. 2007]. Classical agent-based disease mod-
els rely heavily upon contact tracing, which is the statistical process
of identifying people who came within close proximity of infected
people. To obtain contact times that communicate the infection,
actual census [Hinch et al. 2021; Skvortsov et al. 2007], population-
mobility data [Fazio et al. 2021], and social networks [Ehrhardt
et al. 2019; Wolfram 2020] have been used. Based on the computed
contact times, the infection is passed from one agent to another
agent in close proximity at a fixed “contact rate”. Likewise, an indi-
vidual recovers from the infection based on a “recovery rate”. Such
a disease transmission process that depends purely on contact times
ignores the interaction between immunity, infectivity, and vaccina-
tion, which are all vital to disease spreading. While such simplified
disease transmission processes may yield reasonable results for a
large population, they will lose accuracy for smaller crowds, such as
a parade, where the number of contacts in any small-scale event is
not significantly high and the infection of each individual is mainly
determined by the disease-immunity interaction.

Our model focuses on the disease spreading within a moving
crowd on a discrete level, and thus, belongs to the category of
agent-based models. However, unlike existing agent-based disease
models, our focus is on the disease spreading in small-scale events,
such as a parade, concert, and school, with the aim of providing
detailed information about, for example, who is infected, where is
this infected person, and how long will this specific individual take
to recover under vaccination? Such low-level information cannot
be achieved with existing agent-based models or SIR-based models.

3 GOVERNING EQUATIONS
We now present the governing equations of motion underlying our
physics-based model for crowd simulation and disease spreading.

3.1 Crowd Simulation using Social Force
Our model for crowd simulation uses the concept of the social
force [Helbing and Molnar 1995], which reproduces most empirical
observations in a simple and natural way. Reliable simulation of
pedestrian crowds does not require knowledge of whether a certain
pedestrian (say) turns to the right at the next intersection. It is
sufficient to have a good estimate of the percentage of pedestrians
that turn to the right. This can either be empirically measured or
estimated by means of route choice models [Hoogendoorn and
HL Bovy 2003; Kosov et al. 2016]. In some sense, the uncertainty
about the individual behaviors of people is averaged out at the
macroscopic level. Nevertheless, we use the more flexible micro-
scopic simulation approach based on the concept of the social force.
According to this model, the temporal change of the location ri (t)
and the velocity vi (t) of pedestrian i obeys the following equation:

dri (t)
dt

= vi (t),
dvi (t)
dt

= fi (t) (1)

where fi (t) denotes the total force experienced by pedestrian i .
Suppose each individual i is trying to move in a desired direction e0i
with a desired speed v0i , so that the desired velocity can be defined
as v0i = v

0
i e

0
i . The actual velocity vi is adapted to the desired one

within a certain relaxation time τi . The systematic part fi (t) of the
governing equation of motion for pedestrian i is given as follows:

fi (t) =
1
τi

[
v0i (t) − vi (t)

]
+

∑
j ∈Ωi

fi j (t) (2)

where the term 1
τi

[
v0i (t) − vi (t)

]
corresponds to the navigation

term (which steers pedestrians towards their destination), and fi j
represents the interaction force between agent i and agent j. The
specific equation for fi j is given as follows:

fi j = Ae−bi j /B ·
∥ri j ∥ + ∥ri j − yji ∥

2bi j

(
ri j
∥ri j ∥

+
ri j − yji
∥ri j − yji ∥

)
(3)
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Figure 4: Our model successfully captures the expansion of dense crowds due to social distancing restrictions (top). Conse-
quently, as the distance between two agents increases, only a few agents are infected, as illustrated by the spatial distribution
of the disease (bottom). The infectivity β is visualized with colors from green (β = 0) to red (β ≥ 0.5) for increasing values.

whereA reflects the interaction strength of the force, B corresponds
to the interaction range, ri j = ri − rj , yji =

(
vj − vi

)
∆t , and

bi j = 0.5
√(

∥ri j ∥ + ∥ri j − yji ∥
)2

− ∥yji ∥.

3.2 Disease Contagion Model
In contrast to prior SIR-based models and the continuous diffusion
model [Kuniya 2020], we develop an agent-to-agent disease con-
tagion model that focuses on the coupling between infection and
immunity at the agent scale. By doing this, our model allows us to
investigate detailed disease spreading within crowds with a limited
number of agents, in which the spatially continuous diffusion-based
disease model is not applicable as it requires spatial continuity.

3.2.1 Discrete diffusion model. We define disease, or infectivity,
as a diffusive quantity βi for agent i in a population of agents.
There is a disease spreading bond between any close-enough pair
of agents i and j . The two agents have different infectivities βi and
βj , respectively. Without loss of generality, assume that βj > βi .
Based on the principles of diffusion [Carslaw 1906], the diffusive
quantities (e.g., atoms, ions, molecules, energy) will automatically
move from a region of higher concentration to a region of lower
concentration. We utilize this concept to define a visual diffusive
bond between agents i and j. We assume that the diffusion within
the bond i ↔ j follows Fourier’s law, such that the infectivity
flowing between agents i and j over an area s in t seconds equals:

ki j

(
βj − βi

)
· s · t

di j
(4)

where di j = ∥rj − ri ∥ is the distance between agents i and j, ki j is
the propagation coefficient representing the amount of infectivity
β that is transported from agent j to i under the influence of the
difference (βj −βi ). We define βai↔j as the average infectivity in the
bond i ↔ j. The rate at which the infective bond gains volumnic
infectivity is defined as:

s · di j ·
Dβai↔j

Dt
(5)

where D/Dt represents the material derivative. Based on the con-
servation of energy [Meltzer 2004], the infective equation for per

unit area and per unit time is given as follows:

s · di j ·
Dβai↔j

Dt
= ki j

(
βj − βi

)
· s

di j
(6)

The governing equation for disease propagation within the bond
between agents i and j can be written as follows:

Dβai↔j

Dt
= ki j

βj − βi

d2i j
(7)

We consider the average of all disease bonds within a limited conta-
gious range of agent i , denoted as Ωi . Thus, our agent-based disease
contagion model is given as follows:

Dβi
Dt
=

1
ni

∑
j ∈Ωi

Dβai↔j

Dt
Wi j =

1
ni

∑
j ∈Ωi

ki j
βj − βi

d2i j
Wi j (8)

whereWi j represents the weight value of agent j in the neighboring
domain of agent i , and ni =

∑
j ∈Ωi Wi j , which normalizes the

weighting process. Given that the possibility of getting infected
decays if the distance from the infected source becomes large, we
define ki j as follows:

ki j = e−
di j
Rs (9)

where Rs is the infectivity range, which is equivalent to the social
force interaction range B in equation (3). Based on equation (9),
we simulate how practicing social distancing helps to block the
virus spread by strengthening the social force’s interaction strength
A (see equation (3)), and by increasing the distance limit beyond
which the social force is not computed between individuals.

3.3 Contagion-immunity Coupling System
Inspired by [Macal 2010; Xiao and Chen 2001] that couple predator-
prey model in the SIR-based models and the classical agent-based
disease models, we further extend our agent-based disease conta-
gion model in equation (8) to account for the interaction between
agent-based immunity and contagion by using the predator-prey
model [Berryman 1992; Pang and Wang 2003] with diffusion.
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Figure 5: Our model captures realistic disease-immunity interactions and provides detailed infectivity of each agent. The
disease was first prevented by inner immunity (top). However, the highly contagious COVID-19 infects more agents as the
number of contacts increase. The infectivity β is visualized with colors from green (β = 0) to red (β ≥ 0.5) for increasing values.

3.3.1 Contagion. On one hand, the contagion is affected by neigh-
boring agents as shown in equation (8). On the other hand, the inner
immune system plays a role in defeating the virus and balancing
the contagion. Given the above, our model for contagion at agent i
is given by:

Dβi
Dt
=

1
ni

∑
j ∈Ωi

ki j
βj − βi

d2i j
Wi j + βi (σ − βi ) −

aβ2i αi

1 + β2i
(10)

where βi and αi represent the contagion and immunity of agent i ,
respectively. The term βi (σ − βi ) describes the prey in the absence
of predators and harvesting. The term aβ2i αi/(1 + β

2
i ) is termed a

Holling-III response function [Holling 1959] describing the inhibi-
tion due to immunity αi . a and σ are user-defined parameters.

3.3.2 Immunity equation. Themechanism of the immune system is
very complex when the body is under the attack of a virus. The virus
first stimulates the immune system to fight, and if the agent has a
sufficiently strong immune system, it wins the fight. Otherwise, the
agent is highly susceptible to getting infected and becomes a source
of infection. To describe the immunity of agent i , the inhibition and
enhancement of immunity due to inherent reasons (e.g., current
health condition) and due to the contagion are considered in our
model. Moreover, given that the immune system is also affected by
getting a vaccine, we utilize a hyperbolic tangent term to describe
the re-boosting of the immune system after getting vaccinated. The
specific model of immunity is given as follows:

Dαi
Dt
=

γiβ
2
i

1 + β2i
αi + µαi +

2∑
j=0

ξ tanh(t − tξ ) (11)

where the term γi β 2
i

1+β 2
i
αi represents the influences of the contagion

on the immunity, and γi is a user-defined parameter. When γ = 1,
the virus stimulates the immune system, while for γ < 0, the virus
inhibits the immune system. In our simulations, we chose γ = −0.5
as the COVID-19 virus can readily break the human immune system
and cause severe illness. µ j represents the inherent strength of the

immune system. If the agent has a healthy lifestyle, µ is set to be
0.1, while if the agent has an unhealthy lifestyle, µ is set to be −0.1.
The term

∑v
j=1 ξ tanh(t − tξ ) describes the boost to the immune

system due to the vaccine. In our model, we assume a single dose
of vaccine is fully effective, and the strength of the immune system
will be re-boosted when more doses of the vaccine are taken. ξ
represents the strength of a vaccine shot.

4 DISCRETIZATION
Although implicit schemes have been acknowledged to be more
efficient than explicit schemes and allow for larger time steps in the
simulations, the time step ∆t is required to be small to accurately
capture the contact between agents. We use the simple forward Eu-
ler time integration to discretize the coupling between the equation
of crowd motion (1), the infectivity equation (10), and the immunity
equation (11), and update ri , vi , βi and αi at tn+1 as follows:

βn+1i = βni +
∆t
nni

∑
j∈Ωi

kni j
βnj − βni
(d2
i j )

n
W n
i j + β

n
i (s − βni ) −

(
aβ 2

i αi
1 + β 2

i

)n
αn+1i = αni +

γi∆t (βni )
2

1 + (βni )2
αni + µ∆tα

n
i + ∆t

2∑
ξ =0

ξ tanh(tn − tnξ )

vn+1i =
1
τi

(
v0i − vni

)
+∑

j∈Ωi

[
Ae−

bni j
B ·

∥rni j ∥ + ∥rni j − ynji ∥

2bni j

(
rni j
∥rni j ∥

+
rni j − ynji
∥rni j − ynji ∥

)]
rn+1i = rni + ∆tv

n+1
i

(12)

where the superscript n denotes variables at time tn ; tnξ represents
the time instant when the ξ -th dose of the vaccine is taken.

5 RESULTS
Accompanying this article, we open-source our code for running all
our examples with the proposed computational framework for simu-
lating contagion-immunity interactions within moving crowds. All
our examples are run on a 1.30 GHz to 1.50 GHz, Intel(R) Core(TM)
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Figure 6: Our model shows that vaccination can effectively decay the disease spread and suppress the infectivity of the entire
crowd to a very low value. The infectivity β is visualized with colors from green (β = 0) to red (β ≥ 0.02) for increasing values.

i7-1065G7 CPU with 16GB RAM. For all cases, we set the time
step ∆t = 0.01, interaction range B = 1.0, relaxation time τ = 1.0,
desired speed v0i = 1.0, infectious range Rs = 1.0, user-defined
parameter σ = 1.0 in equation (10), contagion-immunity coupling
parameter γ = −0.5, and vaccine delay tξ = 0. Table 1 summarizes
the specific parameters that we changed across our simulations.

Table 1: Parameters that vary across simulations: n: number
of pedestrians, A: social force interaction strength, r : social
force radius, a: immunity strength, and ξ : vaccine factor.

n A r a ξ

Unprotected Sparse (Figs. 2 and 3 top) 0.1K 5.0 1.0 0.0 0.0
Unprotected Dense (Figs. 2 and 3 bottom) 1K 5.0 1.0 0.0 0.0
Social Distancing Dense (Fig.4) 1K 10 3.0 0.0 0.0
Immunity Dense (Fig.5) 1K 5.0 1.0 100 0.0
Vaccination Dense (Fig.6) 1K 5.0 1.0 100 0.5

5.1 Crowd Simulations
We experimented with two groups of agents walking in horizontally
opposite directions (see Figure 2). The agents in each group are
positioned in a sparse particle distribution with an initial separation
distance. To avoid collisions, we consider a relatively large influence
range Ωi (long range collision) in equation (8). In this scenario, the
agents organize themselves into narrow lanes, and pass each other
(see Figure 2(top)). Next, we simulate a dense passing scenario with
1000 agents, which are split into two agent groups. In the dense
setting, the two agent groups do not easily pass each other, and
some bottleneck groups are formed as shown in Figure 7. Eventually,
the agents pass, avoiding unrealistic collisions. Our simulations
demonstrate interesting group interactions, such as the formation
of lanes and subgroups with minimal interfaces, and qualitatively
match with the simulations from position-based methods [Weiss
et al. 2019] (see here 2 for a video of the position-based crowd
simulation), validating our crowd simulations.

2https://www.youtube.com/watch?v=iC8KHkoZR8k&ab_channel=
ComputersandGraphicsJournal

Figure 7: A closer view of group interactions in both sparse
(top) and dense passing (bottom) examples from Figure 2.

5.2 Disease Contagion in Moving Crowds
5.2.1 Unprotected. We simulated the disease contagion in the mov-
ing crowds whose group interactions are described in Section 5.1.
We first show the disease contagion in crowds without any protec-
tions such as social distancing and immunity. As shown in Figure 3,
initially only one agent is infected. As agent-to-agent contacts
increase, more agents become infected. In the case of a sparse distri-
bution, since the overall distance between any two agents is farther
than in the dense distribution case, the disease propagates at a
significantly slower pace than that in the dense crowd.

5.2.2 Social Distancing. Our model can be used to investigate the
effect of social distancing. We strengthen the social force in equa-
tion (2) by increasing variable A and increase the social force radius
r (see Table 1). The social force is only calculated between agents
whose distances are less than the social force radius. We simulated
disease spreading in dense crowds, as shown in Figure 4. Due to
the increased social force, the dense crowds expand before and
while walking in opposite directions. Since all the agents obey the

https://www.youtube.com/watch?v=iC8KHkoZR8k&ab_channel=ComputersandGraphicsJournal
https://www.youtube.com/watch?v=iC8KHkoZR8k&ab_channel=ComputersandGraphicsJournal
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Figure 8: Simulation of disease spreading in four groups (bottom)with different health interventions (Red: Unprotected, Green:
Immunity only, Blue: Unprotected, and Brown: Immunity and Vaccinated) mixing from different directions. We show the
infectivity evolution (top) during mixing. The infectivity β is visualized with colors from green (β = 0) to red (β = 1).
social distancing restriction, we observe that the disease spreads at
a slower pace and only within a very small range of agents near
the infected source.

5.2.3 Immunity. Next, we consider the effect of immunity, as shown
in equation (11). This case is without vaccinations, so ξ = 0. As
all the agents are protected by their inner immunity, the degree
of the illness of infected agents relies heavily upon the “fight” be-
tween the immunity and the disease. Our model demonstrates that
immunity can protect agents from the disease to a certain degree.
However, given the high contagiousness of COVID-19, a majority
of the population in the groups are eventually infected. This agrees
with the CDC’s published conclusions regarding the contagion of
COVID-19 3. As shown in Figure 5, we initially consider only one
infected agent, as the inner immunity starts to play a role, the virus
is suppressed to a certain extent (see Figure 5(top)). However, as
time goes by, the virus in each agent gradually grows and leads
more agents to become infected. Our model captures this realis-
tic interaction between infectivity and immunity, showcasing that
COVID-19 can break human immunity.

5.2.4 Vaccination. Our model can also be used to simulate the
disease propagation under the influence of a vaccine. The vaccine
term in equation (11) boosts the inner immunity of each agent. As
the immunity is strengthened, it significantly prevents the infection
and decreases the number of infected people in the groups. In
Figure 6, we simulated the same scenario shown in Figure 5, but
with the strong protection of the vaccine. As shown in Figure 6,
vaccines can slow the spread of COVID-19, accelerate healing from
COVID-19, and overcome the ongoing threat of the pandemic.

5.2.5 Multiple groups interaction. We also investigated the dis-
ease propagation within moving crowds under different health
interventions. Four groups of agents (see Figure 8) are assigned
different walking directions, as well as different health interven-
tion approaches, including unprotected, immunity, and vaccination.
As shown in Figure 8, vaccinated agents slow down the spread of
COVID-19 within the overall groups.

3https://www.cdc.gov/coronavirus/2019-ncov/hcp/ways-operate-effectively.html

Figure 9: Infectivity Evolution. Black: Unprotected, Red: So-
cial Distancing, Blue: Immunity, and Green: Vaccination.
Our model implies that infectivity in a sparse crowd (left)
is significantly slower and smaller than in a dense crowd
(right). Our model also shows that social distancing and vac-
cination are the two most promising ways of avoiding dis-
ease spreading in crowds. Vaccination appears to be the best
protection against a highly contagious disease.

5.3 Quantitative Evaluations
5.3.1 Infectivity. We first quantitatively compare the evolution of
the average infectivity (β) showcasing how different public health
interventions may affect the outcome of the pandemic. As shown
in Figure 9, we found that disease spreading in sparse crowds is
significantly slower than in dense crowds, and the amount of aver-
age infectivity is significantly less in sparse crowds than in dense
crowds. Our model also demonstrates that immunity has limited
effects in alleviating the speed of disease spread and decreasing
the average infectivity in sparse crowds. However, immunity may
lose its strength, particularly in dense crowds. Comparing differ-
ent scenarios, we observed that for sparse crowds, the policy of
social distancing and vaccination have a similar performance in
preventing the overall infectivity, while vaccination is the best way
to lower the average infectivity in dense crowds.

5.3.2 Comparison with SIS. Next, we show the comparison with
the famous SIS (susceptible-infectious-susceptible) model [Gray
et al. 2011; Otunuga 2021], which is a variant of SIR model. The
SIS model has been used to describe a disease that does not confer
any long-lasting immunity. Such infections do not give immunity
upon recovery from infection, and individuals become susceptible

https://www.cdc.gov/coronavirus/2019-ncov/hcp/ways-operate-effectively.html
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again. In the long term, all individuals will become infected in the
SIS model. We treat agents with β ≤ 0.5 as infected people and
demonstrate that the changing trend of the total number of infected
people agrees with the SIS model in the case of unprotected dense
crowds (see Figure 10(left)), while crowds with a sparse distribution
and/or proper health interventions delay or eliminate the trend of
increasing infections in the population.

Figure 10: Infectivity Evolution. Left: Sparse crowd. Right:
Dense crowd. Purple dot line: SISmodel, Black: Unprotected,
Red: Social Distancing, Blue: Immunity, and Green: Vacci-
nation. The number of infected people in the dense unpro-
tected crowd in our model agrees with the SIS model, while
the other cases from our model provide more reasonable
trends of change in the infected population.

Figure 11: Snapshot from our interactive framework for
simulating disease spreading in moving crowds. Typing “D”
switches the display mode between showing particle groups
(top left) or particle disease status (top right), while clicking
any particle canmark that particle as fully infected, turning
its color to red (β = 1, see bottom left). Typing “S” advances
the simulation by ten time steps, showing the details of the
disease spread (bottom right).

5.4 Interactive Simulations
To demonstrate the power and flexibility of ourmodel, we developed
an interactive version of our framework, where a user can pause the
simulation and change various attributes of the simulated people.
As shown in Figure 11, clicking on a person immediately labels
that person as being fully infected (i.e., β = 1). As time goes by,
the disease from this infected person first transmits to neighboring
agents, possibly spreading the disease to the entire group. Our
interactive application supports infecting multiple agents at any
time, allowing the user to simulate different scenarios of disease
spread. We release our code for the interactive simulations so that
a user can integrate more related modules in our framework.

6 DISCUSSIONS AND CONCLUSION
We proposed an agent-based contagion-immunity formulation that
provides detailed disease spreading of COVID-19 and immune reac-
tion within moving crowds. In contrast to most prior work based on
large populations and SIR-based formulations, our model focuses
on systems with a limited population, which cannot be treated
with continuum formulations. We demonstrated that our methods
capture realistic disease spreading in both sparse and dense crowds
under different health interventions, such as social distancing, im-
munity, and vaccination. We found out that the disease spread in
sparse crowds is significantly slower than in dense crowds, and
that vaccination is the best way to lower infectivity.

Our model has generated a large number of compelling examples,
and agrees with the SIS model, but there remains much work to be
done. Parameters to adjust infection range, interaction range, and
the like were tuned by hand, and it would be interesting to calibrate
them to measured models. While we did not experience a need
for excessively small time steps during simulations, it would be
interesting to incorporate multi-rate time integration schemes into
our framework to support different time steps on different disease
spreading scenarios. Besides, though the extra diffusion term in
our predator-prey model (see equation (10)) smooths the numerical
results, which allows us to use a forward Euler scheme for the
predator-prey model, it would also be interesting to use symplectic
Euler schemes to solve the contagion-immunity coupling system.
Another limitation of our work stems from the crowd simulations. It
would be interesting to develop the disease spreading model based
on position-based crowd simulations [Weiss et al. 2019].
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