
6

A Language for Agent-based Discrete-event Modeling and

Simulation of Linked Lives
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In agent-based modeling and simulation, discrete-time methods prevail. While there is a need to cover the
agents’ dynamics in continuous time, commonly used agent-based modeling frameworks offer little support
for discrete-event simulation. Here, we present a formal syntax and semantics of the language ML3 (Modeling
Language for Linked Lives) for modeling and simulating multi-agent systems as discrete-event systems. The
language focuses on applications in demography, such as migration processes, and considers this discipline’s
specific requirements. These include the importance of life courses being linked and the age-dependency of
activities and events. The developed abstract syntax of the language combines the metaphor of agents with
guarded commands. Its semantics is defined in terms of Generalized Semi-Markov Processes. The concrete
language has been realized as an external domain-specific language. We discuss implications for efficient
simulation algorithms and elucidate benefits of formally defining domain-specific languages for modeling
and simulation.
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1 INTRODUCTION

Agent-based modeling and simulation has become an established method to understand social
processes in heterogeneous populations [20], more recently also in demography [6]. Demographic
phenomena such as migration can be modeled as systems of agents that live “linked lives,” interact-
ing with each other via social ties [40, 41]. To support modeling such systems, we have presented
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the modeling language for linked lives (ML3) [64, 66]. However, so far ML3 has only been pre-
sented informally. The syntax is illustrated with a set of example models, and the semantics is
given as a reference simulator implementation [56]. In this article, we present for the first time a
formal definition of ML3 and, thus, provide an abstract and unambiguous mapping of ML3 models
to the stochastic processes they describe. We relate the simulation algorithms to these stochastic
processes, bridging the gap between the reference implementation and the formal semantics.

The design of ML3 is characterized by specific requirements from the application domain of
agent-based modeling in demography [66]. In particular, ML3 is tailored to models with (1) dis-
crete events in continuous time, (2) age-specific and deterministic events, and (3) agents that are
connected via network edges. These design decisions distinguish ML3 from existing approaches.
Moreover, as we show in this article, the design of ML3 is also reflected in the formal language
definition, which therefore differs from the usual style of defining simulation modeling languages
formally (also see Section 6). In particular, the flat network structure of model states precludes a
hierarchical decomposition of models, as used, for example, in DEVS-based approaches [69]. Deter-
ministically timed and periodic events as supported by ML3 are not expressible with Continuous-

time Markov Chains (CTMCs), which are a popular semantic domain for discrete-event model-
ing languages [8].

Our main contribution in this article is a formal and precise definition of the syntax and seman-
tics of ML3. The remainder of the article is organized as follows: First, we illustrate the design of
ML3 by showing how a previously published demographic model benefited from being expressed
in ML3. Section 3 then contains the core of this article: the formal language definition. Starting
with a simple CTMC-based language modeling networks of agents, we illustrate how introducing
demography-specific features leads to more complex process models. We arrive at a mapping of
ML3 models to Generalized Semi-Markov Processes, allowing age-dependent transition rates and
deterministic events. In Sections 4 and 5, we then describe how the formal definition relates to the
software implementation of ML3. In particular, we show how the differently complex stochastic
processes are reflected in different simulation algorithms. The article concludes with a review of
related modeling formalisms and a discussion of ML3 and the challenges of integrating discrete-
event simulation and agent-based modeling with a focus on applications in demography.

2 MOTIVATING EXAMPLE

To motivate the need for a language and its requirements, and to give an intuition about the type
of systems we are interested in modeling, we will use several excerpts of a simulation model de-
veloped by Klabunde et al. [40, 41], a discrete-event model of potential migrant’s decision making
with event scheduling in continuous time. The authors originally implemented their model in
NetLogo using the aforementioned extension for continuous-time discrete-event simulation. An
earlier implementation of that model in ML3, described in more detail, can be found in Reference
[64].

Klabunde et al. model how potential migrants make the decision to migrate, in the case of irreg-
ular migration from Senegal to France. At the core of the model is a multi-stage decision process.
Therein, the agent will form an intention to migrate based on Ajzen’s Theory of Planned Behavior
[1], taking a variety of economic, social, and environmental factors into account. This intention
governs the migrants’ path through a multi-stage decision process, from having formed an inten-
tion, through planning, preparing, and finally migrating. In each of these stages the migrant might
succeed and advance to the next stage, fail and be set back to the beginning of the process, or leave
the process entirely, abandoning the decision.

Figure 1 shows a rule from this model that governs the final step of this process, the actual mi-
gration attempt, implemented in ML3. In ML3 rules define the behavior of agents, and consist of
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Fig. 1. Stochastic rule governing the final step of the decision process in Reference [41], slightly adapted

from Reference [64].

Fig. 2. Stochastic rule governing fertility in Reference [41], slightly adapted from Reference [64].

four parts (formally defined in Section 3). The first part (line 1), defines which type of agents (here,
persons) the rule applies to. The second part, the guard (line 2), specifies preconditions for this be-
havior. To migrate, the person must be in the migration decision process, have a positive intention,
must be in the preparation stage of the process, and have sufficient funds. With a certain rate (the
third part, defined in line 3), they will then attempt to migrate. The final part of the rule (lines 4–8)
defines the effect of that behavior, i.e., their attempt to migrate. Depending (stochastically) on the
intensity of border enforcement this attempt might succeed or fail. In case of success, they will
migrate, which is a complex endeavor in its own right. In case of failure, they are reset to the
beginning of the process. This type of complex decision making is typical for certain agent-based
models in the social sciences, which aim to explain social phenomena as the product of individual
decision making, e.g., References [5, 32, 38]. The language must therefore allow for the modeling
of complex behavior in a social context.

While not being universal, it is common for demographic models to track individuals through
their whole life course, e.g., References [4, 5, 51]. By progressing through their life courses, they
experience a variety of demographic events. As an example, Figure 2 shows the fertility process
from the migration decision model. Women in a certain age range (line 2) may give birth to a
child with a certain rate (line 3), depending on cohort, age, and number of children. A new child
agent is then created and initialized (lines 4–10). A language for demographic models must allow
for the specification of these demographic processes easily. In particular, as these processes are
often age-dependent, e.g., fertility rates vary with the parents’ ages, it must be possible to specify
age-dependent behavior.

The processes shown above are all modeled with stochastic timing. While this is appropriate for
the decision process and fertility, not every process in a social system can be reasonably modeled
as such. For example, in the migration model, incomes are paid and received monthly. Also, people
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Fig. 3. Non-stochastic rule governing becoming an adult in Reference [41], slightly adapted from Refer-

ence [64].

become legally adult at a certain specified age, which allows them to behave differently (see Fig-
ure 3). In addition to stochastic behavior, a language for such models must allow for the modeling
of such non-stochastic events.

3 ABSTRACT SYNTAX AND SEMANTICS

We formally define the syntax and semantics of ML3 in three steps, introducing three “levels” of the
language, each expanding on the one before. The first allows one to define the agent’s behavior
using stochastic rules with exponential rates, leading to a classical homogeneous Continuous-

time Markov Chain (CTMC) semantics. At this level, the language already allows for modeling
complex decision processes in continuous time, the first of the requirements described above. At
the second level, we additionally allow that the exponential rate may depend on time and age,
which results in the CTMC being non-homogeneous. At this level, the language will allow for the
modeling of the age-dependent processes common in life-course models. Finally, the third level
will allow non-stochastic rules with fixed or periodic execution times. As waiting times are no
longer exponentially distributed, the resulting process is no longer a CTMC. Hence, we define the
semantics of the third level in terms of a Generalized Semi-Markov Process.

For each level, we begin with a definition of the abstract syntax, followed by the semantics. We
begin with some preliminary definitions of central concepts and notations.

3.1 Preliminaries

In the following, we assume there is a given set of basic types B ⊇ {real, int, bool}. For each
type τ ∈ B there exists a corresponding set of valuesV (τ ), withV (real) = R,V (int) = Z and
V (bool) = {T , F }.

3.1.1 Agents. The fundamental entity of any agent-based model are agents. In ML3, not only
individual persons, but also higher-level actors such as households or the government must be
modeled as agents if they have a state or behavior. All agents are of a type α ∈ A, where A
denotes the set of all agent types. The agent’s type determines its (typed) attributes, denoted as
α = (att1 : τ1, . . . ,attn : τn ). The attribute names atti are mutually distinct elements of a set
of attribute names, and the τi are from the set of basic types B. Among the attributes, each agent
type α has the following: First, birth : real, the time of the agent’s birth, which together with the
current time defines the agent’s age. This allows for specifying age-dependent behavior. Second,
alive : bool. We will distinguish agents that are alive—and may exhibit independent behavior—
and agents that are dead—who may not act on their own. However, other agents’ behavior might
be influenced by dead agents (they can still access their attributes), and a dead agent’s position in
the social network might still matter (e.g., an agent’s siblings are the agents that share the same
parents—still being connected to the parents is therefore necessary to identify siblings). And third,
id : int, an identifier, which is assumed to be unique over all agents, allowing for the distinction
between agents that are identical in all other attributes.
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Fig. 4. Example of state of a model with a parents-children link. The agents p1 and p2 are parents; c1, c2, and

c3 are their children. Hence, the outgoing children link of p1 and p2 points to c1, c2, and c3. The link direction

from c1 and c2 to their parents is omitted, but analogous to the one of c3.

We define agents a of an agent type α to be mappings of the attribute names defined by the type
to corresponding values. We use a.att for the value of a’s attribute att , and a.att ∈ V (τ ) if a’s
type α contains att : τ . For each agent-type α ∈ A, we define the set of values (the set of possible
agents of this type)V (α ) as the set of all such mappings.

Agent types and agents are more closely comparable to classes and objects in object-oriented
programming languages than to records and record values as in functional programming lan-
guages (cf. Reference [54, chapter 18]). In particular, agents have an identity through the implicit
id attribute. Contrary to object-oriented programming, however, we do not consider encapsula-
tion of an agent’s internal state here—all attributes are publicly accessible for other agents. Access
rules for agent attributes could be defined and enforced by defining appropriate expression and
statement languages (see Section 3.1.5), for example, with object-oriented getters and setters.

3.1.2 Links. As we need to model behavior that is dependent on an individual’s social environ-
ment, we need to model this environment [29]. In ML3, this is realized with links. Links are bidirec-
tional relations between agents of certain types, e.g., between parents and their children, people
and their friends, or a household and its members. Potential links are defined by a set of link defini-
tionsK . A specific link definition is denoted asκ = (lnk1 : (α1, card1), lnk2 : (α2, card2)) ∈ K , with
the lnki being mutually distinct elements of a set of role names, the αi ∈ A, and the cardi ∈ {1, n}.
The link definition κ describes that each agent of type α1 is linked to card2-many agents of type
α2, which are referred to by the role name lnk2. In the opposite direction, each agent of type α2

is linked to card2-many agents of type α1, which are referred to by the role name lnk1. Thereby
cardi = 1 denotes up to one link partner, while cardi = n denotes that any (non-negative) num-
ber of link partners is possible. For example, a link between parents and their children would be
represented as κ = (children : (Person, n),parents : (Person, n)). Figure 4 gives an example of a
realization of this link with two parents and three children.

3.1.3 Types. Given the basic types B and the agent typesA, we define a set of (all) types T as
follows via induction:

τ ∈ B ⇒ τ ∈ T , α ∈ A ⇒ α ∈ T , τ ∈ T ⇒ {τ } ∈ T . (1)

For the third case, we define the set of values as the power set of V (τ ): V ({τ }) = P (V (τ )).
With this definition, there is aV (τ ) defined for every τ ∈ T .

3.1.4 States. Model states are directed hypergraphs—more specifically, forward-hypergraphs
[24], i.e., ones in which the origin of all edges is only a single node, with agents represented by
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nodes and links between agents by edges. Edges are labeled with the link’s role name. We will use
σ = (A,L, l ) to denote states with the set of agents (nodes) A, the set of links (hyper-edges) L, and
the edge-labeling l . We will use S for the state-space of the model. Given a state σ = (A,L, l ), we
define α (σ ) ⊆ A to be the set of agents in state σ that have type α .

3.1.5 Expressions and Statements. We will define our language abstractly, making use of expres-
sion languages and statement languages at appropriate places.

We have (typed) expressions languages E and Et with E ⊂ Et . Any e : τ ∈ E is an expression
that evaluates to values in V (τ ), given a model state and an agent that serves as an evaluation
context (i.e., the value of ego in the above examples). The expression language may, for example,
allow for the usual arithmetic and logical expressions, access to the agent’s attributes, and to its
links. For each typed expression e : τ ∈ E there is an evaluation function �e�E : S × A → V (τ )
that performs this evaluation. Expressions in Et may also depend on the current simulation time,
and for each e : τ ∈ Et there is an evaluation function �e�Et

: S × A × R+ → V (τ ) with an
additional time parameter. We require that time-independent expressions (in E) retain their value
when interpreted as a time-dependent expression, i.e., for all e : τ ∈ E, σ ∈ S, a ∈ A, t ∈ R+:

�e�E (σ ,a) = �e�Et
(σ ,a, t ). (2)

Similarly, given are statement languages S and St , with S ⊂ St . For each s ∈ S, we have an
evaluation function �s�S : S × A → (S → [0, 1]), that, given the current state and an agent,
returns a probability mass function for the distribution of successor states. This reflects the fact
that the result of events might be stochastic, as in the examples in Figure 1, where the migration
attempt might fail stochastically, or Figure 2, where the sex of the child is chosen at random. For
each s ∈ St , we have an evaluation function �s�St

: S × A × R+ → (S → [0, 1]) of the same kind,
but with an additional time parameter. As we did for expressions, we require that time-independent
statements retain the value when interpreted as time-dependent statements, i.e., for all s : τ ∈ S,
σ ∈ S, a ∈ A, t ∈ R+:

�s�S (σ ,a) = �s�St
(σ ,a, t ). (3)

Alternatively, the distinction between time-dependent and time-independent expressions could
be realized via the type system. Then time-independent expressions are a subtype of time-
dependent expressions [54, chapter 15]. Combining a time-dependent and a time-independent
expression always yields a time-dependent expression. However, here, we decided to keep the ex-
act expression and statement languages, and as a consequence their type system, unspecified, and
therefore exchangeable. When defining the concrete syntax of expressions or statements, syntactic
conventions of existing object-oriented programming languages can be adopted (see Section 5.2).

3.2 Core: Homogeneous CTMC

Fundamentally, all agents’ behavior shall be described by stochastic rules, as shown in the example
in Figure 1. In Figure 5 this structure is formally defined. Each rule consists of four parts: First, α ,
the type of agents this rules applies to (Figure 1, line 1). Second, e1, a guard expression that describes
which of those agents the rule applies to (line 2). Third, e2, a rate expression that describes when
and how often the rule will be applied (line 3). And finally, s , the effect that is triggered when the
rule is executed, given as a statement (lines 4–8). A model is then nothing but a sequence of such
rules.

We define the semantics of the modeling formalism on the basis of Continuous-time Markov

Chains (CTMCs). Thereby, we have to map models to the CTMCs they describe. We will follow
the state-to-function transition system approach introduced by De Nicola et al. [18].
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Fig. 5. Abstract syntax for core-level ML3 models (m) and rules (r ). A model is a sequence of rules. Each rule

consists of an agent type, a guard, a rate, and an effect.

Definition 3.1 (Continuous-time Markov Chain, after [13]). Let S be a countable state space. The
S-valued stochastic process {X (t )}t ≥0 is called a Continuous-time Markov Chain (CTMC), if for
all σ ,σ ′,σ1, . . . ,σk ∈ S, all Δt , t , t1, . . . , tk > 0 with tl ≤ t for all l ∈ [1,k]:

P (X (Δt + t ) = σ ′ | X (t ) = σ ,X (ti ) = σ1, . . . ,X (tk ) = σk ) = P (X (Δt + t ) = σ ′ | X (t ) = σ ). (4)

If the right side of the equation is independent of t , i.e., for all t ∈ R

P (X (Δt + t ) = σ ′ | X (t ) = σ ) = P (X (Δt ) = σ ′ | X (0) = σ ), (5)

then the CTMC is called homogeneous, otherwise it is called non-homogeneous.

We characterize a homogeneous CTMC with their transition rate matrix Q : S × S → R≥0. A
transition from σ to σ ′ is possible if Q (σ ,σ ′) > 0. Note that we differ slightly from the definition
of a CTMCs infinitesimal generator in that we allow Q (σ ,σ ) > 0, i.e., transitions to the same state
may occur. This makes the following definitions a lot easier without changing the character of the
stochastic process [17].

To define Q , we define an operator � that maps tuples consisting of a model and a state to
functions S → R+. Let m be a model and σ the current state, with 〈m,σ 〉 � F . Then F is the
row of the model’s transition rate matrix that corresponds to the current state σ , and for all states
σ ′: Q (σ ,σ ′) = F (σ ′).

We define the behavior of a whole model by defining the behavior of single rules, using an
operator�r that serves the same purpose as�, but operates on single rules instead of complete
models. The semantics of the model is the combined behavior of all rules. The behavior of a single
rule will in turn be defined by first defining the behavior of this rule applied to a single agent,
using an operator�i (i for instance), and combining the results for all applicable agents.

To enable a succinct definition of�, we introduce to following notation for functions S → R+:

• We define [] to be the function S → R+ that is constant 0.
• We define f ⊕ д with f ,д : S → R+ as the function that is gained by pointwise addition of
f and д, i.e., ( f ⊕д) (σ ) = f (σ )+д(σ ). Whenever we use

∑
with functions S → R+, it refers

to this pointwise summation.
• We define c � f with c ∈ R+ and f : S → R+ as the function that is obtained by scalar

multiplication of f with c , i.e., (c � f ) (σ ) = c · f (σ ).

The definition of�,�r , and�i is shown in Figure 6. An empty model (see the rule labeled
Empty) with no rules yields no transitions at all. Hence, for an empty model, all successor states
are reached with transition rate 0, and the transition rate function yielded by � is constant 0.
In a model with at least one rule (Rule), every rule yields some transition rate functions. These
are added pointwise (i.e., we add the rate separately for each possible successor state) to yield the
transition rates for the whole model. If the first rule yields the transition rate function R, and the
rest of the model yields M , then the complete model yields R ⊕M . If multiple rules yield the
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Fig. 6. Semantics for the homogeneous CTMC case. Read as: If the premises on top of the line hold, then

the conclusion is true.

Fig. 7. The effect of the pointwise addition of transition rate functions for two agents/rules.

same successor states, then this pointwise addition adds the transition rates. If they yield different
states, then the pointwise addition keeps them separate. Figure 7 illustrates this.

The operator �r that constructs a transition rate for a single rule is defined in (Exp). Here,
the transition rate function yielded by a whole rule is defined as the pointwise sum of the transi-
tion rate functions yielded by all instances of this rule, i.e., all applications of the rule to a single
agent. Again, the pointwise addition adds the rates for identical successor states and keeps distinct
successor states separate.

To define the transition rate function yielded by a single instance, we have to distinguish three
cases. In the first case (Instance-D), the agent is dead. As only agents that are alive shall exhibit
behavior (see Section 3.1.1), these instances yield a constant 0. In the second case (Instance-F),
the agent is alive, but the guard condition false. Then, the rule will not be applied to this agent
and this instance yields a constant 0 as well. In the final case (Instance-T), the agent is alive and
the guard evaluates to true. In this case the rate expression yields a rate λ, and the effect yields a
successor state distribution in the form of a function S that maps possible successor states to their
probabilities. The transition rate for each successor state shall then be the product of its probability
and the overall rate, gained by pointwise multiplication of λ and S . As the values of S add to 1,
this conserves the total rate λ.

3.3 Time-dependent Transition Rates: Non-homogeneous CTMC

While the core-formalism is already sufficient for some models, it does not allow for the modeling
of age-dependent (or time-dependent) transitions. As we have seen in the second example (see
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Fig. 8. Abstract rule syntax with time-dependent rates and effects. Note that we do not allow the guard to

be time-dependent.

Fig. 9. Semantics for the non-homogeneous CTMC case.

Figure 2), many demographic processes depend strongly on the age of the involved individuals.
Hence, an extension of the formalism is necessary.

While we have based the language without time-dependent transition rates on homogeneous
CTMCs, we will now resort to non-homogeneous CTMCs, where transition rates and probabilities
may be time-dependent. The procedure stays largely the same, however, the transition rate matrix
Q is replaced by a time-dependent matrix Q (t ).

We can now define syntax and semantics for the case with time-dependent transitions as we did
for the time-independent case. We give a modified definition of the rule syntax in Figure 8. Note
that the rule syntax does not change, except that we take rate expression and effect statement
from Et and St instead of E and S. Also note that we keep the guard limited to time-independent
expressions. While this is not strictly necessary at this point, it will keep things consistent after
the introduction of the third language level. This restriction does not impose a loss of expressive
power if the expression language includes conditional expressions, as one could make the follow-
ing transformation without changing semantics:

α : e1
e2−→ s ↔ α : true

if e1 then e2 else 0
−−−−−−−−−−−−−−−−−→ s . (6)

As in the time-independent case, we define an operator�, using the also defined operators�r

and �i . However, the operators’ signatures are slightly different, with an additional parameter
to account for the time-dependency. The full definition is shown in Figure 9. Note that the only
difference to Figure 6 is the introduction of the additional time parameter. Using�with a specific
t , we can define the transition matrix Q (t ) at time t .

3.4 Non-stochastic Events: GSMP

As we have seen in Section 3, not every demographic process can be appropriately modeled using
stochastic rules with exponential distributions. At this third level, we introduce new kinds of rules
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Fig. 10. Abstract rule syntax for level 3. Note that (Exp) is identical to Figure 8 and that in (Age) and (Every)

e2 must not be time-dependent.

that are not associated with stochastic waiting times. Figure 10 shows the syntax for those rules.
The (Inst) rules shall execute instantly if the guard is true. Rules described in (Age) shall execute,
when the agent reaches a certain age (see Figure 3). And rules described in (Every) shall execute
periodically, e.g., for modeling monthly income payment.

As we introduce the new kinds of rules, inter-event times will no longer be exponentially dis-
tributed. Hence, the resulting process is no longer a CTMC. Generalized Semi-Markov Pro-

cesses (GSMP) are a generalization of the CTMC, allowing for arbitrary distributions of event
firing times. We will give a short definition and explanation and use that to introduce the notation.
Thereby, we mostly follow Glynn [27], but make changes in notation and simplifications whenever
it fits our purpose. Most importantly, to simplify equations, we do not include clock evolution rates,
as we would set them all to 1.

Definition 3.2 (Generalized Semi-Markov Process). A Generalized Semi-Markov Process (GSMP)
is a tuple (S,σ0,E,E,p, F ), where:

• S is a countable set of (physical) states. These correspond to the model states as described
above. The physical serves to distinguish them from the internal state of the GSMP, as de-
scribed below, which contains some additional information.
• σ0 ∈ S is the initial state.
• E is a countable set of events. With each ϵ ∈ E, we will associate a clock cϵ ∈ R.
• E : S → p(E) gives the set of active events for each state.
• p (σ ′;σ , ϵ, t ) are the probabilities of transitioning to state σ ′ from state σ , when the event ϵ

happens at time t .
• F (·; ϵ,σ , t , cϵ ) is the cumulative distribution function (CDF) of time remaining until the

event ϵ triggers. In all cases, F (Δt ; ϵ,σ , t , cϵ ) must be 0 for all Δt < 0, i.e., the probability of
the event firing in the past is 0. Note that this differs from the notation in Reference [27].
Our notation is strictly less general, but easier to use for the following definitions.

While the CTMC is defined in terms of transitions between states, a GSMP’s evolution is defined
in terms of events. Each event may yield different state transitions, given by p, and each state
transition may be produced by different events. The CTMC’s transition rate matrix Q is replaced
by F . Unlike Q , F does not just parameterize one distribution, but it gives a separate distribution
for each event.

The internal state of a GSMP is a tuple (σ , t , c ), consisting of the (physical) state of the system
σ ∈ S, the current time t ∈ R+, and a function c that assigns a clock value cϵ to each event ϵ .
Initially, the process is in the internal state (σ0, 0, c0), where C0 has all clocks set to 0.

When the GSMP is in an internal state (σ , t , c ), the next internal state is determined as follows:
For each event ϵ ∈ E (σ ), a random waiting time Δtϵ is drawn from the distribution F . The event ϵ∗
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with minimal waiting time is selected. If multiple such events exist, then one is chosen at random.
A new state σ ′ is assumed at t ′ = t + Δtϵ ∗ , drawn according to the state transition probability
p (σ ′,σ , ϵ∗, t ′). Finally, the clocks are updated as follows:

c ′ϵ = −1 ϵ � E (σ ′), (7)

c ′ϵ = 0 ϵ � E (σ ) ∧ ϵ ∈ E (σ ′) ∨ ϵ = ϵ∗, (8)

c ′ϵ = cϵ + Δtϵ ∗ ϵ ∈ E (σ ) ∧ ϵ ∈ E (σ ′) ∧ ϵ � ϵ∗. (9)

If the event is not active in σ ′, then its clock is set to −1 to mark it as inactive. If the event was
previously inactive, but is active in σ ′, or if the event is the one that was executed, then the clock is
reset to 0. Otherwise, the clock is advanced by the waiting time of the executed event. This yields
the next internal state (σ ′, t ′, c ′).

To give our language a GSMP-semantics, we must now define all of the elements of the GSMP
(S,σ0,E,E, r ,p, F ) resulting from a model. The set of (physical) states S remains as defined in

Section 3.1.4. Each pair of a possible agent a of type α and an associated rule α : e1
·−→ s yields

an event ϵ = (a,α : e
·−→ s ). An event is active, i.e., ϵ ∈ E (σ ), if and only if the agent a exists in

this state (a ∈ α (σ )), is alive (a.alive = T ) and the guard is fulfilled (�e1�E (σ ,a) = T ). Transition
probabilities are defined as p (σ ′;σ , ϵ, t ) = �s�St

(σ ,a, t ). We define F separately for each kind of
event:

• ϵ = (a,α : e1
e2−→ s ): The rule shall behave exactly as defined in Section 3.3, with non-

homogeneous CTMC semantics. Hence, the waiting time distribution must be identical to
the one generated by the non-homogeneous CTMC, a generalization of the exponential dis-
tribution with time-varying parameter.

F (Δt ; ϵ,σ , t , cϵ ) = 1 − e−
∫

t+Δt

t
�e2�Et

(σ ,a,τ )dτ

The distribution is exponential if �e2�Et
(σ ,a,τ ) does not depend on τ . Depending on the

shape of �e2�Et
(σ ,a, ·), e.g., if it is only positive on a finite interval, this might not strictly

be a CDF, as its limit might be less then 1 (but still non-negative). The difference between
1 and the limit can be interpreted as the probability that the event does not happen at all.
It is intuitively clear that this probability must exist if the rate is only positive on a finite
interval.

• ϵ = (a,α : e
instantly
−−−−−−−−→ s ): The event shall be executed instantly, the remaining waiting time

is always 0. Hence, the CDF must go from 0 to 1 at Δt = 0.

F (Δt ; ϵ,σ , t , cϵ ) =
⎧⎪⎨
⎪
⎩

0,Δt < 0,

1,Δt ≥ 0.

• ϵ = (a,α : e1
age e2−−−−−→ s ): The event shall be executed deterministically, when the agent

reaches the age given by the expression e2. Hence, the CDF goes from 0 to 1 when Δt is the
difference between the time when the agent reaches that age (�e2�E (σ ,a) + a.birth) and
the current time t . Assuming �e2�E (σ ,a)+a.birth ≥ t , i.e., the time when the agent reaches
the age given by �e2�E (σ ,a), has not yet passed, we define:

F (Δt ; ϵ,σ , t , cϵ ) =
⎧⎪⎨
⎪
⎩

0,Δt < �e2�E (σ ,a) + a.birth − t ,
1,Δt ≥ �e2�E (σ ,a) + a.birth − t .

If that time has passed, then no event shall be scheduled at all.
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• ϵ = (a,α : e1
every e2−−−−−−−→ s ): The event shall be executed periodically, with the period given by

e2. Δt must be the time remaining until the current period is over, while eϵ is the time since
the event became active or was executed last.

F (Δt ; ϵ,σ , t , cϵ ) =
⎧⎪⎨
⎪
⎩

0,Δt < max (0, �e2�E (σ ,a) − cϵ )

1,Δt ≥ max (0, �e2�E (σ ,a) − cϵ )

The maximum ensures that Δt does not become negative when cϵ is larger than the period,
which might happen, as the period may change, as it depends on σ .

4 SIMULATION

To apply any simulation modeling language to real-world problems, appropriate efficient simula-
tion algorithms are necessary. Hence, in this section, we will derive a simulation algorithm for
each of the three defined language levels.

4.1 Level 1: Exponential Rates

At the first level, we have defined the semantics of the language in terms of Continuous-time

Markov Chains (CTMCs). As the CTMC is a common formal basis for modeling formalism,
appropriate simulation algorithms are well researched. Fundamentally, most are variations of
Gillespie’s Stochastic Simulation Algorithm (SSA) [26]. Algorithm 1 lines out one of the sim-
plest variants, the Direct Method, applied to our language. The algorithm samples a single trajec-
tory through the CTMC. Each transition of the CTMC is calculated in two steps. First, the total rate
λ for leaving the current state is calculated. Note that the conditions and summations in lines 3 to
8 correspond to the conditions and summations in construction of� in Figure 6, except that the
values for different successor states are also summed. This total rate λ is then used to parameterize
the exponential distribution for the time advance (line 11). Second, one of the possible events is
selected for execution, whereby each event’s probability is given by the proportion of its contribu-
tion to the rate sum (line 14). The selected event is then executed. As we allow stochasticity in rule
effects, this again involves drawing from a distribution of possible successor states, corresponding
to what happens in (Instance-T) in Figure 6.

Unfortunately, this algorithm is highly inefficient for large systems. Especially the calculation of
λ and the selection of the event will be costly with a large population. However, we can generally
expect the effect of events to be local in the social network of the agents. While, for example, the
behavior of a single migrant might affect the behavior of his friends and family, other migrants
who are socially distant will not be affected. Some variants of the SSA exploit this observation
that usually each event will only affect a few other events, e.g., the Next Reaction Method [25]
or the Optimized Direct Method [14]. Thereby, a dependency graph is used to keep track of inter-
dependencies between events. In the Next Reaction Method, outlined in Algorithms 2 and 3, an
event queue is used to select the event that must be executed next. Events are only rescheduled in
the event queue after they were executed (line 16) or after an event that changed their rate was
executed (lines 19–20).

However, this formulation of the algorithm is still vague. Most importantly, it is unclear how
dependencies will be tracked and what the dependency graph might look like. In general, the pos-
sibilities for dependency tracking depend strongly on the choice of the expression and statement
languages E and S. For our concrete realization of the language, this procedure is described in
detail in Reference [56]. In short, while evaluating a guard or rate, we make note of the agents
and attributes that are accessed, and while executing an effect, we make note of which agents and
attributes change. This allows us to know which guards and rates might have changed. We have
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ALGORITHM 1: Direct Method.
t : current simulation time | tend : end time of the simulation | σ : current simulation state | A: the
set of agent types | R: the set of rules | λr,a : the rate of rule r applied to agent a | λ: the rate sum

1 while t < tend :

2 // compute rates for all events

3 for each α ∈ A, a ∈ α (σ ), r = α : e1
e2−→ s ∈ R:

4 if a.alive = T and �e1�E (σ ,a) = T : λr,a := �e2�E (σ ,a)

5 else: λr,a := 0

6

7 // compute the rate sum

8 λ :=
∑

α ∈A,a∈α (σ ),r=α :e1

e2−→s ∈R
λr,a

9

10 // advance simulation time by sampling from an

exponential distribution

11 t := t + Exp (λ)

12

13 // select an event to be executed

14 (r ,a) := (r ∗,a∗), with P (r ∗,a∗) =
λr
∗,a∗
λ

15

16 // execute the event

17 σ := σ ∗, with r = α : e1
e2−→ s and P (σ ∗) =

(
�s�S (σ ,a)

)
(σ ∗)

shown that, with a typical model, this exploitation of locality of events leads to improved scala-
bility and therefore significant performance improvements, especially with a larger population of
agents.

4.2 Level 2: Time-dependent Rates

For the second language level, we have introduced time-dependent transition rates. In conse-
quence, the resulting CTMC is non-homogeneous, i.e., the transition matrix changes with time.
In the abstract, with slight changes, the SSA remains applicable for this class of models [3]. Wait-
ing times between transitions are no longer exponentially distributed, i.e.:

F (Δt ; λ) = 1 − e−λΔt . (10)

Instead, they come from a generalized distribution, where the rate parameter λ is a function of
time:

F (Δt ; t , λ) = 1 − e−
∫

t+Δt

t
λ (τ )dτ . (11)

In the SSA, drawing from the exponential distribution is replaced by drawing from this distribution.
For the selection step of the direct method (Algorithm 1, line 14), the proportions of rates at the
time of the event are used.

While sampling the exponential distribution is trivial, sampling this generalized distribution
is challenging. This is especially the case when the rate can be an arbitrary function of time—as
is the case in ML3. For relatively simple shapes of λ the integral can be solved analytically, e.g.,
linear in time [34] or exponential in time [46]. However, even for only slightly more complex
real-world functions, e.g., the Gompertz-Makeham model of mortality with an exponential and a
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ALGORITHM 2: Next Reaction Method.
t : current simulation time | tend : end time of the simulation | σ : current simulation state | A: the
set of agent types | R: the set of rules | λr,a : the rate of rule r applied to agent a | Δtr,a : the delay
for rule r applied to agent a | Q : the event queue | D: the dependency graph

1 // schedule all potential events in the event queue

2 for each α ∈ A, a ∈ α (σ ), r = α : e1
e2−→ s ∈ R:

3 schedule(r , a)

4

5 while t < tend :

6 // select the next event from the queue

7 (r ,a,Δt ) := pop(Q)

8

9 // advance simulation time

10 t := t + Δt

11

12 // execute the event

13 σ := σ ∗, with r = α : e1
e2−→ s and P (σ ∗) =

(
�s�S (σ ,a)

)
(σ ∗)

14

15 // reschedule the executed event

16 schedule(r , a)

17

18 // reschedule all affected events

19 for each (r ,a) ∈ affected(D):

20 schedule(r , a)

ALGORITHM 3: Next Reaction Method Schedule.
(r ,a): the event to schedule | t : current simulation time | σ : current simulation state | λr,a : the rate
of rule r applied to agent a | Q : the event queue | D: the dependency graph

1 function schedule(r , a):

2 if a.alive = T and �e1�E (σ ,a) = T :

3 λr,a := �e2�E (σ ,a)

4 Δtr,a ~ Exp (λr,a )

5 push(Q,r ,a,Δtr,a)

6 else:

7 remove(Q, r , a)

8 update(D)

time-independent component [35], analytical solutions are no longer feasible. Numerical solution
of the integral is possible, but may be infeasible for performance reasons, as the distribution must
be sampled very often: at least once per event, with additional sampling when events need to be
rescheduled. Rejection-based sampling methods, e.g., References [28, 60], require upper bounds
for λ, which can not be determined (or might not even exist) if the expression language Et is
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very expressive. For spline functions, Morgan et al. [50] present a thinning algorithm. Chromar
[33] allows to use time-dependent transition rates but ignores time-dependent changes of the rate
during simulation. They assume that the time-dependent dynamics are generally much slower
than the event-to-event dynamics of the system, so the introduced error is small. However, this
assumption does not hold for our usual applications, e.g., in the example migration model any
agent will typically only be subject to a few dozen events during their lifetime, during which their
mortality rate will change drastically. Therefore, in our reference implementation, we restrict the
expression language Et to only allow piecewise constant functions of time, which we can treat
analytically. Other functions must be approximated.

4.3 Level 3: GSMP

At the final, third level, we included additional types of rules that are not governed by exponential
rates, but are executed at certain fixed times. With such non-exponential processes, we extend
beyond the CTMC, and the resulting stochastic process becomes a Generalized Semi-Markov

Process (GSMP). In contrast to the CTMC, the GSMP definition is already operational. The fun-
damental algorithm, similar to the Next Reaction Method for CTMC-based models but with the
addition of clocks, is described in the beginning of Section 3.4. For all active events, a waiting time
from the respective distributions is drawn. The event with the shortest waiting time is selected,
e.g., using an event queue. Then, the selected event is executed. Finally, the clocks are updated.
However, in addition to that, each event must be associated with a clock, and clock values must
be updated after each event execution, as described in Section 3.4.

Events can be scheduled as in the Next Reaction Method. The condition for an event to be
active is identical to the condition used for scheduling in Algorithm 3. Only the drawing from
the waiting time distribution (lines 3–4) is changed. Instead of the exponential distribution (or
the generalized distribution in the non-homogeneous case), is replaced with F (cot; ϵ,σ , t , cϵ ).
The tracking of dependencies in the Next Reaction Method, which does not change results, can
be included in the same way for the GSMP. The schedule-execute loop remains the same as in
Algorithm 2, with the addition of the updating of the clocks’ states after line 13. It should be
noted that we only need the clock state for the periodic events (Every)—in the three other cases,
the waiting time distribution is independent of the clock.

5 CONCRETE LANGUAGE

The above definition of the modeling language is abstract. Not only have we defined the language
by relying on some unspecified expression and statement languages (E, Et ,S, St ), our definition
also assumes that the general characteristics of agents and their network are predefined in the
set of agent types A and the set of link definitions K . In this section, we describe a concrete
realization of the language ML3 as an external domain-specific language, i.e., a new language with
syntax independent from (but related to) existing languages. Examples in this section are taken
from the model outlined in Section 1. For the rule syntax, we refer to the examples in Section 1.

5.1 Agent- and Link-types

Figure 11 shows the definition of the agent type Person (abbreviated to the attributes occurring
in the other examples) in the migration model and the link definition for linking parents and with
their children.

The syntax for agent type definitions closely resembles the notation in Section 3.1.1, preceded
by the name of the defined type. The required attributes birth, alive, and id (see Section 3.1.1)
must not be part of the definition. They are automatically included. The attribute types of sex and
migrationStage are enumeration types, i.e., the attributes may take any of the listed values. The
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Fig. 11. Definition of the agent type Person and of the link between parents and children.

Fig. 12. Definitions of some of the functions used in Section 1. rho, alpha, beta, and gamma are model

parameters. A where clause allows the definition of local names. These definitions are evaluated lazily and

only up to once per function call.

syntax for links uses a different order than in Section 3.1.1. The above definition is equivalent to
κ = (children : (Person, n),parents : (Person, n)), which is identical to the example in Figure 4.

5.2 Expression and Statement Language

Our expression language syntactically follows conventions from object-oriented languages. The
keyword ego allows access to the agent for which an expression is evaluated. Attributes and link
partners may be accessed with a dot notation, e.g., ego.children to get the set of a person’s
children. In addition to many of the usual arithmetic and logical operations and a library of pre-
defined commonly used functions, our implementation allows the definition of custom functions
(Figure 12). Note that these functions only return a value and can not have side effects, as guard
and rate expressions must be evaluated without changing the model state. Model parameters, e.g.,
rho, alpha, beta, and gamma in Figure 12, must be defined in the model. Their values can be passed
to the simulator externally.

The time-dependent expression language Et is a superset of E that also allows for accessing an
agent’s age (e.g., ego.age) and the current time (now).

The statement language is an imperative language that also follows conventions from object-
oriented languages. It allows to assign values and attributes, the definition of variables, setting
link partners, creating agents, and the usual control flow constructs, i.e., conditionals and loops.
When changing links, the consistency of the changed model state (in regards to the bidirectionality
of links) is automatically ensured, as changes are always applied to both directions. When one di-
rection of a link is changed (e.g., a person A is added as a child to a person B), the other direction is
automatically changed accordingly (e.g., the person B is added as the child’s parents). When appro-
priate, statements may contain expressions from an extended version of the expression language.
Apart from the aforementioned constructs, expressions used inside a statement may contain sto-
chastic effects, such as selecting a random element from a set (see the fertility rule in Section 1) or
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Fig. 13. Definition of a procedure that moves a migrant to another address. In line 2 its address is changed,

and in line 3 other inhabitants and neighbors are added to the migrant’s social contacts. The predefined func-

tion collect iterates over a set (here, the set of neighbors), evaluates its argument (essentially an anonymous

function with parameter alter), and collects the results into a single set. As the expressions are set-valued,

the plus and minus are set operations, i.e., union and difference.

drawing from a distribution. Finally, the language allows to define procedures (Figure 13), which,
unlike the aforementioned functions, may change the model state.

5.3 Implementation

ML3 is implemented as an interpreted language in Java. A parser implemented with ANTLR 4
parses the model and creates an abstract syntax tree, which is then translated into an internal rep-
resentation of the model. The latter is then executed by the simulator, as described in Section 4. This
implementation is available at https://zenodo.org/record/5414747 under an open source license.

Note that the language, with a syntax that is already very close to many commonly used pro-
gramming languages, lends itself to a code generation approach, which would promise better per-
formance [42]. Ideally, the target language would be object-oriented to exploit the close relation-
ship between agent types and classes, and agents and objects. Alternatively, one could implement
ML3 as an internal domain-specific language, i.e., embedded in a host language [23, pp. 27f.], re-
sulting in a different concrete language that uses host language syntax for the expression and
statement languages. A simplified version of ML3, essentially corresponding to the CTMC-based
language core with only local interactions between agents, has already been realized as an internal
domain-specific language embedded in Java [65]. Both code generation as well as implementing
ML3 as an internal domain-specific language in Rust are currently pursued.

Simulation experiments with ML3 models are generally performed with SESSL (Simulation Ex-

periment Specification on a Scala Layer) [21]. SESSL is an internal domain-specific language
(embedded in the programming language Scala; https://www.scala-lang.org) for specifying and ex-
ecuting various types of simulation experiments. The core of SESSL is simulation-system agnostic,
and the connection to different simulation systems is realized via bindings. In this case, we make
use of the SESSL-ML3 binding [56].

To resolve dependencies and download software artifacts (e.g., the ML3 simulator), SESSL makes
use of Apache Maven (https://maven.apache.org). Usually experiments are distributed in a bundle,
containing a Maven wrapper (https://github.com/takari/maven-wrapper) and start scripts that au-
tomatically download and set up Maven, which will then download the necessary software artifacts
and execute the experiment. This makes experiments with ML3 models easy to publish and results
easy to reproduce.

Figure 14 shows some simulation results, specifically the distribution of the migrant’s age at
time of migration produced by the migration decision model. To produce the data, the model was
initialized with a population of potential migrants sampled from the 1988 Senegal census as de-
tailed by Klabunde et al. in Reference [40], with input data as it is also described there. The software
bundle for the presented experiment, including the exact specification of the experimental setup,
is available at https://zenodo.org/record/5384063. Further examples of models in ML3 can be found
in References [55, 57].
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Fig. 14. Distribution of age at migration produced by the migration decision model.

6 RELATED WORK

We relate ML3 to other approaches for formally defining languages for modeling and simulation.
For a more hands-on comparison, see our earlier review [59].

To describe agent-based models in a readable and executable manner, a number of popular frame-
works and languages such as Repast Simphony [52], NetLogo [67], or Mesa [48] are available.
However, these languages are largely limited to discrete-time (or “stepwise”) simulation rather
than more general discrete-event simulation in continuous time, and approaches with fixed time-
steps prevail. Law states that “[t]he primary uses of [fixed-increment time advance] appear to be
for systems where it can reasonably be assumed that all events actually occur at one of the times
nΔt (n = 0, 1, 2, . . .) for an appropriately chosen Δt and, unfortunately, for agent-based simulation”
[45, p. 73]. In comparison to discrete-event simulation in continuous time, discrete-time simula-
tion includes two sources of error [45, section 1A]. First, the selected timestep in addition with
the updating scheme; for example, whether all agents are updated/interact synchronously or asy-
chronously, might introduce some significant bias into the simulation results. E.g., Özmen et al.
[53] compared models with different update schemes of the 1918 influenza pandemic and found
significant differences in peak load and diffusion speed depending on the update scheme.

Second, the exact timing of events and, consequently, the time between events is lost in discrete-
time simulation. In the context of demography, Willekens [68] argues that continuous time would
allow the modeler to define a sequence of events (transitions) rather than the state occupancies at
successive points in time. This allows a precise measurement of the lengths of episodes between
events, whereas in discrete-time simulation these lengths could only be approximated. Finally, the
problem “how to handle multiple transitions during a same interval” [68, p. 354] disappears.

Many formal languages for the modeling and simulation of stochastic processes are based on the
rule-based paradigm. In particular, for biological application, rule-based modeling reflects domain-
specific concepts like biochemical reactions. Influential languages include Kappa [16] and BioNet-
Gen [7]. Whereas biological rule-based modeling languages and ML3 share the idea of rules govern-
ing the behavior of the system, they take different perspectives. Rule-based modeling languages
focus on describing reactions, with the entities taking a passive role. In contrast, ML3 attaches
the behavior rules to the entities, making them the active elements of the system. This duality of
“reaction systems” and “reactive systems” is well known [22, 62, 63].

One prominent example for the reactive systems metaphor is DEVS [69], in which encapsulated
entities communicate via strictly defined interfaces. DEVS structures entities in a tree, allowing hi-
erarchical composition of models. Cell-DEVS has recently been applied to model social phenomena
as discrete-event cellular automata [39]. DEVS Markov [58] is a variant of DEVS with Markovian
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semantics, including both discrete-time and continuous-time Markov processes. In any of these
variations, DEVS’ virtue is the support of modular hierarchical modeling, which is supported by
the formalism being closed under coupling. However, flat, graph-like model structures are better
suited for demographic ABMs. Therefore, ML3 uses a very general notion of links to facilitate the
representation of linked lives, rather than DEVS’s strict hierarchies. In DEVS the interaction (cou-
pling) information is kept at the next higher level, and the entities themselves do not have access
to the information with whom they are interacting. In contrast, ML3’s link information is stored
with the agents, and agents directly know the entities involved in an interaction. As links, and
with them interactions, can change and agents can be created in ML3, variable structures, which
form a salient feature of agent-based simulation, are supported [61].

More close relatives of ML3 are process algebras. In particular, the attributed π -calculus [37],
which augments processes with local attributes, shares some similarities with ML3. Here, whether
a specific behavior occurs and how likely (or, equivalently, how fast) it is, can depend on the lo-
cal state of a process. Also related are process calculi and languages in the context of Collective
Adaptive Systems, e.g., AbC [2], CARMA [9]. For CARMA, the CARMA Specification Language
[31] was developed as a higher-level language for model implementation. In contrast, we devel-
oped the language first, in close collaboration with modelers from the domain to adapt it to their
requirements, and formalized it later.

The change of interactions or communication patterns as a salient process algebra and ML3
share; this is in contrast to other formalisms such as Petri Nets or DEVS, where the changes of
variable interactions or compositions

The distinctive difference between ML3 and process algebras is the way the effect of a specific
behavior is expressed. Process algebras rely on replacing a process definition with another one,
potentially recursively. In contrast to this declarative approach, ML3 represents reaction effects
as imperative mutations of the model state. In particular for expressing changes of network links,
imperative updates provide an often succinct alternative to declarative specifications.

Although most formal modeling languages follow a declarative approach, some modeling lan-
guages with imperative elements have been proposed. For example, the imperative π -calculus [36]
extends the attributed π -calculus with imperative statements for updating a global key-value
store. In the modeling language � [70], biochemical reaction rules are combined with imperative
blocks. More similar to ML3 are languages that employ stochastic guarded commands [30], such
as SABRE [19] or the input language for the PRISM model checker [44]. In PRISM, stochastic
guarded commands are used to describe diverse stochastic process models. This shows the ex-
pressive power of the approach. In contrast to these existing languages, ML3 exploits stochastic
guarded commands to represent changes in networks of attributed agents.

Considering ML3’s focus on graph structures brings us back to rule-based modeling languages
for biochemistry. Kappa [16] and BioNetGen [7], for example, consider the reactants of a rule
as a graph pattern. The root of these modeling languages lies in the Bigraph formalisms [49],
which has been extended to stochastic Bigraphs [43]. These approaches use graphs and graph
patterns to express structural changes in molecules. However, the individual graph vertices and
their dynamics are less complex than in ML3. In particular, ML3 allows attributes of arbitrary types
for each agent, whereas languages for biochemistry typically are aimed at encoding entities with a
comparatively small number of attributes with few possible values, such as being phosphorylated
or not. Effects in ML3 may be arbitrary imperative code applied to the network of agents with
their current state. Especially the latter makes the encoding of ML3-rule effects as replacement of
graph patterns infeasible.

Glynn [27] proposed the GSMP as a general formal framework of discrete event systems and for
many formalisms variants with semi-Markovian semantics have been proposed to be applied when
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exponential delays are inappropriate or insufficient. Examples include Deterministic and Stochas-
tic Petri Nets [47], which resemble ML3 in that they combine exponential delays with determin-
istically scheduled transitions and stochastic process algebras, e.g., GSMPA [11] and IGSMP [12].
GSMPs have also been used to describe CTMCs with added deterministic delays [10, 15]. These
delayed transitions yield two state changes. The first one timed by an exponential distribution,
and the second follows after a deterministic delay. In the GSMP this results in two events: one
with an exponential distribution and a second one, which only becomes active after the first one
was executed, that is deterministically timed. This is similar to the periodic events in ML3, which
are delayed after their previous occurrence, while ML3’s age-events are deterministically timed
relative to the simulation time t , not to previous events.

In summary, ML3’s novelty lies in its combination of established concepts. ML3 merges graph-
based formalisms with an individual-centric perspective and employs stochastic guarded com-
mands to describe changes succinctly.

7 DISCUSSION

Unlike many of the formalisms listed above, ML3 was developed as a modeling language first and
formalized later. Hence, at the design phase, the focus was on the requirements of the applica-
tion domain and the needs of the modeler (see the considerations in Reference [66], where an
earlier version of the language is presented). While the Markovian semantics of the language’s
core (see Section 3.2) was roughly outlined early on, and the implementation of the simulation
software served as somewhat of a formalization, the firm grounding of the language in precisely
defined stochastic processes presented in this article occurred much later. Having defined the for-
mal semantics, we use it as a starting point to discuss some properties of using ML3 for specifying
simulation models.

First, the formal semantics of ML3 states that an ML3 model is interpreted as a stochastic process
in continuous time. As described in Section 4, the corresponding simulation algorithm relies on
scheduling and executing discrete events at arbitrary time points. Thus, in contrast to discrete-time
simulation approaches, ML3 allows an exact modeling of continuous-time processes. For example,
the linked lives model by Noble et al. [51] uses a discrete time step of one year. All state changes
are executed at the end of each year in some chosen order, causing artifacts in the model. For
example, the model first decides whether a person dies in a year before considering other behaviors.
Therefore, in that model a person can not get married and then die during one year. With ML3,
events occur in continuous time and, thus, are naturally ordered; see Reference [66] for a more
thorough discussion and an ML3 implementation of the linked lives model.

Second, the formal semantics precisely describes that a model is built from rules in a compo-
sitional manner. The overall behavior of the model is obtained by evaluating each rule for each
agent independently. From the resulting waiting times, the shortest one is selected for execution.
Thus, competing stochastic behaviors (for example, marriage and death as above) are interpreted
as independently running in parallel in a stochastic race. This is parallel composition in process
algebras [18]. Apart from this stochastic race, rules never interact with each other. Therefore, rules
can be reasoned about individually, and removing a rule from or adding a rule to a well-defined
model will always yield a well-defined model. This facilitates reading and editing ML3 models.

Third, the formal semantics describes a precise interface between the model syntax and its be-
havior. The separation between syntax and semantics can be adopted in the implementation of the
language. This leads directly to the separation of model and simulator, where the model is written
in a concrete syntax, parsed into the abstract syntax, which is then used as input for a simulator
(see Section 5.3). As a consequence, the simulation algorithm is reusable across models. Moreover,
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the models do not contain any execution-specific aspects, making them much more succinct and
readable than implementations that mix behavior and execution code [65].

While a variety of modeling languages and formalisms are based on stochastic events with
exponential delays, including many of those listed in Section 6, some of the features of ML3 are
more unusual and warrant further discussion.

First, ML3 supports time-dependent transition rates. While the formalization of time-dependent
rates with non-homogeneous CTMCs is relatively straightforward, having time-dependent expres-
sions available raises the question where else they might be used outside the rates. That the effects
of rules must be time-dependent as well follows immediately—just consider an event where a new
agent is created, i.e., a birth. If the agents’ age, i.e., the time of their birth is tracked, then the exact
state change is already dependent on the event time. In general, time-dependent effects are not
problematic—when the event is executed, its execution time is of course well known. More care
had to be taken with the expressions involved with the scheduled events with age and every. It
would not be immediately clear what a clause such as @ every ego.age would mean. To avoid
complications and potential confusions for the modeler, we disallow time-dependency in these
places.

The waiting time distribution yielded by time-dependent transition rates is much more difficult
to sample than the exponential distribution, which is the waiting-time distribution in the time-
independent case. So, while the formalization as a CTMC is very similar to the homogeneous
case without time-dependent rates, the non-homogeneous case has an additional challenge for
execution. While age-dependent behavior is central to life-course models that motivated the lan-
guage (e.g, References [41, 51]), other models from demography (or the broader social sciences)
do not require this (e.g., the model in Reference [55]). Given the additional challenge for simu-
lation introduced in the non-homogeneous case, and the existence of models not requiring that,
this non-homogeneous core is an interesting and relevant subset of the language. The separate
formalization of this core enables us to investigate it further in future work, e.g., by implement-
ing specialized simulators that may make additional optimizations that might be impossible in the
non-homogeneous case.

Originally, periodic events (with the keyword every) would be scheduled to the whole multiples
of the period length (e.g., at t = 1

12 ,
2
12 ,

3
12 , . . . if the period was 1

12 ), and different events of different
agents with the same period would be synchronized. This was motivated by the original use case:
Agents should get monthly income payments, which should happen at the same time for everyone.
When formalizing the language, it became apparent that this mechanism is actually relatively com-
plicated to define and to explain. From a purely modeling perspective it is not clear that different
agents should synchronize their behavior. Hence, we changed the mechanism to the one presented
in Section 3.4. In this version—which also fits much better into the GSMP formalization—agents
no longer act synchronously without apparent reason, as each operates with their own clock. Syn-
chronous behavior as described above can still be implemented by having it as behavior of a single
central agent, e.g., the source of the income payments. This includes the reason of the synchronic-
ity into the model. Both these examples show benefits of formalization for language design.

The inclusion of events with non-stochastic timing also reintroduces some of the issues related
to discrete-time simulation. In particular, multiple events may again be scheduled to happen at
the same time and need to be ordered for execution. However, unlike many discrete time mod-
els, we define how the ordering shall occur (Section 3.4), i.e., randomly. In combination with the
very powerful language for rule effects, ML3 allows, as the most extreme example, to implement
a completely step-wise model using every. Using this feature carefully and sparingly remains
the responsibility of the user. The formal definition of the language at different levels, with non-
stochastic events not being part of the core language, shall not only make the relationship to the
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Fig. 15. Alternative formulation of the behavior implemented as one rule in Figure 1.

more common CTMC approaches clear, but also reinforce the point that non-stochastic events
should not be regarded as the default option, but only be used after careful consideration.

Apart from such relatively clear misuses of the language, the relative flexibility of ML3 also
leads to situations where there is more than one way to implement a given process. For example,
migration behavior shown in Figure 1 might, with identical CTMC semantics, be implemented dif-
ferently, with two rules (see Figure 15). This results from the fact that rule effects can be stochastic,
and the language allows a stochastic conditional in the effect. However. while semantically identi-
cal, from a modeler’s perspective, these two variants might be very different. In the version with
one rule, the rule represents the migrant attempting to migrate—which can have two different
outcomes. With two rules, these two outcomes become two different behavioral options. In this
case, the version with one rule seems more fitting from a modeling perspective. It is the responsi-
bility of the modeler to choose the most suitable alternative. The formal semantics enables formal
reasoning about rule equivalence in future work.

8 CONCLUSION

In this article, we retrofit a formal semantics to ML3, a modeling language for agent-based discrete-
event simulation in demography. The characteristics of the application domain demography are
reflected in the language and its formal semantics. In particular, age-dependent behavior and non-
stochastic events can not be expressed with homogeneous Continuous-time Markov Chains, which
are the most common semantic domain for formal stochastic simulation modeling languages [8].
Instead, the formal semantics of ML3 relies on Generalized Semi-Markov Processes. These provide
the expressiveness necessary to capture essential processes in agent-based discrete-event mod-
els in demography. In addition, the design supports the compositional development and succinct
description of simulation models.

Equipping such a simulation modeling language with a formal semantics facilitates an unam-
biguous interpretation of model definitions. An ML3 model is mapped to a stochastic process by the
formal semantics, allowing formal reasoning about the model. Competing behaviors are encoded
as parallel rules, and the stochastic race between them is precisely defined in the semantics. This is
fundamentally different than ad hoc implementations of models in general-purpose programming
languages, which fuse code for model behavior and simulation algorithm. Being a domain-specific
language for simulation, ML3 clearly separates model and simulator. In addition, implementations
in general-purpose programming languages often rely on discrete-time simulation and contain
“hidden” assumptions about the synchronization and ordering of simultaneous events. In contrast,
in ML3, events are scheduled in continuous time, avoiding these problems.
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Currently, ML3 is implemented as an external DSL. However, ML3 shares many concepts with
object-oriented programming languages, particularly for expressions and statements about agents.
In the future, we will explore ways to implement ML3 as an internal DSL with an object-oriented
host language, which should allow us to reuse syntax and semantics of the host language. This will
simplify the tooling around the language. In addition, users will be able to transfer their knowledge
of an existing language to ML3. Furthermore, the formal semantics will inform the implementation
of new, sound, and more efficient simulation algorithms.
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