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Data-driven crowd modeling has now become a popular and effective approach for generating realistic crowd
simulation and has been applied to a range of applications, such as anomaly detection and game design. In
the past decades, a number of data-driven crowd modeling techniques have been proposed, providing many
options for people to generate virtual crowd simulation. This article provides a comprehensive survey of
these state-of-the-art data-driven modeling techniques. We first describe the commonly used datasets for
crowd modeling. Then, we categorize and discuss the state-of-the-art data-driven crowd modeling methods.
After that, data-driven crowd model validation techniques are discussed. Finally, six promising future research
topics of data-driven crowd modeling are discussed.
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1 INTRODUCTION

Crowd modeling is an active research field that has attracted increasing attention from both
academia and governments. It has numerous practical applications, including, but not limited to,
abnormal behavior detection [1, 2], military training [3, 4], and game design [5–8]. Generally,
crowd modeling aims to define the crowd behaviors in given scenes, and the defined models may
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be applied in crowd simulation [9]. Compared with other types of modeling techniques, crowd
modeling is relatively challenging, because crowd behavior is influenced by a number of factors,
such as physical, psychological, and social factors [9]. Moreover, crowd modeling has its own
distinct characteristics, because it involves components of model steering behavior, path planning
behavior, and collision avoidance behavior of pedestrians.

Crowd modeling methods include macroscopic and microscopic methods. Macroscopic meth-
ods treat the crowd as a whole and pay little attention to individuals, such as flow-based methods.
Microscopic methods focus on individual behaviors, including particle-based methods, cellular au-
tomation methods and agent-based methods. Compared to other methods, agent-based crowd mod-
eling methods take more social and psychological factors into consideration to generate crowds
with better realism.

How to define realistic crowd behavior is a fundamental problem in crowd modeling. Traditional
trial-and-error modeling methods are time-consuming and tedious and require much manual effort.
In recent years, with the rapid development of closed-circuit television (CCTV) systems and
video processing techniques, data-driven crowd modeling, which constructs realistic crowd models
by using crowd data [10], has become more prevalent. In this survey, we focus on data-driven
crowd modeling techniques that utilize real data to assist model construction and model validation.

To date, various data-driven crowd modeling techniques have been proposed, and these meth-
ods differ from each other in terms of factors such as the data utilized, the methods used for an-
alyzing data and the patterns learned from data. A number of crowd datasets, with each having
different formats and features, are available in the literature for learning crowd behaviors, such as
the BIWI [11] dataset and the avoidance behavior dataset [12]. With real crowd data, data-driven
modeling methods are capable of generating more realistic crowd behavior compared to traditional
manual methods [5, 13–17]. Some data-driven modeling methods focus on tuning the parameters
of crowd models [15, 16], while other methods focus on extracting regular patterns from data
and using the extracted patterns to generate new crowd simulation [5, 17]. To facilitate automatic
crowd modeling, multiple validation methods have also been proposed to measure the quality of
crowd models [18–20].

Although numerous techniques related to data-driven crowd modeling have been proposed over
the past decades, there is still a lack of a comprehensive survey on this research direction. There
are several related surveys in the literature, but these surveys only focus on certain aspects of
crowd modeling. For example, Li et al. [21] focused on surveying techniques for analyzing crowd
data, such as pattern segmentation and behavior recognition, but they did not mention methods for
applying the learned features to construct crowd models. Grant et al. [22] focused on crowd video
analysis and video datasets and paid less attention to crowd model construction. Dong et al. [23]
surveyed pedestrian and evacuation dynamics from four aspects: data collection, characteristic
extraction, modeling and validation, and application. However, they only briefly mentioned sev-
eral classic data-driven modeling methods. Unlike existing surveys, this article aims to provide a
comprehensive survey on both state-of-the-art and classic data-driven crowd modeling techniques,
from multiple perspectives, including the datasets, model construction methodologies, model val-
idation methods, and software systems. The purpose of this article is to facilitate researchers im-
proving their crowd models by using crowd data.

As the term “data-driven” indicates, data constitute the cornerstone of data-driven modeling
methods. The term “data” here means crowd data from the real world. In the literature, most crowd
datasets contain raw visual material, such as videos [24–26]. For these types of crowd datasets,
researchers often need to extract motion features or trajectories before applying them to model
construction. Meanwhile, some crowd datasets are provided along with processed data, such as
trajectory records and annotations [27, 28]. These types of crowd datasets are more convenient
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Fig. 1. Relationships among data, modeling, validation, and open issues.

for researchers to use than the raw ones. In this article, we identify dozens of well-known crowd
datasets and discuss the features of the crowd datasets.

As for the data-driven modeling methodologies, we are interested in what knowledge is learned
from data and how they learn that knowledge from data. Thus, we discuss the data-driven crowd
modeling methods in two dimensions. We first discuss what can be learned from data, such as
parameter configurations [15, 29], state-action pairs [14, 30], and behavior rules [31–33]. Then, we
discuss their learning approaches, such as learning with mathematical models [16, 34] and machine
learning techniques [5, 35].

How to validate crowd models based on crowd data and crowd simulation results is of fundamen-
tal importance for data-driven modeling. In this article, we categorize the existing crowd validation
methods into three types. The first is metric-based validation methods, which use a set of metrics
to compare the simulated crowd and the real data [36–38]. The second is probability-based valida-
tion methods, which establish a probability model to validate the algorithm performance [19, 39].
The other validation methods [40, 41] are designed flexibly by researchers to investigate certain
aspects of crowd models.

Despite the large amount of work done by the research community, as this survey discusses in
the following sections, there are still open research issues in data-driven crowd modeling. In this
article, we present six open issues, including automatic feature discovery, modeling with heteroge-
neous data, model interpretability improvement, online modeling and effective validation. In this
article, we also discuss the development of crowd modeling software and suggest possible ways to
incorporate the “data-driven” pattern into the industrial software.

Figure 1 illustrates the relationships among datasets, crowd modeling, model validation, and
open issues discussed in this article. The first step of data-driven crowd modeling is to collect
datasets for model training and validation. After the model is trained, simulation results of the
models are utilized to validate the model. The open issues are related to both crowd modeling
and validation. Specifically, the following open issues regarding crowd modeling are discussed:
data acquisition for model development, fusion of data from multiple sources in modeling process,
interpretability of learnt simulation models, and utilization of online learning for model adaptation.
Finally, to provide a complete picture, open issues in crowd modeling software development are
discussed.
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The rest of this article is organized as follows: Section 2 introduces typical crowd datasets
for data-driven crowd modeling. Then, Section 3 presents the data-driven crowd modeling
methodologies in terms of what knowledge they learn from data and how they learn it. After that,
Section 4 discusses the data-driven crowd validation methods, followed by a discussion of open
research issues in Section 5. Finally, Section 6 draws a conclusion.

2 DATASETS FOR CROWD MODELING

In the past decades, a number of crowd datasets have been released. However, the attributes of
different datasets still lack a clear summary. In this section, we discuss different features of crowd
datasets, including the format, applications, and availability of the datasets, to help the community
have a more comprehensive understanding. We collect the datasets from the existing literature and
websites of different research groups. These surveyed datasets are listed in Table 1. For brevity, we
consider three categories of data formats: raw video data, tracking data, and annotations.

Most datasets provide data in raw video format. This type of data provides top-down views,
helping researchers to identify trajectories of pedestrians, or low-angle views, describing detailed
pedestrian behaviors such as turning their head. There are several typical crowd datasets of raw
video data, such as INRIA [45], UCSD [42], BIWI [11], and WorldExpo’10 [49]. INRIA [45] is a video
dataset of a dense crowd that contains videos in both the top-down view and the low-angle view. It
has been popularly used for tracking and event detection. UCSD [42] is a dataset of gray pictures
captured in a low-angle view, which has been used for video clustering and segmenting. BIWI
[11] contains a video captured in a top-down view, which has been used as a dataset for tracking.
WorldExpo’10 [49] is a large and high-resolution video dataset for region-level crowd segmenta-
tion and collectiveness analysis. These video datasets can also be re-annotated by researchers for
specific purposes.

The second type of datasets is tracking data, which records the trajectories of pedestrians ex-
tracted from videos. For example, CBE [43], a dataset that is widely used for tracking and path
prediction, contains pedestrian trajectories recorded by splines represented by a series of control
points. CVBASE and the train station [46] datasets include both videos and trajectories. The avoid-
ance behavior dataset [12] records the tracks of pedestrians who avoid obstacles or other pedes-
trians. This dataset provides collision avoidance patterns of pedestrians. The diluted pedestrian
dynamics dataset contains a great number of trajectories, aiming at enabling ensemble analysis
of diluted pedestrian motion. The collective motion database [48] contains images and track files,
which are used to study human collective behaviors. The tracking data, compared with raw video
data, are more convenient for researchers to investigate the movement of pedestrians.

Annotation datasets are another type of data for crowd modeling, aiming to help researchers
investigate specific aspects of pedestrian behaviors. In the BIWI dataset [11], the pedestrian po-
sitions are annotated, and the grouping behaviors are labeled. The Stanford drone dataset [50]
provides person annotations, as well as their categories. The UMD dataset [2] contains different
event labels and abnormal crowd behaviors. In addition to the datasets mentioned above, there are
datasets that provide statistical information for special applications, such as the gender and age
distributions of crowds in SGVDS [56].

3 DATA-DRIVEN CROWD MODELING METHODOLOGIES

Before modeling, crowd analysis is necessary for understanding crowd data, which influences how
datasets are used. Crowd analysis is the procedure of describing training crowd data by specified
features [59]. Crowd features include macro features and micro features. Macro features describe
the crowd as a whole or several parts, regardless of individual personality, while micro features
focus on individual moving patterns in given data. There are many approaches to calculate these
features, and Li et al. [21] have discussed them. Because our major theme is data-driven crowd
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Table 1. Common Datasets for Crowd Modeling

Name Data format Application Website or URL
UMD [2] video, event annotation event prediction http://mha.cs.umn.edu/proj_events.shtml#

thrown, and Getty Images, ThoughtE-
quity.com

DSBM [24] video, event
annotation

event detection The data sets are available for public use upon
request to authors

BIWI [11] video, annotation tracking http://www.vision.ee.ethz.ch/en/datasets/
UCSD [42] frame video cluster, segmenting http://www.svcl.ucsd.edu/projects/

motiondytex/
CBE [43] video, track tracking, prediction,

sparse,dense
https://graphics.cs.ucy.ac.cy/research/
downloads/crowd-data

UCF tracking in high
density crowds dataset [44]

frame dense https://www.crcv.ucf.edu/data/tracking.php

INRIA [45] video tracking, event detection http://www.mikelrodriguez.com/datasets-
and-source-code/#datadriven

Shopping mall [26] frames, ground truth,
normalized features,
perspective map

tracking, counting,
crowd counting,
profiling research

http://personal.ie.cuhk.edu.hk/~ccloy/
downloads_mall_dataset.html

Train station [46] video, tracked tracking http://mmlab.ie.cuhk.edu.hk/project/
dynamicagent/

UCF crowd segmentation
dataset [47]

video https://www.crcv.ucf.edu/data/crowd.php

Collective Motion
Database [48]

frames, track crowd collectiveness http://mmlab.ie.cuhk.edu.hk/projects/
collectiveness/dataset.htm

WorldExpo’10 [49] video, annotation segmentation, density,
collectiveness, cohesiveness

http://www.ee.cuhk.edu.hk/~xgwang/
crowdexpo.html

Stanford Drone
Dataset [50]

video, annotation tracking, trajectory
prediction

http://cvgl.stanford.edu/projects/uav_data/

i-LIDS [51] footage event detection, tracking
scenarios

https://www.gov.uk/guidance/imagery-
library-for-intelligent-detection-systems#i-
lids-datasets

Gallery Dataset [52] density, trajectories,
presence of groups,
spatial arrangement,
walking speed

group/density analysis,
trajectory prediction

http://www.csai.disco.unimib.it/CSAI/
GalleryDataset/(need additional E-mail)

PETS [25] frame, ground truth counting, tracking, event
prediction, density
estimation

http://www.cvg.reading.ac.uk/PETS2009/a.
html

ETISEO [53] various video processing http://www-sop.inria.fr/orion/ETISEO/
download.htm#video_data

Time Square Intersection
[54]

frames, weather data,
traffic data

video classification,
tag annotation

http://www.eecs.qmul.ac.uk/~xiatian/
downloads_qmul_TISI_dataset.html

Educational Resource Cen-
tre (ERCe) [54]

frame, campus event
schedule

video classification,
annotation,clustering

http://www.eecs.qmul.ac.uk/~xiatian/
downloads_qmul_ERCe_dataset.html

OpenPTDS [27] video, track evacuation http://shi.buaa.edu.cn/songxiao/en/lwcg/
28058/content/7381.htm#lwcg

CAVIAR frames, annotated event prediction, boxing http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
BEHAVE video, annotated event detection http://groups.inf.ed.ac.uk/vision/

BEHAVEDATA/INTERACTIONS/
CVBASE video, tracked,

annotated
event detection http://vision.fe.uni-lj.si/cvbase06/downloads.

html
Evacuation through a
narrow door

video, tracked, time,
spatio-temporal
diagram

evacuation http://ped.fz-juelich.de/extda/
garcimartin2013

Avoidance behavior [12] annotation collision avoidance,
tracking

http://ped.fz-juelich.de/extda/parisi2016

diluted pedestrian
dynamics

tracked https://doi.org/10.4121/uuid:25289586-4fda-
4931-8904-d63efe4aa0b8

Edinburgh Informatics
Forum Pedestrian
Database [55]

histogram, track tracking, targeting http://homepages.inf.ed.ac.uk/rbf/
FORUMTRACKING/

SGVDS [56] [57] [58] gender, age
distribution, travel
speeds

evacuation https://fseg.gre.ac.uk/validation/ship_
evacuation/

“Central” Pedestrian Cross-
ing Sequences [28]

frame, pedestrian
annotation

tracking http://www.vision.ee.ethz.ch/datasets_extra/
iccv07-data.tar.gz
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modeling, discussion concerning crowd analysis, which is in an earlier stage than crowd modeling,
is outside the scope of this article.

Traditional crowd modeling methods mainly rely on the knowledge of modelers. The main duty
of modelers is to design an initial model structure in a manner that they consider reasonable and
then tune the model using trial-and-error. Zhou et al. [60] summarized the common crowd model-
ing and simulation technologies, which are categorized according to crowd sizes and time-scales.
In the last decades, to generate more realistic crowd behaviors, data-driven crowd modeling meth-
ods have been proposed, which differ from the traditional ones, because they learn knowledge (e.g.,
behavior patterns) from real data. In this section, we classify these data-driven modeling methods
according to what they learn from real data and discuss how they work. The typical methods we
discuss are listed in Table 2.

Crowd modeling and simulation have been a research topic for decades and related works have
been proposed. Researchers and experts designed the forms and parameters of those models, which
took a great effort. Besides, whether the proposed models are precise is a question, since they
are created subjectively. Data-driven methods can release humans from heavy modeling work by
constructing objective models based on real data. Generally, existing data-driven crowd modeling
methods can be classified into three major types, as shown in Table 2. The first type of data-driven
crowd modeling methods use the data to calibrate the parameters of existing models. They still
adopt traditional models, but additionally, data are used to tune their parameters [61–63] to make
the simulation more realistic. The second type of data-driven crowd modeling methods derive
patterns from the data and use the derived patterns in simulation (i.e., mimic real situation). They
adopt different types of modeling techniques, which require data during simulation as well as
modeling. The combination of data-driven and general modeling methods reduce the burden of
modelers, since crowd models need not to be designed from the beginning. Different from the
second type of methods, which memorizes real data, the third type of data-driven crowd modeling
methods learn knowledge from data (e.g., derive rules and use the derived rules in simulation).
During simulation, agents can obtain their next movement according to their current state and
the learned knowledge. This type of methods can mine behavior rules from data, which further
lightens the work of modelers.

3.1 Calibration Methods

Data-driven calibration methods usually have model templates specified by modelers in advance.
However, unlike traditional modeling methods, these methods learn unknown parameters related
to the environment or behaviors of their predefined models from real data.

In some data-driven calibration methods, data only play a small role in the calibration proce-
dure. The major part of the calibration work depends heavily on experts’ domain knowledge. For
example, the method proposed in Reference [15] learns parameters from real-life videos of three
different scenarios. After determining the parameters to be optimized, each of these parameters is
simply checked from its minimum value to its maximum value while other parameters are fixed.
Then, each parameter is assigned the value that causes the smallest error between the calculated
results and video data. Another method [29] analyzes the habits of human walk and the depen-
dence of the next movement on the previous one from real experimental motion-captured data.
It estimates the bounds of pedestrian velocity and acceleration after data analysis and obtains an
admissible motion set for the next step of each pedestrian. A cost function is used to optimize
the velocity change before the next movement. Brogan et al. [64] designed experiments to ob-
tain pedestrian data, including desired speeds and heading charts. Then pedestrians’ behaviors
can be determined according to their states and the environment. Reference [65] proposed a cel-
lular automaton model for crowd movement during evacuation, whose parameters are calibrated
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Table 2. Methods for Data-driven Crowd Modeling

Category Method Reference Description

data matching [15]
tune specific parameters to minimize the
error between calculated results and real
data

basic tuning
bounds determination [29]

analyze data to generate bounds of param-
eters of pedestrian behaviors

feature learning [64] [65] [66] [67] [68]
adjust parameters of existing models like
the social force model, RVO2 and Gaussian
distribution

Calibration

gradient-based optimiza-
tion

[16]
adjust parameters of optimization func-
tion to generate pedestrian behaviors sim-
ilar to data

mathematical
technique

the least-squared method [34]
recalibrate the model applying the least-
squares method on participants¢ speed

maximum likelihood esti-
mation

[69]
calibrate model parameters of interactions
among pedestrians crossing each other ac-
cording to experimental data

simplex algorithm [70]
use a variant of simplex algorithm to op-
timize parameters of the energy function
that encodes the model factors

log marginal likelihood [71]
learn hyperparameters of Gaussian pro-
cess that model pedestrian interactions
from data

general evolutionary
methods

[72] [73] [74] encode the parameters of specified
models, evolve them, and finally decode
the individuals to get parameters that
can help models generate realistic crowd

evolutionary al-
gorithm

genetic algorithm [11] [75] [76] [77]

differential evolution [78] [18] [79]

database

state matching [43] [80] [81]
find similar states in the database to get
corresponding actions

fuzzy logic [30]
add uncertainty to actions of similar states
to improve realism

selected examples [14]
only store important examples to reduce
the database size

velocity field [82]
transfer examples to fields that can be used
to generate the animation

mathematical
technique

probability [13]
generate probabilities of behaviors in dif-
ferent state

weighted linear
regression

[81]
solve the problem of the lack of examples
during matching caused by discrete exam-
ples

Example-based clustering clustering method [83] [84] [67] [81]
group the input states to speed up match-
ing

inverse
reinforcement

learning

Convex Apprenticeship
Learning Algorithm

[5] learn weights of reward functions

entropy [85]
compute feature weights by gradient-
based optimization from data

probability [86]
transfer examples to probability distribu-
tions

neural network

matching current states
and actions

[35] [87] [88]
evolve parameters for the specified model
according to data

considering previous
states

[89] [90] [91] [92] [93]
[94] [95]

predict future trajectories according to
previous states and current states

Rule-based
evolutionary

algorithm

gene expression
programming

[31] [32] automate decision rule generation

self-learning gene
expression programming

[96]
obtain general decision rule that can be
adopted in scenes different from training
scenes

genetic algorithm [97]
learn crowd models from data according to
a predefined meta-model

decision tree classification [17] [33]
accelerate crowd simulation computation
by classifying motion context

according to empirical data. The walking speeds are generated from the speed distribution, and
the cell size is determined by the maximal density. Hesham and Wainer [68] recently proposed an
agent-based short-range collision-avoidance model for pedestrians in dense crowds. The authors
showed their model’s ability by tuning parameters of the model to reproduce emergent crowd
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phenomena that can match the real pedestrian trajectory data. Li et al. [98], in their review of
cellular automata models, mentioned that, with the development of cognitive science and neu-
ral networks, how real data and cellular automata models are combined is important to the im-
provement of modeling accuracy. In fact, for models that only obtain several statistical parameters
from the data mentioned above, how to make more use of data is also an urgent issue to improve
them. In Section 3.4, more methods that use basic tuning combining other modeling techniques are
introduced.

Some data-driven calibration methods adopt mathematical optimization techniques to tune the
model parameters. For example, Scovanner et al. [16] presented a system that predicts pedestrian
movements after being trained with observation data. Pedestrians’ movements are formulated as
sequences of continuous optimization. The choice of the next location at each time step is obtained
through the optimization of a continuous function, which is formulated as an energy minimization
problem. The standard gradient-based optimization technique is applied to optimize parameters
so that the predicted tracks can match the observed ones. In Reference [34], the authors aim to
model the following behaviors among pedestrians. Experiments were first conducted before cali-
bration, where participants were asked to follow each other. The following behaviors were mod-
eled by the least-squared method, which was then calibrated according to the experiment data.
Another method proposed in Reference [69] focuses on modeling detailed interactions among hu-
mans when their trajectories are converging. Similar to Reference [34], experiments were first
designed to generate real data, where two participants were asked to walk through an area simul-
taneously from different corners, and then the obtained data were used in the automatic calibration
of the proposed model using the Maximum Likelihood Estimation technique. The article provides
both calibrated and uncalibrated versions of the methods, and the calibrated model has better ac-
curacy than the uncalibrated one. Yamaguchi et al. [70] proposed a crowd modeling method that
uses an energy function that encodes a number of factors, including personal factors and social
factors, to determine the next velocity of agents. There are eight parameters to be optimized, and
a variant of the simplex algorithm is used to achieve this goal. In addition to optimizing param-
eters from data, the design of features used in the energy function is another key work. Vemula
et al. [71] modeled an agent’s velocity as a function of its goal and position. The interactions are
modeled as a Gaussian Process, and the hyperparameters are learned from data by maximizing the
log marginal likelihood of the Gaussian Process.

Evolutionary algorithms (EA) are commonly used methods for model calibration. In EA-
based calibration methods, with data used for evaluation, a population of candidate solutions
are evolved iteratively using nature-inspired operators, such as mutation and crossover. Helbing
et al. [72] applied a simple evolutionary algorithm to the calibration of the social force model [99].
The real data are used to calculate the simulated error (fitness) of the evolved parameter set. The
calibration model can be used in large scenes as long as important factors, such as maximum flow
and density, are taken into account. To reduce the cost of calibration time resulting from simula-
tion, surrogate models are also integrated into the framework [73]. Moussaïd et al. [74] calibrated
parameters of the social force model by an evolutionary algorithm, so that simulated trajectories
can be similar to observe ones. The three evolutionary methods mentioned before do not specify
the type of evolutionary algorithm, but the following methods use specific evolutionary algorithms.
Pellegrini et al. [11] designed a model for walking pedestrians with short-term predictions to avoid
collisions before they occur, and it learns parameters from birds-eye-view data. The model has six
parameters related to pedestrian behaviors, which need to be learned from the data. The local op-
timal parameter vectors resulting from Genetic Algorithm (GA) optimization with the lowest
error are applied. Also, based on GA, Bera et al. [75] proposed a method to calibrate parameters
of the RVO model with historical data. Then, the configured RVO model can be used to predict
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pedestrian trajectories. They further improved the method by using an adaptive particle filtering
scheme, adding more applications and adding more datasets [76]. Johansson et al. [77] use the
genetic algorithm to tune interaction parameters in social force model, to minimize the error of
simulation. Except the genetic algorithm, the differential evolution is also a popular evolutionary
algorithm. Tan et al. [78] proposed an agent-based data-driven model that focuses on the path
planning layer of origin/destination (OD) popularities and route choice. The parameters are cal-
ibrated through the differential evolution genetic algorithm according to the density map obtained
from the video. Zhong et al. [18] proposed a density-based evolutionary framework for automating
the calibration of a crowd model. In the framework, a density-based matching scheme has been
developed for fitness evaluation. The framework is improved by estimating how important the
parameters are during calibration [79]. This estimation is accomplished by combining a sensitive
analysis method and Powell’s method to the evolution procedure.

3.2 Example-based Methods

Data-driven example-based methods extract information in the form of state-action pairs from
data to construct models, which can then be used in simulation to determine agents’ next actions
according to their states. To achieve this determination, features need to be selected to represent
states, and actions need to be extracted or learned from data during modeling.

Commonly, state-action pairs obtained from data are stored in a database. During the simula-
tion, an agent’s state is used as a key to search for a matching action as the value from the database.
In Reference [43], a database of examples that describe the local spatiotemporal scenarios is first
constructed. Then, agents search in the database for scenarios similar to their spatiotemporal states
before taking actions. Ju et al. [80] proposed a modeling method that can generate an arbitrary
number of agents according to input data. The approach collects the formation agent distributions
and stores trajectory segments generated from videos in the database. During the simulation, the
formation constraints are randomly set, and agents choose trajectory segments from the database
to move under these constraints while avoiding collisions. This method is aimed at crowd anima-
tion, which is an application of crowd modeling, and real data are used to make the animation
plausible. Another work presented by Toledo et al. [30] aims to generate steering behaviors of
agents with a small amount of data. Because, in a real situation, people in similar states may act
differently in the future, this method adopts a finite state machine combined with fuzzy logic to
model agent’s behavior so that there is uncertainty in agent behaviors. Though these agents act
differently, how they act is still learned from data. The method combines data-driven steering and
group social force. It learns from data the steering actions in different states that include velocities
and closeness to goals and obstacles. During simulation, the system matches the agents’ states
with the knowledge base and gives the action vectors defining the next motions.

In some methods, the database only stores selected examples. Zhao et al. [14] recently proposed
a role-dependent approach, which considers a pedestrian to be either a leader or a follower. The
approach is specifically designed to simulate high-density crowds where pedestrians’ movements
are rather restricted compared to low-density crowds. The state-action pairs of leaders are stored
in an example database organized by a k-d tree. Because, in a dense crowd, a pedestrian cares
about others walking in the space along the direction of his preferred velocity, the vision area is
represented by a series of strips. Figure 2 shows an example of a pedestrian’s vision area. When
a leader needs to decide where he heads to, the k-d tree is queried using the leader’s states. The
leader then obtains K candidate actions to compute the final action.

Searching a huge database may cause inefficiency in application. Thus, there exist methods that
first process the examples to solve the problems. In Reference [82], a data-driven spatiotemporal
model for crowd animation generation is proposed. A time series of velocity fields is computed
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Fig. 2. An example of the pedestrian vision area in dense crowd [14].

with a motion estimation process. Then, instead of a large database, the velocity fields can be used
to generate the entire animation. Lerner et al. [13] proposed a method that focuses on generating
human behaviors rather than walking, such as chatting and looking around, at proper times. The
method considers human actions to be motivated by stimuli, and it encodes the stimuli into exam-
ples. Trajectories are manually annotated with action tags, and stimuli-maps, which are density-
based influence functions for determining action selection probability, are generated from the in-
put videos to constrain the range of stimuli. During run-time, an agent’s stimulus configuration
determines the importance of each stimulus. Then, the importance is compared with the exam-
ples. Each action’s probability is estimated, and the action is chosen according to this probability.
Actions with high probabilities are more frequently chosen than those with low probabilities.

Another way to decrease simulation run-time overhead of example-based modeling approaches
is the use of machine learning. Zhao et al. [83] presented a method that extracts examples from data
and provides future behaviors for agents according to their states. It first groups agents’ input states
into different example clusters. An artificial neural network is then trained based on the clustering
result to be a classifier. With clustering, the search space is reduced from all examples to a cluster
during the simulation. Given the agent’s state, consisting of the agent’s path and the corresponding
neighboring individuals in the past two seconds, a velocity vector indicating its position in the next
time step can be selected from the cluster. Zhong et al. [84] proposed a method that learns spatial
and temporal patterns from data. The source regions (SR) and destination regions (DR) are first
initialized according to the scene. Then, the K-means algorithm is applied to cluster the trajectories
into different groups according to their destinations. Each cluster can be seen as a velocity field of
the corresponding DR and used to guide agents’ navigation in the environment. The framework
uses a dual-layer agent-based modeling architecture, where the bottom layer involves microscopic
collision avoidance behaviors and the top layer uses the pattern learned as macro navigation. In
this method, positions of agents can be considered as their states, and the velocities generated
according to the corresponding velocity field will result in actions (i.e., the change of velocity).
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Fig. 3. Social-LSTM overview [89].

Inverse reinforcement learning (IRL) is a method for learning the reward function of rein-
forcement learning. In crowd modeling, the reward function is the combination of features used
to evaluate the similarity between real data and simulated data. IRL for crowd modeling learns fea-
ture weights according to real-world data. Lee et al. [5] proposed a method that learns the weights
by their new algorithm Convex Apprenticeship Learning Algorithm. The method learns the re-
ward function as the behavior style in the reinforcement learning instead of specifying it. Kuderer
et al. [85] modeled pedestrian behaviors based on the principle of maximum entropy. The problem
is transferred to computing feature weights by gradient-based optimization. Another work [86]
learns parameters of a mixture probability distribution that matches the observed behaviors in
expectation. Because this method learns a probability distribution, the trajectories generated are
diverse. It has less error than Reference [85], the social force model and RVO. In the Turing test, the
percentage of behaviors induced by the proposed method qualified as human behaviors is closest
to real human behaviors.

In addition to the techniques mentioned above, neural networks (NNs) have been adopted in
example-based methods. For example, Wei et al. [35] proposed a method to generate an NN that
can generate pedestrian behaviors directly with small datasets. The method mainly addresses the
difficulties of realism, efficiency and maintainability. After a principal component analysis process
that reduces the dimension of states, experiments are performed on state-action pairs to train the
NN so that it can fit the data. The NN treated as a black-box tool reduces the difficulty of manual
design. Song et al. [87] adopted a four-layer NN. To make it more adaptive to various scenarios, mul-
tiple scenario data are used to train the NN by normalizing relative positions among pedestrians,
transferring velocity vectors to scalars, and incorporating more path planning information. The
simulation results show that the proposed modeling method can generate crowds with more real-
istic density and smoother trajectories compared with the social force model. Ma et al. [88] rained
an artificial neural network with data recorded by a camcorder to simulate pedestrian movements.
An input state includes pedestrian current velocity, his interactions with other pedestrians and
obstacles, and so on. The output is his response velocity.

Considering a path as a sequence of pedestrian positions, there exist crowd modeling methods
using long short-term memory (LSTM) [100] for dynamic prediction. Alahi et al. [89] proposed
the Social-LSTM for path prediction. Unlike traditional LSTM, Social-LSTM takes interactions

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 1, Article 4. Publication date: January 2022.



4:12 J. Zhong et al.

among pedestrians into account by adding a social pooling layer. Each pedestrian considers his
neighbors and his previous trajectory before determining the features of the next movement(i.e.,
velocity and gait). This consideration is achieved by connecting the LSTM of neighboring trajec-
tories. Figure 3 shows how the Social-LSTM works. Fernando et al. [90] adopted LSTM combined
with attention functions for pedestrian dynamics. The self-trajectory information is transferred to
a soft attention context vector, while trajectories of neighbors are used to calculate hardwired atten-
tion context vectors. The generated vectors are then used to predict the subject pedestrian’s future
trajectory. Pfeiffer [91] pointed out that Social-LSTM only considers dynamic obstacles (i.e., other
agents) and does not take static obstacles in the environment into account. Therefore, an LSTM
method that considers both dynamic and static obstacles was proposed for pedestrian trajectory
prediction. Bartoli et al. [92] proposed an LSTM able to combine human-human and human-space
interactions, which can predict pedestrian trajectories in different places such as shopping malls
and sidewalks.

Also considering previous movement information, several other NN methods are simply listed
here. Yi et al. [93] adopted a deep convolutional neural network to predict future crowd motions
from historical data. Zou et al. [94] proposed a framework of Social-Aware Generative Adversarial
Imitation Learning to learn the decision process of humans from data using a recurrent neural

network (RNN). Vemula et al. [95] also proposed a method using an RNN to model trajectories.
The interactions between each pedestrian are considered in this method.

3.3 Rule-based Methods

Data-driven rule methods learn behavior rules from data. The learned rules take environment
features or individual properties as inputs and generate behaviors as outputs. The rule meth-
ods work in a similar manner to the example-based methods. Compared to example-based meth-
ods that memorize or summarize the corresponding action of each state with the support of
a great amount of real data, rule-based methods try to reveal the principles of human behav-
ior by considering physical, psychological and social factors. Rule-based methods are usually
more general than example-based methods, because rule-based methods have a higher level of
abstraction.

GA is a powerful tool for automatically generating rules. It treats each rule or model as an indi-
vidual in the population, and after evolution using a fitness function, individuals in the population
can have good performance. Zhong et al. [31] proposed an evolutionary framework, aiming to
automate the process of generating decision rules for pedestrians. The method adopts a two-level
model, where the lower level helps to avoid collisions by the social force model and the higher
level guides agents’ directions using a decision rule. The gene expression programming (GEP)

is used to evolve the reward function as the rule in the higher level. The evaluation of the reward
function is performed by comparing the simulated data with the video data. After this evalua-
tion, agents are able to choose the best option with the largest reward. Namikoshi et al. [32] im-
proved [31] by considering heterogeneous strategies in addition to homogeneous strategies. Each
individual contains agents that are divided into groups. Agents in the same group use the same
strategy that is evolved by GP. Each individual is represented by a tree whose children of the root
are the groups of agents. Operators such as crossover and mutation are redefined so that the group
members can change and groups can be integrated or divided.

Another evolutionary framework [96] that automates the generation of behavior rules solves
the problem in a different manner. Instead of GEP, a new GP variant SL-GEP [101], which is easy
to implement and requires fewer control parameters, is adopted. This method adopts a similar
two-level model as described above and focuses on generating a navigation rule used in the top
layer. The navigation rule takes features observed by the subject agent as inputs and outputs the
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intermediate direction the agent should follow. Compared with two non-data-driven navigation
strategies, the proposed method can generate a crowd most similar to real data. Unlike many data-
driven methods, the learned rule can be applied to scenes similar to the training scene and still
obtain a plausible simulated crowd.

Keller et al. [97] proposed a method that uses GA to learn behavior models according to a pre-
defined meta-model. The method first specifies the model space (that is, the meta-model) and then
searches this space by GA. Previous works usually assume predefined model structures and el-
ements. They use data to improve part of the models or to combine model elements [81, 102].
Different from these methods, the method in Reference [97] does not specify model templates in
advance. Instead, it defines the general model space, which does not predefine specific elements
of models. Actions are considered as the changes of agent properties. Each agent property can be
modified by behaviors in the same behavior group. GA uses chromosomes to represent models
that contain behavior groups and evolves the population to search for solutions. The generated
model has good readability, and humans can understand it and adjust it by hand.

Boatright et al. [17] proposed a modeling method aiming to accelerate the computation of crowd
simulation. The training data is generated by an oracle algorithm, which is based on an offline
planner. The method splits the problem space into coarse features for the general world and fine
features for other agents nearby. It uses a multilevel decision tree and classifies scenarios into
different types of steering contexts according to the agent density, obstacle distributions and so
on. Each steering context has a decision policy that is trained with extracted state-action pairs.
The inputs of a policy are the fine features, and the outputs are the next footstep locations for
agents. Each policy includes two boosted decision trees. This method treats crowd modeling as
a classification problem instead of a regression problem. Kennedy et al. [33] proposed an intelli-
gent assistance architecture for data-driven simulation. In the assistance architecture, high level
descriptions summarizing the patterns or trends are generated for both simulation and real world
data. Then, consistency checking is performed to determine whether the simulation states agree
with the descriptions of data content, and the simulation model is adjusted to generate simulations
similar to real world observations.

3.4 Other Methods

In this section, we list several crowd modeling methods that belong to no or more than one category
mentioned above.

There exist modeling methods that aim to achieve crowd simulation visually similar to the in-
put data in terms of macroscopic properties (e.g., density and flow). They usually learn the crowd
from videos in a flow-based manner. Individual characteristics are neglected, so differences among
pedestrians will not be found in the simulated crowd similar to those found in the real world. Lin
et al. [103] proposed a method that learns the flow models from dynamic visual phenomena in
videos by statistical tools. It can estimate the flow field from videos of crowds using statistical ap-
proaches. They also proposed another method [104] that models the persistent motion in dynamic
scenes.

There are hybrid methods that learn more than one type of knowledge from data or use more
than one way to learn. Liu et al. [66] proposed a method that improves the social force model
for simulating crowd evacuation. It learns both trajectories and parameter values from real-world
data. The method adopts the dual-layer structure mentioned before. In the top layer, agents select
their goals according to a fitness function defined based on observation of the real data. Input
features, such as the pedestrian number and the speed, are extracted from data. To simulate group
behavior, leaders select routes according to trajectories (i.e., vectors of positions) learned from
data. In the bottom layer, the group forces are added to the social force model, which can help
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Table 3. Methods for Data-driven Crowd Model Validation

Category Method Reference Description

local density or local
proximity

[36], [105]

a similarity function to measure the
density similarity between simulated
individuals and the real-world
example.

fundamental diagram [37]

a density-versus-speed diagram
between simulated and real-world
crowds to validate the effectiveness of
long-range collision avoidance.

density

crowd density
instantaneous fields

[106]
the instantaneous simulated results
on different footbridges.

global density change [107] multiple measurement locations.

crowd in- and outflow [108]
densities of pedestrians entering and
leaving the scene at each moment.

metric-based

the density distribution
error

[18]
a density-based fitness validation
module that measures the density
distribution error in each time step

trajectory

trajectory prediction error
[109], [110],
[38], [89],
[96]

use the absolute difference or the
(root) mean square error to measure
the trajectory differences between the
simulated agents and the reference
data at each time step.

generalized voronoi
diagram

[111]
measure the topological equality and
it is suitable in crowded scenarios.

time time difference [15]

the time difference between the
simulated crowd and real-world
crowd passing through a certain
region

event event classification error
[112], [113],
[114]

mostly adopted in collision avoidance
and abnormal behavior detection

multi-metric

include density, the number
of collisions, travel time,
speed, speed change, travel
distance, perpendicular
deviation distance, angle
change, biomechanical
energy cost

[115], [116],
[117]

methods (e.g., harmonic mean and
expert experience) to intergrate
different metrics

probability model-based

the entropy method [39], [118]

build a multidimensional Gaussian
distribution based on the trajectory
error vectors to represent a trajectory
pattern and then measure the entropy
of Gaussian probability models

the semantic method [19], [20]
distribution differences between path
patterns of trajectories

other

global flow characteristics [40]
applies machine learning techniques
to extract features and measure
similarity

crowd collectiveness [119]
a degree measuring the pattern
similarity of pedestrian behavior

avoid collisions and generate plausible micro group behaviors. The learning approaches used in
this method are basic tuning and databases. In terms of simulation results, compared to the original
social force model, grouping behavior appears when using the proposed method. Kim et al. [67]
proposed a method to generate plausible agent trajectories from data. The modeling method is
used in interactive and adaptive crowd simulation by updating the initial position distribution and
the movement flow model according to new observations provided by users. On the one hand, the
initial position distribution is a mixture of multivariate Gaussian distributions and its parameters
are learned from real trajectories. On the other hand, pedestrians are clustered according to their
movement features, such as current positions, past velocities and preferred velocities. During the
simulation, agents can be added to the scene according to the initial position distribution, and their
preferred velocities can be updated by the features of the nearest cluster centroid. Therefore, this
method learns both parameters and state-action pairs from data.

4 DATA-DRIVEN CROWD MODEL VALIDATION

Traditional crowd models are mainly validated based on the look and feel of the simulations that
use these models, which requires a great amount of manual effort and is not suitable for crowd
model validation for complex scenes. To facilitate automatic crowd modeling, automatic crowd
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Fig. 4. An example of the fundamental diagram.

model validation has become a challenging and hot research topic in recent years. With the rapid
development of computer vision techniques and the wide application of CCTV systems, many
data-driven crowd model validation techniques that validate crowd models using crowd video data
have been proposed. In this section, we discuss the existing data-driven crowd model validation
techniques and these techniques are summarized in Table 3.

4.1 Metric-based Validation

Metric-based data-driven crowd model validation (MDV) uses a set of metrics to represent
the attributes of simulated crowds and compares these metrics with those of real-world crowds to
measure the performance of a model. Currently, it has become one of the most popular validation
methods. A wide range of metrics and objectives are designed and commonly used in the literature,
as shown in Table 3.

One of the most popular kinds of MDV methods is based on crowd density. Lerner et al. [36, 105]
defined a similarity function to measure the similarity between simulated individuals and the real-
world example individuals by using the local density or local proximity to represent the status of
pedestrians. The distribution of similarity scores from the similarity function can further describe
the differences between the simulated crowd and the real-world one. Moreover, in References
[36, 105, 115], local density of pedestrians, number of collisions in simulation and travel time are
also used as metrics to measure the differences between crowds. Singh et al. [115] proposed a
scheme that considers a set of weighted metrics to measure the differences between crowd data.
Golas et al. [37] adopted the fundamental diagram, a density-versus-speed diagram as shown in
Figure 4, between simulated and real-world crowds to validate the effectiveness of long-range
collision avoidance. Bruno et al. [106] used crowd density instantaneous fields to show the instan-
taneous simulated results on different footbridges. Pax et al. [107] also used global density change
as a metric to validate the differences between simulated and real-world data. Feliciani et al. [108]
used crowd in- and outflow as metrics, which are the densities of pedestrians entering and leaving
the scene at each moment. A density-based fitness validation module that measures the density
distribution error in each time step as the differences between two sets of crowd data, as shown
in Figure 5, is also proposed in Reference [18].

Moreover, some methods use the error of certain aspects between the simulated and real-
world data as the metrics of crowd models, such as the trajectory prediction error and the event
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Fig. 5. An example of the macroscopic behavior represented by density distributions [18].

classification error. The trajectory prediction error MDV is mostly adopted in simulation appli-
cations. For example, Wolinski et al. [109, 110] and Zhong et al. [38] used the absolute difference
between the simulated agents and the reference data at each time step to measure the performance
of different algorithms. The (root-)mean-square error Equation (1) is also commonly used to mea-
sure the trajectory differences between crowds, and it is applied in References [89, 96]. In Equation
(1), i and j are the individual index and the time step index, respectively, and S , R, and N are the
simulated data, reference data, and total number of time steps, respectively:

errori =

∑N
j (Si j − Ri j )

2

N
. (1)

In fact, both the absolute difference and the (root-)mean-square error ignore possible disturbances
in motions of people. Even the same volunteer may walk differently in the same scenario because
of uncertain factors, such as different emotions. Therefore, it may be impractical to make a crowd
model that reproduces the perfect trajectories of volunteers. To overcome this problem, Stuvel
et al. [111] and Basak et al. [15] utilized two more robust methods to evaluate the performance of
crowds. Stuvel et al. [111] utilized a technique based on Generalized Voronoi Diagram (GVD)

(i.e., the polygons with back straight lines in Figure 6) to measure the trajectory equality. As shown
in Figure 6, the trajectories from the same agent (i.e., a circle) are regarded as topologically equal
when these trajectories choose the same route between the same agents. For example, the red
and blue trajectories in Figure 6(a) are regarded as the same. Otherwise, they are regarded as
topologically unequal (i.e., the red and blue trajectories in Figure 6(b) are different). In addition,
Basak et al. [15] used the time difference between the simulated crowd and real-world crowd
passing through a certain region as the similarity metric concerning a crowd-swarming scenario.

The event classification error is a popular MDV method in collision avoidance and abnormal

behavior detection (ABD). For collision avoidance, an example work is proposed by Boatright
et al. [112]. Because the motivation of their work is to predict the collision in a short time to im-
prove the time efficiency of steering algorithms, the classification accuracy of collision error is
designed as one of the metrics. For the ABD problems, the crowd models in ABD are expected
to learn a pattern of abnormal and normal behavior to predict the event label of different video
data, similar to the pattern recognition problems in computer vision. For example, Bera et al. [113]
used the abnormal behavior prediction accuracy on all pedestrians in videos to quantify the per-
formance of different algorithms. More metrics in ABD problems have been summarized in the
survey by Sami et al. [114].

A set of statistical metrics have been proposed for crowd model validation [109, 110, 116, 117].
In Reference [116], four metrics (i.e., total evacuation time, average evacuation time, average
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Fig. 6. An example of GVD trajectory validation method for a crowd. (a) two topologically equal trajectories;

(b) two topologically unequal trajectories.

density, and average speed) are used, and a harmonic mean is calculated based on these four met-
rics. This harmonic mean is then ranked in ascending order and compared with the rank given by
human experts. In Reference [117], seven metrics, including the average collision rate at each step,
travel distance, perpendicular deviation distance, speed change, angle change, biomechanical en-
ergy cost and biomechanical energy cost in collision avoidance, are introduced and combined. The
performances of the simulated crowds are compared based on the errors of these metrics between
simulated crowds and real-world crowds, so researchers are able to comprehensively understand
the characteristics of models.

4.2 Probability Model-based Validation

Besides MDV methods, probability-based data-driven crowd model validation (PDV) meth-
ods, the second main category of validation methods, try to establish a probability model to eval-
uate the performance of different models. One of the most representative PDV methods is the
entropy method proposed by Guy et al. [39]. In their work, the error vectors (blue arrows) be-
tween the predicted movements by a certain crowd model (red line) and the corresponding real-
world data (black line) are first collected, as shown in Figure 7. Then, the error vectors from the
entire crowd are used to estimate the covariance matrix of a multidimensional Gaussian distribu-
tion, thereby formulating the error vectors of a crowd into a Gaussian distribution model. Finally,
the magnitude of errors can thus be measured by the entropy of Gaussian probability models as
Equation (2):

e (M ) =
1

2
nloд((2πe )ddet (M )), (2)

where M is the covariance matrix of the Gaussian distribution model estimated based on the
error vectors, n is the number of agents in the crowd, and d is the dimension of agents’ states.

However, because the entropy method calculates the differences based on the error vectors, it
cannot measure the difference between two behavior patterns of pedestrians with different moving
directions. This entropy method is further improved by Karamouzas et al. [118]. In Reference [118],
the validation is transformed into the per-time-step prediction tasks, and the validation method
estimates a time-varying error for each agent independently to perform a per-agent entropy
measure.

In addition to the entropy method, the semantic method, proposed by Wang et al. [19, 20],
is another PDV method. Different from the entropy method, the semantic method can mea-
sure the similarity between two sets of trajectories in different locations, because the semantic
method focuses on the differences between path patterns of trajectories instead of the trajectories
themselves.
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Fig. 7. Error vectors of the entropy method [39].

In principle, the semantic method assumes that there is a suite of basic path patterns (i.e.,
location-orientation pairs) in different trajectory datasets and that each trajectory can thereby be
represented by different combinations of the weighted basic path patterns. With this hypothesis,
the semantic method first uses multinomial distribution, the Dual Hierarchical Dirichlet Process,
and Stochastic Variational Inference to extract the trending basic path patterns and estimate the
corresponding posterior distribution of the trending path patterns based on the given training data.
After that, the semantic method uses the extracted path patterns and their distribution to estimate
the log likelihood of testing trajectories. In this manner, the behavior pattern similarity measure-
ment is transformed into a predictive likelihood estimation problem as Equation (3). Given the
training data and a part of the testing data, the target is to estimate the probability of generating
the data coincident with the unseen (or incoming) testing data:

lik (B |A) = p (who |A,wobs ), (3)

where A and B are the training trajectory dataset and testing trajectory dataset, respectively, and
wobs and who are the observed and held-out (i.e., unseen) trajectory data from testing dataset B.
A higher likelihood of testing trajectories implies a higher similarity between training and testing
trajectories, which means that the path pattern in training data is likely to generate trajectories
similar to testing trajectories.

4.3 Other Validation Approaches

The validation methods that are not included in the above two types are categorized into other
validation. These validation methods often have high flexibility to validate certain aspects of the
proposed methods and good adaptation for different applications. For example, Musse et al. [40]
proposed a model for quantitative comparison of global flow characteristics between the simulated
crowd and the real one. In Reference [40], the validation model first clusters the raw trajectories
into a high-level representation by Mixture of Gaussian (MoG). Then, it builds a 4D histogram
that describes the locations, directions and velocities for each cluster and uses a Bhattacharyya
coefficient to measure the distance between clusters. The main difference of the method proposed
in Reference [40] from MDV is that it applies several machine learning techniques, such as cluster-
ing and Gaussian kernel, to analyze the trajectory patterns and measures the similarity based on
a newly defined histogram method instead of using statistical features (e.g., density and speed) as
metrics directly. Additionally, in 2014, Zhou et al. [119] proposed a crowd collectiveness metric to
measure the similarity between different crowds, where collectiveness is a degree measuring how
much do pedestrians behave in the same pattern.

5 OPEN ISSUES AND FUTURE DIRECTIONS

In this section, we outline six open issues in the field of data-driven crowd modeling, as shown in
Figure 8. The issues discussed below are not only common issues concerned by general simulation
studies but also of significance in the context of crowd modeling.
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Fig. 8. An overall view of the open issues and the recommended future directions.

5.1 Automatic Feature Discovery for State-Action Pair Learning

Among state-action pair methods, one of the core issues is the definition of the states of agents.
Most of the existing works [14, 30, 32, 83, 84, 96, 120–123] define states manually, which are usu-
ally represented by a set of features (e.g., the distances between an agent and obstacles, the density
of the neighboring crowd around the agent, the angle between the destination and the agent’s in-
stant moving direction). These features are usually problem-specific and defined based on domain
knowledge.

How to determine the most effective one(s) from a group of alternative features and how to
reduce human efforts required to define these features are two issues that need to be addressed,
especially in the context of crowd modeling. This is because, compared to other modeling tasks,
the modeling of crowds is more complex and challenging to solve. For example, compared to traffic
modeling, pedestrians share more diverse moving directions than vehicles, which move only along
streets and roads. Thus, there may be more features involved in determining a pedestrian’s future
direction. Thus far, there has been no consensus regarding which features are the most useful for
describing pedestrians’ states. One reason is the diversity and complexity of simulation scenarios.
For example, the corridor dataset1 has a bottleneck shape that is long and narrow, and thus it

1http://www.asim.uni-wuppertal.de/datenbank/own-experiments/corridor/2d-bidirectional.html.
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is important to consider the opposite crowd when predicting agents’ next moves. Alternatively,
when considering evacuation and rescue, the number of people escaping the area during a certain
period of time is one of the primary concerns, and thus the instant people flow in different exits
is weighted more than other features.

As for promising future research directions, the success of deep learning techniques makes it
possible to extract high-level features when learning the moving patterns of pedestrians [89, 90,
124, 125]. With feature extraction and feature engineering techniques, it is possible to extract in-
teracting features that collaboratively affect the route navigation process of human beings. These
techniques will further reduce the number of features used in model training so that more efficient
data-driven crowd models can be developed. In the meanwhile, features produced by extraction
may be of high dimensionality and of low readability. In this case, the technique of feature construc-
tion can be used so that features that are not only effective but also in a human-understandable
form can be generated. Machine learning techniques with good interpretability, such as decision
trees and genetic programming, can be considered [126, 127]. More importantly, because different
application scenarios demand different simulation purposes of crowd modeling, the generality of
the already produced features may thus be reduced. For example, the physical shape of an indoor
space, which may be a significant characteristic for emergency evacuation, may become trivial in
sparse crowd modeling. Many implicit features need to be discovered in future works, and surveys
need to be conducted to distinguish features that are general and compatible in cross-scenario
crowd modeling from features that are highly specific.

5.2 Modeling with Multiple Heterogeneous Data

Training a data-driven model with one or a few data types may not be sufficient for accurate
simulation or trajectory prediction. Multiple heterogeneous data can help solve the incompleteness
problem of a single form of data [128]. Modeling with multiple heterogeneous data is essential
for practical applications, especially for those complex prediction and decision-making processes.
For example, researchers have applied multiple heterogeneous data to help diagnose Alzheimer’s
Disease [129] and cancers [130, 131].

In the context of crowd modeling, the heterogeneity of data refers to data from different types of
data-gathering equipment, including but not limited to surveillance cameras, infrared thermal

imaging cameras (ITICs), various types of sensors, and the Global Positioning System (GPS).
Data heterogeneity is important in crowd modeling, not only because the movements of crowd are
affected by various explicit and implicit factors, which require multiple feature representations,
but also because there are different scales of modeling scenarios. For example, macroscopic crowd
modeling usually regards pedestrians as a whole (e.g., fluid) and is more concerned with the group
behaviors. Such characteristic makes it suitable to apply to simulate crowds in large areas. Thus,
GPS may be a better choice for collecting data than surveillance cameras. Microscopic modeling, on
the contrary, pays more attention to individual behaviors, and surveillance cameras, which are able
to record position information of pedestrians more precisely and accurately, are preferable in this
case. Moreover, the use of multiple heterogeneous data provides crowd modeling techniques with
more feasibility. For example, a common surveillance camera may not be able to collect data in the
nighttime due to the low light condition. ITICs can work well instead. Therefore, the combined
use of both color surveillance cameras and ITICs provides crowd modeling with data collected
all day long. Additionally, as indicated by the literature [32, 132], one of the major difficulties of
crowd modeling comes from the heterogeneity of pedestrians’ behaviors. With more diverse types
of data, it should be more feasible to capture and model such heterogeneity. Moreover, crowd
modeling relies on not only crowd data collected from cameras but also other data types, such as the
statistical data from cognitive science. Such data is usually obtained through social investigations
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or questionnaires, and they are also regarded as heterogeneous. They are also important data,
because pedestrians’ behaviors may be affected not only by physical factors, such as the layout
of the space and the density of the crowd, but also by social and psychological factors, such as
pedestrians’ genders, nationalities, ages, races, and so on [133, 134].

Thus far, little work has been done on incorporating crowd modeling with multiple heteroge-
neous data for better simulation results, and there is much room for research along this direction.
For example, data heterogeneity can be incorporated with validation techniques to develop en-
semble validation methods so that multiple aspects of a crowd model can be evaluated. Moreover,
heterogeneity can also be used to enhance the generality of crowd models. For example, when on-
line learning models are inputted with multiple heterogeneous data, they should be more robust
to the spatiotemporal changes of human crowds. Additionally, data from surveillance cameras and
from GPS can be combined together to balance the vividness of the macroscopic crowd flow with
the precision of the microscopic individual behaviors. Last, the techniques of modeling with mul-
tiple heterogeneous data can also be incorporated with incremental learning so that data-driven
crowd models can be trained with more complete data.

5.3 Interpretability of Simulation Models

In the fields of data mining and machine learning, the interpretability of a model refers to whether
it can be explained with understandable terms and comprehended by humans [135]. Interpretabil-
ity is important, because it helps build confidence in the safety, reliability, and fairness of models.
Additionally, an interpretable model can be converted into understandable rules and theorems
and further used by humans. Although black-box models have recently shown great capabilities
when solving difficult tasks [94, 136–139], their incomprehensibility restricts their further per-
formance. Machine learning models with interpretability [140–142], however, possess syntactic
structures that help humans understand what principles the models follow when making deci-
sions or predictions. Moreover, interpretable models can also be applied to explain those black-box
models [141–144]. However, these models currently usually generate themselves with redundant
structures, which decreases their own readability [145].

In the context of crowd modeling, interpretability is also essential. With well-performed ma-
chine learning models and effective features, the simulation results have been promising and close
to reality. However, it is still hard to understand how these features interact with each other. As
a cross-domain application, it is expected to not only obtain vivid simulation results but also ex-
plain the underlying reasons why pedestrians act in that manner. For example, in crowd modeling-
assisted theme park design, designers may want to know not only which paths most tourists are
likely to choose but also why they choose such paths so that specific services, stores, and enter-
tainment can be placed alongside. Moreover, interpretability provides crowd models with not only
better reliability but also a chance to discover the psychological and cognitive rules that humans
obey in their subconscious. This is an essential issue, because it can promote the development of
other involved subjects, such as cognitive science.

One way to enhance interpretability is to reduce the complexity of interpretable models.
Efforts have been made toward models such as decision trees [146, 147] and genetic program-
ming [148–151]. However, how to formally and mathematically define interpretability and how
to quantitatively measure it in practice still remain open issues. To enhance the interpretability of
decision trees and rule-based models, one of the most straightforward ways is to reduce all of the
unnecessary components in the models according to the principle of Occam’s Razor, so that the
models can be made as simple as possible. For crowd modeling, it should be pointed out that inter-
pretability is not an easy task. However, it is still worth making an attempt. With the development
of feature extraction and construction techniques, it would be feasible to start interpreting a crowd
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model from its involved features. In the meanwhile, crowd understanding techniques [22, 59, 152]
in the computer vision community can help to identify pedestrians’ overall motion patterns, and
thus combining them with crowd modeling can hopefully promote the interpretation progress.
Moreover, black-box models and syntactic models can be combined together so that crowd
models can take advantage of both the performance of the former and the interpretability of the
latter.

5.4 Online Data-driven Modeling

With the rapid development of the Internet and digital and electronic technologies, various digital
devices collect tons of data every second, and companies and governments accumulate enormous
amounts of data every day. Big Data makes it feasible for online learning, which is also referred
to as incremental learning. Online learning refers to learning from streaming data. Compared to
classical batch training techniques in which machine learning models learn only once with a finite
dataset, incremental learning has models that continue learning with consistently incoming data,
thus providing models with better generalization ability. However, incrementally learning from
dynamic data streams also introduces new challenges, one of which is the risk of concept drift.
Concept drift refers to unpredictable changes of data distribution over time, which may mislead the
well-trained learning model and degrade its performance. Moreover, incremental learning requires
the ability to learn from a few samples of data and quickly convergence so that models can obtain
better real-time responses.

In the context of data-driven crowd modeling, online learning is significant, not only because
of the advantages of incremental learning itself but also because data-driven crowd modeling is
intrinsically closely related to the online environment. First, human crowds are flowing flocks with
diverse motion patterns. Habibi et al. [153] pointed out that pedestrian motion is more challenging
to predict than vehicle routines given the unclear behavioral rules and the uncertainty of pedes-
trian motion. For classic batch learning, it is infeasible to implement a complete dataset to include
all of these patterns [154], while for online learning, models only need to learn from what they
have seen. Second, it is observed that crowds vary even in the same place with respect to different
times [155]. For instance, crowds are denser during rush hours in metro stations, while railway
stations obviously become crowded in public holidays. Online learning, in this case, adjusts crowd
models to crowds with spatiotemporal changes so that the models can achieve better flexibility
and generality. Moreover, in crowd modeling of related fields, such as robotics, robots are required
to perceive and understand crowds’ behavior, so that they will not offend humans during public
services. Because human crowds move and change constantly, it is more suitable to have robots
that learn online instead of pre-training them only once.

Pioneering efforts have been made toward online data-driven crowd modeling. Bera et al. [76]
utilized an online object tracker to extract the first few frames of trajectories in videos and mixed
the tracked trajectories with those predicted by a trained crowd simulation model to smoothen the
predicted trajectories. By this means, they are able to apply the learned model to new scenarios
without tedious manual trajectory annotation of new videos. The nonexistence of an absolutely
comprehensive dataset motivated Habibi et al. [153] to adopt online learning to classify new pedes-
trian trajectories. These trajectories are first compared with previously seen ones. If a trajectory
shares similar motion patterns, then it will be fused with the previous ones; otherwise, it will be
added to capture new patterns. A sparse coding technique is then utilized for trajectory learning
and prediction. The authors have proved the effectiveness of the proposed method over conven-
tional offline ones.

Online data-driven crowd modeling is a promising future direction, and much work can
be done. First, with the development of smart cameras, both data-driven crowd models and
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computer vision-based object tracking algorithms can be integrated into the camera through
embedded techniques. Pedestrian trajectories can be constantly extracted from raw monitoring
videos, and crowd behaviors can be incrementally learned by the model, with limited memory
and computation power. Moreover, none of the aforementioned works focus on incrementally
learning an underlying behavioral rule of crowds. Such a focus is essential, because online
learning can verify and improve the generality of the distilled rules.

5.5 Data-driven Modeling Validation

Validation is an important topic, especially in the context of data-driven crowd modeling. Because
crowd models involve a large number of parameters, validation results can return as a feedback to
calibrate the values of these parameters. Meanwhile, because pedestrians’ behaviors are so com-
plex and affected by many factors including, but not limited to, physical ones, psychological ones
and social ones, a single validation approach can hardly cover all of these factors; the incomplete
coverage makes it possible to have one model that performs differently under two independent
validations. For example, the collectiveness metric focuses on the macro level, while the trajectory
error focuses on the micro level. Validating the simulation result by only one of them may empha-
size either the group consistency or the individual vividness while ignoring the other. This valida-
tion is not comprehensive enough to reflect on the overall performance of the models. Therefore,
to sufficiently compare the performances of different crowd models, it is better to adopt multiple
validations, each focusing on a different aspect.

The road to accelerating validation for crowd modeling is still long, and much research is still to
be performed. One promising future direction in designing automatic validation approaches is de-
signing an assembled validation approach that hybridizes multiple validation metrics to generalize
its applicability. Moreover, because the update of crowd models relies on the back-propagated val-
idation results, and validation is usually a time-consuming task, an efficient validation technique
can shorten the period from generating a parameter combination to acquiring the validation feed-
back. Therefore, reducing the validation time in model training is also a promising future research
subject in data-driven model validation. Such future research makes sense for both academia and
the industry. Currently, there are models capable of accelerating the validation process by shorten-
ing the time cost of simulation [41, 73, 156]. Surrogate-based models integrate a learning module
to fit the underlying mapping from model parameters to validation results. Once such mapping
has been learned, an approximate validation result can be predicted for a specific parameter com-
bination, and the time-consuming regular simulation process can thus be skipped. Moreover, be-
cause agents always act simultaneously, microscopic crowd modeling possesses synchronism in
its nature. High-performance computation tools and techniques can thus be added, such as GPU
modules and various CPU parallel computation frameworks.

5.6 Crowd Modeling Software Development

Software for crowd modeling can be roughly divided into two types according to the purposes of
usage, i.e., academic software for research purposes and commercial software for application de-
velopment. Different purposes of usage result in different concerns when designing the software.
For example, commercial crowd modeling software usually provides both good GUIs and simula-
tion building blocks and prefer to use widely accepted models (e.g., the social force model). On
the other hand, academic software is usually developed for scholarly communication. This devel-
opment requires well-constructed modularity, as well as well-defined interfaces among different
modules, so that others can further develop the software for their own purposes.

Table 4 shows ten popular general-purpose commercial software for crowd modeling. Among
them, Viswalk, Simwalk, Massmotion, and Anylogic utilize the social force model for simulation;
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Table 4. List of Popular Commercial Crowd Modeling and Simulation Platforms

name developer applications model website

Pedestrian
Dynamics

Incontrol
Simulation

crowd simulation in
infrastructure and building

cognitive-science-based
vision and behavioral
heuristics [167]

https://www.incontrolsim.com/
software/pedestrian-dynamics/

Viswalk PTV AG
planning and optimization for
large rallies

social force model
http://vision-traffic.ptvgroup.
com/

Simwalk
Savannah
Simulation
AG

passenger flow simulation at
airports and railway
terminals; Urban planning;
crowd evacuation

potential filed
algorithm based on
social force model

http://www.simwalk.com/

Massmotion Oasys Ltd.
design, planning, and analysis
of airports and stations

social force model
https://www.oasys-software.
com/products/pedestrian-
simulation/massmotion/

Legion Legion Ltd. building design optimization cellular automata
https://www.bentley.com/en/
products/brands/legion

STEPS
Mott
MacDonald
Group Ltd.

designs of buildings, open
areas, and infrastucture, city
planning, evacuation

cellular automata http://www.steps.mottmac.com/

CAST
Terminal

Airport
Research
Center
GmbH

optimization of the designs of
airport terminals andother
passenger handling facilities

NOT FOUND
https://arc.de/cast-terminal-
simulation/

PedGo
TraffGo HT
GmbH

crowd evacuation cellular automata
https://traffgo-ht.com/en/
pedestrians/products/pedgo/
index.html

Exodus
University
of
Greenwich

crowd evacuation rules or heuristics http://fseg.gre.ac.uk/exodus/

Anylogic
The
Anylogic
Company

multifunctional system
simulations, with a pedestrian
library; evacuation

social force model
https://www.anylogic.com/
resources/libraries/pedestrian-
library/

Legion, STEPS, and PedGo utilize cellular automata; Pedestrian Dynamics and Exodus utilize pre-
defined heuristics. Additionally, Pedestrian Dynamics, Viswalk, Simwalk and Massmotion focus
on similar applications (e.g., terminal design). This indicates the homogeneity of these commer-
cial software, which may reduce their competitiveness in commercial markets. Moreover, although
not being specifically designed for crowd modeling and thus not being included in the table, two
popular game engines, Unity2 and Unreal,3 are also worth mentioning. These two engines have
accumulated a large user base over the years. There are numerous third-party crowd simulation
projects [157–159] developed in Unity and posted onto the asset store for paid downloads. Unreal
integrates game-oriented crowd simulation interfaces, such as navigation modules and collision
avoidance modules.

Table 5 lists seven popular academic frameworks that have been widely used among scien-
tific publications [160–166]. Different from commercial products, which are closed source and
authorized by licenses, academic software concerns about analyzable code and ensures repeatable
exact computer experiments. Therefore, all of the frameworks listed in Table 5 are open source.
Among them, frameworks such as Menge and Vadere integrate different widely accepted crowd
models (the social force model, optimal steps model, gradient navigation model, rule-based model,
etc.), which facilitates scientific comparison. These frameworks are generic enough to provide dif-
ferent functionalities within crowd modeling, such as motion planning, collision-avoidance and
navigation and path planning. Simple but user-friendly GUIs, as well as diverse programming

2https://www.unity.com/.
3https://www.unrealengine.com/.
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Table 5. List of Academic Crowd Modeling and Simulation Frameworks and Toolkits

name developer type description language website

Menge [168]
University of North
Carolina–Chapel Hill

framework
facilitate crowd simulation
research, development, and
model comparison

C++
http://gamma.cs.unc.
edu/menge/

Vadere [169]
Munich University of
Applied Sciences

framework
integrate generic locomotion
models for scientific
comparison

Java
https://gitlab.lrz.de/
vadere/

Pedsim [170] Christian Gloor
library &
toolkit

crowd simulation; especially
for large-scale scenarios

C++
http://pedsim.silmaril.
org/

JuPedSim [171]
Forschungszentrum
Julich

framework
facilite pedestrian dynamics
researches; for evacuation;
extensible to other areas

C++
http://www.jupedsim.
org/

MoPlaT [172]
Nanyang
Technological
University

testbed
motion planning comparison;
motion planning system
analyses

Java
https://github.com/
vaisaghvt/MoPlaT

Repast [173] University of Chicago platform
general purpose simulation
and modeling

C#
https://repast.github.io/
index.html

Netlogo [174]
Northwestern
University

platform
general purpose simulation
and modeling

Java
http://ccl.northwestern.
edu/netlogo/

interfaces, are provided, which visualize the experimental results and encourage researchers to
further develop the frameworks under specific research purposes. Noted that, although both
Repast and Netlogo are platforms for general multi-agent systems, they have been adopted in
the pedestrian simulation literature [163–166], and therefore we still include them in the aca-
demic software list. Moreover, there are also other tools involved in crowd simulation-related
topics, such as Recast & Detour,4 which is an open-source path-planning engine. Recast & De-
tour can be roughly divided into two parts, where the Recast module is for constructing a naviga-
tion mesh model, while Detour is for planning a humanoid path with respect to user-customized
requirements.

Much work can be done to improve the quality of both commercial and academic software in
the context of data-driven crowd modeling. For commercial software, all of the models mentioned
in Table 4 are not data-driven, which means that the software lacks data-driven capabilities (e.g.,
parameters of the social force model in commercial software are usually fixed and cannot be au-
tomatically calibrated with data) or support for data-driven model development. Compared with
traditional models, such as cellular automata and the social force model, data-driven models can
achieve higher accuracy [89, 96] and may be more qualified for a diverse range of crowd modeling
applications. Therefore, adaptive parameter calibration techniques can be added so that the soft-
wares can adjust themselves to different simulation scenarios and be free from users’ experience
of parameter settings. Additionally, more advanced models (e.g., genetic programming-based mod-
els and deep learning-based models) can be introduced into the software so that users can have
more choices according to different requirements in different simulation tasks. For academic soft-
ware, because data-driven crowd modeling usually involves many time-consuming simulations,
designing efficient parallel data-driven crowd modeling software is a promising research topic.
Last, bridging the gap between the academic research of effective data-driven crowd modeling
techniques and the integration of advanced models into commercial software is still an open issue.

6 CONCLUSIONS

Data-driven crowd modeling techniques model pedestrian behaviors according to real-world data.
Compared to traditional crowd modeling techniques, data-driven ones are able to generate more

4https://masagroup.github.io/recastdetour/.
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realistic crowds when they are applied in crowd simulation. During the past few years, a great
number of data-driven crowd modeling techniques have emerged. In this article, we first list
open-source crowd datasets that can be used in data-driven crowd modeling. Then, the state-of-the-
art data-driven crowd modeling methods are introduced and classified into four types according
to what they learn from data. For each type, how these methods learn is further discussed. Next,
we discuss crowd simulation validation methods, which play an important role in data-driven
modeling. Validation methods in this survey include metric-based validation methods, probability
model-based validation methods and others. In spite of the great number of related works, there
is still room for development of data-driven crowd modeling. First, because feature selection plays
a fundamental role in state-action pair learning and, in most works, features are selected manu-
ally, automatic feature discovery is a promising way to improve the learning efficiency. Second,
heterogeneous data from various sources may help to improve both the accuracy and generality
of the model. Third, interpretability of the models should be improved so that users can have con-
fidence in them and modify them conveniently according to their needs. Fourth, with the rapid
development of surveillance camera technology and easy availability of video data, online data-
driven modeling techniques need to be developed. Fifth, data-driven simulation validation can be
developed, because it is usually a difficult task to choose a proper validation method. Last, bridging
the gap between the academic research and the integration of advanced data-driven models into
commercial software is still an open issue.
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