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We develop a theory of superdense time that encompasses existing uses of superdense time in discrete event

simulations and points to new forms that have not previously been explored. A central feature of our devel-

opment is a set of axioms for superdense time. The sufficiency of these axioms is demonstrated by using them

to prove that a general model of a discrete event simulation procedure, expressed in terms of a mathematical

system, constitutes a state transition function. Several forms of superdense time, both known and novel, are

shown to satisfy the axioms.
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1 INTRODUCTION

Superdense time is an important tool for modeling simultaneity in discrete event simulations. A
superdense time base is typically constructed by augmenting the real numbers with information
for ordering events that would otherwise appear to be simultaneous. When time is restricted to
physically meaningful quantities, such as seconds, then simultaneous and zero-time events in a
discrete event model may assign several values to a variable at a single instant of time. One readily
apparent consequence of this ambiguity is in parallel discrete event simulations when the order-
ing of events with identical timestamps changes from run to run; see, e.g., the discussion in Refs
[4] and [24]. Superdense time addresses this problem with an augmented timestamp that enables
repeatable, unambiguous simulation traces.

The first use of superdense time was by Maler, Manna, and Pnueli [14] to distinguish simul-
taneity from sequences of instantaneous actions in a study of hybrid automata. Somewhat later,
superdense time was adopted as a solution to the same problem in optimistic and conservative
parallel discrete event simulations; see, e.g., Refs [9], [19], [20], [24], and [25]. Most recently, work
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16:2 J. Nutaro

on co-simulation of cyber-physical systems encountered the simultaneous event problem and has
used superdense time as a solution; see, e.g., Refs [1], [3], [11], [12], and [16].

Examples of superdense time, discussions of time’s general properties in various modeling and
simulation contexts, and related studies concerning the general structure of systems are many and
scattered. Nonetheless, these disparate studies share common ideas about how time should appear
in a simulation model. Our main objective is to weld key ideas from these studies into a concise
description of the properties of superdense time.

This attempt begins with properties that time must possess. The necessity of a zero element is
taken from Ref. [14], as is the notion of an interval length consistent with stepping through time.
In Section 3, these appear as properties P1, P2, and P4. Of course, Maler, Manna, and Pnueli are not
the only authors to require these properties; they are implicit in the works of systems’ theorists
like Zeigler et al. [21, 27], Mesarovic and Takahara [15], Wymore [26], and Klir [10]. In a similar
fashion, Cremona et al. [3] argue for an associative + operator, which is P3 in our set of properties.
The need for a successor of each time instant is inseparable from discrete time simulations, and
superdense time, as proposed in Refs [12], [14], [19], [20], and elsewhere, bring this requirement
to discrete event simulation; it appears as P5.

Our assemblage of properties is not all encompassing. For example, Maler, Manna, and Pnueli
require that+ commute, but we do not. Likewise, resolution, numerical rounding, and other practi-
cal issues are not considered. Our choice of properties is limited to those sufficient for proving that
an abstract, but very general, model of a discrete event simulation procedure constitutes a state
transition function. This selection criteria emerges from the concept of a system as described, for
example, by Zeigler et al. [21, 27], Mesarovic and Takahara [15], Wymore [26], Klir [10], and others.
With this approach, we hope to reveal a simple structure of time, which is sufficient to implement
a simulation procedure that behaves in an intuitively appealing way.

After introducing the key properties of time and demonstrating their sufficiency, we present
several types of superdense time, which include both known and novel forms, and show that they
share the key properties. It is significant that the forms of superdense time suitable for simulation
applications are prolific. The unifying axioms offered here make possible simulation tools in which
the most useful form of time can be selected by the modeler for a given application. The many
existing proposals for superdense time suggest that this is a desirable feature.

2 SYSTEMS

To go beyond specific instances of superdense time and arrive at unifying principles, it is necessary
to distill the common elements of many simulation procedures as they relate to time. One approach
is to use the concept of a mathematical system. For our purposes, it is enough to consider a closed
system without input and output.

An abstract model of a closed system has a state q(t ) that is a function of time and evolves over
an interval [t , t ′) via a state transition function

q(t ′) = Δ(q(t ), [t , t ′)).

This function must satisfy the composition property, which stipulates that for any division of [t , t ′)
into sub-intervals [t , tm ) and [tm , t

′),

Δ(q(t ), [t , t ′)) = Δ(Δ(q(t ), [t , tm )), [tm , t
′)) and

Δ(q(t ), [t , t )) = q(t ).

In short, this is a requirement that, regardless of whether we examine intermediate states in an
interval, the end point is always the same.
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Toward a Theory of Superdense Time in Simulation Models 16:3

The theoretical and practical importance of the composition property has been discussed else-
where; see, e.g., Refs [15], [20], [21], and [27]. An example of one of its roles in simulation is to
enable checkpoints. A simulation checkpoint has the form described above when tm is the instant
of the checkpoint. We expect that running the simulation to a checkpoint, stopping, and then
restarting at that checkpoint will give the same result as running from beginning to end without
a pause. Another example is parallel in time simulation techniques. These implicitly assume a cal-
culation can be split into two or more time segments that, when stitched back together, give the
same solution as running the calculation from beginning to end [5]. The widespread, but often
implicit, importance of the composition property in theoretical and practical simulation problems
justifies its use in our axiomatic approach to superdense time.

A trivial example of a mathematical system uses the integers for time and evolves its state
according to

q(t + 1) = δ (q(t )). (1)

Defining δ (q(t )) = Δ(q(t ), [t , t + 1)), the composition property follows by induction and so δ is an
instance of a mathematical system. This may be generalized in a natural way to describe a discrete
event simulation [20, 21]. To do so, we retain the integers for time and explicitly identify the model
state s and time e for which that state has persisted. This makes the total state a pair q = (s, e ).

Each state s has a lifetime ta(s ), which is the amount of time that must elapse before the next
event occurs. Hence, the state of the model changes when e = ta(s ). At this instant, an event
handler ρ (s ) = s ′ operates on s and e becomes zero. Naturally, e ≤ ta(s ) because s does not persist
longer than its lifetime. A definition of Δ that corresponds to this behavior is

q(t ′) = Δ((s, e ), [t , t ′)) =
⎧⎪⎪⎨
⎪⎪
⎩

Δ((ρ (s ), 0), [t + 1, t ′)) e = ta(s ) and t < t ′

Δ((s, ta(s )), [t + ta(s ) − e, t ′)) e < ta(s ) and t + ta(s ) − e ≤ t ′

(s, e + t ′ − t ) otherwise.
(2)

When t is taken from the integers, it is straightforward to show that Equations (1) and (2) generate
the same state trajectories; again, see Refs [20] and [21]. However, the latter acts as a discrete event
simulation by taking advantage of the lifetime ta(s ) (or, less abstractly, the event scheduler) to
skip over intervals in which nothing interesting happens; that is, when s does not change. In what
follows, we assume ta and ρ are such that Equation (2) defines a legitimate system, free of Zeno
behaviors, which cause the simulation clock to become stuck at a given instant of time; see, e.g.,
Ref. [21], and [28] for a technical treatment of Zeno behaviors.

A fundamental motivation for superdense time is apparent in the first and second lines of Equa-
tion (2). When the lifetime expires, the model must have a single state. In general, this state cannot
be both s and ρ (s ). When simulating with Equation (2), the state at the moment of expiration is s ,
and in the next moment, it is ρ (s ). If the event handler schedules a new event such that ta(s ) = 0,
then the new state belongs to the next instant of time.

In practice, the integers are an unattractive model of time in discrete event simulations because
the integers do not allow for a natural notion of instantaneous, or zero-time, events. More useful
forms for time that support a natural model of instantaneous events can be used in Equation (2) if
they have a structure similar to the integers in key aspects. For example, suppose we replace integer
time in Equation (2) with a time pair (t , c ). The element t is a real valued, physically meaningful
unit of time within the context of the model. The integer c counts events that have been executed.
Hence, the initial state of the model is q((t0, 0)) and subsequent states are q((t1, 1)), q((t2, 2)), and
so forth.

Consider how ta, addition, and subtraction could be defined for time pairs so that Equation (2)
keeps the composition property. The lifetime ta(s ) is a pair (h, 1), indicating that this single event
will advance the real time by h units while adding one to the count of events. We define +, −, 1,
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and 0 in the narrow sense that they appear in Equation (2) by

(t , c ) + (h,k ) = (t + h, c + k ),

(t , c ) − (h,k ) = (t − h, c − k ),

0 = (0, 0), and

1 = (0, 1).

Close examination of − as it is used in Equation (2) suggests that it is not subtraction in the usual
sense, but has the much more limited role of measuring intervals. In particular, the elapsed time has
real and integer parts less than or equal to those of ta(s ), and so ta(s ) − e is always non-negative.

Replacing the integers with this form of time, we find that the model still behaves as intended
in the sense that there is a single state value at each time instant, and the composition property
holds. Because of this, we can claim that the above scheme is a legitimate form of simulation time.

There are other forms of time that allow Equation (2) to behave in the expected way. One ex-
ample also uses the pair (t , c ), 0 = (0, 0), and 1 = (0, 1), but addition and subtraction are defined
by

(t , c ) + (h,k ) =

{
(t + h,k ) h � 0
(t , c + k ) h = 0

and

(t , c ) − (h,k ) =

{
(t − h, c ) t � h
(0, c − k ) t = h.

This form of time arises in simulations of cyber-physical systems where the integer part counts
“ticks” of a logical clock at each real instant.

3 TIME

If there are three acceptable forms of simulation time, we may ask how many more exist and what
do they look like? One approach to this question examines what properties time must have for
Equation (2) to have the composition property. The following five are sufficient.

P1. There exists 0 such that, for all t , t + 0 = 0 + t = t .
P2. If h1 > h2 ≥ 0, then t + h1 > t + h2.
P3. If h1 ≥ 0 and h2 ≥ 0, then (t + h1) + h2 = t + (h1 + h2).
P4. If t2 ≥ t1, then there exists h ≥ 0 such that t1 + h = t2.
P5. There is a successor function S (t ) such that the interval [t , S (t )) contains exactly t .

The length � of an interval [t1, t2) is the number h in P4. Two necessary properties of � follow from
this definition.

P4.1. �[t1, t2) ≥ 0.
P4.2. t1 + �[t1, t2) = t2.

The general model of a discrete event simulation can be rewritten in terms of S and � as

q(t ′) = Δ((s, e ), [t , t ′)) =
⎧⎪⎪⎨
⎪⎪
⎩

Δ((ρ (s ), 0), [S (t ), t ′)) e = ta(s ) and t < t ′

Δ((s, ta(s )), [t + �[e, ta(s )), t ′)) e < ta(s ) and t + �[e, ta(s )) ≤ t ′

(s, e + �[t , t ′)) otherwise.
(3)

Several assumptions concerning the simulation application are implicit in P1–P5. Two central
assumptions are that the initial time of the simulation can be anywhere on the number line and that
our modeling objectives only concern moving forward in time. The latter implies that ta(s ) ≥ 0.
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If time is restricted to numbers not less than 0, then the caveats ≥ 0 can be removed from P2 and
P3. Perhaps this is reasonable, but we chose not to do so here.

Backward motion through time requires an analog to subtraction as it usually appears in alge-
braic structures, rather than in the limited sense of measuring interval lengths. Introducing this
would significantly restrict the allowable forms of superdense time and, perhaps most importantly,
appears to eliminate some popular choices. The latter observation strongly suggests forward mo-
tion in time is the most important case, and this is where we focus our attention.

The successor function required by P5 implies that the real numbers cannot be used as a model
for time in discrete event simulations. The reason for including P5 is to avoid circumstances where
the model state at time t is s and then, if ta(s ) = 0, we assign a new state s ′ at time t + ta(s ) = t .
In this case, the state trajectory ceases to be a function and, therefore, Δ is not a state transition
function. In particular, we cannot replace [S (t ), t ′) in Equation (3) with [t , t ′) and still ensure a
single value for q is assigned to each time t . It is conceivable that some weaker form of P5 could
replace S (t ) with some other quantity not equal t , but it is not clear what that alternative might
be.

If time is the integers, then P1–P5 are satisfied by the usual notion of addition and �[t1, t2) =
t2 − t1. However, the integers have more structure than is needed. For example, the second form
of time discussed briefly in Section 2 has a + operator that does not commute, P2–P4 hold only
when their precondition applies, and � is not associative. Indeed, if we equate subtraction with �,
then

�[(1, 3), �[(2, 2), (4, 3))) = ((4, 3) − (2, 2)) − (1, 3) = (2, 3) − (1, 3) = (1, 3), but

�[�[(1, 3), (2, 2)), (4, 3)) = (4, 3) − ((2, 2) − (1, 3)) = (4, 3) − (1, 2) = (3, 3).

Nonetheless, P1–P5 impose a structure on time that is fundamental to simulation applications.
The most important aspects of this structure feature prominently in our proof that Equation (3) has
the composition property. These structural features are summarized by Propositions 1–7 below.
Proofs of these propositions are given in the appendices.

Proposition 1. The number 0 is unique.

Proposition 2. The successor S (t ) of t is unique.

Proposition 3. �[t0, tf ) = 0 if, and only if, t0 = tf .

Proposition 4. If b ≥ 0, c ≥ 0, and a + b = a + c , then b = c .

Proposition 5. �[t0, tf ) = �[t0, tm ) + �[tm , tf ).

Proposition 6. �[t , t + h) = h.

Consider an interval [t , t ′). Let ta in this interval be the location of the first event. By defini-
tion (the second line of Equation (3)), ta = t + �[e, ta(s )). It is straightforward to show (see the
appendices) that stepping from t to ta is the same as advancing e to ta(s ). Hence, we have

Proposition 7. e + �[t , ta ) = ta(s ) if, and only if, t + �[e, ta(s )) = ta .

With these Propositions, we can show that Equation (3) has the composition property. Each
step of the proof that relies on one of the above Propositions is labeled as such. Otherwise, the
step depends directly on Equation (3) or P1–P5. By examining the proofs in Appendix A, it can be
seen that P1–P5 are used, either directly or indirectly, in the proof of Theorem 1.

Theorem 1. Equation (3) has the composition property.
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Proof. Consider an interval [t , t ′) and ta as defined above. If t = t ′, then the interval is empty
and

Δ((s, e ), [t , t )) = (s, e + �[t , t ))

= (s, e + 0) Proposition 3

= (s, e ).

Let t < t ′, and pick a point tm in the interval. There are four possibilities.

Case 1. If ta is not in the interval, then

Δ((s, e ), [t , t ′)) = (s, e + �[t , t ′)) and

Δ(Δ((s, e ), [t , tm )), [tm , t
′)) = Δ((s, e + �[t , tm )), [tm , t

′))

= (s, e + �[t , tm ) + �[tm , t
′))

= (s, e + �[t , t ′)). Proposition 5

Case 2. If tm < ta ≤ t ′, then

Δ((s, e ), [t , t ′)) = Δ((s, ta(s )), [t + �[e, ta(s )), t ′))

= Δ((s, ta(s )), [ta , t
′)), and

Δ(Δ((s, e ), [t , tm )), [tm , t
′)) = Δ((s, e + �[t , tm )), [tm , t

′))

= Δ((s, ta(s )), [tm + �[e + �[t , tm ), ta(s )), t ′)).

For equality, we need tm + �[e + �[t , tm ), ta(s )) = ta . Using Propositions 5–7,

e + �[t , tm ) + �[tm , ta ) = e + �[t , ta ) Proposition 5

= ta(s ), and so Proposition 7

�[e + �[t , tm ), ta(s )) = �[e + �[t , tm ), e + �[t , tm ) + �[tm , ta ))

= �[tm , ta ). Proposition 6

It follows that

tm + �[e + �[t , tm ), ta(s )) = tm + �[tm , ta ) = ta

as desired.

Case 3. If tm = ta , then

Δ((s, e ), [t , t ′)) = Δ((s, ta(s )), [tm , t
′)) = Δ((ρ (s ), 0), [S (tm ), t ′)), and

Δ(Δ((s, e ), [t , tm )), [tm , t
′)) = Δ((s, e + �[t , tm )), [tm , t

′))

= Δ((s, ta(s )), [tm , t
′))

= Δ((ρ (s ), 0), [S (tm ), t ′)).

Case 4. Otherwise, ta < tm < t ′. Proceeding to the first event at ta , we have

Δ((s, e ), [t , t ′)) = Δ((s, ta(s )), [ta , t
′))

= Δ((ρ (s ), 0), [S (ta ), t ′)).

There is a first event at time taa in the interval [S (ta ), t ′) or no event exists in this interval. If
tm > taa , then we proceed to taa in the same manner as before. Advancing in this way, tm must
eventually be found in some interval [ta ...a , t

′). If there is no event in this interval, then Case 1
completes the proof. Otherwise, Case 2 or 3 completes the proof. �
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4 EXAMPLES OF SUPERDENSE TIME

Several prominent forms of superdense time can be expressed in terms of a set with the +, �, and
S operators, and when expressed in this form, can be shown to satisfy P1–P5. The models of time
presented here are cited frequently, but no attempt has been made to create an exhaustive catalog.
Indeed, the two novel forms demonstrate that the well–known models of time are not the only
possible models.

4.1 Rönngren and Liljenstam; Lee and Zheng

Rönngren and Liljenstam introduced a timestamping algorithm that can be reinterpreted as a form
of superdense time. Their objective was to resolve the problem of variability in otherwise identical
runs of a parallel discrete event simulation algorithm when events with the same timestamp are
present. Their solution was to provide the same support for event ordering as is found in a sequen-
tially executing simulation. A sequentially executing simulation is deterministic in the sense that
two executions of a single simulation model with identical input will produce identical output; the
results are reproducible.

This is in contrast to a parallel discrete event simulation where the result of a simulation exper-
iment is not necessarily reproducible. The root cause is that in a parallel discrete event simulation,
there is no fixed order in which events are generated. Moreover, the local causality constraint,
which is the common criteria for correct execution [8], does not constrain the execution order
of events with identical timestamps. Consequently, two events with identical timestamps may be
executed in a different order in two otherwise identical simulation runs.

Rönngren and Liljenstam resolve this problem by appending a counter to the event time forming
the pair (t , c ), and these are sorted in lexicographic order. Each logical process maintains its own
counter c and model time t . If t does not change while processing events with time stamps (t ,k ), c
is updated by assigning c ← max{c,k } + 1. When t advances, this updating scheme can continue,
or c may be reset to some smaller value. The latter is proposed in Ref. [24] to prevent the counter
from rolling over, and a reset to zero is made possible by adding a third field to the timestamp.

As proposed, the only purpose of this timestamp scheme is to create a causally consistent or-
dering of events and consideration of time’s structure is restricted to order. The max{c,k } rule is
a natural choice in that context, but formulating a superdense time using this rule is difficult, if
not impossible, without violating P2. However, maximization is not the only update compatible
with their proposed scheme. The general requirement is that when h is not zero, the update to c
be greater than or equal to c and k . The rule c ← c + k satisfies this requirement. Hence, we may
keep essentially the same scheme from Ref. [24] without the additional timestamp field by altering
the update rule and reset value.

If at time (t , c ) an event is processed with timestamp (t + h,k ), h > 0, the modified scheme sets
the current simulation time to (t + h,k ). If h = 0, the order counter is updated by setting the sim-
ulation clock to (t , c + k ). Addition by one in the original scheme is accomplished by Equation (3)
with the successor function.

This timestamping scheme constitutes a superdense time. The interval between (t , c ) and (t +
h,k ) has a length

�[(t , c ), (t + h,k )) =

{
(0,k − c ) h = 0
(h,k ) h > 0.

Forward motion in time occurs via

(t , c ) + (h,k ) =

{
(t , c + k ) h = 0
(t + h,k ) h > 0.

ACM Transactions on Modeling and Computer Simulation, Vol. 30, No. 3, Article 16. Publication date: May 2020.



16:8 J. Nutaro

Now, if h > 0, then advancing the clock from (t , c ) to (t + h,k ) is the same as calculating

(t , c ) + �[(t , c ), (t + h,k )) = (t , c ) + (h,k ) = (t + h,k ).

If h = 0 and we are advancing from (t , c ) to (t ,k ), then c ≤ k due to lexicographic ordering, and
this is the same as calculating

(t , c ) + �[(t , c ), (t ,k )) = (t , c ) + (0,k − c ) = (t ,k ).

We may take 0 = (0, 0) and S ((t , c )) = (t , c + 1). The latter ensures that S (t ) in Equation (3) has the
same effect as adding one to the logical process’s order counter. Proofs that this satisfies P1–P5
are in the appendix.

This form of superdense time encompasses a family of schemes used in simulations of cyber-
physical systems. If the time advance operator is such that k = 1 when h = 0, and k = 0 when
h > 0, then this is a typical realization of the superdense timestamping scheme proposed by Lee
and Zheng in Ref. [12]. If k = 0 when h > 0, but k ≥ 0 otherwise, then this is the timestamping
scheme proposed in Ref. [20] (Chapter 4).

4.2 Benveniste et al.; Mosterman et al.; Barros

Replacing reals with hyper-reals in Section 4.1 gives a form of superdense time first proposed
by Iwasaki et al. [7], later expanded upon by Benvensite et al. [2], and then further extended by
Mosterman et al. [16] to create hyper-dense time, which distinguishes physical time, discontinu-
ities that approximate fast physical dynamics, and sequences of logical events. A similar use of the
hyper-reals is proposed by Barros [1]. These time sets that are derived from the hyper-reals have
a richer structure than superdense time requires, which may make them particularly attractive
for models that have continuous dynamics. It is likely that some new simulation capabilities are
inherent in the hyper-reals, which are not properly captured by reducing them to a minimalist
structure satisfying P1–P5.

Nonetheless, for many computations, we can treat these hyper-real time bases as being encoded
in the set R × Z × Z. The time (t , r ,k ) in this set maps to the hyper-real t + rϵ and integer k .
Ordering of triples is lexicographic. Forward motion in time is modeled by

(t , r ,k ) + (Δt ,Δr ,Δk ) =

{
(t + Δt , r + Δr ,Δk ) Δt � 0 or Δr � 0
(t , r ,k + Δk ) otherwise,

and the length of an interval is

�[(t1, r1,k1), (t2, r2,k2)) =

{
(t2 − t1, r2 − r1,k2) (t2, r2) � (t1, r1)
(0, 0,k2 − k1) (t2, r2) = (t1, r1).

Proofs that these satisfy P1–P5 with (0, 0, 0) as zero and S ((t , r ,k )) = (t , r ,k + 1) are essentially
identical to those for the superdense time in Section 4.1.

4.3 A Novel Form of Time

The first example of superdense time given in Section 2 can be restated in terms of +, �, and S .
Time pairs are from the set R × Z. Advancement through time and the lengths of intervals are
defined by

(t1,k1) + (t2,k2) = (t1 + t2,k1 + k2)

�[(t1,k1), (t2,k2)) = (t2 − t1,k2 − k1).

Zero for this time base is (0, 0) and S ((t , c )) = (t , c + 1). Properties P1–P5 follow immediately from
their satisfaction by R and Z, respectively. This model of time also satisfies the requirements given
by Maler, Manna, and Pnueli [14].
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4.4 Another Novel Form of Time

Time points are drawn from the set of tuples
⋃∞

k=0 R
k × Z. Each time point has the form

(t1, t2, . . . , tk ,n), and these are ordered first by the number of elements k and then in lexicographic
order. So, for example, (π , 1/2, 3) > (π/2, 1/2, 3) > (π , 2) > (1, 3) > (4) > (1). Addition is done by
adding elements that exist in both tuples and then appending new elements. Specifically,

(t1, . . . , tn ,a) + (h1, . . . ,hm ,b) =

{
(t1 + h1, . . . , tm + hm , tm+1, . . . , tn ,a + b) m < n
(t1 + h1, . . . , tn + hn ,hn+1, . . . ,hm ,a + b) m ≥ n.

The length of an interval is

�[(t1, . . . , tn ,a), (h1, . . . ,hm ,b)) = (h1 − t1, . . . ,hn − tn ,hn+1, . . . ,hm ,b − a),

which is well-defined because the interval exists only if n ≤ m. The zero element is (0) and
S ((t1, . . . , tk ,a)) = (t1, . . . , tk ,a + 1). Properties P1–P3 and P5 are trivially true, as is P4.1. To con-
firm P4.2,

(t1, . . . , tn ,a) + �[(t1, . . . , tn ,a),(h1, . . . ,hm ,b))

= (t1, . . . , tn ,a) + (h1 − t1, . . . ,hn − tn ,hn+1, . . . ,hn ,b − a)

= (h1, . . . ,hn ,hn+1, . . . ,hn ,b).

This form of superdense time or something similar may be useful to encode multi-scale times-
tamps, such as proposed by Goldy et al. [6]. In such a scheme, each element of the tuple would
represent a distinct time scale (e.g., seconds, minutes, hours, days). How to do so may be an inter-
esting question for future research.

5 CONCLUSIONS

The proposed structure for superdense time is a starting point for understanding how time is
used in simulation models, and the value of an axiomatic approach is displayed in Section 4 where
superdense schemes proposed in dissimilar contexts and, in some cases, decades apart, nonetheless
share an overarching form. Future work in this direction will almost certainly refine or replace
our selection criteria, which is that the structure of time be sufficient for defining a state transition
function. It is plausible, even likely, that P1–P5 are stronger than needed, and so weaker criteria can
be found that are necessary and sufficient. Otherwise, a proof that P1–P5 are necessary remains
to be discovered.

Models that have continuous dynamics were not considered in our analysis. A possible method
for including them could be to treat the state s as a location in a hybrid automaton; see, e.g.,
Ref. [23]. The lifetime function would give the first moment that a transition condition is satisfied;
the function ρ then effects the transition to a new location. An exploration of this problem is a topic
for future research. Similarly, we have not attempted to account for computational techniques that
exploit the possibility of obtaining a correct result while executing events out of timestamp order,
e.g., as described by Quaglia and Baldoni [22].

The form of time discussed in Section 4.1 has a potentially useful interpretation in the context
of agent-based models. The integer part of time becomes the order in which agents are updated
at a given real time t . Viewed in terms of Equation (3), the lifetime of an agent’s state is the real
step size h and the position k of that agent in the update order. By encoding the update order for
agents into the time base, it may be possible to realize agent-based models, as expressed with tools
like MASON and Repast [13, 18], within a discrete event simulation. Very sophisticated parallel
discrete event simulation tools could enable gigantic MASON or Repast models. The encoding of
agent order in time also offers an appealing foundation for positioning agent-based models within
general systems theory; see, e.g., the proposal by Müller [17].
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APPENDIX

A PROOFS OF PROPOSITIONS IN SECTION 3

Proposition 1. The number 0 is unique.

Proof. Suppose there exists h � 0 such that h + t = t + h = t . Then, h + 0 = 0 + h = 0 and h +
0 = 0 + h = h, contradicting our assertion that h � 0. �

Proposition 2. The successor S (t ) of t is unique.

Proof. Let a > t , a � S (t ) be such that [t ,a) contains only t . Then, �[t ,a) = �[t , S (t ))
and t + �[t ,a) = t + �[t , S (t )). Using P4.2, we conclude a = S (t ), contradicting our assertion
that a � S (t ). �

Proposition 3. �[t0, tf ) = 0 if, and only if, t0 = tf .

Proof. Suppose t0 = tf = t . From P4.2, t + �[t , t ) = t . Hence, �[t , t ) = 0 because 0 is unique.
Now suppose �[t0, tf ) = 0, but t0 < tf . Again, from P4.2, t0 + �[t0, tf ) = tf � t0 contradicting the
assertion �[t0, tf ) = 0. �

Proposition 4. If b ≥ 0, c ≥ 0, and a + b = a + c , then b = c .

Proof. Suppose b � c . Time is a totally ordered set and so, without loss of generality, let b > c .
P2 requires that a + b > a + c , and so a + b � a + c . �

Proposition 5. �[t0, tf ) = �[t0, tm ) + �[tm , tf ).

Proof. The following are true.

t0 + �[t0, tm ) = tm ,

t0 + �[t0, tf ) = tf ,

tm + �[tm , tf ) = (t0 + �[t0, tm )) + �[tm , tf ) = tf ,

(t0 + �[t0, tm )) + �[tm , tf ) = t0 + (�[t0, tm ) + �[tm , tf )) = tf , and so

t0 + (�[t0, tm ) + �[tm , tf )) = t0 + �[t0, tf ).

The proposition follows from P4.1 and Proposition 4. �

Proposition 6. �[t , t + h) = h.

Proof. Let t + �[t , t + h) = t ′. Using P4.2, t + �[t , t + h) = t + h; hence, t + h = t ′, and the
proposition follows immediately. �

Proposition 7. e + �[t , ta ) = ta(s ) if and only if t + �[e, ta(s )) = ta .

Proof. Suppose e + �[t , ta ) = ta(s ). Using Proposition 6

t + �[e, ta(s )) = t + �[e, e + �[t , ta ))

= t + �[t , ta )

= ta .

In the other direction,

e + �[t , ta ) = e + �[t , t + �[e, ta(s )))

= e + �[e, ta(s ))

= ta(s ). �
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B PROOFS FOR SECTION 4.1

Proposition 8 (P1). (t ,k ) + (0, 0) = (0, 0) + (t ,k ) = (t ,k )

Proof. (t ,k ) + (0, 0) = (t ,k + 0) = (t ,k ). If t � 0, then (0, 0) + (t ,k ) = (0 + t ,k ) = (t ,k ). If t =
0, then (0, 0) + (0,k ) = (0, 0 + k ) = (0,k ). �

Proposition 9 (P2). If (t2,k2) > (t3,k3) ≥ 0, then (t1,k1) + (t2,k2) > (t1,k1) + (t3,k3).

Proof. Either t2 > t3 or t2 = t3 = t , and k2 > k3. If t2 = t3, then t1 + t2 > t1 + t3, and the propo-
sition follows. Otherwise, (t1,k1) + (t2,k2) = (t1 + t2,k2), (t1,k1) + (t2,k3) = (t1 + t2,k3), and be-
cause k2 > k3, the proposition follows. �

Proposition 10 (P3). If t2 ≥ 0 and t3 ≥ 0, then ((t1,k1) + (t2,k2)) + (t3,k3) = (t1,k1) +
((t2,k2) + (t3,k3))

Proof. Case 1: t2 = t3 = 0.

((t1,k1) + (0,k2)) + (0,k3) = (t1,k1 + k2) + (0,k3) = (t1,k1 + k2 + k3).

(t1,k1) + ((0,k2) + (0,k3)) = (t1,k1) + (0,k2 + k3) = (t1,k1 + k2 + k3).

Case 2: t2 = 0 and t3 > 0.

((t1,k1) + (0,k2)) + (t3,k3) = (t1,k1 + k2) + (t3,k3) = (t1 + t3,k3).

(t1,k1) + ((0,k2) + (t3,k3)) = (t1,k1) + (t3,k3) = (t1 + t3,k3).

Case 3: t2 > 0 and t3 = 0.

((t1,k1) + (t2,k2)) + (0,k3) = (t1 + t2,k2) + (0,k3) = (t1 + t2,k2 + k3).

(t1,k1) + ((t2,k2) + (0,k3)) = (t1,k1) + (t2,k2 + k3) = (t1 + t2,k2 + k3).

Case 4: t2 > 0 and t3 > 0.

((t1,k1) + (t2,k2)) + (t3,k3) = (t1 + t2,k2) + (t3,k3) = (t1 + t2 + t3,k3).

(t1,k1) + ((t2,k2) + (t3,k3)) = (t1,k1) + (t2 + t3,k3) = (t1 + t2 + t3,k3). �

The above proof does not work if t2 or t3 are less than zero, illustrating that + only advances
forward in time. For example, let t2 = −t3; then,

((t1,k1) + (−t3,k2)) + (t3,k3) = (t1 − t3,k2) + (t3,k3) = (t1,k3), and

(t1,k1) + ((−t3,k2) + (t3,k3)) = (t1,k1) + (0,k3) = (t1,k1 + k3).

Proposition 11 (P4). Let (t1,k1) > (t2,k2). There exists (h,k ) such that (t1,k1) + (h,k ) = (t2,k2).

Proof. If t1 = t2, then (h,k ) = (0,k2 − k1) satisfies the equality. Otherwise, t1 > t2 and (h,k ) =
(t2 − t1,k2) satisfies the equality. �

Proposition 12 (P5). The interval [(t , c ), S ((t , c ))) contains exactly (t , c ).
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Proof. S ((t , c )) = (t , c + 1). Let (t ′,k ) ∈ [(t , c ), (t , c + 1)). Then, t ′ = t and k ∈ [c, c + 1). Be-
cause k , c are integers, we must have k = c , and so (t ′,k ) = (t , c ). �
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