Controlled Asynchronous GVT: Accelerating Parallel Discrete
Event Simulation on Many-Core Clusters

Ali Eker
Binghamton University
Binghamton, USA
aeker1@binghamton.edu

Kenneth Chiu
Binghamton University
Binghamton, USA
kchiu@binghamton.edu

ABSTRACT

In this paper, we investigate the performance of Parallel Discrete
Event Simulation (PDES) on a cluster of many-core Intel KNL pro-
cessors. Specifically, we analyze the impact of different Global Vir-
tual Time (GVT) algorithms in this environment and contribute
three significant results. First, we show that it is essential to isolate
the thread performing MPI communications from the task of pro-
cessing simulation events, otherwise the simulation is significantly
imbalanced and performs poorly. This applies to both synchronous
and asynchronous GVT algorithms. Second, we demonstrate that
synchronous GVT algorithm based on barrier synchronization is a
better choice for communication-dominated models, while asyn-
chronous GVT based on Mattern’s algorithm performs better for
computation-dominated scenarios. Third, we propose Controlled
Asynchronous GVT (CA-GVT) algorithm that selectively adds syn-
chronization to Mattern-style GVT based on simulation conditions.
We demonstrate that CA-GVT outperforms both barrier and Mat-
tern’s GVT and achieves about 8% performance improvement on
mixed computation-communication models. This is a reasonable
improvement for a simple modification to a GVT algorithm.

KEYWORDS

Parallel Discrete Event Simulation, Intel Xeon Phi, Knights Landing,
Manycore Architectures, Performance, Global Virtual Time

ACM Reference Format:

Ali Eker, Barry Williams, Kenneth Chiu, and Dmitry Ponomarev. 2019. Con-
trolled Asynchronous GVT: Accelerating Parallel Discrete Event Simulation
on Many-Core Clusters. In 48th International Conference on Parallel Process-
ing (ICPP 2019), August 5-8, 2019, Kyoto, Japan. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3337821.3337927

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6295-5/19/08....$15.00
https://doi.org/10.1145/3337821.3337927

Barry Williams
Binghamton University
Binghamton, USA
bwilli33@binghamton.edu

Dmitry Ponomarev
Binghamton University
Binghamton, USA
dponomar@binghamton.edu

1 INTRODUCTION

The recent proliferation of many-core processors offers the promise
of achieving scalable high-performance parallel discrete event sim-
ulation (PDES) on commodity systems. The emergence of Intel’s
64-core Xeon Phi processors was recently followed by the announce-
ments from both Intel and AMD featuring the increase in the num-
ber of cores of their mainstream processors to 48 (Intel 48-core
Cascade Lake Xeon) and 64 (AMD EPYC Rome) respectively. With
these many-core systems soon becoming common place, recent
research efforts examined performance aspects of PDES in these
environments [7, 9, 17, 31, 33]. However, these previous efforts were
confined to a single-node system.

In this paper, we extend these studies to clusters of many-core
CPUs, and in particular investigate the impact of Global Virtual
Time (GVT) algorithms on PDES performance in these environ-
ments. GVT algorithms in optimistic simulation typically come in
two flavors: 1) synchronous GVT, where simulation threads use bar-
rier synchronization at GVT intervals; and 2) asynchronous GVT,
where threads continue simulation while GVT computation rounds
occur in the background. The asynchronous algorithms are rooted
in Mattern’s algorithm for distributed environments [23]. Recent
work proposed further optimizations, such as wait-free GVT [25],
but those are designed for shared memory architectures. Since
this paper targets distributed cluster environment, we consider a
slightly modified Mattern’s algorithm as our asynchronous GVT.

The results of this study lead to several key conclusions. First,
we establish that when MPI-based cross-node communication is
part of simulation, this communication must be handled efficiently.
When every simulation thread is also processing MPI messages, per-
formance degrades rapidly even for small percentage of remotely
generated events, because threaded MPI performance is inherently
limited by the lock contention among threads, as is well established
in high-performance community [2]. To address these locking limi-
tations, a solution developed in [31] dedicates a single thread within
each core to handle all MPI messages, both for sending and receiv-
ing. In the original work of [31], this MPI thread is also tasked with
normal event processing, similar to other threads. The study of [31]
was performed on nodes with small number of cores, therefore
dedicating one of those cores entirely to MPI messages may con-
strain the event processing capabilities of the node significantly.
However, we observed that when the MPI thread is also performing

https://doi.org/10.1145/3337821.3337927
https://doi.org/10.1145/3337821.3337927

ICPP 2019, August 5-8, 2019, Kyoto, Japan

event processing, the events processed by this thread are delayed,
creating a virtual time disparity between the simulation progress
among threads and causing significant increase in rollbacks and
drop in simulation efficiency. For many-core systems with an abun-
dance of cores available on each node, we propose to relieve MPI
threads of the responsibility to handle simulation events, i.e., these
threads should be exclusively dedicated to MPI processing - one
for each node. We show that such a model with an isolated MPI
thread significantly outperforms the model where MPI threads are
also doing event processing. This is true for both synchronous and
asynchronous GVT algorithms, and the disparity increases with
the number of simulation threads. This is the first contribution of
this paper.

Our second observation relates to the comparison of synchro-
nous and asynchronous GVT algorithms, assuming a model with a
dedicated MPI thread at each node. We show that asynchronous
GVT based on Mattern’s algorithm performs better for models
that are dominated by computation, rather than communication.
We control this ratio by varying the event processing granularity
(EPG), the computational cost of processing an event. Computation-
dominated models typically result in high simulation efficiency and
smaller number of rollbacks, thus making the asynchronous style
thread progress more beneficial without suffering the adverse ef-
fects of rollbacks. At the same time, for communication-dominated
models, we demonstrate that a synchronous barrier-based GVT
algorithm often produces better performance, as complete thread
synchronization at GVT intervals limits the disparity in threads’
virtual time and reduces the amount of rollbacks. We also perform
these comparisons with imbalanced models, and observe similar
results.

Motivated by these observations, we propose a modification to
asynchronous GVT that imposes additional synchronization when
it is determined to be beneficial for performance. This scheme,
which we call Controlled Asynchronous GVT (CA-GVT), performs
close to synchronous GVT in communication-driven scenarios, and
close to asynchronous GVT in computation-driven scenarios. The
decision to impose additional synchronization in CA-GVT is driven
by the observation of the simulation efficiency. The efficiency read-
ings below a threshold (due to high rollbacks) trigger synchroniza-
tion. We show that for models that have a mix of computation and
communication phases, CA-GVT shows a robust 7-8% performance
improvement compared to either a synchronous or asynchronous
GVT. This is a reasonable gain for a simple modification to a GVT
algorithm.

The rest of the paper is organized as follows. Section 2 overviews
our evaluation and experimentation methodology, including ROSS
simulator and the details of our hardware architecture. Section 3
reviews the GVT algorithms considered for this study. Section 4
presents the results of using existing GVT algorithms and compares
their performance under different simulation models. Section 5
describes CA-GVT algorithm and Section 6 presents its results.
Section 7 reviews the related work and we conclude in Section 8.

2 BACKGROUND AND EXPERIMENTAL SETUP

In this section, we review PDES basics and describe our evaluation
methodology and infrastructure.

Ali Eker, Barry Williams, Kenneth Chiu, and Dmitry Ponomarev

Overview of PDES

A discrete event simulation (DES) consists of multiple logical pro-
cesses (LP), where each LP represents a physical entity in the simu-
lated system. Such a simulation may be distributed over multiple
cores or nodes, in a parallel discrete event simulation (PDES). LPs
communicate via time stamped event messages to simulate the
interactions between physical entities of the real system [10, 19].
LPs advance in the virtual simulation time by processing the time
stamped events received from other LPs. Each event processing
leads to generating and sending a new event for any of the other
LPs. LPs maintain a Local Virtual Time (LVT) to indicate their virtual
position in the simulation. The time stamp of the last processed
event determines the LVT of an LP.

Event processing should preserve the causality order between
event messages based on their time stamp. For instance, two con-
secutive event messages sent by an LP should be processed by the
receiver LP in the same order. Approaches to ensure this can broadly
be divided into two categories: (1) a conservative approach where
a global synchronization of LPs and acknowledgment messages are
used to guarantee that out-of-order event processing never occurs,
and (2) an optimistic concurrency based approach. In the latter, each
LP executes events in received order without checking the causality
order. Therefore, there is a possibility for processing an event with
a time stamp less than the processing LP’s LVT. Such events violate
the causality order and are called straggler events. Straggler events
cause an LP to roll its state back to a point in virtual time to just be-
fore the straggler’s virtual time. During the rollback, an LP reverts
all the messages it sent optimistically and then process the straggler
event. After the rollback, an LP can safely process events in the
order of their time stamp. Optimistic simulation allows straggler
events and maintains the causality order by rolling back the LPs to
a state before the straggler event, and then replaying the simulation
forward.

Rollbacks in an optimistic simulation can be performed by either
checkpointing the entire LP state, or by using reverse computation.
In either case, some state or event history must be maintained in
order to administer rollback mechanism. Event histories grow over
time as LPs generate more messages. Without some way to trim
these histories, eventually all memory would be consumed. This
trimming is called fossil collection, and relies on computing a time
T such that it can be guaranteed that no rollbacks to before time T
will ever occur in the future. In other words, an LP must not receive
a straggler message with a time stamp less than T so that it can free
the event histories prior to T. T can be determined by computing
the minimum of (1) the minimum LVT among all LPs and (2) the
minimum time stamp of all in-transit messages (possibly including
straggler messages). This minimum time is called the global virtual
time (GVT).

Computing the GVT efficiently is crucial for the scalability of
a PDES performance. Because, the frequency and correctness of
a GVT computation determines the memory footprint and con-
trols the synchrony between LPs. GVT is also needed to commit
irreversible operations and to keep track of the actual simulation
progress. GVT algorithms and their implementation details are
discussed further in Section 3.

Controlled Asynchronous GVT: Accelerating Parallel Discrete Event Simulation on Many-Core Clusters

There are three types of event messages with respect to their
destination. These are local, regional and remote messages. Local
messages are the messages sent by an LP to itself thus they do
not require access to the other cores. They do not traverse the in-
terconnect and have the fastest transmission time. Second type is
the regional messages where the destination is one of the cores
residing in the same node as the sender core. Sender and receiver
communicate through the shared memory, thus a locking mecha-
nism is needed. Slowest message type is the remote messages where
the message should be sent to a core in a different node through
network.

Experimental Setup and Metrics

We perform our experiments on a 8-node cluster of Intel KNL model
7230 processors [1, 12] connected by a 10 GBit Ethernet network.
Experiments were conducted on CentOS 7.2 using mpich-3.3 and
mpicc as the MPI and compiler versions. KNL CPUs contain 64
cores, each with four simultaneous hardware threads. The clock
frequency can be up to 1.3 GHz. KNL cores also feature branch
prediction and out-of-order execution logic. Cores are paired into
tiles, each with a 1 MB L2 cache. Our tests were conducted using
KNL processors with 96 GB of DDR4 memory and 16 GB on-package
fast RAM (L3 cache), called MCDRAM.

For our experiments, we used a modified version of ROSS sim-
ulator [5] as our PDES engine. ROSS implements the optimistic
approach to preserve the causality order. Our version is modified
to be multithreaded rather than multiprocess [18].

PHOLD benchmark is a simplistic but highly configurable model.
It initially generates and assigns the same number of starting events
per LP. Each LP randomly chooses a destination LP at every sim-
ulation iteration and sends messages to it based on the remote
message percentage specified. We modified PHOLD to generate
various models where simulation is dominated by computation or
communication overheads. Specifically, we vary the thread count,
the percentage of remotely generated events, and the event pro-
cessing granularity (EPG). The EPG represents the amount of work
required to process a single event, and is specified in units approxi-
mately equal to one FLOP per unit. Our goal is to understand the
behavior and scaling trends of the ROSS simulator on a cluster of
KNL nodes for different GVT algorithms.

We report the performance results in terms of committed event
rate and efficiency. Efficiency of the simulation system is calculated
by taking the ratio of the committed events (number of events
which are not reverted due to a rollback) over total number of
events generated in the system. Committed event rate shows the
total number of committed events per second. As we increase the
number nodes, we maintain the number of starting events per
node, thus proportionately increasing the total number of events
generated by the simulator. The number of LPs per node and the
number of starting events per LP stay the same as we increase the
number of nodes.

We assigned 128 LPs for each hardware thread and 1 starting
event for each LP. We load the KNL nodes with 60 threads per node
(one thread per core, leaving some spare cores for the activities
of operating system without disrupting the simulation). Note that
because each event generates exactly one other event, there is a

ICPP 2019, August 5-8, 2019, Kyoto, Japan

fixed number of events in the total simulation at any instant in
time.

If the underlying system is capable of efficiently keeping up
with the increasing load without incurring additional delays, we
can expect the committed event rate to also show improvements
commensurate with the increase in the number of nodes. This is
known as weak scaling [4].

3 GLOBAL VIRTUAL TIME (GVT)

In an optimistic simulator, the state of the LPs must be saved con-
tinuously throughout the simulation. This required because con-
ceptually a rollback could target any of the previous states of an LP.
Intuitively, these saved states grow larger as simulation progresses,
thus creating memory exhaustion and lower cache utilization. In
order to prevent this, the Global Virtual Time (GVT) is periodically
computed to determine the earliest time a rollback could target so
that LPs’ states prior to GVT could be freed. GVT is essentially the
greatest lower bound on the local virtual time of all LPs and the
time stamp of all in-transit messages.

Synchronous GVT

Synchronous GVT algorithms essentially follow the “stop-synchronize-

and-go” model where each LP periodically stop processing, syn-
chronize at a barrier, wait until all transient messages arrive and
collectively compute the new GVT value. Synchronous implemen-
tations may be inefficient when LPs arrive the barrier at different
times. The faster LPs that arrive early must wait while slower LPs
are catching up. During this idle time, none of the core simulation
tasks such as event processing is being accomplished. This cycle
repeats at each GVT round.

The synchronous GVT algorithm deployed in our many-core
cluster is composed of two levels of synchronization points. First,
all the threads in each node synchronize at a pthread barrier to let
all intra-node (regional) messages to arrive their destination cores.
Second, each simulation instance (one per node) synchronizes at
an MPI barrier to let inter-node (remote) messages to arrive their
destination nodes. All the LPs in the system are blocked until there
is no more in-transit messages between any pair of LPs. In other
words, LPs cannot do useful simulation work until there are no
more regional or remote messages still in transmission.

A diagram of the barrier GVT computation is shown in Figure 1.
Horizontal lines depict the wall-clock time of four LPs and arrows
show the event messages sent between LPs. Once the GVT com-
putation begins, all processing elements are blocked until all the
messages in the system have been received. The black circles depict
the point when an LP calls the pthread barrier and becomes idle.
Dashed lines show the time elapsed while an LP is blocked during
the idle time in the barrier call. Idle time lasts until all the LPs call
the barrier and there is no more in-transit messages in the system.
No new event processing or event generation occurs during the
dashed lines.

The pseudo-code for the barrier-based GVT computation is
shown in Algorithm 1. In this algorithm, LPs first read the messages
sent to them (line 3) and then compute the difference between the
number of messages they sent and received. This difference is held

ICPP 2019, August 5-8, 2019, Kyoto, Japan

in msgCount (line 4). The LPs then call pthread barrier and syn-
chronizes in line 5. PthreadBarrierSum is a map-reduce operation
between shared memory threads which takes msgCount of each
LP as an input and reduces them into transitNode as an output us-
ing the sum operation. transitNode shows the number of in-transit
messages in a node. Then, the LPs which are responsible for the
MPI communication between nodes call MPI barrier and synchro-
nize in line 7. At this point other threads wait the MPI thread in
line 12 until it completes the MPI operation. MpiBarrierSum is a
map-reduce operation between nodes which takes transitNode of
the participating LPs as an input and reduces them into transitTo-
tal as an output using the sum operation. transitTotal shows the
total number of in-transit messages in the system. This process is
repeated in a tight loop until transitTotal is checked as 0 by each LP
in line 8. When the LPs break out of the loop, they synchronize one
last time to reduce their LVTs into GVT using min operation. At
this point, there are no in-flight messages, thus a new GVT value
can be computed as the minimum LVT among all of the LPs. Once
all LPs get the new GVT, they fossil collect and event processing
continues until the next GVT round.

GVT interval determines the gap between two consecutive GVT
rounds. LPs loop over the core simulation cycle the predefined GVT
interval times and participate the simulation tasks at each iteration.
When the GVT interval counter reaches the GVT interval constant,
GVT round is initiated. Thus, GVT interval is based on the number
of events processed, not the virtual time elapsed.

Barrier All In-transit
Synchronization Messages Received
v

Wall Clock Time

Figure 1: Snapshot of a Barrier GVT Computation Cycle

Algorithm 1 Barrier GVT Algorithm

1: procedure CoMPUTEGV T-SYNCHRONOUSLY

2 while 1 do > Loop until all in-transient messages received
3 ReadMessages()

4: msgCount = LP.MsgSent — LP.MsgReceived

5: transitNode = PthreadBarrierSum(msgCount)

6: if LP is responsible for MPI then

7 transitTotal = MpiBarrierSum(transitNode)

8 if transitTotal = 0 then

9: Break

10: nodeGVT = PthreadBarrierMin(LP.LVT)
11: if LP is responsible for MPI then

12: GVT = MpiBarrierMin(nodeGVT)

13: PE.GVT « GVT

14: fossilCollect()

> All in-transit messages received

Asynchronous GVT

In contrast, asynchronous GVT algorithms proceed “in-line” with
the core simulation tasks which yields event receiving, processing
and sending to be interleaved with the GVT computation. GVT is
computed at the background, asynchronously however, a higher

Ali Eker, Barry Williams, Kenneth Chiu, and Dmitry Ponomarev

computational overhead may occur due to the management of the
LPs’ participation in the GVT process. We used Mattern’s asynchro-
nous GVT algorithm [23] which is based on circulating a control
message among LPs to accumulate the message counts, the min-
imum LVT and the minimum time stamp as a basis for our GVT
implementation.

For this study, we adapted Mattern’s distributed GVT algorithm
to make it more suitable for a cluster of many-core architectures.
Two kinds of control messages are utilized: One is a shared memory
structure which is accessed by each LP residing on the same node.
This accumulates the in-transit messages in a node. When each LP
accumulates its message count at the shared control message, the
second kind of control message is spawned. This control message is
an MPI data type which circulates in a ring of simulation instances
to accumulate in-transit messages between nodes. When inter-node
control message finishes its circulation, new GVT can be computed
by taking the minimum of (A) the minimum LVT among all the LPs,
(B) the minimum time-stamped non processed event in the system.
A and B are also accumulated at the control message so that each
LP has the information to compute the same GVT locally.

Each LP has two phases, white and red. Events are also colored
as white and red based on sending LP’s color. A GVT round is
initiated the same way as in the synchronous algorithm based on
the GVT interval. When a GVT round is initiated, each LP transits
from their normal white phase to the red phase.

During white phase, each LP counts the number of white mes-
sages they send and receive. The difference of these is accumulated
into the control message. When the total accumulation is checked
as 0, there are no more in-transit white messages in the system.
During red phase LPs record the time stamps of the red messages
they send. An LP computes the minimum of these time stamps and
accumulates it into control message together with its LVT after it
checks the white message counter in control message as 0. GVT
can be computed by taking the minimum of (A) minimum LVT and
(B) minimum time stamped red message accumulated in the control
message.

A timing diagram of the asynchronous algorithm is shown in
Figure 2. Horizontal lines show the wall-clock time line of four LPs.
For clarity, assume that all LPs change their phases and check con-
trol message in order (this assumption is not necessary in practice,
but it simplifies the explanation). Messages are shown as arrows.
The sending (+1) and receiving (-1) white messages are counted
locally by each LP as shown.

GVT Round Starts GVT Round Done

e Py
\ 4

+1 S, GVTiS 5
", here :

\.—1 2 o
: @ @ :
GVTisready *
L2

White ’ Red " White

*— =L

Figure 2: Snapshot of a Mattern’s GVT computation

After the transition to the red phase (shown as the first tilted
dashed line), the message counts start to be accumulated at the

Controlled Asynchronous GVT: Accelerating Parallel Discrete Event Simulation on Many-Core Clusters

control message. The first LP which accesses the control message
sees it as 1. This is shown in the form of a grey circle on the first
line. Then, the second LP accesses the control message and it also
checks it as 1 since it has no event counts to accumulate. Then,
the third LP with the message count of -2 accesses the control
message and updates it from +1 to -1. This is depicted as another
grey circle, implying that there are still in-transit messages in the
system. Finally, the fourth LP arrives and accumulates its +1 event
count with the control message and checks it as 0. At this point
there are no in-transit white messages in the system so LPs can start
accumulating their LVT and minimum time-stamped red message.
This is shown as a black circle at the bottom line.

The LPs accumulate their minimum red message timestamps and
LVTs into the control structure as they pass the black circles. The
last LP that reaches the black circle computes the GVT by taking the
minimum of A and B. At this point, the control message holds the
LVT of the fourth LP since it has the smallest timestamp. However,
the red event from the first LP has an even smaller timestamp,
which possibly makes it a transient event. Therefore, the GVT is
set to the timestamp of that event. After that, all LPs read this new
GVT value, turn their color into white, and start counting events
again. The pseudo-code for this asynchronous GVT algorithm is
shown in Algorithm 2.

Algorithm 2 Mattern’s GVT Algorithm

1: procedure ComPUTEGVT-ASYNCHRONOUSLY
2 if LP = white then
3 LP « Red
4: LP.min_red « >
5: accumulateMsgCountersInNode()
6: if LP is responsible for MPI and All LPs are red then
7 accumulateMsgCountersAcrossNodes()
8 else > LP is red
9: if All white messages are received then
10: > CM is Control Message
11: CM.LVT « min(CM.LVT, LP.LVT)
12: CM.min_red < min(CM.min_red, LP.min_red)
13: if LP is responsible for MPI and LPs checked CM then
14: > All LPs checked white message counter as 0
15: circulateGlobal CM()
16: if CM done circulation then
17: LP «— White
18: GVT « min(CM.LVT, CM.min_red)
19: fossilCollect()
20: resetCM()

LPs start the simulation as white and turn to red as shown in
line 3 in Algorithm 2. Once an LP is red, it accumulates its message
count into the shared memory control message using accumulateMs-
gCountersInNode routine (line 5). When each LP has done that, the
message counters across nodes are accumulated by the LP respon-
sible for MPI using ccumulateMsgCountersAcrossNodes() routine
(line 7). After that point, LPs check the control message until all
the white messages are received (line 9). Unlike the synchronous
GVT, LPs are not blocked and participate the core simulation tasks
while computing the GVT at the background. Once an LP checks
the number of in-transit white messages as 0, it updates the control
message’s LVT and minimum time stamped red message (min_red)
as shown in lines 11 and 12. Control message is circulated one last
time to accumulate every LP’s LVT and min_red using circulate-
GlobalCM() (line 14). After the circulation is done, LPs turn back to
white and GVT can be computed as the control message’s LVT and

ICPP 2019, August 5-8, 2019, Kyoto, Japan

min_red (lines 16-17). Finally, LPs fossil collect, reset the control
message and keep counting their white messages until the next
GVT round.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the results of our experiments in two
parts. First, we show the effects of offloading the MPI communica-
tion from event processing for communication and computation-
dominated scenarios. Then, we evaluate Barrier (synchronous) and
Mattern’s (asynchronous) GVT algorithms under the computation
and communication-dominated scenarios. All the experiments are
performed on a cluster of eight KNL nodes each running sixty
threads. We limited our evaluations to one thread per core, as over-
loading cores by executing multiple threads on them was shown to
create contention and slow down simulations [33]. This is especially
true in a cluster environment.

We modified the classical PHOLD benchmark [11] to create vari-
ous simulation models. Specifically, for the computation-dominated
scenario, we used 10% regional messages, 1% remote messages and
10K EPG, and for the communication-dominated scenarios we as-
sumed 90% regional messages, 10% remote messages and 5K EPG.
All graphs show the committed event rate of ROSS simulator on
the y-axis and the number of KNL nodes on the x-axis.

The GVT interval of 50 is chosen for the experiments in the next
subsection and 25 is chosen for computation and communication-
dominated scenerios. These numbers are chosen because they re-
sulted in the best overall performance.

Dedicated MPI Thread

In order to alleviate the scalability issues created by MPI threads
that also perform event processing, we first propose to isolate all
MPI calls to a dedicated thread, which does not perform normal
event processing. Remaining threads are called worker threads and
they perform basic simulation functions such as event processing,
sending and receiving of the event messages.

Worker threads write their remote messages into a global shared
data structure to be read by the MPI thread which sends them over
the network. Similarly, worker threads receive remote messages by
reading another global shared data structure which is populated by
the MPI thread upon receiving an MPI message.

The dedicated MPI thread is also responsible for MPI tasks in-
volved in GVT functions. In Mattern’s algorithm, the control mes-
sage is circulated between nodes using point-to-point MPI commu-
nication routines. In Barrier GVT algorithm, MPI collective com-
munication routines are utilized for synchronization and reduction
operations as explained in Section 3. There is only one dedicated
MPI thread per node which manages all MPI communications in
ROSS.

As seen from the results, using a dedicated MPI thread to isolate
MPI communication from event processing is critical for scalability
and it improves performance of both GVT algorithms at every node
count. For example, in Figure 3 which presents a computation-
dominated scenario, Mattern and Barrier GVT algorithms with a
dedicated MPI thread outperform their standard implementations
by 51% and 17% respectively when the node count is eight. Similarly,
in a communication-dominated scenario presented in Figure 4,

ICPP 2019, August 5-8, 2019, Kyoto, Japan

1.8 x108 _
Mattern: Normal N
1.6 { ™= Barrier: Normal §
N\ Mattern: Dedicated MPI Thread N \
o 1.4 | ™= Barrier: Dedicated MPI Thread §
212 \ \
€ \
210 §
\
© 0.8 N\ §
o6 \ \ §
£ \ \
o4 § § § ,
0.0 § § §

3 4 5 6 7
Number of Nodes

=
N
[}

Figure 3: Dedicated MPI Thread for Computation-Dominated Work-
load

1.0 x10°
: Mattern: Normal
s Barrier: Normal
N\ Mattern: Dedicated MPI Thread
o 0.8 = Barrier: Dedicated MPI Thread
g
;Cj 0.6
>
w
3 \
g N\
Z 0.4 §
: \
S \
8 \
21 AN N N RN
\ \ \ N\ \ \
\ \ \ \ \ \ \
W Nl N N N N N A
1 2 3 4 5 6 7 8

Number of Nodes

Figure 4: Dedicated MPI Thread for Communication-Dominated
Workload

performance of Mattern and Barrier GVT increases 14.59X and
4.29X respectively.

Performance benefits of the dedicated MPI thread increase sig-
nificantly in a communication-dominated scenario, since MPI com-
munication impacts the performance more in a communication-
dominated case compared to a computation-dominated and the
dedicated MPI thread plays a more important role in the simula-
tion.

A dedicated MPI thread helps to improve performance of both
GVT algorithms for different reasons. The asynchronous nature of
Mattern’s algorithm allows any LP with a higher workload to fall
behind in time, thus creating disparity between LPs and impacting
simulation efficiency. Without a dedicated MPI thread, at least one
of the worker threads also needs to assume MPI functions, thus
becoming a bottleneck. This thread then sends regional or remote
messages which have a higher chance to cause a rollback. Offloading
the MPI communication to a dedicated thread reduces this disparity
between LPs and increases efficiency. Efficiency of Mattern’s GVT
algorithm increases from 88.75% to 92.11% using eight nodes.

On the other hand, Barrier GVT algorithm’s main overhead is
idle threads blocked at the barrier during synchronization. Faster
LPs which arrive at the barrier earlier waste more time waiting for
slower LPs. Efficiency is not impacted significantly, because threads

Ali Eker, Barry Williams, Kenneth Chiu, and Dmitry Ponomarev

are synchronized and the MPI thread with higher workload is not
allowed to fall behind. For example, the efficiency of Barrier GVT
decreases from 91.53% to 91.17% with a dedicated MPI thread on
eight nodes. Performance is still improved by a dedicated MPI thread
because remote messages are sent more efficiently. Intuitively, when
the MPI thread does not need to process, send or receive messages,
it performs MPI functions more frequently thus resulting in faster
inter-node communication and faster simulation. For example, the
normal Barrier implementation results in 16.43 seconds wall-clock
run time for simulation to complete while the dedicated MPI thread
results in 11.53 seconds although two implementations’ committed
event numbers are same.

In the following subsections, we only present the results of sim-
ulations with a dedicated MPI thread. In the next subsection we
present the results for a computation-dominated scenario and ana-
lyze why Mattern’s GVT algorithm performs better than Barrier
GVT.

Computation-Dominated Scenario

We created a computation-dominated scenario by using a coarse
event processing granularity to tilt the simulation from communi-
cation overheads towards event processing. As seen from Figure 5,
Mattern’s asynchronous GVT algorithm performs better than Barrier
GVT implementation when computation dominates over communi-
cation. Mattern’s GVT is 27.9% faster than Barrier GVT on eight
nodes.

x10°

Mattern
=== Barrier

2.00

HoRoe
N O N
W o w

o

N

u
L]

Committed Event Rate
o o -
N u (=}
a o =)
L |
[]
[|
[|
L]]
[| [|
L[

1 2 3 4 5 6 7
Number of Nodes

Figure 5: Performance Comparison of Mattern and Barrier for
Computation-Dominated Workloads

This performance trend in cases with high event processing
granularity is due to asynchronous nature of Mattern’s algorithm.
Mattern’s GVT is faster since it does not require any synchroniza-
tion and allows LPs to advance optimistically. The periodic stopping
of Barrier GVT detrimentally impacts the performance since, with
high EPG, threads may be blocked for a proportionally longer period
of time at the barrier while waiting for other threads to complete.
For example, when the EPG value is increased from 10K to 40K
the time elapsed on the Barrier GVT function increases from 9.52
seconds to 12.08 seconds.

Communication-Dominated Scenario

In this section, we created communication-dominated scenarios
by setting high remote and regional message percentages and low

Controlled Asynchronous GVT: Accelerating Parallel Discrete Event Simulation on Many-Core Clusters

event processing granularity. LPs spend more time for message
transmission than event processing thus simulation suffers from a
communication load rather than the EPG delay. We observe that the
inter node MPI communication is a major bottleneck for scalability
when simulation model is dominated by communication over compu-
tation. Fine event processing granularity creates a communication-
dominated scenario where remote events produce more rollbacks,
lower efficiency and lower event commit rate.

We observe that the heavier communication load degrades the
overall performance more than the computation delays for both
algorithms. For example, when communication dominates over
computation, performance decreases by 44.3% and 18.4% for Mat-
tern and Barrier GVT algorithms respectively. The performance
drop of Matter’s GVT can be credited to inter-node communication
bottleneck. The performance degradation expends as slower com-
munication causes more rollbacks, especially with Mattern’s GVT
algorithm. For example, the number of rollbacks increases 6.4X
from 2646768 to 16867624 and the efficiency decreases from 92.08%
to 64.24% when communication dominates over computation using
eight nodes. Because, the work load on the MPI thread grows which
further increases the impact of the MPI bottleneck.

For Barrier GVT algorithm, the main reason of performance
drop is not the inefficiency but a slower simulation progress. For
example wall-clock run time of the simulation increases from 21.05
seconds to 25.64 seconds when communication dominates over
computation. Because the LPs wait longer at barrier calls to allow
heavier message load to arrive its destination. The time elapsed
on the Barrier GVT function increases from 8.92 seconds to 31.38
seconds.

As seen from Figure 6, Barrier GVT outperforms Matter’s GVT
algorithm by 14.5% using eight nodes. The periodic synchronization
of Barrier GVT reduces the possibility of a straggler message be-
cause LPs line up at every GVT round and wait for all the in-transit
messages to arrive. On the other hand, Mattern’s GVT requires no
synchronization so LPs have more chances to fall behind because of
the heavier communication load of the communication-dominated
model. For example, the efficiency of Barrier GVT is 94.2% while
it is 64.3% for Mattern’s GVT algorithm. Also, the virtual time dis-
parity between LPs widens for Mattern’s GVT algorithms when
communication dominates over computation. We computed the
disparity by calculating the standard deviation among LVTs at each
GVT round. We then summed each round’s disparity and divided
it by the number of GVT rounds to compute an average standard
deviation of the simulation system. This number is 0.31 for Barrier
GVT while it is 0.43 for Mattern’s GVT algorithm. As a result, we
conclude that when communication dominates over event processing,
Barrier GVT outperforms Matter’s GVT algorithm significantly.

5 CONTROLLED ASYNCHRONOUS GVT

In this subsection, we present Controlled Asynchronous GVT (CA-
GVT), a new GVT algorithm that adaptively adds synchrony to
Mattern’s algorithm based on the simulation progress to avoid
performance problems associated with rollbacks. Specifically, we
periodically keep track of the number of rollbacks over total event
messages, and if this number exceeds a predetermined threshold,
the LPs synchronize during the GVT round. As shown by Algorithm

ICPP 2019, August 5-8, 2019, Kyoto, Japan

6
1.2 x10

Mattern
== Barrier

1.0

_
111
0.6
“ Mall
0.2 I

1 2 3 a4 5 6 7 8
Number of Nodes

Committed Event Rate
»

Figure 6: Performance Comparison of Mattern and Barrier for the
Communication-Dominated Scenario

3, three synchronization points are added: one to the white phase
of Mattern’s algorithm (line 4), one to the red phase (line 14), and
one after the fossil collection (line 30). At the end of each round,
efficiency is computed based on the events committed so far (line
31) and next round’s GVT is either computed asynchronously or
synchronously.

CA-GVT performs asynchronously when efficiency is high and
allows more optimistic processing (without barrier stalls). On the
other hand, CA-GVT performs synchronously when efficiency is
low due to the virtual time disparity between LPs, which happens
in communication-dominated scenarios with significant percentage
of remote events. This synchronization increases efficiency as it
aligns the progress of LPs, thus resulting in significant performance
increase compared to pure asynchronous GVT implementation
under a communication-dominated model.

Algorithm 3 Controlled Asynchronous GVT Algorithm

1: procedure CompuTEGVT
2 if LP = white then
3 if SyncFlag = True then
4: barrier()
5 LP « Red
6 LP.min_red « o
7 accumulateMsgCountersInNode()
8: if LP is responsible for MPI and All LPs are red then
9: accumulateMsgCountersAcrossNodes()
10: else > LP is red
11: if All white messages are received then
12: > CM is Control Message
13: if SyncFlag = True then
14: barrier()
15: CM.LVT « min(CM.LVT, LP.LVT)
16: CM.min_red «— min(CM.min_red, LP.min_red)
17: if LP is responsible for MPI and LPs checked CM then
18: > All LPs checked white message counter as 0
19: circulateGlobal CM()
20: if CM done circulation then
21: if Ef ficiency < Threshold then
22: SyncFlag « True
23: else
24: SyncFlag « False
25: LP «— White
26: GVT « min(CM.LVT, CM.min_red)
27: fossilCollect()
28: resetCM()
29: if SyncFlag = True then
30: barrier()
31: computeEfficiency()

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Figure 7 shows the timing diagram of CA-GVT. Similar to Mat-
tern’s algorithm, CA-GVT algorithm requires LPs to keep track of
messages sent and received in the white phase. In the red phase, LPs
accumulate their message counters in the control message to check
if the number of messages they received is equal to the number
of messages sent to them. The grey circles depict the time an LP
checks the control message. The difference from a pure asynchro-
nous implementation is that LPs align at red and white phases so
that none of the messages are allowed to pass to the next phase.
GVT is computed by taking the minimum of two variables: mini-
mum LVT and minimum time-stamped red messages. A new GVT
value becomes ready to be computed when the last LP checks the
control message.

Synchronize
e Py

+ sv\ - 1
here
o -
\-1 -2

White Red White

Synchronize

Figure 7: Snapshot of CA-GVT Computation

6 CA-GVT RESULTS

In this section, we compare and analyze the performance of CA-
GVT with pure synchronous Barrier and pure asynchronous Mat-
tern’s GVT algorithms. We first evaluate them on a computation
and communication-dominated scenarios in Figure 8 and Figure 9
respectively. We then experiment with several mixed models where
the simulation phases alternate between computation and com-
munication dominated scenarios. Figure 10 shows the committed
event rates for a model where simulation runs for the first 10% of
its execution time under computation-dominated workload, then
spends the next 15% under communication-dominated workload,
and the pattern repeats. We refer to this mixed model as 10-15
model. In general, the notation X-Y refers to a model where the first
X% of simulation time is spent in computation-dominated mode,
and the following Y% spent in communication-dominated mode,
with the pattern repeated. Figure 11 and Figure 12 show the results
for 15-10 and 5-5 mixed models respectively.

As previously explained, Mattern’s GVT performs the best under
the computation-dominated scenerio. CA-GVT performs 8% slower
than Mattern and 19% faster than Barrier GVT algorithms using
eight KNL nodes. CA-GVT detects the higher efficiency and exe-
cutes at asynchronous mode to take advantage of the computation-
dominated model. It slightly under performs Mattern’s algorithm
because of the extra overhead of the efficiency computation at each
GVT round which results in slower GVT computations. For exam-
ple, the average CPU time spent during a GVT round is 4.4 seconds
for Mattern’s GVT while this number is 4.78 for CA-GVT. This time
includes event processing too since Mattern’s GVT computation
is interleaved with other simulation tasks. CA-GVT’s efficiency
threshold for switching to the synchronous mode is 80% and sim-
ulation is run with 92.98% efficiency, thus CA-GVT executes at

Ali Eker, Barry Williams, Kenneth Chiu, and Dmitry Ponomarev

x10°
Mattern

mmm Barrier

s CA-GVT

© B B F B N
N © N U N o
u © uw o u o
||
|
hl
-I
S

Committed Event Rate
I
u
-]

o
N
[

4
°
o

Number of Nodes

Figure 8: Performance Comparison of Mattern, Barrier and CA-GVT
for Computation-Dominated Workloads

asynchronous mode constantly for the computation-dominated
scenario.

x10°
Mattern

W Barrier

1.0 s CA-GVT

1.2

0.8

0.6

Committed Event Rate

1 2 3 4 5 6 7 8
Number of Nodes

Figure 9: Performance Comparison of Mattern, Barrier and CA-GVT
for Communication-Dominated Workload

Barrier GVT performs the best under communication-dominated
scenarios. CA-GVT performs 2% slower than Barrier and 13% faster
than Mattern’s GVT algorithms using eight KNL nodes. Similarly,
CA-GVT detects the lower efficiency related to heavier communica-
tion and switches to synchronous mode. Specifically, it detects the
lower efficiency in the first GVT round, switches to the synchronous
mode and executes the next 157 GVT rounds synchronously. At this
point, efficiency reaches the threshold, CA-GVT switches back to
asynchronous mode and executes 168 of the next 178 GVT rounds
asynchronously. Simulation completes with 79.95% efficiency which
is driven by the CA-GVT’s efficiency threshold. On the other hand,
Mattern and Barrier GVT complete simulation with 36.19% and
85.32% efficiency respectively.

CA-GVT algorithm outperforms Mattern/Barrier GVT algorithms
by 8.3%/6.4%, 6.9%/12.7% and 7.8%/8.3% under 10-15, 15-10 and
5-5 mixed models respectively, using eight nodes. As seen from
the graphs, CA-GVT can adapt itself to the simulation model and
benefits from synchronous and asynchronous GVT algorithms to
execute in optimum synchrony when computation and communi-
cation are interleaved. The percentage of the simulation executed
synchronously by CA-GVT is dependent on the efficiency thresh-
old.

Controlled Asynchronous GVT: Accelerating Parallel Discrete Event Simulation on Many-Core Clusters

x10°

Mattern
== Barrier

W CA-GVT I

1 2 3 4 5 6 7 8
Number of Nodes

1.4

e o r »
o ® ©o N

e
IS

e 9
o N

Committed Event Rate

Figure 10: Performance for 10-15 Mixed Model

x10°

=
o

Mattern
mmm Barrier [|
m CA-GVT

Committed Event Rate
e © o B B ¥H
» o -] o N &

°
N

4
)

Number of Nodes

Figure 11: Performance for 15-10 Mixed Model

x10°

Mattern
== Barrier
. CA-GVT

-HEEEE
RIFRERENE

Number of Nodes

Iy
o

Committed Event Rate
e © © o K B =
» o ®» o N B

N

e
o

Figure 12: Performance for 5-5 Mixed Model

7 RELATED WORK

GVT computation has been studied extensively in the literature,
though primarily in a distributed setting. Samadi [28] developed one
of the first GVT algorithms and introduced the transient message
and simultaneous reporting problem. That algorithm, however,
requires that acknowledgement messages be sent, causing extra
communication overhead. Chandy and Lamport [6] describe one
of the first distributed snapshot algorithms. Mattern [23] built on
that to develop an asynchronous algorithm that does not require
acknowledgement messages.

There has also been work to improve the performance of GVT on
multiple cores. Eker et al. [9] evaluated the impact of synchronous

ICPP 2019, August 5-8, 2019, Kyoto, Japan

and asynchronous GVT algorithms on PDES performance on single-
node KNL systems. The main conclusions were that synchronous
GVT is a better choice for imbalanced models, while asynchronous
GVT provides better performance point for balanced models. In
this paper, we extend these studies to clusters of KNL processors
and evaluate GVT algorithms that work with network-based com-
munication using MPI. We show that the choice of optimal GVT
algorithm is determined by the communication/computation bal-
ance, and we propose a flexible GVT algorithm that performs well
under all operating conditions.

The work by Ianni [16] develops a non-blocking algorithm for
concurrent computation of GVT. In [20], the researchers developed
an asynchronous algorithm for computation of GVT. In [8], the
authors developed a multicore GVT based on Samadi’s algorithm
for a simulator written in the Go language. The works of [29, 30]
are early studies on controlled synchrony of GVT computations
using SPEEDES framework.

There has also been significant work investigating PDES on
manycore architectures. The works of [18, 32] investigated the
effects of several optimizations to a multithreaded PDES simula-
tor on smaller-scale platforms such as Intel’s Core-i7 and AMD’s
Magny-cours.

Another area of research involves removing boundaries on re-
source allocation in a “share-everything” system [15]. Such a system
may allow a synchronous system to compete with optimistic meth-
ods in unbalanced situations by shifting hardware resources to
more highly-loaded LPs. In addition, lock-free or wait-free event
queues [13], may improve performance in situations where remote
percentages are high.

There has also been work to control optimism in PDES. Lin-
den [21] utilizes the inter-process communication for disseminat-
ing time stamp information of future events. LPs can stop local
event processing in case of a possibility of a straggler message in
order to reduce the rollback cost. This work exploits the model
behavior for controlled optimism. On the other hand, we leverage
the PDES engine and GVT computation to accelerate the optimistic
processing.

The work of [3] is the follow-up to [4], reporting impressive
event processing rates on Sequoia BlueGene/Q supercomputer. The
recent effort of [7] evaluated PDES performance on Knights Corner
processor. The main conclusion of [7] is that Knights Corner does
not outperform the host Xeon processor in terms of event rate
unless vector units are fully utilized, and increasing the number
of threads does not alter that trend. The reasons behind such sub-
par performance are slower in-order cores and limited amount of
physical memory on the accelerator card.

Several other studies investigated the performance of various
parallel applications on Xeon Phi (Knights Corner) platforms [14, 22,
24, 26, 27, 34]. However, all of these applications are very different
from PDES and in general offer more parallelization opportunities.
Evaluating PDES on KNL provides an insight of how similar fine-
grain communication-dominated applications will be expected to
perform on these platforms.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

8 CONCLUDING REMARKS

In this paper, we analyzed the implications of synchronous and
asynchronous GVT algorithms on PDES performance on a cluster
of Knights Landing processors. We made three main contributions.
First, we showed that providing a dedicated MPI communication
thread and relieving this thread from normal event processing sig-
nificantly improves performance compared to the situation when
the MPI thread is also tasked with event processing duties. Second,
within this dedicated MPI thread model, we showed that a synchro-
nous GVT algorithm based on barrier synchronization typically out-
performs asynchronous algorithms for communication-dominated
scenarios with frequent rollbacks. At the same time, we demonstrate
that asynchronous GVT algorithm provides a significantly better
performance for computation-dominated scenarios with high exe-
cution efficiency and relatively low rollback rate. Third, we propose
aadaptive GVT algorithm (called CA-GVT) that adjusts to the better
performing GVT under a given operating conditions. The idea is to
augment asynchronous algorithm with additional synchronization
when the simulation efficiency is low or the occupancy of the MPI
queue is high. We demonstrated that CA-GVT outperforms other
GVT algorithms at mixed communication-computation models.

9 ACKNOWLEDGMENTS

This material is based upon work supported by the AFOSR under
Award No. FA9550-15-1-0384 and DURIP award FA9550-15-1-0376.

REFERENCES

[1] A.Sodaniamd R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. HUtsell,
R. Agarwal, and Y. Liu. 2016. Knights Landing: Second-Generation Intel Xeon
Phi Product. In IEEE Micro.

Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka.

2015. MPI+ threads: Runtime contention and remedies. ACM SIGPLAN Notices

50, 8 (2015), 239-248.

[3] Peter D Barnes Jr, Christopher D Carothers, David R Jefferson, and Justin M
LaPre. 2013. Warp speed: executing time warp on 1,966,080 cores. In Proceedings
of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
ACM, 327-336.

[4] D.Bauer, C. Carothers, and A. Holder. 2009. Scalable Time Warp on Bluegene
Supercomputer. In Proc. of the ACM/IEEE/SCS Workshop on Principles of Advanced
and Distributed Simulation (PADS).

[5] C. Carothers, D. Bauer, and S. Pearce. 2000. ROSS: A High-Performance, Low
Memory, Modular Time Warp System. In Proc of the 11th Workshop on Parallel
and Distributed Simulation (PADS).

[6] K. M. Chandy and L. Lamport. 1985. Distributed Snapshots: Determining Global

States of Distributed Systems. ACM Transactions on Computer Systems 3, 1 (Feb.

1985), 63-75.

H. Chen, Y.Yao, and W. Tang. 2015. Can MIC Find Its Place in the World of PDES?.

In Proceedings of International Symposium on Distributed Simulation and Real

Time Systems (DS-RT).

[8] Gabriele D’Angelo, Stefano Ferretti, and Moreno Marzolla. 2012. Time Warp on

the Go. In Proceedings of the 5th International ICST Conference on Simulation Tools

and Techniques (SIMUTOOLS °12). ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), ICST, Brussels, Belgium,

Belgium, 242-248. http://dl.acm.org/citation.cfm?id=2263019.2263057

Ali Eker, Barry Williams, Nitesh Mishra, Dushyant Thakur, Kenneth Chiu, Dmitry

Ponomarev, and Nael Abu-Ghazaleh. 2018. Performance Implications of Global

Virtual Time Algorithms on a Knights Landing Processor. In 2018 IEEE/ACM 22nd

International Symposium on Distributed Simulation and Real Time Applications

(DS-RT). IEEE, 1-10.

R. Fujimoto. 1990. Parallel Discrete Event Simulation. Commun. ACM 33, 10 (Oct.

1990), 30-53.

R. Fujimoto. 1990. Performance of Time Warp under synthetic workloads. Pro-

ceedings of the SCS Multiconference on Distributed Simulation 22, 1 (Jan. 1990),

23-28.

[12] G.Chrysos. 2012. Intel Xeon Phi x100 Family Coprocessor - the Architecture. In

Intel white paper.

[2

=

=

[10

[11

[13

[14

[15]

[16]

[17

oy
&

(19]

[20

[21

[22]

[24

[25

[26

[29]

[30]

[31

[33

[34

Ali Eker, Barry Williams, Kenneth Chiu, and Dmitry Ponomarev

S. Gupta and P. A. Wilsey. 2014. Lock-Free Pending Event Set Management
in Time Warp. In ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation (PADS).

A. Heinecke, K. Vaidanathan, M. Smelianskiy, A. Kobutov, R. Dubtsov, G. Henri,
A. Shet, G. Chrysos, and P. Dubey. 2013. Design and Implementation of the
Linpack Benchmark for Single and Multi-node Systems based on Intel Xeon Phi
Coprocessor. In Proceedings of International Parallel and Distributed Processing
Symposium (IPDPS).

M. Tanni, R. Marotta, D. Cingolani, A. Pellegrini, and F. Quaglia. 2018. The
Ultimate Share-Everything PDES System. In 2018 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation. 73-84.

M. Ianni, R. Marotta, A. Pellegrini, and F. Quaglia. 2017. A non-blocking global
virtual time algorithm with logarithmic number of memory operations. In 2017
IEEE/ACM 21st International Symposium on Distributed Simulation and Real Time
Applications (DS-RT). 1-8. https://doi.org/10.1109/DISTRA.2017.8167662
Deepak Jagtap, Ketan Bahulkar, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
2012. Characterizing and Understanding PDES Behavior on Tilera Architecture.
In Workshop on Principles of Advanced and Distributed Simulation (PADS 12).

D. Jagtap, N.Abu-Ghazaleh, and D.Ponomarev. 2012. Optimization of Parallel
Discrete Event Simulator for Multi-core Systems. In International Parallel and
Distributed Processing Symposium.

D. Jefferson. 1985. Virtual Time. ACM Transactions on Programming Languages
and Systems 7, 3 (July 1985), 405-425.

Z.Lin and Y. Yao. 2015. An asynchronous GVT computing algorithm in neuron
time warp-multi thread. In 2015 Winter Simulation Conference (WSC). 1115-1126.
https://doi.org/10.1109/WSC.2015.7408238

Jonatan Linden, Pavol Bauer, Stefan Engblom, and Bengt Jonsson. 2019. Exposing
Inter-process Information for Efficient PDES of Spatial Stochastic Systems on
Multicores. ACM Transactions on Modeling and Computer Simulation 29, 2, 0-25.
M. Lu, L. Zhang, H. Hyunh, Z. Ong, Y. Liang, B. He, R. Goh, and R. Huynh.
2013. Optimizing the MapReduce Framework on Intel Xeon Phi Coprocessor. In
Proceedings of International Conference on Big Data.

F. Mattern. 1993. Efficient Algorithms for Distributed Snapshots and Global
Virtual Time Approximation. J. Parallel and Distrib. Comput. 18, 4 (Aug. 1993),
423-434.

G. Misra, N. Kurkure, A. Das, M.Valmiki, S. Das, and A. Gupta. 2013. Evaluation of
Rodinia Codes on Intel Xeon Phi. In Proceedings of the 4th International Conference
on Intelligent Systems, Modelling and Simulation.

Alessandro Pellegrini and Francesco Quaglia. 2014. Wait-free global virtual
time computation in shared memory timewarp systems. In Computer Architec-
ture and High Performance Computing (SBAC-PAD), 2014 IEEE 26th International
Symposium on. IEEE, 9-16.

S. Pennycook, C. Hughes, M. Smelianskiy, and S. Jarvis. 2013. Exploring SIMD for
Molecular Dynamics Using Intel Xeon Processor and Intel Xeon Phi Coprocessors.
In Proceedings of International Parallel and Distributed Processing Symposium
(IPDPS).

A. Ramachandran, J. Vienne, R. Wijmgaart, L. Koesterke, and I. Sharapov. 2013.
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi. In Pro-
ceedings of International Conference on Parallel Processing (ICPP).

B. Samadi. 1985. Distributed Simulation, Algorithms and Performance Analysis.
Ph.D. Dissertation. Computer Science Department, University of California, Los
Angeles, CA.

Jeff S. Steinman. 1993. Breathing Time Warp. In PADS ’93 Proceedings of the
seventh workshop on Parallel and distributed simulation. ACM, 109-118.

Jeff S. Steinman, Craig A. Lee, Linda F. Wilson, and David M. Nicol. 1995. Global
virtual time and distributed synchronization. In Proceedings 9th Workshop on
Parallel and Distributed Simulation (ACM/IEEE). IEEE, 139-148.

Jingjing Wang, Ketan Bahulkar, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
2013. Can pdes scale in environments with heterogeneous delays?. In Proceedings
of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
ACM, 35-46.

Jingjing Wang, Deepak Jagtap, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2014. Parallel discrete event simulation for multi-core systems: Analysis and
optimization. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2014),
1574-1584.

Barry Williams, Dmitry Ponomarev, Nael Abu-Ghazaleh, and Philip Wilsey. 2017.
Performance characterization of parallel discrete event simulation on knights
landing processor. In Proceedings of the 2017 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation. ACM, 121-132.

Biwei Xie, Xu Liu, Jianfeng Zhan, Zhen Jia, Yuqing Zhu, Lei Wang, and Lixin
Zhang. 2015. Characterizing Data Analytics Workloads on Intel Xeon Phi. In
Workload Characterization (ISWC), 2015 IEEE International Symposium on. IEEE,
114-115.

http://dl.acm.org/citation.cfm?id=2263019.2263057
https://doi.org/10.1109/DISTRA.2017.8167662
https://doi.org/10.1109/WSC.2015.7408238

	Abstract
	1 Introduction
	2 Background and Experimental Setup
	Overview of PDES
	Experimental Setup and Metrics

	3 Global Virtual Time (GVT)
	Synchronous GVT
	Asynchronous GVT

	4 Experimental Results And Discussion
	Dedicated MPI Thread
	Computation-Dominated Scenario
	Communication-Dominated Scenario

	5 Controlled Asynchronous GVT
	6 CA-GVT Results
	7 Related Work
	8 Concluding Remarks
	9 Acknowledgments
	References

