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ABSTRACT 
     Discrete EVent System specification (DEVS) 
supports object oriented modeling and simulation 
environments. DEVS is a sound mathematical 
formalism for representing complex dynamic systems 
such as cellular space models. This paper presents a 
new cellular DEVS environment that employs multi-
layer modeling technique in order to improve model 
development and testing processes. In addition, it 
assures simulation efficiency of the developed models 
by replacing inter-cell communication messages by 
direct state access. Using the DEVS formal framework, 
the new development tool was designed to have 
automated specification and code generation. 
Applications to landslide models demonstrated the 
speedup and scalability attained by the new tool. 
 
Keywords: Simulation Software, AI, Modeling, DEVS, 
Cellular Space. 

INTRODUCTION 
     The cellular space modeling approach divides space 
into discrete intelligent cells that perform local 
computations based on their own as well as their 
neighbors’ states. In conventional DEVS 
implementation of cellular models (e.g. [1-5]), a cell is 
implemented as a DEVS modular atomic or coupled 
model. When detailed modeling of spatial dynamics is 
required, a large number of cells is typically employed. 
This results in a large number of atomic models that 
communicate through message passing to carry out the 
global simulation. Therefore, implementing large scale 
cellular spaces with highly active cells in DEVS will 
face the burden of huge numbers of inter-cell messages 
and hence a performance reduction. Many techniques 
were introduced to resolve this issue and to gain 
speedup. Examples of such work can be found in [1, 2, 
6] where the cellular DEVS simulation engine was 
improved to handle messages and cell activity scanning 
in more efficient manner. On the other hand, the 
quantized DEVS approach [7-9] shows that 
quantization helps in improving the performance of 
DEVS simulations by reducing the number of state 
transitions as well as the number of messages while 
introducing acceptable errors. 

 
A few related works cover the area of converting 
coupled DEVS models into atomic models by allowing 
the conversion during the compilation process. 
Reference [10] converted classical rather than parallel 
DEVS models and did not target the cellular space in 
particular but obtained speedup for small models. 
Reference [9] converted large hierarchical Dymola 
models into atomic ones with the conclusion that there 
is no advantage since the overhead of handling big 
model is much greater than the reduction in message 
overhead.  In contrast, our initial work in [11] proved 
the significance of the approach for large cellular DEVS 
models. In this paper, we confirm this significance and 
show how to employ the conversion within the 
specification and development processes. 
 
In this paper, we introduce a new cellular DEVS model 
development environment that employs the approach of 
converting coupled models into atomic ones through the 
closure under coupling property of parallel DEVS in 
order to ensure simulation efficiency. The objective of 
this tool is to minimize the coding efforts required by 
users to develop cellular DEVS models over 
DEVSJAVA. A multilayer approach is employed in the 
new tool with help of some automated processes 
namely: automated specification transformation, 
automated code generation, and automated testing and 
model verification. This environment made it possible 
for the user, for the first time, to develop cellular DEVS 
models using GUI without writing the full DEVSJAVA 
code. It was made as generic as possible to eliminate 
the need for the user to modify the generated code. 
 
PARALLEL DEVS FORMALISM 
     Discrete EVent System Specification (DEVS)  [7] 
supports object orientation over modeling environments. 
Its theory provides a mathematical formalism for 
representing dynamic systems. The DEVS formalism 
was revised in [12] to reduce sequential processing and 
enable full parallel executions. The resulting parallel 
DEVS has the basic atomic model defined as: 
 

M = < taYSX conextint ,,,,,,, ���� >. 
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Where X  is a set of input values, S  is a set of states, Y  
is a set of output values, �int is the internal transition 
function, �ext is the external transition function, �con is 
the confluent transition function, � is the output 
function, and ta  is the time advance function.  
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Figure 1. Atomic model structure in Parallel DEVS 
 
 
     An atomic model M in parallel DEVS remains in a 
state s 	 S for an amount of time, ta(s), if no external 
event occurs. When that time advance expires, i.e., 
when the elapsed time, e = ta(s), the system outputs the 
values, Yb = �(s), just before it changes to state �int(s). 
When an external event x in Xb occurs before this 
expiration time, i.e., at e 
 ta(s), the system changes to 
state �ext(s,e,x). However, if in case internal and external 
transitions collide, �con is employed to resolve the 
conflict and determine the next state. In all cases, the 
model then goes to some new state s¬ with some new 
resting time, ta(s�) and the same story continues[7]. 
 
     Note that input or output values Xb and Yb are bags 
of elements. This means that one or more elements can 
appear on a port at the same time. This capability comes 
from the parallel implementation of DEVS which allow 
components to send to the ports simultaneously. These 
basic components may be coupled in DEVS to form a 
multi-component model which is defined by the 
following structure: 
 

CM = < }{},{},{,,, , jiii ZIMDYX >. 
 

Where X  is the set of input values, Y  is the set of output 
values, D is the set of atomic models, Ii is the 
influencees of i, and Zi,j is the i to j output translation 
function (coupling). 
 
CELLULAR DEVS MODELS 
     Parallel DEVS is an object oriented environment in 
which models can be defined as instances of atomic or 
coupled model classes. The cellular space is a 

hierarchical coupled parallel DEVS model (CM) that 
consists of a number of cells which are created as 
instances of atomic or coupled model. The cells should 
be arranged as a grid and hence each cell has a well 
defined address in the space. According to this 
addressing scheme, the coupling relations {Zi,j} will 
connect each cell to its neighboring cells defined by the 
neighboring rules followed by the model. 
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Figure 3. Converting a cellular space into an 
atomic model. 

 
 
INTER-CELL MESSAGES 
ELIMINATION
     Closure under coupling, in parallel DEVS, implies 
that a coupled model (CM) can be treated as an atomic 
model (M) which is equivalent to CM (see [12] for 
detailed proof). This property supports the feasibility of 
implementing an approach in which a coupled model of 
a group of cells will be converted entirely into its 
equivalent atomic model. The resultant atomic model 
contains non-modular cells in which each cell can 
access the states of it neighboring cells and this 
eliminates the need for sending messages. The 
conversion process involves adding a discrete event list 
handler inside the atomic model to keep track of 
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activities among all cells that belong to the atomic 
model.  
 
Event List Handler 

Discrete event simulation proceeds through 
executing the imminent events in a list of scheduled 
events. Executing an event might result in scheduling 
other events and the process goes on until the list of 
events is empty or the simulator reaches a predefined 
stopping point. In DEVS coupled models, the 
coordinator is responsible in processing and storing the 
event list. As a result of converting a coupled model 
into an atomic model, the event list processing task will 
be encapsulated inside the new atomic model’s 
functions. This was achieved by introducing an 
EVENTS list that holds scheduled events such that the 
model processes the cells extracted from the event list. 
Consequently, the model spends a significant amount of 
time in processing the cell list for scheduling future 
events, extracting current events, and scanning cell lists. 
Therefore, implementing those cells will have a 
significant impact on the simulation execution and 
hence, the targeted speedup. Since the main goal in this 
work is to develop large scale high performance cell 
spaces, the list handler should be efficiently 
implemented that should process a large number of 
events very quickly to avoid adding latency to the 
overall cell space atomic model. The standard 
operations in event list processing include: adding a 
new record, and extracting the record with the 
minimum time stamp which entails finding that 
minimum time and then deleting that record. The first 
additional operation needed in the event list for our 
approach is the arbitrary removing of cells from the 
event list. The second one is advancing the time stamps 
in all records since the stamps are relative to the local 
current time of the model. In addition, the method used 
to extract the least time stamp record was designed to 
have more operations than just extracting a record. It 
should search for the minimum time stamp in the list 
and gather all the cells with that minimum time stamp 
so that it retrieves it as one cell list with the possibility 
of not removing cells records permanently. 
 
MULTI-LAYER APPROACH 
     In this work, two new layers of specifications were 
suggested on top of the DEVS specification layer which 
is represented in the implementation by DEVSJAVA. 
The first layer is the user specification layer that accepts 
the model specifications from the user through the GUI. 
With the help of code generator, this specification can 
be automatically transformed into the middle layer in 
which models are put in an efficient cellular DEVS 
format which is finally generated as a full DEVSJAVA 
code. Therefore, the new development environment is 
spans the two upper specification layers and produces 
models that must satisfy the third layer of specification. 
Figure 4 shows the design structure of the new cellular 
DEVS modeling environment which takes model 
specifications via the Graphical User Interface (GUI) 
and generates the code that can be run in a DEVSJAVA 
environment with an efficient cellular DEVS 
specifications. 
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Figure 4. Structure of the new Cellular DEVS 
environment. 

 
 
     The main design units in this environment are: GUI, 
code generator, and the cellular DEVS Specifications 
unit. Each of these units contains its own classes and 
has different objectives. Generally speaking, the GUI 
unit is a DEVS independent unit that gathers 
information about the model from the user and passes 
them into the code generator. The code generator unit 
gathers that information and produces the model’s code 
guided by the format of the new cellular DEVS 
specification. The generated code extends the standard 
classes given by the cellular DEVS specification. Those, 
in turn, extend the standard modeling classes in the 
DEVSJAVA modeling layer. The specifications unit 
hides most of the implementation details and includes 
large methods and classes that were hidden from the 
user to ease the user task in the model development 
process. 
 
The GUI 
     The main class in our environment is the Graphical 
User Interface (GUI), where the user inputs the cellular 
model specifications, generates models, and reloads 
previously generated models for modifications. It was 
implemented using JFrame containing two tabs: the 
model specifications tab and the cell’s local transition 
function tab. The model specification tab is the main tab 
which allows the user to write the model name and its 
package name, select the space type either cell space or 
block space, select the neighboring rule to use for the 
model, select the input data file where the model should 
extract its initial data from, and fill the ports/variables 
mapping table. After entering all model specifications 
and functions, the user presses the generate button 
which will prompt him to enter the cell space size and 
the number of blocks in case of block space type. Then, 
all model parameters and functions will be sent to the 
code generator which will generate the code for that 
model. In addition, the GUI will generate a model 
property file that stores all user entries which can be 
used later to reload them in case of further 
modifications. 
 
TESTING AND VERIFICATION 
     The developed modeling environment was tested 
using standard software testing methodologies such as 
black box, white box, and gray box test case generation 
methods [13]. In addition, the dynamics of the 
environment was validated through testing the 
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generated models by applying software as well as 
model verification techniques. The first one involves 
Java reflection tests that checks whether the 
environment generates correct model code while the 
second tests whether the generated model is what the 
user intended to develop. The model verification 
involved adopting automated DEVS verification tools 
developed by [14] and improving them to correctly 
handle zero time transition cycles in cell spaces. Three 
test models were selected for testing and verification. 
The first one is the two dimensional game of life which 
is know for its popularity and simplicity. The second 
one is the simple 2-D wall following robot which is 
popular in artificial intelligence texts. The last one is the 
basic finite difference numerical solution of a one 
dimensional heat equation. 
 
LANDSLIDE APPLICATION 
     Landslides are among the major natural hazards that 
occur frequently on earth. The need of employing 
artificial intelligence techniques, such as cellular space 
modeling, in predicting their occurrences and behavior 
becomes a must to save lives and avoid major damages. 
The new developed environment was put into the 
challenge of correctly developing and running complex 
landslide models. The models implemented in this work 
are hexagonal cell space models in which each cell is 
represented as a hexagon that is surrounded with six 
other hexagons. The two developed landslide models 
are based on the models derived in [15] and [16]. The 
first one is a pure cellular automata model since the 
time plays no role in all equations while the other one is 
a discrete time cellular automata model that solves 
partial differential equations.  
 
EXPERIMENTAL RESULTS 
     The main purpose of the experiments is to show 
insight on the speed up claimed to be achieved using the 
new development environment. The landslide models 
were run over a 3.0 GHz Pentium 4 machine with 1GB 
of RAM. All the runs were done for 32×32 cell space 
where the data was an approximated portion taken from 
Fig.8 in [15]. Table 1 lists the time (in seconds) taken to 
execute 100 iterations of the landslide simulations for 
the new approach as well as the conventional one.  
 

 New approach Conventional 

Model-1 4 18 

Model-2 15 110 
 

Table 1: Execution times of landslide simulation runs. 
 
 
     The new approach followed in the new development 
environment shows significant speedups compared to 
the conventional cellular DEVS models. That new 
implementation represents the elimination of all inter-
cell messages inside the cell space. The more inter-cell 
messages present in the model, more is the speedup that 
can be achieved. The achieved speedups in the two 
landslide models are 4.5 and 7.3 respectively.  

 
CONCLUSION 
     The cell space environment was designed to 
accelerate cellular model development and make the 
coding level transparent to the user through employing 
a multi-layer approach. The environment can support 
wide varieties of modeling requirements. It was tested 
using some of the standard software testing strategies 
and found to perform correctly according to the test 
cases. In addition to the software testing, the generated 
models can be tested using the simulation-based DEVS 
verification approaches. A modification to the current 
automated cellular DEVS verification approach was 
implemented to correctly test models that account for 
zero time transitions. All automated testing classes are 
made available for the user to test and verify the 
developed models. 
 
     The message elimination approach that decomposes 
cell spaces entirely into atomic models enhances the 
simulation speed significantly. The landslide models 
developed in this work tried to push the new 
environment to the limits. These complex models 
required more modifications to be added to the 
generated code. It was shown that all of the 
requirements can be easily added to the environment in 
future work thus limiting the need to modify the 
generated models. In addition to the models presented 
in this paper, the new environment can be efficiently 
used to develop wide range of applications such as 
numerical solutions of differential equations, discrete 
time cellular models, natural dynamic models, and 
cellular space based artificial intelligence applications. 
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