
AN EFFICIENT CELLULAR DEVS MODELING ENVIRONMENT

FAHAD A. SHIGINAH1,2, BERNARD P. ZEIGLER1

1 Arizona Center for Integrative Modeling and Simulation
Electrical and Computer Engineering Department

University of Arizona, USA

2 Department of Electrical and Computer Engineering
Sultan Qaboos University, Oman

ABSTRACT
 Discrete EVent System specification (DEVS)
supports object oriented modeling and simulation
environments. DEVS is a sound mathematical
formalism for representing complex dynamic systems
such as cellular space models. This paper presents a
new cellular DEVS environment that employs multi-
layer modeling technique in order to improve model
development and testing processes. In addition, it
assures simulation efficiency of the developed models
by replacing inter-cell communication messages by
direct state access. Using the DEVS formal framework,
the new development tool was designed to have
automated specification and code generation.
Applications to landslide models demonstrated the
speedup and scalability attained by the new tool.

Keywords: Simulation Software, AI, Modeling, DEVS,
Cellular Space.

INTRODUCTION
 The cellular space modeling approach divides space
into discrete intelligent cells that perform local
computations based on their own as well as their
neighbors’ states. In conventional DEVS
implementation of cellular models (e.g. [1-5]), a cell is
implemented as a DEVS modular atomic or coupled
model. When detailed modeling of spatial dynamics is
required, a large number of cells is typically employed.
This results in a large number of atomic models that
communicate through message passing to carry out the
global simulation. Therefore, implementing large scale
cellular spaces with highly active cells in DEVS will
face the burden of huge numbers of inter-cell messages
and hence a performance reduction. Many techniques
were introduced to resolve this issue and to gain
speedup. Examples of such work can be found in [1, 2,
6] where the cellular DEVS simulation engine was
improved to handle messages and cell activity scanning
in more efficient manner. On the other hand, the
quantized DEVS approach [7-9] shows that
quantization helps in improving the performance of
DEVS simulations by reducing the number of state
transitions as well as the number of messages while
introducing acceptable errors.

A few related works cover the area of converting
coupled DEVS models into atomic models by allowing
the conversion during the compilation process.
Reference [10] converted classical rather than parallel
DEVS models and did not target the cellular space in
particular but obtained speedup for small models.
Reference [9] converted large hierarchical Dymola
models into atomic ones with the conclusion that there
is no advantage since the overhead of handling big
model is much greater than the reduction in message
overhead. In contrast, our initial work in [11] proved
the significance of the approach for large cellular DEVS
models. In this paper, we confirm this significance and
show how to employ the conversion within the
specification and development processes.

In this paper, we introduce a new cellular DEVS model
development environment that employs the approach of
converting coupled models into atomic ones through the
closure under coupling property of parallel DEVS in
order to ensure simulation efficiency. The objective of
this tool is to minimize the coding efforts required by
users to develop cellular DEVS models over
DEVSJAVA. A multilayer approach is employed in the
new tool with help of some automated processes
namely: automated specification transformation,
automated code generation, and automated testing and
model verification. This environment made it possible
for the user, for the first time, to develop cellular DEVS
models using GUI without writing the full DEVSJAVA
code. It was made as generic as possible to eliminate
the need for the user to modify the generated code.

PARALLEL DEVS FORMALISM
 Discrete EVent System Specification (DEVS) [7]
supports object orientation over modeling environments.
Its theory provides a mathematical formalism for
representing dynamic systems. The DEVS formalism
was revised in [12] to reduce sequential processing and
enable full parallel executions. The resulting parallel
DEVS has the basic atomic model defined as:

M = < taYSX conextint ,,,,,,, ���� >.

International Conference on Communication, Computer & Power (ICCCP’07) Muscat, February 19-21, 2007

ISSN 1813-419X 167

Where X is a set of input values, S is a set of states, Y
is a set of output values, �int is the internal transition
function, �ext is the external transition function, �con is
the confluent transition function, � is the output
function, and ta is the time advance function.

input to function

trigger function
result of function

Legend

Hold for
some
time

Handle
input Send an

output

Make a
transition
(internal)

Make a
transition
(external)

Xb Yb

�con

ta

�ext �int

�

S

Figure 1. Atomic model structure in Parallel DEVS

 An atomic model M in parallel DEVS remains in a
state s 	 S for an amount of time, ta(s), if no external
event occurs. When that time advance expires, i.e.,
when the elapsed time, e = ta(s), the system outputs the
values, Yb = �(s), just before it changes to state �int(s).
When an external event x in Xb occurs before this
expiration time, i.e., at e
 ta(s), the system changes to
state �ext(s,e,x). However, if in case internal and external
transitions collide, �con is employed to resolve the
conflict and determine the next state. In all cases, the
model then goes to some new state s¬ with some new
resting time, ta(s�) and the same story continues[7].

 Note that input or output values Xb and Yb are bags
of elements. This means that one or more elements can
appear on a port at the same time. This capability comes
from the parallel implementation of DEVS which allow
components to send to the ports simultaneously. These
basic components may be coupled in DEVS to form a
multi-component model which is defined by the
following structure:

CM = < }{},{},{,,, , jiii ZIMDYX >.

Where X is the set of input values, Y is the set of output
values, D is the set of atomic models, Ii is the
influencees of i, and Zi,j is the i to j output translation
function (coupling).

CELLULAR DEVS MODELS
 Parallel DEVS is an object oriented environment in
which models can be defined as instances of atomic or
coupled model classes. The cellular space is a

hierarchical coupled parallel DEVS model (CM) that
consists of a number of cells which are created as
instances of atomic or coupled model. The cells should
be arranged as a grid and hence each cell has a well
defined address in the space. According to this
addressing scheme, the coupling relations {Zi,j} will
connect each cell to its neighboring cells defined by the
neighboring rules followed by the model.

Cell
(0,2)

Cell
(2,2)

Cell
(1,0)

Cell
(0,0)

Cell
(2,0)

Cell
(1,2)

Cell
(1,1)

Coupled Model (CM): Cellular Space

Cell
(2,1)

Cell
(0,1)

j

i Couplings Atomic Model (M)

Xb Yb

Figure 2. An example of 2-D cellular space in DEVS.

Atomic Model (M): Cellular Space

(0,2) (2,2)

(1,0)(0,0) (2,0)

(1,2)

(1,1) (2,1)(0,1)

Events List Handler

j

i

Xb Yb
Outer

boundary
values

Inner
boundary

values

Array Z

�int���ext� �con� ���ta��S

ZZw

Zn

Zs

Ze

Array
Cell
(i,j)

ZZn

Zs

Ze

Zw

N
ei

gh
bo

rs

Figure 3. Converting a cellular space into an
atomic model.

INTER-CELL MESSAGES
ELIMINATION
 Closure under coupling, in parallel DEVS, implies
that a coupled model (CM) can be treated as an atomic
model (M) which is equivalent to CM (see [12] for
detailed proof). This property supports the feasibility of
implementing an approach in which a coupled model of
a group of cells will be converted entirely into its
equivalent atomic model. The resultant atomic model
contains non-modular cells in which each cell can
access the states of it neighboring cells and this
eliminates the need for sending messages. The
conversion process involves adding a discrete event list
handler inside the atomic model to keep track of

International Conference on Communication, Computer & Power (ICCCP’07) Muscat, February 19-21, 2007

ISSN 1813-419X 168

activities among all cells that belong to the atomic
model.

Event List Handler

Discrete event simulation proceeds through
executing the imminent events in a list of scheduled
events. Executing an event might result in scheduling
other events and the process goes on until the list of
events is empty or the simulator reaches a predefined
stopping point. In DEVS coupled models, the
coordinator is responsible in processing and storing the
event list. As a result of converting a coupled model
into an atomic model, the event list processing task will
be encapsulated inside the new atomic model’s
functions. This was achieved by introducing an
EVENTS list that holds scheduled events such that the
model processes the cells extracted from the event list.
Consequently, the model spends a significant amount of
time in processing the cell list for scheduling future
events, extracting current events, and scanning cell lists.
Therefore, implementing those cells will have a
significant impact on the simulation execution and
hence, the targeted speedup. Since the main goal in this
work is to develop large scale high performance cell
spaces, the list handler should be efficiently
implemented that should process a large number of
events very quickly to avoid adding latency to the
overall cell space atomic model. The standard
operations in event list processing include: adding a
new record, and extracting the record with the
minimum time stamp which entails finding that
minimum time and then deleting that record. The first
additional operation needed in the event list for our
approach is the arbitrary removing of cells from the
event list. The second one is advancing the time stamps
in all records since the stamps are relative to the local
current time of the model. In addition, the method used
to extract the least time stamp record was designed to
have more operations than just extracting a record. It
should search for the minimum time stamp in the list
and gather all the cells with that minimum time stamp
so that it retrieves it as one cell list with the possibility
of not removing cells records permanently.

MULTI-LAYER APPROACH
 In this work, two new layers of specifications were
suggested on top of the DEVS specification layer which
is represented in the implementation by DEVSJAVA.
The first layer is the user specification layer that accepts
the model specifications from the user through the GUI.
With the help of code generator, this specification can
be automatically transformed into the middle layer in
which models are put in an efficient cellular DEVS
format which is finally generated as a full DEVSJAVA
code. Therefore, the new development environment is
spans the two upper specification layers and produces
models that must satisfy the third layer of specification.
Figure 4 shows the design structure of the new cellular
DEVS modeling environment which takes model
specifications via the Graphical User Interface (GUI)
and generates the code that can be run in a DEVSJAVA
environment with an efficient cellular DEVS
specifications.

GUI

Cellular DEVS Unit

DEVSJAVA

Code Generator

Generated Model

Figure 4. Structure of the new Cellular DEVS
environment.

 The main design units in this environment are: GUI,
code generator, and the cellular DEVS Specifications
unit. Each of these units contains its own classes and
has different objectives. Generally speaking, the GUI
unit is a DEVS independent unit that gathers
information about the model from the user and passes
them into the code generator. The code generator unit
gathers that information and produces the model’s code
guided by the format of the new cellular DEVS
specification. The generated code extends the standard
classes given by the cellular DEVS specification. Those,
in turn, extend the standard modeling classes in the
DEVSJAVA modeling layer. The specifications unit
hides most of the implementation details and includes
large methods and classes that were hidden from the
user to ease the user task in the model development
process.

The GUI
 The main class in our environment is the Graphical
User Interface (GUI), where the user inputs the cellular
model specifications, generates models, and reloads
previously generated models for modifications. It was
implemented using JFrame containing two tabs: the
model specifications tab and the cell’s local transition
function tab. The model specification tab is the main tab
which allows the user to write the model name and its
package name, select the space type either cell space or
block space, select the neighboring rule to use for the
model, select the input data file where the model should
extract its initial data from, and fill the ports/variables
mapping table. After entering all model specifications
and functions, the user presses the generate button
which will prompt him to enter the cell space size and
the number of blocks in case of block space type. Then,
all model parameters and functions will be sent to the
code generator which will generate the code for that
model. In addition, the GUI will generate a model
property file that stores all user entries which can be
used later to reload them in case of further
modifications.

TESTING AND VERIFICATION
 The developed modeling environment was tested
using standard software testing methodologies such as
black box, white box, and gray box test case generation
methods [13]. In addition, the dynamics of the
environment was validated through testing the

International Conference on Communication, Computer & Power (ICCCP’07) Muscat, February 19-21, 2007

ISSN 1813-419X 169

generated models by applying software as well as
model verification techniques. The first one involves
Java reflection tests that checks whether the
environment generates correct model code while the
second tests whether the generated model is what the
user intended to develop. The model verification
involved adopting automated DEVS verification tools
developed by [14] and improving them to correctly
handle zero time transition cycles in cell spaces. Three
test models were selected for testing and verification.
The first one is the two dimensional game of life which
is know for its popularity and simplicity. The second
one is the simple 2-D wall following robot which is
popular in artificial intelligence texts. The last one is the
basic finite difference numerical solution of a one
dimensional heat equation.

LANDSLIDE APPLICATION
 Landslides are among the major natural hazards that
occur frequently on earth. The need of employing
artificial intelligence techniques, such as cellular space
modeling, in predicting their occurrences and behavior
becomes a must to save lives and avoid major damages.
The new developed environment was put into the
challenge of correctly developing and running complex
landslide models. The models implemented in this work
are hexagonal cell space models in which each cell is
represented as a hexagon that is surrounded with six
other hexagons. The two developed landslide models
are based on the models derived in [15] and [16]. The
first one is a pure cellular automata model since the
time plays no role in all equations while the other one is
a discrete time cellular automata model that solves
partial differential equations.

EXPERIMENTAL RESULTS
 The main purpose of the experiments is to show
insight on the speed up claimed to be achieved using the
new development environment. The landslide models
were run over a 3.0 GHz Pentium 4 machine with 1GB
of RAM. All the runs were done for 32×32 cell space
where the data was an approximated portion taken from
Fig.8 in [15]. Table 1 lists the time (in seconds) taken to
execute 100 iterations of the landslide simulations for
the new approach as well as the conventional one.

 New approach Conventional

Model-1 4 18

Model-2 15 110

Table 1: Execution times of landslide simulation runs.

 The new approach followed in the new development
environment shows significant speedups compared to
the conventional cellular DEVS models. That new
implementation represents the elimination of all inter-
cell messages inside the cell space. The more inter-cell
messages present in the model, more is the speedup that
can be achieved. The achieved speedups in the two
landslide models are 4.5 and 7.3 respectively.

CONCLUSION
 The cell space environment was designed to
accelerate cellular model development and make the
coding level transparent to the user through employing
a multi-layer approach. The environment can support
wide varieties of modeling requirements. It was tested
using some of the standard software testing strategies
and found to perform correctly according to the test
cases. In addition to the software testing, the generated
models can be tested using the simulation-based DEVS
verification approaches. A modification to the current
automated cellular DEVS verification approach was
implemented to correctly test models that account for
zero time transitions. All automated testing classes are
made available for the user to test and verify the
developed models.

 The message elimination approach that decomposes
cell spaces entirely into atomic models enhances the
simulation speed significantly. The landslide models
developed in this work tried to push the new
environment to the limits. These complex models
required more modifications to be added to the
generated code. It was shown that all of the
requirements can be easily added to the environment in
future work thus limiting the need to modify the
generated models. In addition to the models presented
in this paper, the new environment can be efficiently
used to develop wide range of applications such as
numerical solutions of differential equations, discrete
time cellular models, natural dynamic models, and
cellular space based artificial intelligence applications.

REFERENCES
[1] G. Wainer and N. Giambiasi, "Application of the

Cell-DEVS Paradigm for Cell Spaces Modelling
and Simulation," Simulation, vol. 76, pp. 22-39,
2001.

[2] X. Hu and B. P. Zeigler, "A high performance
simulation engine for large-scale cellular DEVS
models," in High Performance Computing
Symposium (HPC'04), Advanced Simulation
Technologies Conference, 2004.

[3] G. A. Wainer and N. Giambiasi, "N-dimensional
Cell-DEVS Models," Discrete Event Dynamic
Systems, vol. 12, pp. 135-157, 2002.

[4] G. Wainer and N. Giambiasi, "Timed cell-DEVS:
modeling and simulation of cell spaces," pp. 187-
214, 2001.

[5] A. Muzy, E. Innocenti, A. Aiello, J. -. Santucci and
G. Wainer, "Cell-DEVS quantization techniques in
a fire spreading application," in WSC '02:
Proceedings of the 2002 Winter Simulation
Conference (WSC'02) - Volume 1, 2002, pp. 542-
549.

[6] Muzy and J. J. Nutaro, "Algorithms for efficient
implementations of the DEVS & DSDEVS abstract
simulators," in 1st Open International Conference
on Modeling & Simulation (OICMS), 2005.

International Conference on Communication, Computer & Power (ICCCP’07) Muscat, February 19-21, 2007

ISSN 1813-419X 170

[7] P. Zeigler, T. G. Kim and H. Praehofer, Theory of
Modeling and Simulation. San Diego, CA, USA:
Academic Press, Inc, 2000.

[8] E. Kofman and S. Junco, "Quantized-state systems:
a DEVS Approach for continuous system
simulation," Trans. Soc. Comput. Simul. Int., vol.
18, pp. 123-132, 2001.

[9] T. Beltrame, "Design and Development of a
Dymola/Modelica Library for Discrete Event-
oriented Systems Using DEVS Methodology,"
2006.

[10]W. B. Lee and T. G. Kim, "Simulation speedup for
DEVS models by composition-based compilation,"
in Proceedings of Summer Computer Simulation
Conference, 2003, pp. 395-400.

[11]F. A. Shiginah and B. P. Zeigler, "Transforming
DEVS to non-modular form for faster cellular
space simulation," in Proceedings of 2006 DEVS
Symposium, 2006, pp. 86-91.

[12]A. C. Chow and B. P. Zeigler, "Parallel DEVS: A
parallel, hierarchical, modular, modeling
formalism," in WSC '94: Proceedings of the 26th
Conference on Winter Simulation, 1994, pp. 716-
722.

[13]L. Copeland, A Practitioner's Guide to Software
Test Design. Norwood, MA, USA: Artech House,
Inc, 2003.

[14] G. Wainer, L. Morihama and V. Passuello,
"Automatic verification of DEVS models," in
Proceedings of the 2002 Spring Simulation
Interoperability Workshop, 2002.

[15] D'Ambrosio, S. D. Gregorio and G. Iovine,
"Simulating debris flows through a hexagonal
cellular automata model: SCIDDICA S_3-hex,"
Natural Hazards and Earth System Sciences, vol. 3,
pp. 545-559, 2003.

[16] Segre and C. Deangeli, "Cellular automaton for
realistic modelling of landslides," Nonlinear
Processes in Geophysics, vol. 2, pp. 1-15, 1995.

International Conference on Communication, Computer & Power (ICCCP’07) Muscat, February 19-21, 2007

ISSN 1813-419X 171

