
A DEVS-based M&S Method for Large-scale Multi-agent Systems

Mingxin Zhang1,2, Mamadou Seck1 and Alexander Verbraeck1
1 System Engineering Section, Delft University of Technology, 2600 GA Delft, The Netherlands
2System Simulation Laboratory, National University of Defense Technology, Changsha, China

{m.zhang-1, M.D.Seck, a.verbraeck}@tudelft.nl

Keywords: cognitive modelling, agent organization,
DEVS-based framework, L-systems

Abstract:

ABMS offers various simulation systems, tools,
toolkits and languages for multi-agent system
research. However, there is a need for a M&S
method for L-systems research as current ABMS
method has some degree of difficulty in dealing with
the scale and heterogeneity issues of L-systems. This
paper focused on the modelling aspect of the method
by combining cognitive modelling, agent
organization theory and DEVS-based framework
together. First of all, we explained our research
initiative by giving the reasons of our research.
Further literature review of our choice is also
present. Then, we present a design for constructing a
DEVS-based system model. We choose PRS as our
preferred cognitive architecture, and constructed a
DEVS-based simulation framework together with
the guidance of agent organization theory. Finally
we summarize the benefits of our research compared
to other methods.

1 INTRODUCTION
Agent-based modelling and simulation(ABMS)

offers a relatively new method for multi-agent
system research[1], and there are various ABMS
simulation systems, tools, toolkits and
languages(e.g. swarm, Repast and NetLogo) in their
respective research areas. However, there is a
particular kind of multi-agent system, defined as L-
systems(large-scale multi-agent systems), which is
difficult to be studied using ABMS method. Typical
L-systems are such as highway system, crowd
evacuation, stock market and migratory birds. The
problems causing the difficulty mainly come from:
1) the system scale. ABMS can only support
simulation of relatively small scale multi-agent
system(usually the number of agents is less than 10
thousand). When a L-system scales to a larger
number, it often outstrips the processing capability
of a ABMS tool or toolkit[2][3][4]; 2) the system
heterogeneity. A L-system can consist of diverse

sub-systems which result diverse behaviours.
General ABMS tool or toolkit cannot support all the
heterogeneous sub-systems interoperate in one
architecture.

Our research objective is trying to solve the
problems by designing a new method. In this paper,
we mainly focused on the modelling aspect of the
method by combining cognitive modelling, agent
organization theory and DEVS-based framework
together. In general, we are making efforts on two
aspects. One is developing cognitive architecture
based intelligent high-fidelity agents which can
reason and act as teammates or competitors in
complex non-deterministic environment using
DEVS framework, another is constructing a DEVS-
based simulation model which clearly specifies the
agent independencies.

Why cognitive modelling? Most of ABMS
tools and toolkits, adopt similar reactive
architectures for individual modelling, which are
suitable for simulating simple agents based on rules,
like ant foraging model and simple stock market
model. But in some cases of L-systems(e.g. highway
system, and crowd evacuation), individual agent
behaviours, which include BDI(belief-desire-
intention), emotions, personality and personal
values, are required for individual modelling, and
most of ABMS methods cannot support modelling
rich cognitive agents. Moreover, a multi-level
reasoning ability is also required for individual
modelling to solve cognitive problems in different
layers sometimes.

Why DEVS-based framework? We believe
that ABMS has difficulty in dealing with system
scalability and interoperability due to the lack of a
formal operational specification to formalize the
model behaviour, model structure, and support
multi-resolution modeling, hierarchical modeling
and model reuse[5].

In PADS(parallel and distributed simulation)
community, DEVS is widely spread as a modeling
specification as it supports hierarchical, modular
model representation. It also supports valid
simplification, abstraction, and aggregation.
Furthermore, extensions of the DEVS framework

have been developed to handle variable structure,
probabilistic, cellular, and logic-based
representations[6]. Moreover, the DEVS modeling
framework promises to be a sound basis for
distributed simulation. Numerous techniques have
emerged such as optimistic synchronization,
dynamic load balancing, and Global Virtual Time to
improve the simulation performance. However, the
most significant advantage afforded by the DEVS
specification is that it can support the transformation
of other modeling specification[7]. For the above
reasons, system scalability and interoperability is
guaranteed in PADS community.

Why agent organization theory? In DEVS-
based models, dependencies of agents is specified as
a topology, such as a spatial grid or network of
nodes (agents) and links (relationships). This
topology describes who transfers information to
whom. As large-scale multi-agent systems grow to
include millions of agents, this traditional topology
like network of agents is insufficient to describe the
agents dependencies. However, in ABM(agent-
based modelling) community, agent organization
theory is proposed to specify how agents are
organized and change the connection relation
dynamically, and how agents interact with each
other[8][9][10], which can be a guidance for
modelling L-systems.

As a matter of fact, our research group is trying
to combine cognitive modelling, agent organization
theory and DEVS-based framework together.
Literature review of our choice is present as follows.

2 LITERATURE REVIEW
2.1 Cognitive modelling

As we stated above, most of ABMS methods
cannot guarantee the richness and flexibility of
individual modelling, while both of the requirements
can be satisfied by cognitive modelling in cognition
science community.

In Cognitive science, cognitive model is
proposed to help understanding and explaining the
processes(e.g. perceiving, learning, remembering,
planning) that the brain, especially the human brain,
uses to accomplish complex tasks. Moreover,
cognitive model can be used to derive new
predictions for new relationships that go far beyond
the original data[11]. Thus, typical applications of
cognitive modeling are beginning to spill over into
various fields including clinical psychology,
cognitive neuroscience, agent based modeling in
economics, and many more.

However, cognitive models describe human
information processing at an abstract and

mathematical level of analysis, for example,
BDI[12]. Thus, a more computational theory, which
is cognitive architecture, is proposed to focus on the
structural properties of the modelled system, and
help constrain the development of cognitive models
within the architecture. Typical cognitive
architectures include SOAR, ACT-R, and PRS[13],
to name a few.

In addition to these primarily monolithic agent
architectures, multi-level/layer cognitive
architectures (e.g. TouringMachines, Atlantis,
InteRRap, and Sloman’s theory[14]) are proposed to
provide a more flexible mechanism to solve
cognitive problems in different layers.

All of these architectures provide a
computational level of analysis that makes it
computationally feasible to derive precise
predictions for complex tasks. However, there are
not many works on implementing cognitive
architectures for multi-agent simulation in current
research[15]. Sun[16] implemented a cognitive
architecture CLARION for social simulation.
Mittal[17] described how ACT-R architecture can be
decomposed and formalized using the DEVS
formalism. Akplogan[18] implemented a formal
BDI model to simulate an agent in agriculture using
DEVS framework, while his research focuses on a
single agent solving tasks in specified area, not for
generative multi-agent system development.

Their works inspired our research. However, we
believe there are several unique aspects of our
method that contribute a novel design.

2.2 DEVS-based framework
To solve the scalability and interoperability

problem, researchers on ABMS tried a lot of efforts.
One dominate attempt is using distributed simulation
architectures. Minson proved that speedup can be
achieved through the integration of the Java-based
lightweight agent-simulation toolkit RePast with
HLA[4]. However, the performance of HLA-based
architecture is limited for many factors, and one of
major factors is the number of federates[19].

As a matter of fact, we believe that ABMS has
difficulty in dealing with system scalability and
heterogeneity due to the lack of a formal operational
specification. In ABM community, to formulize the
system dynamics in multi-agent system, temporal
modeling specification languages have been
introduced[20] in which dynamic properties are
often specified in the form of a set of logical
formulae. The advantage of this method is the
declarative modelling of simulation models, for
examples, Executable Temporal Logic[21] and the
Strictly Declarative Modelling Language

SDML[22]. However, simulation of dynamics is the
main purpose of this specification and it usually
does not provide explicitly specified organizational
structure or offer dedicated support for a specific
type[23].

Another specification dealing with both
structure specification and behaviour specification is
the Agent/Group/Role(AGR) organization modelling
approach[10], in which an organization structure
consists of a set of groups, roles in each group and
agents fulfilling roles. However, this usual agent-
based specification is also not suitable for dealing
with system scalability as they don’t account for
structure change.

To guarantee system scalability and
interoperability, DEVS(Discrete Event System
Specification), as a modular and hierarchical
formalism for modeling and analysing general
systems, was first proposed by Zeigler in 1984.
DEVS is easy to deal with system scale as it
supports hierarchical, modular model representation,
which is a sound basis for distributed simulation.
Moreover, system interoperability is guaranteed as
the DEVS specification can support the
transformation of other modeling specification[7].

Based on DEVS formalism, a variety of M&S
frameworks and environments are developed(e.g.
ADEVS, PCD++, DEVSJAVA, DEVS-Suite,
JAMES[24], VLE, and Theatre). Among these,
some are designed for large-scale systems based on
different mechanisms. Hu[25] proposed a simulation
engine oneDCoord implemented in DEVSJAVA for
large-scale cellular DEVS models. Liu[26] proposed
a protocol called as Lightweight Time Warp and
realized in PCD++ for Large-Scale DEVS and Cell-
DEVS Models. However, one of the most successful
frameworks is JAMES.

JAMES[24] is a Java-Based agent modeling
framework which origins from PDEVS for the
parallelization of multi-agent systems. In JAMES,
DSDEVS and M-DEVS as DEVS extensions are
also realized, by which mechanisms like mobile
agents are used in order to manage the structural
changes of multi-agent systems.

Just like ABMS, most of the models realized in
DEVS-based framework are simple without rich
cognition. Take JAMES for example, JAMES
considers an agent as an atomic model when
modelling multi-agent systems. The autonomy of the
agent is realized through internal transition function
of DEVS atomic model, whereas perception and
action of the agent are realized through external
transition function and output function.
2.3 Agent organization theory

The DEVS formalism has well-defined
mechanisms supporting scalability and
interoperability of DEVS-based modeling and
simulation systems, while it doesn’t clearly specify
the model dependencies, which are essential for
modelling large-scale multi-agent systems.

In ABM community, agent dependencies are
modelled as agent organizations which can be seen
as a set of agents regulated by rules and mechanisms
of order with which autonomous agents can achieve
common goals under an institutional control. In
agent organizations, roles are played by agents and
goals are achieved through communication of
agents.

In recent years, various organizations are
modelled by the researchers, such as institution,
group, firm, and community. A hot research topic in
modeling organizations is the modeling and
simulation of organizational structure since
organizational structure plays a critical role in the
development of agent-based modeling[27]. The
organizational structure usually involves two
fundamental concepts: agent roles and their relations
in terms of which the overall behavior of the multi-
agent system is determined[8]. When modeling
agent organizations, several organizational styles are
introduced by Kolp[9]. Grossi[8] defined a formal
relation between institutions and organizational
structures.

3 A PRELIMINARY DESIGN
To realize our idea that combines cognitive

modelling, agent organization theory and DEVS-
based framework, we made a preliminary design for
cognitive individual modelling and system
construction. In detail, at first we identify a clear
separation of concerns between various components
of PRS cognitive architecture; then we illustrated
how this architecture is decomposed and ultimately
formalized in DEVS formalism; at last we give out
how system model is constructed.
3.1 Individual agent model design

In this design, we adopted procedural reasoning
system (PRS)architecture as the guidance. The
choice of PRS is not the point as we treat cognitive
individual modelling in a separate conceptual
modelling layer, by which design any cognitive
architecture can be adopted. A PRS is a typical
framework for constructing real-time reasoning
agents based on BDI paradigm that can perform
complex tasks in non-deterministic environments.
According to the PRS agent architecture by Georgeff
and Ingrand[28], we constructed a DEVS-based PRS
agent model framework, which is present below

Figure 1 DEVS-based PRS Agent Model framework
This DEVS-based PRS agent model is

constituted by three main parts: (1)perceptual
system, (2) reasoning system, and (3) action system.
Each part of the framework consists of a set of
interconnected sub-systems and modules.

Perceptual System is modelled as an information
processing model[29] to form belief which is based
on the idea that humans process the information they
receive, rather than merely responding to stimuli. In
this model, the mind’s machinery includes sensory
memory with a great capacity for bringing
information in, working memory(also called short-
term memory with a capacity of 7 ± 2) for actively
manipulating information, and long term memory
with unlimited capacity for passively holding
information so that it can be used in the future.

The sensory memory has a detecting
system(sensory receptor), which receives and holds
all external and internal stimuli based on attention
mechanisms. The sensory memory is modelled as an
atomic model which determines whether the input
should be brought into the working memory, or
discarded. The input ports of sensory atomic model
are modelled as sensory organs (biological or
artificial) used to capture information.

The working memory is also modelled as an
atomic model, where information from long-term
memory and the sensory memory is combined to
form belief which help solve problems. However,
the working memory has a small capacity which
limits the abilities of agents to solve problems.

Therefore, a filtering system is modelled to be a
secondary mechanism to determine what
information would be useful for problem solving.
This mechanism can be modified after reasoning
process.

Long-term memory is modelled as a coupled
DEVS model which manages knowledge of all an
agent knows. Long-term memory can be classified
as declarative memory and procedural memory.
Declarative memory is modelled as an atomic model
which manages factual information that can be
retrieved and acted upon. Procedural memory is also
modelled as an atomic model which manages the
steps of central cognitive processing. The items
stored in long-term memory are organized and
managed by memory management system.

Reasoning system is modelled as an atomic
model and an interpreter based on BDI paradigm. In
this model, beliefs representing what the agent
believes about itself, other agents and the
environment are modelled as belief sets, which are
updated by working memory. Desires representing
the motivational state of agent are modelled as a run-
time stack. KAs including a set of plans are stored in
long-term memory. They lie dormant until they are
called back into the working memory and thus put to
use. Intention structure is modelled as a run-time
stack of hierarchically related KAs and maintained
by the interpreter.

We modelled an interpreter to evaluate the
optional KAs, which selects the most appropriate

KAs based on system beliefs and goals, places
selected KAs in the intention structure, selects a task
from the root of the intention structure and finally
executes one step of that task. The most difficult part
of the process is how to evaluate the KAs and select
the most appropriate ones. It is worth noting that we
are inspired for the precondition and evaluation of a
KA by Dennett’s three levels of abstraction[30].
However, the process of interpreting can be
achieved by introducing Jason[31] interpreter.
Related works are such as MADeM[32] and
MOISE+[33].

Action system is the execution part of an agent.
As action is modelled as a message in DEVS-based

PRS agent model, action system can be modelled as
a message distribution system.

An action can be either a primitive action which
is a behaviour or activity that can be executed
directly, or a new goal, or a new belief.
3.2 Design of formalization of components

As stated before, the DEVS-based cognitive
agent model consists of a set of interconnected sub-
systems and modules. Besides these, there are other
supporting data structure which construct the
cognitive agent model together. All the components
of the agent model are formalized and instructed as
below in the table using parallel DEVS
(PDEVS)[34] extension of DEVS formalism.

Table 1 Formal description of components

Module Formal Description Model type
Sensory Memory

Model int, , ,
S S SS S ext conS S S SM X Y S ta DEVS atomic model

Working Memory
Model int, , ,

w w ww w ext conw w w wM X Y S ta DEVS atomic model

Long-term
Memory Model

 ,D, , , ,D i i jL PM I ZDN M DEVS coupled
model

Declarative
Memory Model int, , ,

D D DD D ext conD D D DM X Y S ta DEVS atomic model

Procedural
Memory Model int, , ,

P P PP P ext conP P P PM X Y S ta DEVS atomic model

Declarative
Memory item

M =< Memory_type, Memory_name, parameter1…parameter > Data structure

Procedural
Memory item

Executable programs or codes

Memory
1 2{(,) , [1,]}n iMS M M M M M i n A list of Memory

items
Beliefs

1 2{(,) , [1,]}n iBS B B B B B i n A list of Beliefs

Belief , , , ,B Time Source BeliefType Content Possibility Data structure

Desire D = 1 2(,)ng g g g G A run-time stack of
goals

Goal G =< Goal_type, Goal_name, parameter1…parameter > Data structure

Intention A run-time stack of hierarchically related KAs
KAs

1 2{(,) , [1,]}n iKAs KA KA KA KA KA i n A list of KAs

KA(procedure) , , , , ,KA ID Time PCondition Actions Goal effect Data structure

Action MSG An event

MSG , , , , ,MSG ID Source Destination Type Content Time Input/output
Message

As shown in the table above, knowledge in
memory is represented as a list of memory items.
For a declarative memory item, a data structure
containing several components is adopted. However,
procedural memory is stores as executable programs
or codes as procedural memory involves the method
of how to perform tasks. Desire is a consistent set of
goals, and each goal is generated instantaneously or
functionally. The last goal in the desire is the top-

level goal which is persistent and initially given to
the agent. The goal type is one of: Achieve, Perform,
and Maintain. Intention is a run-time stack of
hierarchically related KAs. A KA is a data structure.
Each KA consists of a component(Actions) which
describes the steps of the procedure and an
invocation condition(PCondition) which specifies
under what situations the KA is useful. A KA also
has components(Goal and effect) to express the

results and utility of performing certain sequences of
actions under certain conditions. Actions in DEVS-
based cognitive model are modelled as
messages(events).
3.3 Design of system model construction

We adopted DEVS framework to reconstruct the
system model. A DEVS-based system model for a
L-system is typically as shown in Figure 2.

Figure 2 System model design
In general, a system model includes agent

organizations and a world model. In each agent
organization, each agent plays a certain role and is
connected to other agents for communication and
coordination. However, agents in different
organizations can also communicate directly or
through the communication with world model.

4 A SIMULATION IMPLEMENTATION
4.1 Simulation scenario

To test the above design, we constructed a
simulation system. Our hypothesis is that there are
two competitive teams of agents pursuing a common
goal, which is to find a same destination in the cell-
based environment, and the environment is full of
barriers which could cause difficulties on rooting for
agents. In each team, different agent organizations
and strategies are modelled, that is, agents have
different roles, and communicate directly or through
accessing the local cell information. In individual
modelling level, agents in each team have different
individual planning abilities.

Moreover, two teams of agents are modelled as
two organizations. Each organization has a unique
strategy to achieve the goal. In the agent
organization of our system, there are some agent
roles, such as Explorer, Coordinator, Information
sharer, Leader and so on. All of these roles are
played by agents and they try to communicate and
achieve the goal under an institutional control.

In this initial simulation test scenario, the scale
of system is relatively small, as we are focusing on
individual modelling and system construction.
Further research will be conducted on large-scale

systems by adopting parallel and distributed
simulation technologies.
4.2 System model execution

The underlying simulator of DEVS-based PRS
agent model and the experimental frame is
DSOL[35], which is a simulation environment that
supports continuous and discrete-event simulation
execution and experiment. The Event-Scheduling
DEVS (ESDEVS) library[36], implements the
parallel DEVS formalism on top of the DSOL
library. On the whole, the library specifies the meta
structure of atomic and coupled DEVS models, and
handles the couplings, output function, transition
functions at a high level, so that ESDEVS (together
with DSOL) serves as a DEVS simulator and
experimental frame.

The interface of the simulation system when
running is shown as follows.

5 DISSCUSSION
In this paper, we combined cognitive modelling,

agent organization theory and DEVS-based
framework in order to design a new method for
M&S of L-systems. Benefits can be gained for this
method.
5.1 Benefit of cognitive modelling

In psychology and cognitive science, cognition
usually refers to an information processing view of
an individual's psychological functions. In our
design of DEVS-based PRS agent model, overall
processing activity consists of a mixture of parallel
and serial processing in and across the modules. In
this way, basic cognitive processes(e.g., Perception,
Attention, Recall, Encoding and Storing) can be
modelled through parallel activities occurring in and
across the modules. Besides these, reasoning, as an
advanced process inside reasoning system conducted
by interpreter, can also be modelled.

Sloman[14] introduced a three-layer architecture
of reasoning. In our research, we modelled three
mechanisms in BDI model to realize Sloman’s three-

Figure 3 Simulation interface

layer reasoning process for different context. A
reactive reasoning mechanism is used to handle
routine new information by a set of reactive
procedures. A deliberative reasoning mechanism is
easy to realize for tasks involve achieving new types
of goals or acting in novel contexts, as our agent
model is based on a PRS architecture. And when
dealing with conflicting goals, or when to decide
whether to change the criteria being used by the
planner, a preliminary reflective reasoning
mechanism is realized by meta-management of the
beliefs, goals, and intentions of PRS itself. The
meta-management information is stored in a meta-
level KA(procedure).

With the help of reflective reasoning mechanism,
a variety of advanced processes can be modelled.
For example, inculcation of ethical from the agent
organization, self-assessment and self-learning.
5.2 Benefit of DEVS-based framework

Most currently available cognitive architecture
implementations are designed to perform complex
tasks in non-deterministic environments, for
example, fault detection. Therefore, they are
developed using a specified language on a specified
platform, which leads to poor extensibility and
scalability. However, the DEVS-based cognitive
agent model has inherent benefits such as
extensibility, scalability and interoperability which
are derived from DEVS formalism.

Another major gain from the DEVS-based
cognitive agent model is its component-based
design. For example, as long-term memory has a
huge storage and higher access rates than other
components, it may require more computing
resources. As it’s rather difficult for parallelism in
original cognitive model, its performance is
damaged. However, as DEVS-based cognitive agent
model is component-based, Declarative/Procedural
Memory model can be executed on high-computing
resources, like GPU.

Compared to agents in most traditional ABMS
systems, DEVS-based cognitive agent model
benefits not only on the rich cognition, but also on
the system scalability. As this model is based on
DEVS formalism, it’s much easier to construct a L-
system simulation and deal with scale issue.
5.3 Benefit of agent organization theory

In PADS(parallel and distributed simulation)
community, most of the theories or formalisms do
not support modelling agent independencies, which
indirectly results in difficulty of partitioning and
load balancing of large-scale simulation system.

With the help of agent organization theory, agent
independencies in a L-system are clearly defined,
with which agents are organized under an

institutional control. Moreover, agents can change
the connection relation dynamically.

6 CONCLUSION
In this paper, we combined cognitive modelling,

agent organization theory and DEVS-based
framework together in order to realize a new M&S
method for L-systems. In general, our research is
novel in terms of both agent representations and
agent structure all abstracted by DEVS formalism to
meet the needs of L-systems simulation
construction. As the agent model interface remains
the same and the intelligence and dynamics are
hidden inside the model, the individual agent model
can be considered as a normal model in the DEVS
model hierarchy which improves the system
scalability and interoperability. Further research will
focus on the simulation aspect of M&S for L-
systems.

REFERENCES

[1] C. M. Macal and M. J. North, “Tutorial on agent-
based modelling and simulation,” Journal of Simula-
tion, vol. 4, no. 3, pp. 151–162, 2010.

[2] J. Anderson, “A generic distributed simulation system
for intelligent agent design and evaluation,” in Pro-
ceedings of the Tenth Conference on AI, Simulation
and Planning, 2000, Society for Computer Simulation
International, pp. 36–44.

[3] L. Gasser and K. Kakugawa, “MACE3J: fast flexible
distributed simulation of large, large-grain multi-
agent systems,” in Proceeding of The First Inter-
national Joint Conference on Autonomous Agents &
Multiagent Systems, 2002, ACM, pp. 745-752.

[4] R. Minson and G. Theodoropoulos, “Distributing
RePast agent-based simulations with HLA,” in
Proceedings of the 2004 European Simulation
Interoperability Workshop, 2004, John Wiley and
Sons Ltd, pp. 1225–1256.

[5] J. P. Müller, “Towards a formal semantics of event-
based multi-agent simulations,” Multi-Agent-Based
Simulation IX, Springer-Verlag Berlin, pp. 110–126,
2009.

[6] H. S. Sarjoughian, B. P. Zeigler, and S. B. Hall, “A
layered modeling and simulation architecture for
agent-based system development,” Proceedings of the
IEEE, vol. 89, no. 2, pp. 201–213, 2001.

[7] H. L. M. Vangheluwe, “DEVS as a common
denominator for multi-formalism hybrid systems
modelling,” in Proceedings of 2000 IEEE
International Symposium on Computer-Aided Control
System Design, 2000, IEEE, pp. 129–134.

[8] D. Grossi, F. Dignum, M. Dastani, and L. Royakkers,
“Foundations of organizational structures in multi-
agent systems,” in Proceedings of the fourth inter-

national joint conference on Autonomous agents and
multiagent systems, 2005, ACM Press, p. 690-697.

[9] M. Kolp, P. Giorgini, and J. Mylopoulos, “Multi-
Agent Architectures as Organizational Structures,”
Autonomous Agents and Multi-Agent Systems, vol.
13, no. 1, pp. 3–25, 2006.

[10] J. Ferber and O. Gutknecht, “A meta-model for the
analysis and design of organizations in multi-agent
systems,” in Proceedings of the 3rd International
Conference on Multi Agent Systems, 1998, IEEE
Computer Society, pp. 128–135.

[11] J. R. Busemeyer and A. Diederich, Cognitive
Modeling. SAGE Publications, 2010.

[12] M. Bratman, Intention, Plans, and Practical Reason.
Cambridge University Press, 1999.

[13] F. F. Ingrand, M. P. George, and A. S. Rao, “An
Architecture for Real-Time Reasoning and System
Control,” IEEE Expert, vol. 7, no. 6, pp. 33–44, 1992.

[14] A. Sloman, B. Logan, and C. Rich, “Building
Cognitively Rich Agents,” Communications of the
ACM, vol. 42, no. 3, pp. 71–77, 1999.

[15] R. Sun, Cognition and Multi-Agent Interaction: From
Cognitive Modeling to Social Simulation. Cambridge
University Press, 2006.

[16] R. Sun, “Cognitive Architectures and Multi-Agent
Social Simulation,” in Multi-Agent Systems for
Society, Springer-Verlag Berlin, 2009, pp. 7–21.

[17] S. Mittal and S. A. Douglass, “Net-centric ACT-R-
Based Cognitive Architecture with DEVS Unified
Process,” in Proceedings of the 2011 Symposium on
Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, 2011, Society for Computer
Simulation International, pp. 1–11.

[18] M. Akplogan, G. Quesnel, and F. Garcia, “Towards a
deliberative agent system based on DEVS formalism
for application in agriculture,” in 2010 Summer
Simulation Multiconference, 2010, Society for
Computer Simulation International, pp. 250–257.

[19] B. Watrous, L. Granowetter, and D. Wood, “Hla
federation performance: What really matters,” in
Proceedings of the 2006 Fall Simulation
Interoperability Workshop, 2006.

[20] A. Dardenne, “Goal-directed acquisition,” Science of
Computer Programming, vol. 20, pp. 3–50, 1993.

[21]M. Amiguet, J. P. Muller, J. A. Baez-Barranco, and A.
Nagy, “The MOCA platform - Simulating the
dynamics of social networks,” in Proceedings of the
3rd international conference on Multi-agent-based
simulation II, 2003, Springer-Verlag, pp. 70–88.

[22] B. Edmonds, “Towards an ideal social simulation
language,” in Proceedings of the 3rd international
conference on Multi-agent-based simulation II, 2003,
Springer-Verlag, pp. 50–53.

[23] C. Jonker and J. Treur, “Relating structure and
dynamics in organisation models,” in Proceedings of
the 3rd international conference on Multi-agent-based
simulation II, 2003, Springer-Verlag, pp. 1–21.

[24] A. M. Uhrmacher, P. Tyschler, and D. Tyschler,
“Modeling and simulation of mobile agents,” Future

Generation Computer Systems, vol. 17, pp. 107–118,
2000.

[25] X. Hu and B. Zeigler, “A high performance
simulation engine for large-scale cellular DEVS
models,” in High Performance Computing
Symposium (HPC’04), Advanced Simulation
Technologies Conference, 2004, pp. 3–8.

[26] Q. Liu and G. Wainer, “Lightweight Time Warp A
Novel Protocol for Parallel Optimistic Simulation of
Large-Scale DEVS and Cell-DEVS Models,” in 2008
12th IEEE/ACM International Symposium on
Distributed Simulation and Real-Time Applications,
2008, pp. 131–138.

[27] X. Li, W. Mao, D. Zeng, and F. Wang, “Agent-based
social simulation and modeling in social computing,”
in Proceedings of the IEEE ISI 2008 PAISI, PACCF,
and SOCO international workshops on Intelligence
and Security Informatics, 2008, Springer-Verlag ,pp.
401–412.

[28] M. P. Georgeff and F. F. Ingrand, “Decision-making
in an embedded reasoning system,” in Proceedings of
the 11th international joint conference on Artificial
intelligence - Volume 2, 1989, Morgan Kaufmann
Publishers Inc, pp. 972–978

[29] E. D. Gagné, C. W. Yekovich, and F. R. Yekovich,
The cognitive psychology of school learning.
HarperCollins College Publishers, 1993.

[30] D. C. Dennett, The Intentional Stance. Mit Press,
1989.

[31] R. H. Bordini, J. F. Hübner, and M. J. Wooldridge,
Programming multi-agent systems in AgentSpeak
using Jason. John Wiley & Sons, Ltd, 2007.

[32] F. Grimaldo, M. Lozano, and F. Barber, “MADeM: a
multi-modal decision making for social MAS,” in
Proceedings of the 7th international Conference on
Autonomous Agents and Multiagent Systems, 2008,
pp. 183–190.

[33] J. Hubner, J. Sichman, and O. Boissier, “Developing
organised multiagent systems using the MOISE+
model: programming issues at the system and agent
levels,” International Journal of Agent-Oriented
Software Engineering, vol. 1, no. 3/4, pp. 370–395,
2007.

[34] A. C. Chow and B. P. Zeigler, “Parallel DEVS: A
parallel, hierarchical, modular, modeling formalism,”
in Proceedings of the 26th conference on Winter
simulation, 1994, Society for Computer Simulation
International, pp. 716–722.

[35] P. H. Jacobs, N. A. Lang, and A. Verbraeck, “D-SOL:
A Distributed JAVA based Discrete Event Simulation
Architecture,” in Proceedings of the 2002 Winter
Simulation Conference, 2002, pp. 793–800.

[36] M. Seck and A. Verbraeck, “DEVS in DSOL: Adding
DEVS operational semantics to a generic event-
scheduling simulation environment,” in Proceedings
of the Summer Computer Simulation, 2009, Society
for M&S International, pp. 261–266.

