
The modular architecture of the PythonDEVS simulation kernel
Yentl Van Tendeloo† and Hans Vangheluwe†,‡

†University of Antwerp, Belgium
‡School of Computer Science, McGill University, Canada

yentl.vantendeloo@student.ua.ac.be, hans.vangheluwe@ua.ac.be

Abstract
We introduce two sequential simulation languages and
tools: PythonDEVS, a Classic DEVS simulator, and
PythonPDEVS, its variant which supports Parallel DEVS.
Python(P)DEVS is fully compliant with the standard defini-
tion of the DEVS formalism and complex simulation initial-
ization and termination conditions are supported. The main
contribution is a modular architecture which allows the user
to choose the scheduler, the realtime time management plat-
form, the tracer(s), termination conditions, ... This allows
for both simulation and deployment of models. For real-time
simulation, three different platforms for time management are
supported: thread-based, integration with UI event process-
ing, and integration with the game loop of modern game en-
vironments. The simulation kernel is highly optimized and
can partially exploit its modularity to achieve higher perfor-
mance.

1. INTRODUCTION
PythonDEVS (a.k.a. PyDEVS) is a Classic DEVS[16]

simulator implemented using Python, an interpreted, high-
level, object-oriented programming language. Recently,
many changes were made to the original version[4] to
enhance the simulation performance. It also has a variant,
called PythonPDEVS, which implements Parallel DEVS[7],
allowing several additional performance improvements. For
this reason, most work is aimed at improving PythonPDEVS
To provide a simple example of the Py(P)DEVS syntax and
interface, a very basic queue model will be presented. The
model doesn’t do anything useful, though it suffices to get
a basic idea of what a Py(P)DEVS model looks like. More
elaborate examples and how to use several options can be
found in the documentation included in the package.

Listing 1. An example of a generator coupled to a basic
queue model
c l a s s G e n e r a t o r (AtomicDEVS) :

def i n i t (s e l f) :
AtomicDEVS . i n i t (s e l f , ” G e n e r a t o r ”)
s e l f . s t a t e = True
s e l f . o u t p o r t = s e l f . a d d O u t P o r t (” o u t p o r t ”)

def t imeAdvance (s e l f) :
i f s e l f . s t a t e :

re turn 1 . 0
e l s e :

re turn INFINITY

def o u t p u t F n c (s e l f) :
The message i t s e l f c o u l d be a n y t h i n g
though we t a k e 5 as an example
re turn { s e l f . o u t p o r t : [5]}

def i n t T r a n s i t i o n (s e l f) :
s e l f . s t a t e = F a l s e
re turn s e l f . s t a t e

c l a s s Queue (AtomicDEVS) :
def i n i t (s e l f) :

AtomicDEVS . i n i t (s e l f , ” Queue ”)
s e l f . s t a t e = None
s e l f . p r o c e s s i n g t i m e = 1 . 0
s e l f . i n p o r t = s e l f . a d d I n P o r t (” i n p u t ”)
s e l f . o u t p o r t = s e l f . a d d O u t P o r t (” o u t p u t ”)

def t imeAdvance (s e l f) :
i f s e l f . s t a t e i s None :

re turn INFINITY
e l s e :

re turn s e l f . p r o c e s s i n g t i m e

def o u t p u t F n c (s e l f) :
re turn { s e l f . o u t p o r t : [s e l f . s t a t e]}

def i n t T r a n s i t i o n (s e l f) :
s e l f . s t a t e = None
re turn s e l f . s t a t e

def e x t T r a n s i t i o n (s e l f , i n p u t s) :
Only t a k e t h e f i r s t e l e m e n t from t h e bag
s e l f . s t a t e = i n p u t s [s e l f . i n p o r t] [0]
re turn s e l f . s t a t e

c l a s s CQueue (CoupledDEVS) :
def i n i t (s e l f) :

CoupledDEVS . i n i t (s e l f , ”CQueue”)
s e l f . g e n e r a t o r = s e l f . addSubModel (G e n e r a t o r ())
s e l f . queue = s e l f . addSubModel (Queue ())
s e l f . c o n n e c t P o r t s (s e l f . g e n e r a t o r . o u t p o r t ,

s e l f . queue . i n p o r t)

model = CQueue ()
sim = S i m u l a t o r (model)
The ’ s im ’ o b j e c t can be used t o do c o n f i g u r a t i o n
sim . s i m u l a t e ()

We will elaborate on the major features of the latest ver-
sion, which include compliance (section 2.), modular archi-
tecture (section 3.) and performance (section 4.). Related
work is explored in section 5. Section 6. concludes the pa-
per.

2. COMPLIANCE
Several criteria to define compliance to the Classic DEVS

formalism are defined in [11]. These criteria are sumarized as
follows:

1. Non-negativeness of the time advance function: the
time advance shouldn’t return a negative number, as this
would cause the simulation to go back in time.

2. Correct output function: the output function should
happen exactly once and only before the internal tran-
sition function.

3. Event passing instantaneity: event passing between
ports should take no simulation time.

4. Precise time granularity: the simulation should run at
a fixed time granularity.

5. Event time synchronization: the time of occurence of
events should be the same in all relevant (connected)
models.

6. Correct event sequence: all events should be processed
in the right temporal sequence.

7. Correct tie-breaking: simultaneous internal event oc-
currences should be handled correctly using the select
function.

8. Correct event dispatching: events should be correctly
dispatched from output port(s) to input port(s).

9. Event independence: all event instances should be
unique (no references to each other nor to model states).

Whereas the early version of PyDEVS failed for criteria
1, 4 and 9, the latest version passes for each criteria. Two
other Classic DEVS simulators, CD++ and X-S-Y, were also
checked, which showed that they both failed for some crite-
ria. An overview is shown in table 1.
Both failed for criteria 1, as both don’t check the time advance
value and allow simulation to go back in the past. Further-
more, criteria 7 posed problems for both simulators, as none
of them actually support a select function. Instead of calling
a select function, the first model in the imminent model list
will be selected to transition first.
Addtionally, CD++ failed on criteria 4, which is mainly due
to the use of a single precision floating point number, instead
of double precision. Even though it passes criteria 9, this is
due to the fact that only integers are allowed as messages and
not due to the simulator taking care of such a situation.
X-S-Y failed for criteria 9 due to the possibility for messages
to contain references to other models or states. This problem
could be easily resolved in Python (the implementation lan-
guage of X-S-Y) by using e.g. the deepcopy library function.

Criteria PyDEVS CD++ X-S-Y
1 pass FAIL FAIL
2 pass pass pass
3 pass pass pass
4 pass FAIL pass
5 pass pass pass
6 pass pass pass
7 pass FAIL FAIL
8 pass pass pass
9 pass pass FAIL

Table 1. Compliance overview

In PyDEVS, this problem is solved by offering the modeller
the possibility to define the degree of compliance. By default,
pickle is used, though the user can define custom functions
too. If the modeller is certain that these references are not ex-
ploited to violate the DEVS formalism, it can be considered
as a performance optimisation.
Note that we only compared Classic DEVS simulators, as
these criteria differ for Parallel DEVS due to e.g. the lack
of a select function and the use of bags.

3. ARCHITECTURE

Algorithm 1 Basic simulation algorithm
clock← scheduler.readFirst()
while terminationCheck() do

for all scheduler.getImminent(clock) do
Mark model with intTransition
Generate and route output
Mark destinations with extTransition

end for
for all marked models do

Perform marked transition
Send the performed transition to the tracer

end for
scheduler.massReschedule(transitioning)
Clean model transition marks
clock← scheduler.readFirst()

end while

The design of the Py(P)DEVS simulator was done as mod-
ular as possible, with the prime example of this design being
the realtime simulation possibilities. Other examples include
several tracers (for model validation), a user-choosable sched-
uler (for performance) and the possibility for a termination
condition (for versatility). A very simplified version of the
simulation algorithm is shown in algorithm 1. The realtime
version slightly varies, in that it only executes a single step
and then waits for the required time.

3.1. Modular realtime simulation
Apart from the usual as-fast-as-possible simulation,

Py(P)DEVS also supports realtime simulation. This feature
uses almost exactly the same code as as-fast-as-possible sim-
ulation, as only the main simulation loop differs due to the
possibility for user-provided input and the requirement to
wait after every transition phase. Realtime simulation there-
fore has exactly the same set of features as normal simulation.
The only difference is the termination function, which is only
evaluated at the processing of a transition (for performance
reasons).
The most straightforward implementation would be to use
raw threads. Though they are not the best solution in case
it is combined with e.g. a user interface running Tk. For such
situations, the use of Tk events would be much more fitting.
It is completely transparant to the modeler which platform is
used, thus the same model can be simulated using threads first
and immediately afterwards using Tk.
Py(P)DEVS supports three different methods for real time
simulation:

1. Raw threads are the most straightforward way to imple-
ment realtime simulation. Waiting for the correct time
will happen by using a Python Event as provided by
the standard library. A wait on this event will occur,
which can simply be interrupted by setting the event
(in case an external input is received). This implementa-
tion is very straightforward and simple, though it starts
a lot of threads in cases where many inputs are sched-
uled. Events can be unscheduled by manually setting the
Event object, thus terminating the thread.

2. Tk events are primary useful when combined with a
GUI that also requires Tk. It allows for seamless inte-
gration with other Tk events. The major difficulty is that
the calls to schedule the event have to happen in the main
thread of the program, where the Tk main window was
created. For this reason, we have the other threads call
the main loop to do the actual scheduling in the Tk event
list. Unscheduling also happens in the same way. The
actual scheduling logic is provided by Tk itself, we only
had to write a wrapper around it.

3. The Game loop mechanism allows the realtime sim-
ulation to be incorporated within e.g. a game. Games
mainly use a while loop to update the game state and
render the representation. Within this loop a call to the
simulator should be made to advance the simulated time.
The internal time of the simulator will then be defined by
the amount of calls that were made to this function. The
time it should take between calls, is passed to the sim-
ulator at initialisation. The main disavantage of this ap-
proach is that the accuracy is limited to the defined FPS,
as events are only triggered during the function call. The

primary difference with the other two backends is that
the simulator will not be responsible to keep the actual
simulation running. In order to mention to the game loop
whether or not the simulation is finished (the termination
time has been reached), a query method is also provided.

Adding additional platforms is extremely simple and only re-
quires the user to write a small interface. The main function
is the scheduleAfter function, which takes a function to run
after a certain delay has passed. To give an idea, the game
loop mechanism was added seperately and only took 50 lines
of code for the platform itself.
Events also have the notion of being cancelable: an internal
transition that was scheduled to happen, should be cancelled
as soon as another event is provided by the user. On the other
hand, all events that are read from a file, are already scheduled
at the start of the simulation, so these should not be unsched-
uled.
Apart from the threading platform, the external event senders
are also written as modular as possible. Two input methods
are supported:

1. With user input during the simulation, the simulator
will present a prompt to the user during the actual sim-
ulation. The time of the event will be determined by
the simulation time at the moment the message is in-
jected (that is, as soon as the return key is pressed). This
method can also be used to halt the simulation prema-
turely, simply by injecting the empty string or any in-
valid input.

2. File input is another possibility, where a filename is
passed as a simulation parameter. This file will be parsed
at the start of the simulation and all events that are
present will be scheduled. Note that there is no possi-
bility to end the simulation in this way, as it would be
equal to setting the termination time of the simulation.

For maximal flexibility, both methods are supported simulta-
neously, making it possible to use a file as a generator, while
the user still provides manual input at the same time. Input
is always provided in a form similar to inputPort inputValue,
where the inputPort is a string that is mapped to a Port object
at the start of the simulation.
Due to the input always being strings, it is only possible for
the user to inject strings in the simulation. Events can be put
on every possible input port of the model. Though this par-
tially breaks modularity, it allows for much less intrusive ex-
perimenting with the model under study, as otherwise a series
of ports should be created from the topmost coupled model to
the desired atomic model. Since Parallel DEVS is used, the
message actually has to be put in a bag before being inserted
into the actual simulation.

3.2. Modular tracing
Py(P)DEVS supports the use of several different tracers,

which can be useful for debugging. The supported tracers are:

1. Verbose tracing will output all available information
about the simulation. It will display the type of transition
that happens, on which model it happens and the effect
on the model. Additionally, the incoming and outgoing
messages are shown for each port. This happens in a hu-
man readable form, as to allow simple debugging. The
output of this tracer is difficult to process automatically,
for which reason two other tracers are present.

2. XML tracing will output the information to XML with
the structure defined in [15], which also includes a tool
to visualize these traces. The main advantage of this
trace is that it is very versatile and is simple to parse.
Note however, that such traces can become very big due
to the verbosity of XML and the amount of data that is
being logged.

3. VCD tracing outputs the information in Value Change
Dump[1] format, which is mainly used by languages
such as Verilog. The output files are relatively small,
though only binary values, floating and error values are
allowed as messages and states. These traces can be vi-
sualised using e.g. GTKWave.

4. Cell tracing is a specific tracer for models that can be
visualised in a grid. Several options are offered, such as
writing to multiple files for easy batch processing. It is
similar to the tracer present in CD++[3], though some
important variations exist. First of all, our tracer is lim-
ited to 2D models, though this limitation is not funda-
mental. On the other hand, this tracer is not limited to
Cell-DEVS models, but allows arbitrary models to be
assigned x and y attributes, which specify the location
of the model. The state also has a method to retrieve the
state in a single number, which is again user-definable.
The resulting files then contain a matrix representation
of the grid, which can be visualized with most plot-
ting tools. It offers a more visual tracing environment
in those specific cases where it is possible. An example
of a fire spread model is shown in figure 1.

Adding a new tracer is very simple and only requires the ad-
dition of functions to be called when an internal and external
transition happen. These functions take the model on which
the transition happened as a parameter.
Since tracing provides a big simulation overhead, it is possi-
ble to disable tracing completely, though the simulation will
not provide any output whatsoever. All tracers are also com-
pletely independent, thus it is possible to have multiple tracers
running simultaneously.

Fire spread temperature

’trace-01500’ matrix

 0 2 4 6 8 10 12 14 16 18

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Figure 1. Cell trace of a fire spread model

Listing 2. Example verbose output
C u r r e n t Time : 1 . 0 0

EXTERNAL TRANSITION i n model <P r o c e s s o r>
I n p u t P o r t C o n f i g u r a t i o n :

p o r t <i n p o r t >:
Event = 1

New S t a t e : 0 . 6 6
Next s c h e d u l e d i n t e r n a l t r a n s i t i o n a t t ime 1 . 6 6

INTERNAL TRANSITION i n model <G e n e r a t o r>
New S t a t e : 1 . 0
Outpu t P o r t C o n f i g u r a t i o n :

p o r t <o u t p o r t >:
Event = 1

Next s c h e d u l e d i n t e r n a l t r a n s i t i o n a t t ime 2 . 0 0

3.3. Modular scheduler
One of the most time-critical (and complexity-defining)

parts of DEVS simulation is the scheduler being used. Nearly
every different DEVS simulator uses another datastructure
to use as the basis of the scheduler. The simplest sched-
ulers being a simple eventlist (as specified in the abstract
simulator[16, 6]). More complicated schedulers, which also
yield a better efficiency, are based upon the idea of a heap.
Even in these seemingly conceptually identical schedulers,
slight variations are visible. Take for example vle[14] and
adevs[12]. Both use a heap for their scheduler, though they
use it differently. In vle, a model is rescheduled by invalidat-
ing the model in the heap and inserting a new (valid) copy
in the heap. This way the heap invariant stays true and there
is no need to pop random elements from the heap, making
a standard heap implementation suffice. On the other hand,
adevs extends the basic heap and adds some specific code to
make the popping of random elements possible, though at a

relatively high cost. All these schedulers have specific situa-
tions in which they are fastest. In several situations, some user
knowledge might be present to enhance the scheduler. For this
reason, PyPDEVS supports a user-defined scheduler too. This
offers the user the possibility to define a custom scheduler, as
long as the same interface is used. Such a scheduler doesn’t
even need to provide complete DEVS-compliance, as long as
it is compliant to the desires of the user and the actual model
being simulated.
Of course, most users will not be tempted to write their own
scheduler, though it offers an extra opportunity for those
users that require every bit of performance. For these users,
PyPDEVS already includes 7 different schedulers, of which
5 are suitable for general purpose use. These other 2 sched-
ulers are specifically written for a subset of all possible DEVS
models, where some shortcuts can be taken in the scheduling
logic.
The supported schedulers are:

1. Sorted list: this implements the simplest scheduler of
all: a basic sorted list. It is clearly the least efficient, at
least complexity wise. It performs decently in several sit-
uations, though it has very inefficient scheduling if there
are lots of inactive models or if very little models change
in the simulation step.

2. Minimal list: similarly simple to the Sorted List, though
it searches for the minimal element in each iteration.

3. Activity heap: this is the default scheduler of
PyPDEVS. It maintains a heap with all scheduled el-
ements, which is then simply updated by pushing and
popping new elements using the heapq library in Python.
Reschedules are handled by invalidation, followed by a
periodic cleanup. This scheduler offers nice efficiency
in most cases, though it could be problematic in cases
where a lot of invalidations happen, as the size of the
heap can actually become much larger than the num-
ber of models. If the required cleanup is triggered, it
will take some time to completely reconstruct the whole
heap. This scheduler partially takes activity into account,
meaning that models that are scheduled for infinity are
simply not taken into account and therefore do not influ-
ence the complexity.

4. Dirty Heap: a copy of the Activity Heap scheduler, but
without periodic cleanup. It is general, though there is
no bound on the amount of memory consumed, nor on
the time complexity of operations on this heap. The main
advantage is that the periodic cleanup is often unneces-
sary and can now be avoided. In the worst situation, it
is possible for the heap to grow larger at every timestep,
making the time and space complexity unbounded.

Average case Worst case
Sorted list O(n · log(n)) O(n · log(n))
Minimal list O(n) O(n)
Activity heap O(k · log(n)) O(n · log(n))
Heapset O(k · log(n)) O(n · log(n))
Fixed time O(k) O(n)
No Age O(k · log(n)) O(n · log(n))
Dirty heap O(k · log(n)) O(∞)

Table 2. Complexity of the different schedulers. k is the
number of reschedules and n is the total number of models in
the simulation. The major difference is often in the constant
factor.

5. Heapset: the datastructure is still a heap, though it
doesn’t contain the elements themself, but only the time
at which they should transition. This time can then be
used to look up the actual models in a hashmap. The pri-
mary advantage is that it minimizes the size of the heap
by only including times, thus colliding models do not in-
crease its size. Thus the heap can be kept very small if
lots of models are scheduled at the same time. Note that
this scheduler takes advantage of the efficient dictionary
(a kind of hashmap) implementation in CPython. It tries
to be good at everything, at the cost of never being the
best, making it a good scheduler for general situations.

6. No Age: a copy of the Heapset scheduler, but without
an age field, thus making it non-general. This allows
slightly more simple comparisons internally.

7. Fixed time: this scheduler will only have a list of ’sched-
uled’ and ’not-scheduled’ models. Such a simplification
allows for many optimisations, though it is very specific.
It is applicable in models where every model that must
transition, transitions at exactly the same time.

Each of these schedulers has its specific situations, for ex-
ample the Minimal list in case lots of reschedules happen, or
the Heapset in cases where only a small number of resched-
ules happen at each iteration. Three different kinds of situa-
tions are tested and all schedulers are compared.

The first one in figure 2 contains the DEVStone benchmark,
where lots of reschedules happen due to many collisions. The
second one in figure 3 contains the same benchmark, but with
a random time advance, thus preventing collisions. The final
one in figure 4 contains the Fire Spread model, but now shows
that a slight advantage can still be gained by using a specific
scheduler 1.

1This difference is even more significant when different interpreters are
used, as the sort() method of a list is implemented rather efficiently in
CPython, due to the implementation in C.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

s
im

u
la

ti
o

n
 t

im
e

 (
s
)

DEVStone, many collisions

Sorted List
Minimal List
Dirty Heap

Activity Heap
HeapSet
No Age

Figure 2. Scheduler comparison for DEVStone with many
collisions

 0

 50

 100

 150

 200

 250

 300

s
im

u
la

ti
o

n
 t

im
e

 (
s
)

DEVStone, no collisions

Sorted List
Minimal List
Dirty Heap

Activity Heap
HeapSet
No Age

Figure 3. Scheduler comparison for DEVStone without col-
lisions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

s
im

u
la

ti
o

n
 t

im
e

 (
s
)

Fire Spread

Sorted List
Minimal List
Dirty Heap

Activity Heap
HeapSet
No Age

Fixed Time

Figure 4. Scheduler comparison for Fire Spread

From these different simulations, it becomes clear that
noticable speedups can be achieved in such a way. Varieties
in memory usage are also to be expected, though they are not
shown here.

The idea of using a specific datastructure for specific situ-
ations was also used in e.g. Meijin++[13], where the datas-
tructure could even be changed at runtime if it was de-
tected that a speedup could be gained in that way. PyPDEVS
currently offers basic support for a polymorphic scheduler,
which chooses at run time between either the heapset or min-
imal list scheduler, based on the patterns seen in the last sim-
ulation steps. The additional cost of statistics gathering and
swapping the scheduler can often be made up for if the model
has either variable behaviour, or if the user simply has no idea
which scheduler to use. Of course, manually selecting the best
scheduler is still slightly faster, but is impossible for fluctuat-
ing scheduling patterns.

3.4. Modular termination condition
Another specific feature of Py(P)DEVS is the possibility

to use a termination condition instead of a termination time.
Other simulators only allow the simulation to halt after a spe-
cific simulation time, whereas we allow the modeller to de-
fine a condition that should be checked at every simulation
step. Such a condition could check for an unacceptable situa-
tion and immediately halt simulation if such a situation is de-
tected. Whereas the actual simulation speed is not improved,
it offers the possibility of stopping the simulation earlier.
The main disadvantage of this approach is that it incurs a
slight performance overhead in situations where only a termi-
nation time is desired, as function calls have a high overhead
in Python. Other implementation languages might support in-
lining to avoid this overhead.

4. PERFORMANCE
Even though Py(P)DEVS is written in Python, one of its

new focal points is performance. The first version was among
the slowest DEVS simulators available, mainly due to the
simple simulation procotols and the lack of severe optimi-
sations to the abstract simulator.
The complete simulation algorithm was revised and the com-
plexity was severely reduced. The most invasive optimisa-
tions were the use of different schedulers for different situ-
ations and the use of direct connection[5], several other opti-
misations were adopted from [2].
Additional speedup can be observed when using the PyPy
Python interpreter instead of the default CPython interpreter.
Using another interpreter does not lower the complexity2,

2It could be possible that some library functions are implemented dif-
ferently, potentially offering a difference in complexity depending on the
situation.

Figure 5. DEVStone model, here the width is 2 and depth is 3

though it can alter the complexity by a constant factor.
Another option would be to use Cython to create a compiled
version of the simulator. Simply compiling the model with-
out any additional information provided nearly no speedup.
To obtain more significant speedups, static typing should be
introduced for the performance critical functions. The main
problem with this is that it requires intrusive changes, pre-
venting the model from being run using a normal Python in-
terpreter, as it was no longer valid Python code.
To show a small comparison, we performed a comparison
using DEVStone[8] with many collisions. To put the per-
formance in perspective, we compare our performance to
adevs[12], which is currently one of the fastest available
DEVS simulators and is written in C++. Since adevs imple-
ments the Parallel DEVS[7]3 formalism, we compared it to
PyPDEVS.
Our DEVStone model is rather artificial, though it clearly
shows the complexity in the number of models in situations
with many collisions. These results were obtained using an
Intel i5-2500, 3.30GHz with 4GB main memory.
Knowing that adevs uses a compiled programming language,
PyPDEVS compares very favorably when the PyPy inter-
preter is used, which has JIT capabilities.
The normal adevs benchmark was done without any compila-
tion flag, thus disabling any compiler-induced optimisations.
If adevs was compiled with optimisations (gcc -O2), adevs
was the fastest again. However, the PyPy JIT is still work in
progress, providing the potential for even higher performance
in the future without any further optimisations to PyPDEVS
itself. Furthermore, this simulation time included the JIT code
generation (which clearly happens at run-time) and several
parts of code were never translated, resulting in normal inter-
preted execution which is said to be even slower than usual in
the PyPy documentation.
In PyPDEVS, we choose to use the minimal list scheduler, as
the DEVStone benchmark causes a number of collisions that
is dependent on the number of models. In such situations, the

3Technically, it is the DynDEVS formalism, though the difference doesn’t
matter here

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350

S
im

u
la

ti
o

n
 t

im
e

 (
s
)

Depth

DEVStone benchmark
adevs

PyPy PyPDEVS
adevs (with -O2)

Figure 6. DEVStone comparison between PyPDEVS and
adevs; PyPDEVS using the minimal list scheduler

minimal list scheduler is the ideal scheduler due to its low
time complexity that is independent of the number of colli-
sions. Note that there is some slight jitter in the PyPy timings,
even though the results are the average of 5 simulation runs.
This is caused by the garbage collector that gets called after
some threshold in memory usage is reached. Furthermore, the
JIT causes some slight deviations in short simulations due to
the warmup time.
PyPDEVS also includes several features over adevs, such as
the possibility for realtime simulation, several tracers and
the use of a termination condition. Additionaly, PyPDEVS
models are written in Python, offering all the advantages of
Python to the modeller. This allows for example to change
the model and rerun it without recompilation. On the other
hand, the adevs simulator and the model are compiled to-
gether into a single executable. Another advantage is dynamic
typing: in PyPDEVS it doesn’t matter what kind of messages
are passed, whereas in adevs, the same type has to be used
(though inheritance can be used).

5. RELATED WORK
The idea of modular design is also present in JAMES II[9],

though our work is focussed solely on DEVS.
Nearly every different simulator uses its own kind of sched-
uler, which can be highly efficient in the problem domain for
which the simulator was designed. Such examples include a
sorted list (original PyDEVS[4]), minimal list (CD++[3]) and
a dirty heap (vle[14]). The used type of scheduler is nearly
never documented, forcing the user to delve into the source
code (if available at all).
X-S-Y[10] is another DEVS simulator written in Python that
supports realtime simulation, though it only supports the idea
of using raw threads.

6. CONCLUSION AND FUTURE WORK
We presented a new version of PyDEVS, a DEVS simula-

tor written in Python, which is compliant to the Classic DEVS
formalism, supports both as-fast-as-possible simulation and
realtime using different threading platforms. It offers many of
its features in a modular way, without compromising simula-
tion efficiency and is even one of the faster DEVS simulators
in combination with PyPy. It uses Python as its implemen-
tation language, allowing for very readable code in both the
simulator and the models.
Future work is focussed on the development of PyPDEVS, by
providing a distributed and parallellised version of the current
PyPDEVS implementation. It will also support the same kind
of tracers and a termination condition. Realtime simulation
will still be supported, though only when no distribution is
used. The main difference is the possibility to use multiple
nodes using Time Warp. This implementation will again fo-
cus on performance.

ACKNOWLEDGMENT
Jean-Sébastien Bolduc is gratefully acknowledged for his

work on the original prototype of the PyDEVS simulator.

REFERENCES
[1] IEEE Standard for Verilog Hardware Description Lan-

guage. IEEE Std 1364-2005 (Revision of IEEE Std
1364-2001), 2006.

[2] James J. Nutaro Alexander Muzy. Algorithms for ef-
ficient implementations of the devs & dsdevs abstract
simulators. 2005.

[3] Javier Ameghino and Gabriel Wainer. Application of
the cell-devs paradigm using n-cd++. In In Proceedings
of the 32 nd SCS Summer Computer Simulation Confer-
ence, 2000.

[4] Jean-Sébastien Bolduc and Hans Vangheluwe. The
modelling and simulation package PythonDEVS for

classical hierarchical DEVS. Technical report, McGill
Univ., 2001.

[5] Bin Chen and Hans Vangheluwe. Symbolic flattening of
devs models. In 2010 Summer Simulation Multiconfer-
ence, SummerSim ’10, pages 209–218, San Diego, CA,
USA, 2010. Society for Computer Simulation Interna-
tional.

[6] A.C. Chow. Abstract simulator for the parallel devs for-
malism. AI. Simulation, and Planning in High Auton-
omy Systems, 1994.

[7] Alex Chung Hen Chow and Bernard P. Zeigler. Parallel
DEVS: a parallel, hierarchical, modular, modeling for-
malism. In Proceedings of the 26th conference on Win-
ter simulation, WSC ’94, pages 716–722, San Diego,
CA, USA, 1994. SCS.

[8] Ezequiel Glinsky and Gabriel Wainer. Devstone: a
benchmarking technique for studying performance of
devs modeling and simulation environments.

[9] J. Himmelspach and A.M. Uhrmacher. Plug’n simu-
late. In Simulation Symposium, 2007. ANSS ’07. 40th
Annual, pages 137–143, 2007.

[10] Moon Ho Hwang. X-s-y. https://code.google.
com/p/x-s-y/, 2012.

[11] Xiaobo Li, Hans Vangheluwe, Yonglin Lei, Hongyan
Song, and Weiping Wang. A testing framework for devs
formalism implementations. In Proceedings of the 2011
Symposium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium, TMS-DEVS ’11, pages
183–188, San Diego, CA, USA, 2011. Society for Com-
puter Simulation International.

[12] James J. Nutaro. adevs. http://www.ornl.gov/
˜1qn/adevs/, 2013.

[13] Nicolas Patrick. Meijin++, reference manual, 1991.

[14] Gauthier Quesnel, Raphaël Duboz, Éric Ramat, and Ma-
madou K. Traoré. Vle: a multimodeling and simulation
environment. In Proceedings of the 2007 summer com-
puter simulation conference, SCSC, pages 367–374,
San Diego, CA, USA, 2007. Society for Computer Sim-
ulation International.

[15] Hongyan Song. Infrastructure for devs modelling and
experimentation. Master’s thesis, School of Computer
Science, McGill University, 2006.

[16] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon
Kim. Theory of Modeling and Simulation. Academic
Press, second edition, 2000.

