
A Model Driven Approach to Web-based Traffic Simulation

Deniz Çetinkaya
Software Engineering Department
Atılım University, Ankara, Turkey

deniz.cetinkaya@atilim.edu.tr

ABSTRACT
As the world population increases the number of vehicles in
the traffic increases as well, and so the traffic becomes more
complex. Problems in the urban traffic such as traffic con-
gestion, car accidents, parking difficulties, etc. have a large
impact on people’s lives as well as the environment. There-
fore, researchers, policy makers, decision takers and planners
use expert tools to find the best solutions for traffic and trans-
portation problems.

Traffic modeling and simulation has been used for analyz-
ing, designing, planning and managing urban traffic for many
years. Various techniques have been proposed and many tools
have been developed by researchers to assist the modeling
and simulation activities in the traffic domain for more than
half a century. However, improving the existing methods and
developing new tools for traffic simulation are gaining im-
portance due to the emerging technologies. Web-based mod-
eling and simulation has been popular in the last decade, and
has a great promise in terms of collaborative and distributed
simulations. Model driven approaches are employed in the
simulation field for a long time and have provided rapid de-
velopment solutions. In this paper, a model driven web-based
traffic simulation framework is proposed and a prototype im-
plementation is presented.

Author Keywords
Model driven development; traffic simulation; Web-based
simulation.

ACM Classification Keywords
I.6.5 [Simulation and Modeling] Model Development I.6.7
[Simulation and Modeling] Simulation Support Systems:
D.2.13 [Software Engineering] Reusable Software

1. INTRODUCTION
As the traffic systems become more sophisticated and com-
plex, professionals, researchers, policy makers, decision tak-
ers and planners use expert tools and efficient methods to
propose better designs and find the best solutions for vari-
ous problems. Some common problems in the urban traf-
fic are traffic congestion, car accidents, parking difficulties,
high levels of emissions, etc. Traffic modeling and simula-
tion has been widely used for analyzing, designing, planning

SpringSim-TMSDEVS 2016 Pasadena, CA, USA
c©2016 Society for Modeling & Simulation International (SCS)

and managing urban traffic for many years. Recent studies
focus on applying new technologies to improve the existing
methods and tools [39, 17, 18].

Web-based modeling and simulation has gradually been pop-
ular in the last decade with the new technologies, and has a
great promise in terms of collaborative and distributed simu-
lations. Web-based simulation tools or environments provide
interfaces in the form of Web-applications for controlling and
executing simulations. These tools can distribute simulation
tasks over a network for load balancing [39]. Web-based sim-
ulations can benefit the many features of the Web 2.0 includ-
ing common standards, interoperability, ease of use, collabo-
rative activities in a project, etc. [30, 5]. Besides, Web-based
simulation is highly related with cloud computing and cloud-
based simulation [8]. In Web-based simulations, formal de-
scriptions and formal approaches become more essential.

In software engineering, there is a trend towards modern-
ization for moving from desktop applications to new gener-
ation Web-based applications. Simulation field will require
this change in the next a few years. Hence, the focus of
this research is on the successful implementation of collab-
orative Web-based simulation environments by utilizing new
technologies. The term Web-based application (or Web ap-
plication) may refer to different types of software such as
browser-based Web applications, rich client applications that
uses standard Web protocols without a browser or non-native
mobile applications.

Modeling and simulation is a discipline that requires soft-
ware engineering activities for designing and developing sim-
ulation models, and for implementing their software solu-
tions. In software engineering, model-driven development
approaches provide specific advantages for reusability, pro-
ductivity and maintainability by using well-defined models
at various abstraction levels. Model driven approaches are
employed in the simulation field for a long time. Many re-
searchers have already realized the potential impact of ap-
plying model-driven approaches to increase software quality
and productivity via automatic code generation [10, 19, 9,
34, 11]. In a model driven approach, from a software engi-
neering perspective, models are the primary artifacts of the
software development process and a software system is de-
veloped through successive model transformations. The final
software system is (semi)automatically generated and is ex-
pected to be well-structured.



In this paper, a model driven Web-based traffic simulation
framework is proposed and a prototype implementation is
presented. This research contributes to the studies in the
field of traffic simulation, Web-based simulation and mod-
eling tool development by proposing a framework that com-
bines the model driven development approach with reusable
and executable components. Component based software de-
velopment relies on having pre-developed and validated soft-
ware components which can be used to form a hierarchical
software system .To develop Web-based applications in an
effective and convenient way model driven and component
based approaches can provide us a sound basis.

2. RELATED WORK
Various techniques have been proposed and many tools have
been developed by researchers to assist the modeling and sim-
ulation activities in the traffic domain for more than half a
century. Trafc simulation is typically classied according to
the represented level of detail as macroscopic, mesoscopic
and microscopic traffic simulation [4]. While, the detailed
movement of each individual vehicle is modeled at the mi-
croscopic level, a high level traffic flow modeling is gener-
ally described at macroscopic models. Mesoscopic models
are at an intermediate level of detail [38]. Besides these three
approaches, researchers sometimes use the term nanoscopic
level to refer a more detailed level than microscopic level [28,
23]. For example, the vehicle and the driver are modeled as
separate components at nanoscopic level.

Over the years, various methods are used in traffic simula-
tion [36] including agent based systems [13, 1], queue models
[20], cellular automata [14, 35, 33], DEVS [26, 35, 21] and
Petri nets [32]. Besides, different commercial and freeware
traffic simulation tools are available such as SUMO (Sim-
ulation of Urban Mobility) [25, 2], AIMSUN [7], TRAN-
SIMS (TRansportation ANalysis SIMulation System) [31],
PARAMICS [6], VISSIM [15], and MATSim (Multi-Agent
Transport Simulation) [27]. More information can be found
at [24].

Regarding the implementation of the simulation tools, im-
proving the existing methods and developing new tools for
traffic simulation are gaining importance due to the emerg-
ing technologies. Web-based modeling and simulation has
gradually been popular in the last decade, and has a great
promise in terms of collaborative and distributed simulations.
Although, Web-based simulation is initiated via Java applet or
Flash based animations [22, 37, 5], the research community
has recently started to move toward utilizing the full function-
ality of the Web technologies.

Zehe et al. [39] propose an architecture for a cloud-based
urban systems simulation platform which specifically aims at
making large-scale simulations available on the Web. Boccia-
relli et al. [3] propose a model-driven and cloud-based frame-
work to support both the implementation of a distributed sim-
ulation system from a SysML (Systems Modeling Language)
specification of the system under study and its execution over
a public cloud infrastructure. Fortmann-Roe [17] presents a
Web-based, general-purpose simulation and modeling tool.

The tool, namely Insight Maker, integrates three general mod-
eling approaches: system dynamics, agent-based modeling,
and imperative programming in a unified modeling frame-
work.

Among several Web-based simulation studies for urban traf-
fic, the work done by Fortmann-Roe [17] is the most simi-
lar to our research. However, our research employs a model
driven approach and focuses on reusability and component
based simulation model development. Although, there have
been some studies to apply model driven approach to traf-
fic simulation [16], to the best of our knowledge, a complete
model-driven solution for Web-based traffic simulations has
not been proposed yet.

3. MODEL DRIVEN DEVELOPMENT OF TRAFFIC SIMU-
LATION MODELS

Model driven development (MDD) is a software develop-
ment approach that provides a set of means to develop a
software system through successive model transformations
[9]. The models are transformed into other models at dif-
ferent stages of software development lifecycle in order to
(semi)automatically generate the final software system. The
most important MDD methods are modeling, metamodeling
and model transformations.

Modeling is the process of representing a source system for
a specic purpose in a form that is ultimately useful for an in-
terpreter [9]. The concrete form that represents the system is
called the model. A model is specied in a modeling language.
The MDD approach requires that the models and modeling
languages are well dened. Metamodeling is the most com-
monly used method to describe a modeling language formally
in the form of a metamodel, which in turn can be used to
specify models in that language. Model transformation is the
process of converting a model into another form according
to a set of transformation rules. Model transformations are
performed to utilize the knowledge in an existing model.

Applying MDD into traffic simulation requires domain spe-
cific modeling elements and metamodels. To perform an
effective model-driven study, the following elements are
needed [9]:

• a model-driven process definition,

• full featured metamodeling tool(s),

• platform independent metamodel(s),

• platform specific metamodel(s),

• pre-defined (or pre-developed) components,

• transformation rules.

While moving from desktop applications to web-based appli-
cations, model-driven development practice changes slightly.
Existing design patterns such as Model-View-Controller
(MVC) architectural pattern, Ubiquitous Web Application
(UWA) design framework, or JavaServer Faces technology
can be employed for the user-centered design of web-based
applications [12].



Figure 1. A general framework for model driven development of Web-based simulations.

Figure 1 presents a general framework for model driven de-
velopment of Web-based simulations. Various repositories
for model libraries and component libraries should exist on
the Internet which can be provided by cloud services. Com-
ponent developers, conceptual modelers, and metamodel de-
velopers provide items for these libraries. Metamodel devel-
opers use web-based metamodeling tools to define metamod-
els and to generate web-based simulation tools. Then, simu-
lation modelers can use the simulation tools.

Simulation tools and libraries can be implemented as a Soft-
ware as a Service (SaaS) implementation, while metamod-
eling tools can be implemented as a Platform as a Service
(PaaS) implementation. Existing cloud computing solutions
such as Microsoft Azure App Service, Google App Engine or
Amazon Web Services (AWS) can be used. However, devel-
opers can have new challenges such as data condentiality and
scalability when large-scale simulations are migrated to the
cloud [39]. Developing a web-based application is often sim-
plified by open source software and web application frame-
works such as Django, Drupal, Bootstrap, Ruby on Rails or
Symfony [29].

3.1 Web-based traffic simulation
Traffic simulation is an effective method for modeling the op-
erations of dynamic traffic systems. A traffic simulation pro-
cess generally consists of four main tasks:

• modeling the road network and the static environment,

• modeling the vehicles, drivers and other dynamic entities,

• modeling the controllers, signals and other rules,

• executing the overall model.

To accomplish these tasks, a metamodel for component
based traffic simulation is proposed. Figure 2 shows the
high level view of the metamodel. In the metamodel,
SimulationArea is the main platform for the simulation
animation. It requires several maps that shows the positions
of the static components and needs initial parameters for sim-
ulation data.

Figure 2. High level view of a metamodel for component based traffic sim-
ulation.

Simulation area can be grid-based (or tile-based) where the
simulation space is divided into individual cells or nodes.
Each cell is generally identical in size and shape. While a
square-shaped cell is common in browser-based animations,
it is also possible to use hexagonal or triangular cells as shown
in Figure 3. Simulation area can have different implementa-
tions. SimulationArea includes different components,
which is represented with Component in the metamodel.
A component is a single unit which is self-contained and
reusable. Components communicate with each other and with
its environment via well-defined interfaces.



Figure 3. Different tile-based design alternatives.

A component can be either a MovingComponent or a
NotMovingComponent. Moving components have a dy-
namic location according to their speed and moving direction
while not-moving components have a static location. How-
ever, all components are changeable according to the time
and not-moving components can also have event and time
based changes. All of the components can use a shared clock,
however each component should have an individual local time
which is mostly represented by a discrete system.

For each component in a two-dimensional (2D) simulation
area, the following data should be defined:

• position (x,y),

• size (width,height),

• component type,

• animation image.

Additionally, for moving components, speed and angle data
are introduced. The movement can be managed by using the
radian transformation. An angle’s measurement in radians is
numerically equal to the length of a corresponding arc of a
unit circle. The relationship between degrees and radians are
as follows:

1 radian =
π

180o

Figure 4 represents how the angle and position data are re-
lated in a 2D area. If the angle of the moving component is θ,
then the new position of the component is calculated accord-
ing to the following formula after a unit time:

newx = x+ speed ∗ sin(θ ∗ π

180o
)

newy = y − speed ∗ cos(θ ∗ π

180o
)

Each moving component can have a controller. If they don’t
have a controller, they are assumed to be autonomous. Con-
troller components can update the speed and angle of the
moving components. This relation is handled with composi-
tion relation. For example, in traffic simulation a vehicle can
have a driver. If they don’t have a driver they are assumed to
be automated vehicle. A driver can give decisions according
to his/her/its driving style and the driver component can up-
date the speed and angle of a vehicle. For example, driver can

Figure 4. Calculating the new position.

decide to turn, stop, or change lane. Each moving component
should define the following functions which are called by the
controller.

• start,

• stop,

• changeAngle,

• accelerate,

• decelerate,

• setController,

• calcNextPosition,

• updateAnimationView.

Besides, each moving component should be able to reach the
necessary data through its environment. For example, in traf-
fic simulation a driver can reach the road information, traffic
flow, traffic lights data, etc. for its environment. But, he/she/it
cannot see the whole traffic directly. The definition of the
boundaries for the environment depends on the grid type, and
the neighborhood principles. For example, Figure 5 shows an
example for a square-based grid. First, it is shown the von
Neumann neighborhood consisting of the 4 neighbors. Sec-
ond, the Moore neighborhood is shown that consists of the 8
neighbors. In both cases the range equals r = 1. However,
depending on the context, the extended neighborhood where
r > 1 can be used.

Figure 5. Neighbors of a cell can be defined in different ways.



Roads and signals are inherited from not moving component.
Roads can have signals. New components can be added into
the metamodel, each component will have a model defini-
tion as well as a software implementation. Once the meta-
model is defined, the selected metamodeling tool will gener-
ate a web-based simulation environment for the defined meta-
model. The auto-generated simulation environment should
have an animation window, properties window, component
window with drag-drop facility, and menu for available func-
tionality. The modeling and simulation process can be sum-
marized as in Figure 6.

Figure 6. Steps for modeling and simulation.

4. A PROOF OF CONCEPT IMPLEMENTATION
In this work, a browser-based Web application for traffic
simulation is developed. Some popular languages and tech-
nologies such as HTML5, Cascading Style Sheets (CSS),
JavaScript and JavaScript Object Notation (JSON) are used
for development. The simulation tool has a top menu for File,
Edit, View, Run and Help functions. Left menu shows the
draggable modeling elements. Properties window shows the
basic properties for any component. The simulation tool has
a simulation area which is an HTML5 canvas and mapped to
a grid with a predefined cell-size. Every cell has a component
or a sub-component.

Grid can be filled in with different images for each compo-
nent. Figure 7 shows the tool layout with different images for
each cell. It is also possible to put a map to the simulation
area while keeping the component information for the grid.
Figure 8 shows an example with a map.

To execute the models, simulation data, road network and
signals are loaded first. Then, tool layout is generated and
static (not moving) components are positioned. After that,

Figure 7. Tool layout with different images for each component.

Figure 8. Tool layout with a map in the simulation area.

the dynamic (moving) components are added into the simu-
lation area. For example, the simulation area is initialized as
follows:

// size in the world in sprite tiles
var simAreaWidth = 19;
var simAreaHeight = 11;
// width/height of a tile in pixels
var tileSize = 50;
loadMap(tileSize,

tileSize*(simAreaWidth+1),
tileSize*(simAreaHeight+1));

loadSignals(tileSize,
tileSize*(simAreaWidth+1),
tileSize*(simAreaHeight+1));

To implement the animation image requirement for a compo-
nent, we use sprite sheets. Sprite sheets are commonly used in
game development. A sprite is a 2D image or animation that
is integrated into a larger image called a sprite sheet. Sprite
number shows the current image. Sprite sheet is handled for
each component as follows:

// an image containing all sprites
this.spritesheet = new Image();
//link to the image
this.spritesheet.src = imglink;
//spritesheet sprite number
this.spriteNum = sprite;



New position for moving objects is calculated as follows:

x+=speed*Math.sin(angle*Math.PI/180);
y-=speed*Math.cos(angle*Math.PI/180);

The following functions are defined as well:

this.turnLeft = function(m) {
this.moveAngle -= m;

}
this.turnRight = function(m) {

this.moveAngle += m;
}
this.accelerate = function(s) {

this.speed += s;
}
this.decelerate = function(s) {

this.speed -= s;
}

Figure 9 shows an example of a 20 degrees right turn. The car
images are extracted from the screen-shots of the simulation
and the turn function is visually validated.

Figure 9. Validation of the turn function.

Signal component has red-time and green-time data to sched-
ule the lightning. The following function used to manage sig-
nals:

this.changeLight = function() {
if (signal==red AND timer <= 0) {
signal=green;
timer = this.greentime;
}
else if (signal==green AND timer <= 0){
signal=red;
timer = this.redtime;
}
else if (timer > 0){
timer -= tickTime;
}

}

Other elements are simply defined as a basic component such
as tree or grass in the prototype implementation. Defining a
new component template is easy with extending the compo-
nent via inheritance. New data definitions and function dec-
larations can be added in the metamodeling environment and
required JavaScript code is automatically generated with the
model transformer.

5. CONCLUSION
In this paper, methods and techniques of model driven de-
velopment approach are applied to web-based traffic simu-
lation. The future of simulation model development is not
simply about using desktop applications, but it will include
web-based simulation environments, cloud-computing, and
Internet of things. Hence, this research will hopefully con-
tribute to the future of modeling and simulation research.

Tool development and validation of the proposed framework
are currently in progress. Collision detection for the mov-
ing objects is primitively handled for now. The following re-
search problems and implementation issues are being studied:

• improving the collision detection algorithm for the moving
components,

• improving the route following algorithm for the moving
components,

• adding heuristics and stochastic behavior to the driver,

• improving the drag and drop functions,

• testing 3D support,

• adding the editing functions such as cut, copy, paste, undo,
redo, zoom-in, zoom-out.

REFERENCES
1. Araujo, F., Valente, J., and Wenkstern, R. Z. Modeling

agent-based traffic simulation properties in Alloy. In
Proceedings of the 2012 Symposium on Agent Directed
Simulation, Society for Computer Simulation
International (2012), 5:1–5:8.

2. Behrisch, M., Bieker, L., Erdmann, J., and Krajzewicz,
D. Sumo–simulation of urban mobility. In Proceedings
of the 3rd International Conference on Advances in
System Simulation (2011).

3. Bocciarelli, P., D’Ambrogio, A., Giglio, A., and Gianni,
D. A SaaS-based automated framework to build and
execute distributed simulations from SysML models. In
Proceedings of the Winter Simulation Conference (WSC)
(2013), 1371–1382.

4. Burghout, W., Koutsopoulos, H., and Andreasson, I.
Hybrid mesoscopic-microscopic traffic simulation.
Transportation Research Record, 1934 (2005), 218–255.

5. Byrne, J., Heavey, C., and Byrne, P. A review of
web-based simulation and supporting tools. Simulation
Modelling Practice and Theory 18, 3 (2010), 253–276.

6. Cameron, G. D., and Duncan, G. I. PARAMICS-parallel
microscopic simulation of road traffic. The Journal of
Supercomputing 10, 1 (1996), 25–53.

7. Casas, J., Ferrer, J., Garcia, D., Perarnau, J., and Torday,
A. Traffic simulation with Aimsun. In Fundamentals of
Traffic Simulation, J. Barcel, Ed., vol. 145 of
International Series in Operations Research &
Management Science. Springer, 2010, 173–232.



8. Cayirci, E. Modeling and simulation as a cloud service:
A survey. In Proceedings of the Winter Simulation
Conference (WSC) (2013), 389–400.

9. Çetinkaya, D., Verbraeck, A., and Seck, M. D. Model
continuity in discrete event simulation: A framework for
model-driven development of simulation models. ACM
Trans. Model. Comput. Simul. 25, 3 (2015), 17:1–17:24.

10. D’Ambrogio, A., Gianni, D., Risco-Martı́n, J. L., and
Pieroni, A. A MDA-based approach for the development
of DEVS/SOA simulations. In Proceedings of the 2010
Spring Simulation Multiconference, Society for
Computer Simulation International (2010).

11. Denil, J., Mosterman, P. J., and Vangheluwe, H.
Rule-based model transformation for, and in Simulink.
In Proceedings of the Symposium on Theory of
Modeling & Simulation - DEVS Integrative, Society for
Computer Simulation International (2014).

12. Distante, D., Pedone, P., Rossi, G., and Canfora, G.
Model-driven development of web applications with
UWA, MVC and JavaServer Faces. In Web Engineering,
L. Baresi, P. Fraternali, and G.-J. Houben, Eds.,
vol. 4607 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, 457–472.

13. Dresner, K., and Stone, P. Multiagent traffic
management: An improved intersection control
mechanism. In Proceedings of the 4th International
Joint Conference on Autonomous Agents and Multiagent
Systems, ACM (2005), 471–477.

14. Esser, J., and Schreckenberg, M. Microscopic simulation
of urban traffic based on cellular automata. International
Journal of Modern Physics C 8, 5 (1997), 1025–1036.

15. Fellendorf, M., and Vortisch, P. Microscopic traffic flow
simulator VISSIM. In Fundamentals of Traffic
Simulation, vol. 145 of International Series in
Operations Research & Management Science. Springer,
2010, 63–93.

16. Fernández-Isabel, A., and Fuentes-Fernández, R. A
model-driven engineering process for agent-based traffic
simulations. Proceedings of the 5th International
Conference on Simulation and Modeling Methodologies,
Technologies and Applications (SIMULTECH) (2015),
21–23.

17. Fortmann-Roe, S. Insight maker: A general-purpose tool
for web-based modeling & simulation. Simulation
Modelling Practice and Theory 47 (2014), 28–45.

18. Garaizar, P., Vadillo, M., and Lopez-de Ipina, D.
Benefits and pitfalls of using HTML5 APIs for online
experiments and simulations. In Proceedings of the 9th
International Conference on Remote Engineering and
Virtual Instrumentation, IEEE (2012), 1–7.

19. Gianni, D., Bocciarelli, P., and D’Ambrogio, A.
Model-driven performance prediction of HLA-based
distributed simulation systems. In Proceedings of the
Winter Simulation Conference (2012).

20. Grether, D., Neumann, A., and Nagel, K. Simulation of
urban traffic control: A queue model approach. Procedia
Computer Science 10 (2012), 808 – 814.

21. Guin, P., and Syriani, E. Model-based animation of
micro-traffic simulation (WIP). In Proceedings of the
Symposium on Theory of Modeling & Simulation -
DEVS Integrative M&S Symposium, Society for
Computer Simulation International (2013), 19:1–19:6.

22. Jacobs, P. H. M., Lang, N. A., and Verbraeck, A.
Web-based simulation 1: D-SOL; a distributed java
based discrete event simulation architecture. In
Proceedings of the 34th Conference on Winter
Simulation: Exploring New Frontiers (2002), 793–800.

23. Kokkinogenis, Z., Passos, L. S., Rossetti, R., and
Gabriel, J. Towards the next-generation traffic
simulation tools: a first evaluation. In Proceedings of the
6th Iberian Conference on Information Systems and
Technologies (2011), 15–18.

24. Kotusevski, G., and Hawick, K. A review of traffic
simulation software. Research Letters in the Information
and Mathematical Sciences 13 (2009), 35–54.

25. Krajzewicz, D., Hertkorn, G., Rössel, C., and Wagner, P.
Sumo (simulation of urban mobility). In Proceedings of
the 4th Middle East Symposium on Simulation and
Modelling (2002), 183–187.

26. Lee, J. K., Lee, M. W., and Chi, S. D. DEVS/HLA-based
modeling and simulation for intelligent transportation
systems. Simulation-Transactions of the Society for
Modeling and Simulation International 79, 8 (2003).

27. MATSim. Multi-agent transport simulation.
http://www.matsim.org/. [Online; accessed 5-Jan-2015].

28. Ni, D. 2DSIM: a prototype of nanoscopic traffic
simulation. In Proceedings of the Intelligent Vehicles
Symposium, IEEE (2003), 47–52.

29. Norrie, M., Di Geronimo, L., Murolo, A., and Nebeling,
M. The forgotten many? a survey of modern web
development practices. In Web Engineering,
S. Casteleyn, G. Rossi, and M. Winckler, Eds., vol. 8541
of Lecture Notes in Computer Science. Springer
International Publishing, 2014, 290–307.

30. Onggo, S., and Hoare, S. Online collaborative
simulation conceptual model development. In
Proceedings of the 23rd European Modeling and
Simulation Symposium (EMSS) (2011), 333–340.

31. Smith, L., Beckman, R., and Baggerly, K. TRANSIMS:
transportation analysis and simulation system. Tech.
rep., Los Alamos National Lab., NM (United States),
1995.

32. Tolba, C., Lefebvre, D., Thomas, P., and Moudni, A. E.
Continuous and timed Petri nets for the macroscopic and
microscopic traffic flow modelling. Simulation
Modelling Practice and Theory 13, 5 (2005), 407–436.



33. Tonguz, O., Viriyasitavat, W., and Bai, F. Modeling
urban traffic: A cellular automata approach. IEEE
Communications 47, 5 (2009), 142–50.

34. Topçu, O., Adak, M., and Oǧuztüzün, H. A metamodel
for federation architectures. ACM Trans. Model.
Comput. Simul. 18, 3 (2008), 10:1–10:29.

35. Wainer, G. ATLAS: A language to specify traffic models
using Cell-DEVS. Simulation Modelling Practice and
Theory 14, 3 (2006), 313–337.

36. Wainer, G. A. Discrete-Event Modeling and Simulation:
A Practitioner’s Approach. CRC Press, Inc., 2009.

37. Wang, Y.-H., and Liao, Y.-C. Implementation of a
collaborative web-based simulation modeling
environment. In Proceedings of the 7th IEEE
International Symposium on Distributed Simulation and
Real-Time Applications (2003), 150–157.

38. Xu, Y., Aydt, H., and Lees, M. SEMSim: a distributed
architecture for multi-scale traffic simulation. In
Proceedings of the 26th Workshop on Principles of

Advanced and Distributed Simulation (PADS) (2012),
178–180.

39. Zehe, D., Knoll, A., Cai, W., and Aydt, H. SEMSim
cloud service: Large-scale urban systems simulation in
the cloud. Simulation Modelling Practice and Theory 58
(2015), 157–171.

BIOGRAPHY
Deniz Çetinkaya is an Assistant Professor in Software En-
gineering Department at Atılım University, Ankara, Turkey.
She graduated from Department of Computer Engineering at
Hacettepe University, Ankara, Turkey with honors in 2002.
She received her M.Sc. degree in Computer Engineering
from Middle East Technical University, Ankara, Turkey in
2005. She received her Ph.D. degree in Systems Engineering
from Delft University of Technology (Technische Universiteit
Delft) in the Netherlands in 2013. Her research focuses on
model driven development, component based software engi-
neering, modeling and simulation, discrete event simulation
and conceptual modeling.


	1 Introduction
	2 Related work
	3 Model driven development of traffic simulation models
	3.1 Web-based traffic simulation

	4 A proof of concept implementation
	5 Conclusion

