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Investigation of the e�ect of topology on the communication e�ciency ofWSN nodes is carried out through simulation of 9 nodes
in a 12 by 12 meters area. �e obtained data and plots indicate that the grid topology is a more e�cient and stable topology to use
in comparison to the random uniform topology. �e deduction is supported by probability of error as a function of error
distribution values. Five di�erent noise levels are used in the simulation (0dBm, −20 dBm, −40 dBm, −60 dBm, −80 dBm, and
−100 dBm) with an output power of −10 dBm.�e work shows that at −60 dBm redistribution of probability of error as a function
of error values started to occur with higher level error values associated with the random uniform topology compared with the grid
topology occurring at −60 dBm noise. �e work also shows the relationship between received signal strength indicator (RSSI) and
probability of error which decreases as RSSI increase in a similar manner as signal to noise ratio (SNR). Both RSSI and SNR are
related through the mathematical model presented in the paper which is based on the path loss model. Common features between
the error probability model and Gaussian interpolation function are also presented. A simpli�ed 1-D design model is also
presented to enable initial topology considerations. Criteria are also established to enable relating SNR, RSSI, topology, andWSN
incremental position.

1. Introduction

WSNs have the ability to monitor the physical environ-
ment as well as collect and report data for a speci�c ap-
plication. WSNs can improve the capabilities of a wide
range of applications in which the location information is
critical. Search and rescue operations, tracking, medical,
environmental, biological, monitoring of people and de-
vices, and industrial control are some examples of WSN
applications. Improved location and sensor communica-
tions can be seen as a key factor for overall WSN e�cient
operation [1, 2].

WSNs are usually placed in a speci�c area to collect data
from the environment. �e general plan is that once
deployed, the sensor nodes will be able to monitor the area
for a long time without needing to be replaced or recharged.
WSN nodes have a limited communication range and they
are subject to interference, bandwidth limitation, and

topological layouts constraints. �ese are all areas in which
more development is required.

Routing protocols, which are vital in enabling e�ective
data transfer with e�cient energy consumption, are also an
important for the WSN nodes’ communication system.
WSNs feature self- and dynamic topological qualities in
response interference and mobility, in addition to scalability
and adaptability. Data aggregation can help a proposed
WSN architecture to relate to bandwidth and data pro-
cessing. Aggregation of data might be centralized or dis-
persed. �e most e�ective arrangement is distributed, which
can be organized, unstructured, or a combination of the two.
In addition to overall e�ciency and strength, the WSN
distributed architecture is more robust. As a result, WSN
nodes have information delivery functionality and are
susceptible to data collection and reception failures, as well
as require a high SNR in order to provide quality of service
(QoS).
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)e selection of the communication channel and me-
dium has an effect on data transmission and the required
communication algorithms which are also affected by WSN
size and used topology. Additionally, it is critical to sustain a
high connectivity level with the right nodes density level to
enable good coverage and quality. )is is important in order
to avoid high errors using selected communication channels
[3–7].

Recent advancements in technology have enabled the
construction of compact, low-cost WSN sensor nodes that
can interact across short distances. Routing, topology,
coverage, energy, and localization are some of the mainly
studied topics in WSNs. )e topology of a wireless sensor
network is critical in determining network dependability,
which is determined by sensor coverage and network
connectivity [8–10].

WSN nodes are easy to deploy in huge numbers over a
large geographic area, which make them very important in
many applications. )e location of the sensor node must be
determined in order to practically and efficiently extract the
data from sensors. Current localization methods rely on
pairwise distance measurements between nodes, which can
be obtained indirectly using the received signal strength
RSSI. RSSI is also used in several applications to determine
when the amount of radio energy is below a certain
threshold as a function of position in order to give to node a
clear to send [11–14].

Localization is a major issue in WSN applications, and
location estimation is required in many of them. )e RSSI is
a measure of received power: the greater the RSSI, the
stronger the radio signal, implying a closer position to the
target. )e radio component normally reports the current
RSSI value when a valid packet is received. In real-world
installations, relating RSSI to distance and acquiring it is
difficult. Signal intensity is affected by three processes: path
loss, fading, and shadowing [15–20].

Because spatial distribution is so crucial for WSN in
the field, a particular study of all spatially associated el-
ements that affect wireless channel communication is
required to enable effective and efficient data exchange
with low energy consumption. In addition to topological
arrangement, other elements that affect WSN node
transmission include distance between communicating
nodes and their alignment, channel characteristics and
signal attenuation and fading, and presence of noise and
other interfering signals, such elements are approximated
using path loss and shadowing models. WSN topologies
are linked to path loss parameters, and better designs can
be achieved when values resulting from node communi-
cation are obtained using an appropriate path loss model,
which also includes routing protocols and WSN nodes life
time [21–26].

Energy consideration with temporal considerations in
conjunction with the channel error for WSN nodes is dis-
cussed in depth and modeled using various techniques with
emphasis on ultralow power techniques aimed at mini-
mizing energy consumption, which is related to enabling
WSNs to become truly autonomous [27]. In addition, im-
portant consideration for energy harvesting and depletion

with attention to channel error occurrence is also studied
and discussed, where it is stated that in low-load wireless
sensor networks, the power consumption of the node
consists of data transmission and state switching parameters.
Also, algorithms and techniques are developed to overcome
sources of transmission errors, such as slot conflict [28].
Other models concerning energy conservation in WSN and
fast convergence associated with data rate reduction, thus
reducing energy and probability of error are also considered
by researchers, where fast convergence of the signal pro-
cessing algorithms are proposed, improving the effective bit
rate with promising results [29]. )us, lower power con-
sumption, and lower bit error, together with higher bit rates
will contribute to a better quality of service provided using
WSNs.

Quality of service (QoS) with cost consideration related
to resources in WSN nodes connected to cloud with channel
quality is also studied together with WSN connection to
cloud and cloud computing and resource allocation. QoS is
further discussed in terms of soft and hard resource allo-
cation and in particular in relation to the internet of things
(IoT), in order to obtain optimum performance with target
resources and preservation of channel and data quality with
minimum error values [30].

2. Background

Positioning and localization based on the received signal
strength indicator (RSSI) is found to be an effective way to
determine the location. A path loss model, which can be
implemented by path loss exponent (PLE) in association
with data location, can provide more accurate position es-
timations using RSSI [31–33].

Localization and distance estimation using RSSI is fre-
quently used in outdoor localization computation. However,
using RSSI for ranging and distance estimation is also a
function of surroundings, environment, and weather. Re-
searchers used adaptive techniques for outdoor WSNs to
enhance range quality [34]. )e work investigated effects of
PLE approximation on RSSI-based measuring ranging
quality under variable outdoor conditions. )e approach
showed slight improvement in terms of error reduction.

Other studies proposed the use of RSSI both in its in-
stantaneous capacity as an indicator of repetitive patterns
and as a long term accumulative measurement to enable
optimization of power networks by modifying the com-
munication channel settings, which showed that RSSI can be
effectively used to optimize network characterisitics in a
WSN [33].

Some work [35] concluded that RSSI of RF signals can
be used as a practical technique for cost-effective distance
estimation. However, the problem of shadowing in many
environments, which results in attenuation, is an obstacle.
)e authors proposed the use of outlier detection methods
to eliminate errors in distance estimates using simulation
algorithms. )e researchers proposed three different
approaches:

(i) Majority rule approach with spatial correlation
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(ii) Centroid-based outlier detection with simple
clustering

(iii) Localization using mean shift clustering

Other works proposed a multibarycenter localizing al-
gorithm based on RSSI to improve the accuracy of nodes in
wireless sensor networks (WSNs) [36]. )e algorithm em-
ploys iterative filtering in order to optimize the obtained
RSSI values of the WSN under consideration. )e authors
stated that such algorithm improves positioning accuracy,
which would reduce network errors as a consequence.

Researchers also described traditional RSSI-based sensor
nodes as having low accuracy and high sensitivity to noise
[37]. )e research found that the iterative centroid algorithm
is more effective than the traditional ones. )e work achieved
success in removing the RSSI-distance based error and as-
sociated transmission errors using the iterative approach.

A RSSI localization approach is also discussed in [38].
Both range-based and range-free techniques are presented,
with the range-based approach correlated with time of ar-
rival of signal between communicating WSN nodes. Tri-
lateration and multilateration techniques for RSSI and
localization are also discussed, with evidence of better
performance using multilateration.

As communication networks become more complex and
with the increased use of WSNs, analytical modeling in-
creasingly requires the use of simulation to understand a
proposed model. )is is critical in order to prove the
functionality and establish performance criteria of the
deigned WSN. Simulation can cover both continuous and
discrete simulation. )is will assist in checking the deigned
system against all parameters before actual implementation.

Due tomany constraints, designing a real model can prove
to be impractical; thus, mathematical analysis and modeling
through simulation can be a more effective approach for
application-related WSN design. )is approach enables op-
timization before actual implementation in real location and
real time. Researchers worked on simulations using net
simulator-2, net simulator-3, OMNet++, and MATLAB [39].

In addition, work is carried out using Cell-Discrete-
Event Systems Specification (DEVS), where space is por-
tioned into cells and topology-related parameters such as
energy consumption, and signal strength are analyzed [40].

In this work, analytical and simulation approaches are used
in relation to the wireless communication theory to correlate
topology, noise floor, and output power to the occurring level
of error using a noncoherent frequency shift keying (NCFSK).
Symmetric communication channels are used to exchange data
in a uniformly arranged wireless sensor network (WSN). To
achieve the goals of this research work, RSSI is considered in
relation to distance and travelled routes for both grid and
random uniform topologies. )e data are used to compute
probability of error for the two topologies under different noise
floor values to assess the effect of topology on susceptibility of
WSN nodes and subsequent variation in RSSI values, which
affects error occurrence [36, 37, 41].

)e work also presents general characterization of the
probability of error mathematical expression, which is very
important in determining the shape function of the occurring

error and ways to counter that with careful design and nodes
placement. All of this is supported by the 1-D simplified
model and mathematical expression that simplifies simula-
tion and initial design analysis. )e presented simulation
covers limited number of nodes, however, it is valid for larger
number of nodes as mathematical expressions developed are
scalable through the general presented model.

3. Methodology

)e objective of this work is to simulate and compute
percentage of errors as a function of error probability and
RSSI distribution as a function of RSSI values for both grid
and random uniform WSN topologies in order to assess
channel quality in both of the considered 9 nodes topologies
in a 12 by 12 meters area. )is will enable generalization for
larger number of nodes covering wider areas. Table 1
contains list of variables and their description. In addi-
tion, an important focus of this work is to produce a general,
scalable mathematical model that enables initialWSN design
in order to minimize deployment costs and facilitate
modifications and error prediction.

Path loss affects the received signal strength (RSS) as a
result of factors impacting multipath propagation (multi-
path fading). When a signal is transmitted, it is subjected to
diffraction, reflection, scattering, absorption, multipath
fading, and attenuation due to the environment and in-
frastructure. )ese parameters have a random effect on
signal strength over distance, as characterized by a loga-
rithmic function of normal distribution spread around a
distance dependent parameter.

)e presented work establishes general mathematical
model with optimization capability by utilizing a compar-
ative model to the Gaussian interpolation function relating
communication error probability to RSSI, noise, and
transmission rate. )is comparison allows design optimi-
zation. Also, the work aims at reaching a simplified 1-D
model that indirectly relates RSSI to incremental WSN node
positioning through SNR. )is approach is new and it does
allow faster and better optimization of WSN models in
relation to topology before actual implementation.

)e received signal strength power (PRSS) can be de-
scribed by the received signal strength indicator (PRSSI) as in
equation (1).

PRSSI � POutput − PL(d). (1)

Using the path loss model with noise consideration leads
to equation (2).

SNR � PRSSI − PNoise. (2)

RSSI is affected by different factors including path
length, signal symmetry, and radiation power.

)e transmitted and received signals between WSN
nodes is carried out using NCFSK with probability of error
computed as in equation (3).

Perror �
1
2

 exp −
SNR
2

 . (3)
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To take transmission rate and noise into consideration,
equation (3) becomes equation (4)

Perror �
1
2

 exp −
SNR
2

 
BNoise

DRate
  . (4)

With SNR given using equation (2). By substituting
equation (2) into equations (4) and (5) is obtained.

Perror �
1
2

 exp −
PRSSI − PNoise

2
 

BNoise

DRate
  . (5)

Equation (5) can be simplified to obtain equation (6).

Perror �
1
2

 exp −
PRSSI − PNoise

2δ
  , (6)

where δ is given by equation (7).

δ �
DRate

BNoise
 . (7)

Equation (6) has some common properties with the
Gaussian interpolation function that has the form shown in
equation (8).

y � λ∗ exp −
(α − β)

2

2c
  . (8)

Comparing equations (6) and (8), it is realized that
PNoise is a reference threshold value as the PRSSI values
change as a function of nodes location, topology, noise
bandwidth, data rate, and output power. )us, Perror is
affected by the difference between PRSSI and PNoise. Also, the
factor 0.5 reflects λ, and the spread of error and its
probability is definitely affected by the ratio in equation (7),
which is equivalent to c.

)us, equation (6) is important as it shows the effect of
both PNoise and the ratio between BNoise and DRate, which
affect efficient communication in WSN nodes depending on
topology.

Equation (6) can be further simplified as in equation (9).

Perror �
1
2

 exp −
ϕ
φ

  . (9)

)us, the ratio in equation (9) controls the probability of
error and its main affecting factors (PRSSI, PNoise, δ, topol-
ogy). However, it is essential to account for energy per bit
(Eb) and for noise spectral density (No) in the form of ratio
related to SNR and δ as in equation (10).

SNR �
Eb

No

 
DRate

BNoise
 . (10)

)e ratio Eb to No is used as an indicator of the network
power efficiency. From equations (6), (10) and (11) is
obtained.

Perror �
1
2

 exp −
10 PRSSI − PNoise( )/10( )

2δ
⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (11)

From equation (11), it is evident that when
PRSSI≫PNoise⟶ Perror approaches 0, and when PRSSI
≪PNoise⟶ Perror approaches 0.5. When PRSSI � PNoise
⟶ Perror approaches 0.25.

Considering equations (9) and (11) again, equation (12)
is obtained.

Perror �
1
2

 exp −
10(ϕ/10)

φ
  . (12)

Equation (12) can be modeled as in equation (13).

Perror �
1
2

 exp −
ψ
φ

  . (13)

)us, the new ratio in equation (13) determines the
probability of error.

4. Results and Discussion

Figures 1–6 present percentage of errors as a function Perror.
From the figures, the following observation is evident:

At high noise levels relative to output power level
(0 dBm, −20 dBm, −40 dBm)
Both grid and random uniform topologies display high
error values with 100% of the errors distributed in the
interval [0.4-0.5]
As noise levels reaches −60 dBm, a redistribution of
Perror values such that the grid topology occupies lower
levels with the random uniform higher levels
Continue to reduce noise levels (PNoise) to −80 dBm
results in all Perror values for grid topology occupying
the lower spectrum part with most of the random
uniform occupying the higher part of the spectrum
When reaching −100 dBm, all Perror values for both grid
and random uniform topologies occupy the lower part
of the error spectrum

Table 1: Nomenclature.

Symbols/
acronyms Meaning

PRSSI Received signal strength power
POutput Transmitter output power

PL(d) Path loss, which is a function of transmitter-
receiver separation distance (d) in meters.

PNoise Noise floor power
SNR Signal-to-noise-ratio
NFCSK Noncoherent frequency shift keying
Perror Probability of error
RSS Received signal strength
RSSI Received signal strength indicator
Eb Energy per bit
No Noise spectral density
BNoise Noise bandwidth
DRate Transmission data rate
β Reference threshold
λ Weighing parameter
c Spread control parameter
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)is is reflected in the RSSI behavior presented in
Figures 7 to 12. From the Figures, it is evident that RSSI for
grid topology is higher than those for random uniform,
hence lower Perror, which indicates a more efficient channel
communication and more stable WSN network.

As the process of error reduction and redistribution
starts, it reaches a threshold value at which the RSSI im-
proves dramatically. Figures 13–16 show both SNR and RSSI
as a function of both topology and probability of error at a
threshold value of PNoise � −60 dBm, with Table 2 showing

the simulated Perror as a function of SNR. From the plots, it is
evident that as the RSSI increase, so does SNR and Perror
starts to approach 0.

)is is consistent with equations (6) and (11). Figures 17
and 18 show the WSN nodes and communication path
followed for both grid and random uniform topologies as a
function of RSSI plotted at −60 dBm noise and −10 dBm
output power (POutput). It is clear from the plots that the grid
topology enables more efficient WSN communication and
data transmission between nodes as it provides a regular
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Figure 1: Percentage distribution of errors as a function of to-
pology and noise level.
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Figure 2: Percentage distribution of errors as a function of to-
pology and noise level.
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Figure 3: Percentage distribution of errors as a function of to-
pology and noise level.
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Figure 4: Percentage distribution of errors as a function of to-
pology and noise level.
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Figure 5: Percentage distribution of errors as a function of to-
pology and noise level.
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Figure 6: Percentage distribution of errors as a function of to-
pology and noise level.
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architecture where routing can take different paths but with
stable nodes structure.

Figure 19 shows a plot representing nodes position in
relation to SNR. From the plot, it is evident that the per-
formance and characterisitics of the grid topology can be
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Figure 8: RSSI distribution as a function of topology and noise
level.
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Figure 10: RSSI distribution as a function of topology and noise
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Grid
Random uniform

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
RSSI (dBm)

Noise = -80 dBm

0
5

10
15
20
25
30
35
40

RS
SI

 D
ist

rib
ut

io
n

Figure 11: RSSI distribution as a function of topology and noise
level.
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Figure 12: RSSI distribution as a function of topology and noise
level.
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Figure 14: SNR as a function of topology and probability of error.
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distinguished from the ones of the random uniform to-
pology. )e plot also proves that grid topology is more
efficient in WSN data transmission with lower error rates
and better performance with lower Perror. )is conforms
with the previous plots and analysis that proved the grid to
be a more efficient topology.

Further analysis of the plot in Figure 19 produces the
approximation equation (14). )e equation relates node
position to SNR. )e idea is to move from 2-D to 1-D in
order to enable a more accurate and reliable comparison
between two different topologies. )is single dimension
comparison (SDC) can be used as a metric for different
topologies.

SNR(Topology) � ω exp κNode(Incremental Position) , (14)

where ω and κ are topology specific coefficients with SNR
dependency within the following criteria:

κ(Randomuniform)

ω(Randomuniform)

� 10,

κ(Grid)

ω(Grid)

� 1.

(15)
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Figure 15: RSSI as a function of topology and probability of error.
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Figure 16: RSSI as a function of topology and probability of error.

Table 2: Comparison between topologies.

Grid Random uniform
SNR Perror SNR Perror

21.58043 0.00001 7.33770 0.01275
17.27866 0.00009 4.58786 0.05043
13.41560 0.00061 3.38454 0.09205
13.20718 0.00068 2.32959 0.15599
13.02927 0.00074 1.55271 0.23004
10.26739 0.00295 1.36666 0.25247
7.50603 0.01172 1.23381 0.26981
5.26732 0.03591 0.97728 0.30673
4.38601 0.05579 0.78871 0.33706
4.35743 0.05659 0.68937 0.35422
3.61235 0.08214 0.42843 0.40359
3.55541 0.08451 0.30166 0.43000
2.81022 0.12267 0.26553 0.43783
2.74372 0.12682 0.23811 0.44388
2.47019 0.14540 0.21984 0.44795
1.75618 0.20779 0.21512 0.44901
1.63795 0.22044 0.17006 0.45924
1.63053 0.22126 0.15701 0.46225
1.49772 0.23645 0.13273 0.46789
1.28425 0.26309 0.11418 0.47225
1.27468 0.26435 0.08539 0.47910
0.98783 0.30512 0.07688 0.48114
0.89985 0.31884 0.06152 0.48485
0.75772 0.34232 0.05264 0.48701
0.72019 0.34880 0.05224 0.48711
0.53010 0.38358 0.04554 0.48874
0.40673 0.40799 0.03526 0.49126
0.38763 0.41190 0.02650 0.49342
0.36421 0.41676 0.02193 0.49455
0.25209 0.44079 0.01699 0.49577
0.22257 0.44734 0.01514 0.49623
0.21317 0.44945 0.01332 0.49668
0.18045 0.45686 0.01121 0.49720
0.14072 0.46603 0.01042 0.49740
0.08907 0.47822 0.00961 0.49760
0.04268 0.48944 0.00141 0.49965
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Figure 17: RSSI as a function of WSN nodes’ communication.
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We assume some obstacles that resulted in partial
blocking and reflection, or refraction of signals in the WSN
covered communication area. )is will be equivalent to
change in the incremental position of the placed nodes in the
approximated mathematical model in equation (14), which
is an indication of change in the RSS and RSSI pattern and
affects error occurrence in data transmission over channel
links. )is will result in a modified 1-D expression, as in
equation (16).

SNR(Topology,Obstacles)

� (εω)exp κΔ Node(Incremental position)   ,
(16)

where ε is an obstruction coefficient that will result in lower
SNR due to obstacles and signal reflection.

)e expected result is for the grid topology parameters to
become closer to the random uniform parameters as the
affected signal will partially remove the difference in to-
pology due to power loss and more marked effect for noise.

)us, SNR comparison can be produced in the design
and simulation stage, which enables better implementation
in terms of topology selection, obstacles, signal reflection,
and number and placement of nodes.

5. Conclusions

)is work proved through simulation that the WSN nodes’
structure actually affects WSN efficiency. )e simulation over
five different levels of noise, and resulting data showed that the
grid topology is a more stable and efficient topology to use in
comparison to random uniform topology.)is is proved using
the path loss model and localization through RSSI values
coupled with probability of error and error distribution. )e
SNR values consolidated and supported such finding.

)e research study also showed that there is a threshold
value at which probability of error and error distribution
starts to uniformly change in accordance to mathematical
expressions presented in this work, which has similar dis-
tribution properties to the Gaussian interpolation function.
)e presented 1-D model allows for a simple approach to
design optimization through correlation of RSSI, topology,
SNR, and WSN nodes positioning and distance variation.
)is will greatly enhance localization and position estima-
tion, which will affect WSN communication channel
properties. )rough better and more efficient node data
transmission, better energy management for the WSN
network can be achieved.
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