
Combining DEVS with Multi-agent Concepts to Design and
Simulate Multi-models of Complex Systems

Benjamin Camus
Université de Lorraine, CNRS,

LORIA, UMR 7503
Vandœuvre-lès-Nancy,

F-54506, France.
INRIA

Villers-lès-Nancy,
F-54600, France.

benjamin.camus@loria.fr

Christine Bourjot
Université de Lorraine, CNRS,

LORIA, UMR 7503
Vandœuvre-lès-Nancy,

F-54506, France.
INRIA

Villers-lès-Nancy,
F-54600, France.

christine.bourjot@loria.fr

Vincent Chevrier
Université de Lorraine, CNRS,

LORIA, UMR 7503
Vandœuvre-lès-Nancy,

F-54506, France.
INRIA

Villers-lès-Nancy,
F-54600, France.

vincent.chevrier@loria.fr

ABSTRACT
We are interested in the multi-modeling and simulation of
complex systems, that is representing a complex system as
a set of interacting models and simulating it with a co-
simulation approach. Representing and simulating the multi-
model of a complex system requires to integrate heterogene-
ity at several levels (representations, formalisms, simulation
software, models’ interactions. . .). In this article, we present
our approach that consists of combining the DEVS formal-
ism and multi-agent concepts in order to achieve these re-
quirements. The use of the DEVS formalism enables a
rigourous integration of models described with heteroge-
neous formalisms and a rigourous simulation protocol. Multi-
agent concepts ease the description of multi-perspective inte-
gration and the reuse of existing heterogeneous simulators.
We detail the combination of both in the AA4MM approach
and illustrate its use in a proof of concept.

Author Keywords
Complex system, multi-model, meta-model, multi-agent,
DEVS

ACM Classification Keywords
I.6.m SIMULATION AND MODELING: Miscellaneous;
I.2.11 ARTIFICIAL INTELLIGENCE: Distributed Artificial
Intelligence

INTRODUCTION
In this article, we are interested in the design and the study
of complex systems. Such systems are characterized by ”a
great number of heterogeneous entities, among which local
interactions create multiple levels of collective structure and
organization” [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SpringSim’15, April 13-16, 2015, Alexandria, VA.
Copyright c© 2014 ACM ISBN/14/04...$15.00.
DOI string from ACM form confirmation

Simulation is an important tool for this activity because it
allows testing different alternatives and different scenarios
while limiting experimentation costs. Most modeling ques-
tions about complex systems can only be answered by rep-
resenting the system as a set of interacting models: a multi-
model. Such a multi-model may be heterogeneous as com-
posed of models written in different formalisms, implemented
in different simulation software, and interacting in different
ways. The problem is then to integrate this heterogeneity.

Siebert et al. [17] introduced the Agent & Artifact for Multi-
Modeling (AA4MM) approach. They proposed multi-agent
concepts to describe an heterogeneous multi-model, and they
relied on the Discrete EVent System Specification (DEVS)
formalism [27] to conceive a decentralized execution algo-
rithm that respects causality constraints. However, this ap-
proach considered only one application case: the structural
coupling of models for mobile ad-hoc networks study [12].
Within this scope, the co-simulation algorithm was simplified
with respect to the DEVS possibilities.

As a consequence, whereas the multi-agent paradigm of
AA4MM provides the concepts required to represent a com-
plex system multi-model, the capabilities of DEVS to formal-
ize and simulate such a multi-model were not fully exploited
in this approach, and therefore, limit the application domain
of AA4MM.

In this article, we present a generalization of this approach to
cover the study of other complex systems. We systematically
describe the mapping of the DEVS concepts to the AA4MM
ones and the implementation of the Chandy-Misra-Bryant al-
gorithm [3] [1] for DEVS within AA4MM.

The following section presents the challenges related to
multi-modeling and co-simulation of complex systems. Sec-
tion “The DEVS formalism for multi-modeling” rapidly po-
sitions DEVS as a integration formalism for heterogeneous
multi-model. Section “The AA4MM approach” underlines
the principles of AA4MM. Section “The AA4MM meta-
model” introduces the meta-model of AA4MM and how we
map it with DEVS. Section “The AA4MM Simulation Mid-
dleware : implementing multi-agent concepts according to
the DEVS simulation protocol” details how we translate the

1

parallel conservative DEVS algorithm to specify and imple-
ment the AA4MM software. Finally, section “Proof of con-
cept” illustrates with a proof of concept showing the ability of
this generalization to describe and simulate an heterogeneous
multi-model.

REQUIREMENTS FOR MULTI-MODELING AND MULTI-
SIMULATION
In this section, we detail the key requirements related to com-
plex system multi-modeling and simulation.

Multi-perspective integration: the multi-model may rep-
resent the target system with models at different temporal
and/or spatial scales, and with different levels of resolution.
Such multi-level representation could be needed, for instance,
when there is a lack of expressiveness of one level and a
second one is required; when available data explicitly refer
to different levels of representation; or when the modeling
question is explicitly to study the mutual influences between
the coupled levels dynamics. Aggregation and disaggrega-
tion operations are required to pass from a level to another
one [11].

Multi-formalism integration: the representation of a com-
plex system may require the integration of models written in
different formalisms [21]. At the execution level, this formal-
ism heterogeneity implies dealing with different scheduling
policies: cyclic or variable time-steps, and event-based.

Simulation software interoperability: the models compos-
ing the multi-model may be already implemented in different
simulation software. These models and their implementations
constitute an expertise that must be capitalized. That’s why
reusing these models without implementing them again is re-
quired. Interoperability processes are required to manage ex-
change of data between these heterogeneous software. [5]

Dynamic simulation adaptation: dynamically modifying
a multi-model may be required during the simulation of a
multi-model. For instance, if the models represent different
parts of the system’s state space [8], or when emerging condi-
tions promote the use of another model than the current used
one [25] [24]. Monitoring the simulation, selecting the appro-
priate model, and switching of model during the simulation is
required.

To sum-up, multi-modeling a complex system requires to in-
tegrate heterogeneity at several levels (representations, for-
malisms, simulation software, models’ interactions. . .). In
the following section, we investigate the ability of the DEVS
formalism to represent and simulate an heterogeneous multi-
model.

THE DEVS FORMALISM FOR MULTI-MODELING
The DEVS formalism [27] is the most general formalism for
discrete event model. An important feature of this formalism
is that it can integrate all other formalisms [20].

Within the DEVS formalism, each model of the multi-model
is described as a DEVS atomic model. This atomic model
which has input and output ports, has a sufficiently generic
behavior to represent other formalism ones. The multi-model

corresponds to a DEVS coupled model. Figure 1 and table 1
show an example of a multi-model described with a simplified
flattened version of DEVS.

Figure 1. A multi-model composed of three models m1, m2 and m3 as a
DEVS coupled model (here described with a simplified flattened version
of DEVS).

Descriptions Notations
Atomic models Md = {m1,m2,m3}

Atomic models’s IC = {((1, 1), (2, 2)),
interconnections ((1, 2), (3, 1)), ((2, 1), (1, 1)),

((3, 1), (2, 1))}
Table 1. Formalization of the coupled model of figure 1 in a simplified
flattened version of DEVS.

Once formalized in DEVS, the heterogeneous multi-model
can be simulated thanks to the DEVS simulation protocol.
This simulation protocol includes parallel and sequential sim-
ulation algorithms.

The DEVS formalism explicitly addresses the multi-
formalism integration. However, whereas DEVS is compati-
ble with the other requirements of section “Requirements for
multi-modeling and multi-simulation”, it does not provide ex-
plicit solution to:

• models reuse, and the interoperability between their simu-
lators [19] [10];

• the use of operations like aggregation or disaggregation,
to pass from a perspective of the target system to another
one [16];

• the processes of dynamic simulation adaptation. [26]

In following sections, we present the AA4MM approach and
how it combines DEVS with multi-agent concepts to fulfill
the requirements listed above.

THE AA4MM APPROACH
AA4MM [17] aims to describe systems as a set of heteroge-
neous models (namely a multi-model). It proposes a meta-
modeling approach based on the multi-agent metaphor to de-
scribe a heterogeneous multi-model.

Based on the linguistic levels of [13] and the multi-
perspective modelling of [16], we specify the AA4MM’s ap-
proach as follows (see Figure 2). At the meta-model level,

2

we define a language tailored for the description of het-
erogeneous multi-models. A multi-model can be then sim-
ulated at the simulators level using the AA4MM middle-
ware. This middleware implements the meta-models’ con-
cepts and, therefore, can be automatically configured based
on a AA4MM multi-model description.

Within the AA4MM meta-model, a multi-model is described
with multi-agent concepts. These concepts are combined with
the DEVS formalism in order to achieve multi-formalism in-
tegration. The concepts are graphically represented (detailed
in section “The AA4MM meta-model”) and associated with
semantic and syntactic constraints guaranteeing a non am-
biguous description [18].

At the simulation level, the multi-model is simulated with
a co-simulation approach thanks to the AA4MM simulation
middleware. Within this middleware, the meta-model’s con-
cepts are implemented according to DEVS simulation proto-
col for coordinating the simulators’ execution and managing
interactions between models.

Figure 2. The AA4MM approach.

THE AA4MM META-MODEL

Generalities
The AA4MM meta-model relies on the multi-agent paradigm
to envisage a multi-model as a set of interacting models: each
couple model/simulator corresponds to an agent, and the data
exchanges between the simulators correspond to the inter-
actions between the agents. Originality toward other multi-
agent multi-model approaches is to consider the interactions
in an indirect way within the Agents and Artifacts (A&A)
paradigm [15].

Within this paradigm, artifacts support models’ interactions
as processes outside of the models and express them indepen-
dently of the models’ internal functioning. As a consequence,
the simulators interoperability issue is managed by the arte-
facts. The multi-perspective integration issue is managed as
a transformation service of the artefact in charge of the inter-
action between models.

Moreover, the concept of autonomous agent has been shown
[26] to be sufficiently expressive to describe the monitoring
of a multi-model and its dynamical adaptation during a simu-
lation.

Multi-agent Concepts of the meta-model
AA4MM relies on four concepts to describe a multi-model:

• A model mi is a partial representation of the target system
implemented in a simulator si (symbol in Figure 3d).

• An m-agent Ai manages a model mi and is in charge of
interactions of this model with the other ones (symbol in
Figure 3a).

• An interaction from an m-agent Ai to an m-agent Aj is
reified by a coupling artifact Cij (symbol in Figure 3b). A
coupling artifact Cij has two roles: for Ai, it is an output
coupling artifact, whereas for Aj it is an input coupling
artifact. The coupling artifacts can transform the data ex-
changed between the models using operations that can be
for instance, spatial and time scaling operations, or aggre-
gation and disaggregation operations [2].

• The model artifact Ii reifies interactions between an m-
agent Ai and its model mi (symbol in Figure 3c).

(a) (b) (c) (d)
Figure 3. Symbols of the AA4MM components (a) m-agent Ai, (b) cou-
pling artifact Ci

j , (c) model artifact Ii (d) model mi.

Figure 4. A multi-model described with AA4MM.

Figure 4 is the equivalent of the multi-model of figure 1 de-
scribed with the AA4MM meta-model.

Different kinds of m-agents with different behaviors exist de-
pending on the models coupling. For instance, co-evolution
m-agents coordinate the models execution with other ones,
whereas sequential m-agents monitor and dynamically adapt
the multi-model during the simulation. In this article, we re-
strict to the co-evolution m-agent.

In the following section, we present how these concepts are
combined with the DEVS formalism in order to manage
multi-formalism integration.

Combining multi-agent concepts with the DEVS formal-
ism
We map the AA4MM multi-model with the DEVS formalism
as follows. Each m-agent Ai sees its model mi as a DEVS
atomic model thanks to its model artefact Ii. Therefore, Ii
acts as a DEVS wrapper [14] for mi. Each coupling artifact

3

Cij between the m-agents Ai and Aj corresponds to an inter-
connection between the models mi and mj .

In AA4MM, an m-agent only has a local knowledge of the
coupled model’s interconnections. The coupled model’s in-
terconnections set IC is split such as an m-agent Ai only
knows:

• which input coupling artifact corresponds to its model’s in-
put ports. We define the set of input links INi ofAi as being
composed of the couples (j, k) mapping the input coupling
artifact Cji with the input port xk

i .

• which output coupling artifact corresponds to its model’s
output ports. We define the set of output links OUTi of Ai

as being composed of the couples (n, j) mapping the ouput
port yni with the output coupling artifact Cij .

The connection of the output ports of a model mi with the
input ports of a model mj is done by the coupling artifact Cji .

The link from a model mi to a model mj (noted as Lij) cor-
responds to the tuple (n, k, oi,nj,k). It maps the output port yni
with the input port xk

j and applies the onk operation to trans-
form the event between these two models representation. By
default, an operation corresponds to the identity operation id.
Table 2 shows how the coupled model of table 1 is described
within AA4MM.

Descriptions Notations
Output links of m1 OUT1 = {(1, 2), (2, 3)}
Input links of m1 IN1 = {(2, 1)}

Output links of m2 OUT2 = {(1, 1)}
Input links of m2 IN2 = {(1, 2), (3, 1)}

Output links of m3 OUT3 = {(1, 2)}
Input links of m3 IN3 = {(1, 1)}

Links from m1 to m2 L12 = {(1, 2, o1,12,2)}
Links from m1 to m3 L13 = {(2, 1, o1,23,1)}
Links from m2 to m1 L21 = {(1, 1, o2,11,1)}
Links from m3 to m2 L32 = {(1, 1, o3,12,1)}

Table 2. Formalization of the coupled model of figure 1 and Table 1 in
the AA4MM formalism.

In the next section, we present how the multi-agent concepts
of the AA4MM meta-model are implemented in the AA4MM
middleware, according to the DEVS simulation protocol.

THE AA4MM SIMULATION MIDDLEWARE : IMPLEMENT-
ING MULTI-AGENT CONCEPTS ACCORDING TO THE
DEVS SIMULATION PROTOCOL
In this section we present the operational specification of the
AA4MM middleware. This section is articulated as follows.
Section “Events communication through the environment” is
concerned with m-agents communication through the arti-
facts. Section “M-agents’ coordination through the environ-
ment” is concerned with the co-simulation coordination.

Events communication through the environment

In AA4MM, the environment is the medium of m-agents’
communications. According to the A&A paradigm, this en-
vironment is composed of artifacts.

A model artifact Ii contains primitives to manipulate a simu-
lation software. This artifact acts as a DEVS wrapper for the
simulator. It implements the function of the DEVS simulation
protocol by the following functions.

• init() initalizes the model mi. It sets the parameters and
the initial state of the model.

• processExternalEvent(eini
, ti, x

k
i) processes the exter-

nal input event eini at simulation time ti in the kth input
port of mi, xk

i .

• processInternalEvent(ti) processes the internal event
of the model mi scheduled at time ti.

• getOutputEvent(yik) returns ekouti , the external output
event at the kth output port of mi, yik.

• getNextInternalEventT ime() returns the time of the
earliest scheduled internal event of the model mi.

These functions have to be defined for each simulation soft-
ware.

The coupling artifact functioning ensures the decentralized
events communication between the m-agents.

A coupling artifact Cij works like a mailbox: the artifact has
a buffer of events where the m-agents can post their external
output events and get their external input events. Cij proposes
the post(ekout) function to Ai. This function stores and trans-
forms (according to Cij’s operation) the external output event
ekout of output port yki , in the artifact’s buffer. Cij proposes
three functions to Aj :

• getEarliestEvent(k) returns the earliest external input
event for the kth input port of mj , xk

j .

• getEarliestEventT ime(k) returns the time of the earli-
est external event for the kth input port of mj , xk

j .

• removeEarliestEvent(k) removes from the artifact’s
buffer the earliest external event for the kth input port of
mj , xk

j .

M-agents’ coordination through the environment
According to our multi-agent approach, each m-agent is an
autonomous entity. Therefore, the m-agents perform the sim-
ulation of a multi-model in a parallel way.

A parallel simulation of a multi-model must respect the
causality constraint: each atomic model must process its
events (internal and external) in an increasing temporal or-
der [9, 27].

4

Two types of approaches exist to fulfill the causality con-
straint [7]:

• Conservative approaches consist of insuring that the
causality is never broken during the simulation.

• Optimistic approaches consist of letting the models exe-
cute without taking care of the causality constraint, detect-
ing when the causality constraint is broken and then rolling
back the simulation to this point.

The optimistic approaches require all the simulators to have
a roll back capability implemented either with a state sav-
ing or inverse computation strategy [7]. As this requirement
strongly restricts the type of the simulators which can be used,
we have made the choice in the current AA4MM specification
to take a conservative approach.

The parallel conservative DEVS simulator is based on the
principle of the Chandy-Misra-Bryant algorithm [3] [1].
Proofs that this algorithm is deadlock free and respects the
causality constraint can be found in [27]. The advantage of
this algorithm for the AA4MM approach is that it is fully
decentralized. It is then compatible with the multi-agent
paradigm of the AA4MM meta-model.

We translate this algorithm in the AA4MM’s concepts as fol-
lows.

The behavior of each m-agent corresponds to the DEVS con-
servative parallel simulator’s one. Each m-agent Ai shares in
its environment its own Earliest Output Time estimated noted
EOTi. EOTi corresponds to the date (in simulation time), be-
low which Ai guarantees it will not send new external output
event. Therefore, each coupling artifact Cij can store an EOT
(initially equal to 0). Ai shares its EOTi by updating the EOT
of its output coupling artifacts.

Each m-agent Ai uses the EOTs of all of its input coupling
artifacts to compute its Earliest Input Time estimated noted
EITi. This EITi corresponds to the date (in simulated time)
below whichAi will not receive any new external input event.
EITi corresponds to the minimum EOT of all of Ai’s input
coupling artifacts. Therefore, each m-agent Ai accesses the
EOT of all of its input coupling artifacts.

For each m-agentAi, all the events (internal or external) with
a timestamp inferior or equal to EITi are said to be safe to pro-
cess. In order to fulfill the causality constraint, each m-agent
must process only safe events, and in an increasing timestamp
order.

The EOTi of each m-agent Ai is equal to the minimum be-
tween:

• the date of its model’s next internal event nti
• the date of EITi plus its model’s minimum propagation de-

lay Di.

EOTi = min(nti, EITi +Di)

Di(Di > 0) corresponds to the minimum delay (in simulated
time) below which the processing of an external event can’t

schedule a new internal event in a model mi. Di has to be
determined for each model mi in the multi-model.

To store and access its EOT, each coupling artifact Cij pro-
poses two functions:

• Ai can use the setEOT to update EOTi in the artifact.

• Aj can use the getEOT to get EOTi.

To execute a conservative simulation of its model mi, each
m-agent Ai follows this cycle:

1. Get the EOT of each of its input coupling artifact and com-
pute its EIT

2. Process safe events in a temporal increasing order

3. Compute its EOT and update the EOT of its output cou-
pling artifacts.

In order to process safe events in a temporal increasing order,
Ai follows this cycle:

1. Getting the time nti of its next internal event (nti ∈ R).

2. Getting the time tini of eini , the earliest external event of
all its input coupling artifacts. (tini ∈ R)

3. Determining the earliest event between the next internal
event and eini .

4. If this event is safe to process, process it.

5. If this event is an internal event, propagate the resulting
output external events to other agents.

We developped a new version of the AA4MM middleware to
integrate the new behavior of the m-agents and their coordi-
nation with the coupling artifacts.

Implementing a multi-model requires the models’ simulators
(assumed to exist), their model artifacts and the transforma-
tion operations. We detail these aspects in the next section.

PROOF OF CONCEPT
In this section, we illustrate the ability of AA4MM to describe
and simulate a multi-model composed of different formalisms
(with individual-based, equation-based and event-based mod-
els), different simulators (models are implemented in Netlogo
and ad-hoc simulators) and different perspectives (the models
represents the system at different time-scale and at different
resolution levels).This proof of concept is inspired from the
hybrid traffic modeling of [6].

We want to simulate the car traffic of an highway decom-
posed into three different parts (Figure 5), each described by
a specific model:

• In part 1, the speed is limited to 90 km/h, overtaking is
forbidden. This part can be subject to traffic jam. It is de-
scribed with an individual-based model (see section “The
individual-based model of the highway”).

• In part 2, the speed is limited to 130 km/h, overtaking is
allowed. This part is described by an event-based model
m2 (see section “The event-based model of the highway”).

5

• In part 3, the traffic can be considered as regular. This part
is described by an equation-based model m3 (see section
“The equation-based model of the highway”).

For demonstration purpose, we consider this highway to be
on a toric space: cars that go out of part 3 enter into part 1.
The multi-model is described with AA4MM in section “The
multi-model of the highway”.

Figure 5. The three parts of the highway.

The individual-based model of the highway
The individual-based model m1 is inspired from the traffic
model of NetLogo [23] [22]. Within this model, each car
is represented individually as an agent1. The agents are ar-
ranged along an horizontal road. Each agents is described by
a position, an orientation (the same for all the agents), and a
speed. The behavior of each agent is the following: each time
it sees a car too close it decelerates, it accelerates otherwise
(up to the speed limit).

The model is based on a cyclic execution: the cars move ac-
cording to their speeds at each time-step. The model has one
output port out1, and one input port in1. An external output
event sent through out1 corresponds to the list of the identi-
fiers of cars going out of the road section. An external input
event received in in1 corresponds to a list of the identifiers of
cars entering the section.

The event-based model of the highway
The event-based model m2 is implemented in an ad-hoc sim-
ulator written in Java. This model has three parameters: the
length of the road, the minimum and the maximum average
speed of a car. Within this model cars are represented indi-
vidually and described with an identifier and a speed.

It works as follow, when a car enters in the section, its average
speed is set randomly according to a given probability distri-
bution between the maximum and minimum average speed of
the cars. An internal event corresponds to the exit of a car of
the section.

The simulator of the model maintains a stack of the internal
event according to the exit date of each cars. The model has
one output port out2, and one input port in2. An external
output event sent through the model’s output port out2 cor-
responds to a list of the identifiers of cars going out of the
section. An external input event received in the model’s input
port in2 corresponds to a list of the identifiers of cars entering
in the section.

The equation-based model of the highway
The equation-based model m3 corresponds to the macro-
scopic model of traffic used in [6]. Within this model, the
1not to be confused with the m-agent of the AA4MM meta-model

traffic is described as a flow with a car flow rate, a car density
and an average speed. This model is a macroscopic repre-
sentation of the system compared to the representations of
the models m1 and m2. This model takes input car flow rate
from its input port in3. The output of the model corresponds
to the car flow rate going out of the section.

The model m3 is implemented in an ad-hoc simulator written
in Java. This simulator solves the flow equation by discretiz-
ing the simulation time. The simulator is based on a cyclic
execution. External input and output events correspond re-
spectively to input and output flow rate. A time step is equal
to twenty time steps of m1.

The multi-model of the highway
In this section, we detailed how the intuitive multi-model
of the highway of figure 6 is described and implemented in
AA4MM.

We start by the definition of the model artifacts I1, I2 and
I3 for controlling respectively the models m1, m2 and m3.
As m2 is an event-based model, defining I2’s functions is a
straightforward process. For the models m1 and m3 which
have cyclic time-step scheduling policies:

• the getNextInternalEventT ime function of I1 and I3
returns the current time of the model plus the duration of a
time-step.

• the processInternalEvent function of I1 and I3 exe-
cutes the model for one time-step.

• the processExternalEvent function of I1 and I3 sends
the external event into the models’ input port.

• the getOutputEvent function of I1 and I3 collects the
external event from the models’ output port.

Figure 6. The multi-model of the highway described in an intuitive am-
biguous way.

We add three m-agents A1, A2, and A3 for managing the
execution of the models m1, m2 and m3.

As m1 and m3 have cyclic time-step scheduling policies, ex-
ternal events can not schedule new internal events. Therefore,
the delays D1 and D3 are equal to +∞. D2 is equal to the
minimum time needed by a car to cross the road, that is to say
the length of the road divided by the maximum average speed
of a car in m2.

We add the coupling artefacts C12 , C23 and C31 managing the in-
teractions between the models. In order to pass from a micro
to a macro representation of the system, we add an aggre-
gation operation agg to C23 transforming a list of cars into a
flow rate. To pass from a macro representation of the system
to a micro representation, we add a disaggregation operation
disagg to C31 transforming flow rate into a list of cars. Figure
7 and table 3 shows how the multi-model of the highway is
described using AA4MM.

6

Figure 7. The multi-model of the highway described with AA4MM.

Descriptions Notations
Output links of m1 OUT1 = {(out1, 2)}
Input links of m1 IN1 = {(3, in1)}

Output links of m2 OUT2 = {(out2, 3)}
Input links of m2 IN2 = {(1, in2)}

Output links of m3 OUT3 = {(out3, 1)}
Input links of m3 IN3 = {(2, int3)}

Links from m1 to m2 L12 = {(out1, in2, id)}
Links from m2 to m3 L23 = {(out2, in3, agg)}
Links from m3 to m1 L31 = {(out3, in1, disagg)}

Table 3. Formalization of the highway multi-model in AA4MM.

To develop this example, we only programmed the code for
the interface artifacts and for the operations.

In this proof of concept, we have shown how the multi-
agent concepts are used in order to describe an heterogeneous
multi-model. Model artifacts manage interoperability of the
simulation software with the AA4MM middleware and act as
DEVS wrapper. Coupling artefacts’ operations manage the
integration of macroscopic and microscopic perspectives of
the highway. As the middleware is based on DEVS specifi-
cations, we can rely on this formalism to manage the parallel
simulation of this heterogeneous multi-model.

CONCLUSION
We have presented in this article the mapping of the DEVS
formalism and simulation protocol in the multi-agent con-
cepts of the AA4MM meta-model. This combination of
DEVS with multi-agent concepts enables to integrate hetero-
geneous formalisms, to perform the parallel simulation of the
multi-model, to manage simulators interoperability and to in-
tegrate multi-perspective in a multi-model.

We have illustrated these possibilities with a proof of concept.

In future works, we plan to take advantage of the expressive
power of the A&A paradigm to formalize dynamic adapta-
tion of the multi-model. For instance, continuing with the
highway multi-model as a proof of concept, we wish to dy-
namically detect when the traffic flow is regular or not, and to
switch between a macro or a micro model of the road as done
in [24].

REFERENCES
1. Bryant, R. E. Simulation on a distributed system. In

Proc. of the 16th Design Automation Conference (1979),
544–552.

2. Camus, B., Bourjot, C., and Chevrier, V. Multi-level
modeling as a society of interacting models. In

Proceedings of the Agent-Directed Simulation
Symposium, ADSS 13, Society for Computer Simulation
International (2013), 3:1–3:8.

3. Chandy, K. M., and Misra, J. Distributed simulation: A
case study in design and verification of distributed
programs. Software Engineering, IEEE Transactions on,
5 (1979), 440–452.

4. D. Chavalarias, P. Bourgine, E. Perrier, F. Amblard, F.
Arlabosse, et al. French Roadmap for complex Systems
2008-2009, 2009.

5. Dahmann, J. S., Fujimoto, R. M., and Weatherly, R. M.
The department of defense high level architecture. In
Proceedings of the 29th conference on Winter
simulation, IEEE Computer Society (1997), 142–149.

6. El Hmam, M., Abouaissa, Hassane; Jolly, D., and
Benasser, A. Macro-micro simulation of traffic flow. In
Proceeding of the 12th IFAC Symposium on Information
Control Problems in Manufacturing, INCOM, vol. 12-1
(2006), 351–356.

7. Fishwick, P. A. Handbook of dynamic system modeling.
CRC Press, 2007.

8. Fishwick, P. A., and Zeigler, B. P. A multimodel
methodology for qualitative model engineering. ACM
Trans. Model. Comput. Simul. 2, 1 (1992), 52–81.

9. Fujimoto, R. M. Parallel simulation: parallel and
distributed simulation systems. In Proceedings of the
33nd conference on Winter simulation, WSC ’01, IEEE
Computer Society (2001), 147–157.

10. Hu, Y., Xiao, J., Zhao, H., and Rong, G. Devsmo: An
ontology of devs model representation for model reuse.
In Proc. of the 2013 Winter Simulation Conference,
WSC ’13, IEEE Press (2013), 4002–4003.

11. Klir J., S. J. Variable resolution modeling in interactive
parallel discrete event simulation. In Electronic
computers and informatics., K. V. Press, Ed., no. ISBN:
80-8073-150-0 (2004), 353–358.

12. Leclerc, T., Siebert, J., Chevrier, V., Ciarletta, L., and
Festor, O. Multi-modeling and co-simulation-based
mobile ubiquitous protocols and services development
and assessment. In 7h International ICST Conference on
Mobile and Ubiquitous Systems: Computing,
Networking, and Services, P. Sénac, M. Ott, and
A. Seneviratne, Eds., vol. 73 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer Berlin
Heidelberg (2010), 273–284.

13. OMG. Model Driven Architecture (MDA) Guide, 2003.
OMG doc. ab/2003-06-01.

14. Quesnel, G., Duboz, R., Versmisse, D., and Ramat, É.
DEVS coupling of spatial and ordinary differential
equations: VLE framework. In Proceedings of the Open
International Conference on Modeling & Simulation
Conference (2005), 281–294.

7

15. Ricci, A., Viroli, M., and Omicini, A. Give agents their
artifacts: the A&A approach for engineering working
environments in MAS. In Proceedings of the 6th
international joint conference on Autonomous agents
and multiagent systems, AAMAS, ACM (2007),
150:1–150:3.

16. Seck, M. D., and Honig, H. J. Multi-perspective
modelling of complex phenomena. Comput. Math.
Organ. Theory 18, 1 (Mar. 2012), 128–144.

17. Siebert, J., Ciarletta, L., and Chevrier, V. Agents and
artefacts for multiple models co-evolution: building
complex system simulation as a set of interacting
models. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent
Systems: volume 1 - Volume 1, AAMAS ’10,
International Foundation for Autonomous Agents and
Multiagent Systems (2010), 509–516.

18. Sprinkle, J., Rumpe, B., Vangheluwe, H., and Karsai, G.
Metamodelling: state of the art and research challenges.
In Proceedings of the 2007 International Dagstuhl
conference on Model-based engineering of embedded
real-time systems, MBEERTS’07, Springer-Verlag
(2010), 57–76.

19. Touraille, L. Application of Model-Driven Engineering
and Metaprogramming to DEVS Modeling &
Simulation. Theses, Université Blaise Pascal -
Clermont-Ferrand II, Dec. 2012.

20. Vangheluwe, H. Devs as a common denominator for
multi-formalism hybrid systems modelling. In
Computer-Aided Control System Design. CACSD. IEEE
International Symposium on (2000), 129–134.

21. Vangheluwe, H., De Lara, J., and Mosterman, P. J. An
introduction to multi-paradigm modelling and
simulation. In Proc. AIS2002. (2002), 9–20.

22. Wilensky, U. Netlogo traffic basic model.
http://ccl.northwestern.edu/netlogo/models/trafficbasic.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.,
1997.

23. Wilensky, U. Netlogo.
http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL., 1999.

24. Xiong, M., Cai, W., Zhou, S., Low, M. Y.-H., Tian, F.,
Chen, D., Ong, D. W. S., and Hamilton, B. D. A case
study of multi-resolution modeling for crowd
simulation. In SpringSim, G. A. Wainer, C. A. Shaffer,
R. M. McGraw, and M. J. Chinni, Eds., SCS/ACM
(2009).

25. Yilmaz, L., Lim, A., Bowen, S., and Oren, T.
Requirements and design principles for multisimulation
with multiresolution, multistage multimodels. In
Simulation Conference, 2007 Winter (2007), 823–832.

26. Yilmaz, L., and Ören, T. Dynamic model updating in
simulation with multimodels: A taxonomy and a generic
agent-based architecture. In In Proceedings of SCSC
2004 - Summer Computer Simulation Conference,
(2004), 3–8.

27. Zeigler, B., Praehofer, H., and Kim, T. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Academic
Press, 2000.

8

	Introduction
	Requirements for multi-modeling and multi-simulation
	The DEVS formalism for multi-modeling
	The AA4MM approach
	The AA4MM meta-model
	Generalities
	Multi-agent Concepts of the meta-model
	Combining multi-agent concepts with the DEVS formalism

	The AA4MM Simulation Middleware : implementing multi-agent concepts according to the DEVS simulation protocol
	Events communication through the environment
	M-agents' coordination through the environment

	Proof of concept
	The individual-based model of the highway
	The event-based model of the highway
	The equation-based model of the highway
	The multi-model of the highway

	Conclusion
	REFERENCES

