
Variable Structure and Dynamism Extensions to SiMA, A DEVS Based Modeling and Simulation
Framework

Fatih DenizP

1
P, Ahmet KaraP

1
P, M. Nedim AlpdemirP

1
P, Halit Oğuztüzün P

2
P

P

1
PTUBITAK UEKAE İLTAREN

06800 Ümitköy
Ankara, TURKEY

{ HTfatihdTH, HTahmetk TH, HTnedimaTH}@iltaren.tubitak.gov.tr

P

2
PDept. of Computer Engineering

Middle East Technical University
06530 Ankara, TURKEY

HToguztuzn@ceng.metu.edu.trTH

Keywords: DEVS, simulation frameworks, strongly-typed
environments, variable structure models

Abstract
 In this paper we take a particular stand to the problem
of dynamism support in simulation environments by
adopting DEVS based modeling and simulation approach
and by building upon our previous work on SiMA, a DEVS-
based simulation framework developed at TUBITAK
UEKAE. Our contribution to the work in this field is two
fold: 1 – we have implemented a specialized form of basic
DEVS formalism via SiMA (Simulation Modeling
Architecture) 2- We have extended SiMA with dynamism
support by building upon our specialized basic DEVS
formalism with dynamism extensions that are comparable
(but not equivalent) to those given in dynDEVS. Our
approach conforms to both dynDEVS and dynNDEVS as
the underlying formal specification, with some non-
disruptive extensions to the original formal semantics. One
particular contribution we offer is the systematic framework
support for post-structural-change state synchronization
among models with related couplings, in a way that benefits
from the strongly-typed execution environment SiMA
provides.

1. INTRODUCTION
 Analyzing the behavior of complex and adaptive
systems through simulation often requires the underlying
modeling and simulation approach to support structural and
behavioral changes. This requirement may stem from the
inherent nature of the real world system under study such as
ecological or social systems (as indicated in [Uhrmacher
2001]), it may stem from the modeling and simulation
methodology of the analyst or it may be due to the way
system modelers approach to the modeling of inherent
behavioral complexity of their models. A good example to a
combination of the latter two is the case where the
simulation study involves a large number of highly complex
systems, the analyst wants to observe the behavior of these
systems at varying levels of fidelity, and the modeler
constructs the models in a way to allow the models to

exhibit different observable behaviors during the course of
simulation. This particular case implies that models may
switch between different behavioral specifications (e.g.
fidelity levels) dynamically at run time depending on
various triggering events. Allowing modifications to model
structures and to internal functional specifications while the
simulation is running is a challenging task due to
instabilities and inconsistencies this may introduce,
especially if the underlying modeling approach does not
provide a sound formal basis upon which the run-time
infrastructures can be established.
 In this paper we take a particular stand to the problem
of dynamism support in simulation environments by
adopting DEVS based modeling and simulation approach
and by building upon our previous work on SiMA [Kara et
al. 2007], a DEVS-based simulation framework developed
at TUBITAK UEKAE. We note that other approaches to
dynamism are already proposed in the relevant literature
[Barros 1995; Uhrmacher 2001; Zeigler et al. 1991]. We
observe that three distinct categories of change are
discussed in those existing approaches: 1 – A change in the
overall compositional state of models, 2 - A change in the
connectivity relationships (coupling) among the models, 3 –
A change in internal functional behavior of the model.
 We also note that there are two main formal approaches
to the variable structure models in DEVS environment,
which are defined by extending the classical DEVS
formalism. The first one is DSDE (Dynamic Structure
DEVS), introduced by F.J. Barros [Barros 1995]. The
second one is dynDEVS, introduced by Uhrmacher
[Uhrmacher 2001]. A brief introduction to both of these
approaches is given in Section 2 of this paper. In addition to
these formal extensions, there are approaches which adopt
existing formal specifications but contribute through
different routes. For instance [Shang and Wainer 2007]
extend their existing simulation engine by adopting a
combination of DSDE and dynDEVS. Similarly [Hu et al.
2005] take a software engineering oriented stand and
propose a component-based simulation environment. Our
contribution to the work in this field is two fold: 1 – we
have implemented a specialized form of basic DEVS

formalism via SiMA (Simulation Modeling Architecture)
(see Section 3 for more details) 2- We have extended SiMA
with dynamism support building upon our specialized basic
DEVS formalism with dynamism extensions that are
comparable (but not equivalent) to those given in dynDEVS
 The rest of this paper is organized as follows: Section 2
gives a summary of the relevant background work Section 3
provides a detailed discussion of our approach; Section 4
provides the conclusions and future work

2. BACKGROUND
 The Discrete Event System Specification (DEVS) is a
formalism introduced by Zeigler (1976) to describe discrete
event systems. An atomic model, say M, in classical DEVS
formalism consists of a set of input events, a state set, a set
of output events, an internal, external, and confluent
transition function, an output and time advance function,
defined formally as follows [Zeigler 1976; Zeigler et.al.,
1998]: int, , , , , ,extM X S Y taδ δ λ=< >
where X is the set of input events; S is the set of states; Y is
the set of output events; δint :S→S is the internal transition
function; δext : QxX→S is the external transition function,
where {(,) | , 0 ()}Q s e s S e ta s= ∈ ≤ ≤ is total state set, e is
elapsed time since last transition; λ : S→Y is the output
function; ta : 0,S R+

∞
→ is the time advance function.

Complete description of DEVS semantics can be found in
[Zeigler 1976; Zeigler et.al., 1998].
 The Dynamic Structure Discrete Event System
Specification (DSDE) is introduced in [Barros 1997] and
allows the specification of dynamic structure networks of
discrete event systems. A DSDE network model is
described as follows [Barros 1996]:

, , ,DSDEVN X Y M χχ∆ ∆=< > where ∆ is network

name; χ is the name of DSDE network executive; M χ is

the model of χ ; X
∆
 is the set of input events; Y

∆
 is the set

of output events. M χ , the model of the network
executive χ , is a basic DSDE model and defined as:

int, , , , , ,extM X S Y ta
χ χχ χ χ χ χ χδ δ λ=< > .

 M χ contains information about network composition

and coupling. A state sχ Sχ∈ has information about the
structure of the network model and it is defined as:

,(,{ },{ },{ }, ,)i i i js D M I Z SELECT Vχ χ χ χ χ

χ χ= where

Dχ is the set of component names; iM χ is the model of

component i, for i Dχ∈ ; iI χ is the set of component

influencers of i, i D { , }χ χ∀ ∈ ∪ ∆ ; ,i jZ χ is the i-to-j

output to input function, j Ii

χ∀ ∈ ; SELECT χ is the select

function; V χ represents other state variables of the network
executive.
 In DSDE, only the network executive can make
structural changes and any change made in one of these 5-
tuples ,(,{ },{ },{ },)i i i jD M I Z SELECTχ χ χ χ

χ
 will be

automatically reflected to the structure of the network
model. A detailed explanation of DSDE formalism is found
in [Barros 1997], and abstract simulators necessary to
simulate DSDE models is found in [Barros 1998].
 Unlike DSDE, dynDEVS formalism [Uhrmacher 2001]
does not introduce a specific type of model (i.e. the network
executive model) to apply structural changes dynamically.
Instead, transition functions, αρ and Nρ are added to the
atomic and coupled model definitions respectively. There
are two types of models defined in dynDEVS formalism.
These are dynDEVS (atomic) and dynNDEVS (coupled)
models. Atomic models are defined as follows:

init init, , m , (m)dynDEVS df X Y M= < > where X,Y are
structured sets of inputs and outputs; m (m)init initM∈ is

the initial model; init(m)M is the least set having the

structure int{ , s , , , , , }init extS ta αδ δ λ ρ< > where S is the set of

states; sinit S∈ is the initial state; int , , ,ext taδ δ λ are the
same functions as in classical DEVS formalism;

: ()initS M mαρ → is the model transition function. Coupled
models, which are composition of components and the links
between these components, are described in dynDEVS
formalism as follows:

init init, , , ()dynNDEVS df X Y n N n= < > where X,Y are

structured sets of inputs and outputs; init init()n N n∈ is the

start configuration; init()N n is the least set having the

structure ,{ , ,{ }, , , }N i i i jD dynDEVS I Z Selectρ< > where D

is the set of component names; : ()N initS N nρ → is the

network transition function with
d

m
d D m dynDEVSS S∈ ⊕ ∈= × ;

idynDEVS is the dynamic DEVS models with i D∈ ; iI

is the set of influencers of i ; ,i jZ is the i-to-j output-input

translation function; Select is the tie-breaking function.
More details about dynDEVS formalism are found in
[Uhrmacher 2001; Himmeelspach and Uhrmacher 2004].

3. OUR APPROACH
 Our modeling and simulation framework SiMA
(Simulation Modeling Architecture) is based on the DEVS

approach as a solid formal basis for complex model
construction. SiMA Simulation Execution Engine
implements the parallel DEVS protocol which provides a
well-defined and robust mechanism for model execution.
SiMA builds upon a specialized and extended form of
DEVS formalism which:
1 – Formalizes the notion of “port types” leading to a
strongly-typed (and therefore type-safe) model composition
environment. In this respect we specialize the basic DEVS
formalism by introducing semantic constraints on the port
definitions;
2 – Introduces a new transition function to account for
model interactions involving state inquiries with possible
algebraic transformations (but no state change), without
simulation time advance. In this respect we extend the basic
DEVS formalism. This is similar to the notion of zero-
lookahead in HLA [Fujimoto 1996] from a time-
management point of view.
 Our SiMA- DEVS formalism is given below:

int, , , , , , ,

: ,

: ,

, : :

(,) |

ext

in

out

in out

in x

f

x

d

x

SiMA DEVS X S Y ta

X Set of input values arriving from set of input ports P

Y Set of output values sent from set of output ports P

P P Set of input and output ports such that

P I I X x I

δ δ λ

τ

δ

τ

− =< >

= Γ ∧ ⊆ ∧∀ ∈{ }
{ }

'

, ,

(,) | , ,

: ,
, : ,

:

out y y y

df in in out out

x

P O O Y y O y

XMLSchema type system
data types valid wrt XMLSchema type system

PDFT P S P P

τ

ρ ρ ρ

τ ρ

δ

= Γ ∧ ⊆ ∧∀ ∈

Γ

∈ × → ⊆

 Note that the set of input ports PBin B, is formally defined
as a set of pairs where each pair defines one input port of a
model uniquely. The first element of each pair,τ , is a data
type conforming to XMLSchema type system (denoted with
Γ) and the second element of the pair (xI) denotes the set
of input data values flowing through that port, where each
element of the value set conforms to data type τ . Similar
semantics apply to output ports, too. Thus, we make strong
typing and type-system dependency of the ports explicit in
the formal model. Although introducing a run-time oriented
property into the formal model may seem unusual, we argue
that there are a number of merits in doing so:
1. We introduce a type discipline to the definition of the

externally visible model interfaces (i.e. ports) leading to
an information model for the overall system being
modeled (coherency in modeling level information
space), as well as for the simulation environment
(consistency and robustness in run-time-level data
space).

2. We facilitate Model-Driven Engineering through well-
typed and type system dependent external plugs to

enable automated port matching and model
composition. In fact we have successfully implemented
our Model-Driven simulation construction pipeline for
SiMA, via a number of tools such as a code generator, a
model builder and a model linker.

3. We reduce the gap between modeling level logical
composability constraints and run-time level
pluggability constraints, thus forcing all
implementations of our specialized DEVS model to
respect our type-system compatibility and to offer a
strongly typed environment.

 Note also that, in addition, we introduce a new
transition function, dfδ , that enables models to access the
state of other models through a specific type of port, without
advancing the simulation time. As such, it is possible to
establish a path of connected models along which models
can share parts of their state, use state variables to compute
derived values instantly within the same simulation time
step. As stated earlier, this is similar to the notion of zero-
lookahead found in HLA [Fujimoto 1996]. One may argue
that the zero-lookahead behavior could be modeled by
adjusting the time advance function of an atomic model
such that the model causes the simulation to stop for a
while, do any state inqury via existing couplings, then re-
adjusting the time advance to go back to normal simulation
cycle. Although this is possible, we argue that by
introducing a transition function and a specific port type
which is tied (through run time constraints imposed by the
framework) to that particular transition function we gain
several advantages:
1. The models can communicate and share state with each

other without the intervention of the simulation engine
thus providing a very efficient run time infrastructure.

2. Allowing such communications only to occur through a
specific port type (compile time and run-time checks
are carried out) the framework is able to apply
application independent loop-breaking logic at the ports
to prevent algebraic loops, thereby ensuring model
legitimacy.

 Further, our approach to add dynamism to our basic
DEVS model is similar to that of dynDEVS as indicated
earlier. To be more precise, we conform to both dynDEVS
and dynNDEVS definitions as the underlying formal
specification, with some trivial extensions which are given
below:
1. We state that structured sets of inputs and

outputs X and Y are defined in conformance to our
strongly typed-port definitions where the formal
definitions for ,in outP P apply; init(m)M is the least set

having the structure int{ , s , , , , , , }init ext dfS ta αδ δ λ ρ δ< >

where S, sinit , int , , ,ext taδ δ λ and αρ are the same as in

dynDEVS formalism; dfδ is the additional transition
function defined in SiMA-DEVS. Thus, we ensure that
the meaning of a model in dynDEVS is firmly aligned
with that of SiMA-DEVS, while maintaining the top-
level semantics of the dynDEVS definition. Note that
our SiMA-DEVS extensions are non-disruptive to the
overall semantics of the basic dynDEVS formalism.

2. We introduce a state synchronization mechanism
between networks of connected models, to be
performed at the end of a structural change phase, in
case a model wants to update the values of such state
variables that are within the common set of pre-and
post change models (i.e. they are not introduced newly
after the model’s structural transition) but have values
that stayed unchanged during pre-change simulation
period. This mechanism is instrumental in cases where
a model A initializes some of its state variables at the
beginning of simulation but does not receive updates
for those variables until some influencer model B goes
through a structural change that causes those variables
to be updated; or in cases where a new model B is
added which introduces a new coupling influencing one
of the input ports of model A. One might argue that
after the structural change, synchronization of such
state variables would already take place as a result of
message passing via the coupling links during the
normal course of the simulation. However, it is
important to note that due to differences in state update
rates (i.e. different step sizes), an influencee may have
to go through many state updates and produce many
output sets before it can receive the required updates
from slower influencers; a case which might potentially
lead to significant errors in the behavior of the overall
simulation, especially if the simulation application is
developed for an engineering analysis requiring a high
level of behavioral sensitivity. It is worth mentioning
that the state synchronization function must be executed
as the last step of the structural change transition phase
to allow the influencers to perform the necessary state
updates before the influencees ask for the latest values
of the state variables that need to be synchronized

 We now set out to describe the principles that govern
the run-time algorithms of the SiMA simulation engine
when it manages structural change. In SiMA, like
dynDEVS, atomic models are responsible for initiating
structural changes. There is no a dedicated controller model
that supervises over atomic models as described in DSDE
formalism. This model centric approach seems to be more
reasonable since most of the potential change-triggering
events that require structural changes from a particular
model are naturally handled by the external transition

function of that atomic model, and it is that particular model
which should have the knowledge of re-structuring itself,
whether this re-structuring is a switch to an internally
defined different functional model, or a re-adjustment of its
port couplings. The only exception where the model-centric
approach may become restrictive is the case where a new
model (atomic or coupled) is to be added to the simulation.
The logic for initiating the model addition may require the
aggregation of state variables from many different models,
or even it may be a user-initiated request which is not
necessarily captured by a single model. In current
implementations of dynDEVS namely AgedDEVS and
JAMES, the atomic models are assumed to have access to a
knowledge base from where they can collect the necessary
information to decide for new model additions. Although
this approach seems quite reasonable for agent-oriented
implementations, it introduces a dependency to a specific
architectural and behavioral semantics for simulation
applications, which we are inclined to avoid. Therefore, in
our approach:
• An atomic model may add/remove models or couplings

to its parent coupled model. But these operations are
restricted to its bounding coupled model, thus an atomic
model cannot modify structure outside its coupled
model.

• If an atomic model requires a structural change out of
its parent coupled model it informs the parent
coordinator about the type and content of the operations
to apply. Coordinators store all structure change
requests until all child models complete their
operations. These requests will be non-ambiguously
aggregated, since our type-safe model composition
semantics enables the resolution of any potential
overlapping requests.

• An application that is running the simulation may
require structural changes, too. This request is sent to
the root coordinator to be executed over the model
structure recursively. Root coordinator implements an
interface that allows applications to send their structural
change requests to the simulation engine. This
operation is applied in two parts.
o Before applying the change operation, simulation is

suspended at the beginning of the next cycle.
o The change request is processed by the root

coordinator and child model operations are sent to
the child coordinators recursively, causing all
related child coordinators to apply change
operations specified in the request.

3.1. Operations on Model Structures
 There are four types of structural change operations
defined in SiMA: Adding a model, removing a model,
adding a coupling and removing a coupling.

• Removing a model: This operation consists of two
steps: Removing all the connections from/to the
model. Removing the model.

• Adding a model: This operation consists of three
steps:
1. Adding a model to the parent coupled model.
2. Calling ‘init ()’ function of the newly added

model.
3. Calling ‘AdvanceTime(CurrentTime)’

function for synchronization.
• Removing a coupling: The specified coupling is

removed.
• Adding a coupling: This is also a critical operation

in our case. After adding a coupling, a process for
synchronizing current states of newly connected
models is executed. For achieving this, a querying
mechanism between connected ports is
implemented that operates in the opposite direction
of the normal message flow. An input port creates
a query and sends this query to the newly
connected ports. An answer to this query is
generated and sent to the requesting port. These
response messages will be handled when the
external transition function of the model is
executed.

 Our framework does not support the addition and
removal of new port types to the type space of the
simulation at run-time. One rationale for this is to preserve
the models’ external identity as advocated by [Uhrmacher
2001]. Another important reason for such a restriction is the
implied ambiguities in the run-time behavior of source and
sink models of the newly added ports with new port types.
To be more specific, say for instance, a new output port of a
new type is to be added. This would normally cause new
connections to be established between its source and some
other sink model. To be able to process the data coming
from the new port type, the sink model(s) have to be
structurally and behaviorally ready to receive, interpret and
process data coming from the new port. In a type-safe
environment where port connectivity is regulated and
restricted by type compatibility between connected ports
(which is the case in SiMA), normally a new port will have
to be added to the sink model too. However, both the source
and the sink model may not know in advance the processing
logic of the information flowing through those new ports.
As such, such a support would rely on the pre-existence of
sophisticated application–specific semantics within the
models. We believe this case should be avoided for generic
frameworks and therefore we exclude this functionality.
However, we do find addition of ports having a port type
already defined in the current type space useful, since it is
likely to have an already defined port with the same type in
one of the existing models and it is reasonable for a model
to add a port to establish a new coupling with an existing

model. Addition of a port with a known type is not included
in our operation list above since we plan to add this property
in our future work.
 For an example where some of these operations are
applicable, consider a simulation scenario involving two
planes flying in formation. A graphical representation of the
models involved in this scenario can be seen in Figure 1.
When the simulation starts execution, the models
representing the planes send their properties to each other
from their ports once and subsequently they only send their
current locations and directions, which are the only updated
parameters of the planes throught the simulation period.
Assume that at some point in time, a third plane is to be
added to the simulation to connect to the existing planes.
This updated model can be seen in Figure 2. Since the first
two planes send only their updated parameters, which are
location and direction, newly added plane will not be aware
of the remaining two planes’ properties. Therefore a state
synchronization is required.

Figure 1 Initial Model

Figure 2 Updated Model

 Dynamic SiMA handles this case by implementing an
automated state synchronization mechanism via a querying
system between connected port pairs. When a coupling is
added to the model structure while the simulation is
running, this querying system automatically works as a
service provided by the infrastructure, without incurring an
additional implementation overhead on the model
developer. A more detailed discussion of the state query
mechanism is provided in Section 3.3.

3.2. SiMA Abstract Simulators Adapted for
Dynamism Support

 Recall that SiMA is an implementation of SiMA-DEVS
formalism as discussed at the beginning of this section.
SiMA run-time layer is implemented in C# programming
language but it can interface to models implemented in both
C++ and C# programming languages. In this section,
extensions to abstract simulators required for executing
variable structure SiMA models are described in pseudo
code format:

Root Coordinator
StructureChangeRequested : boolean
CurrentTime : double

While(simulation end condition not satisfied) Do
 If a model change is requested then
 Process change request

Send sub-requests to related child
 coordinators
 End If

<CurrentTime, StructureChangeRequested> ←
 MainModel.GetNextTime()

 Advance time to CurrentTime

 If StructureChangeRequested is true Then
 execute a structural change step
 do state synchronization
 Else
 execute a normal simulation cycle
 endIf
endWhile

Algorithm 1 Root Simulation Cycle

 After a structural change operation, all models that have
new couplings will execute state synchronization
mechanism, discussed in Section 3.3, to update their state
information.
 ‘ChangeStructure’ and‘GetNextTime’ functions of both
simulators and coordinators correspond to the case when a
message of type sc and @ are received from the parent
models in [Barros 1998; Himmeelspach and Uhrmacher
2004; Shang and Wainer 2007] respectively.

Coordinator
 In ‘GetNextTime’ function, next simulation time
calculated and whether any structural change is required at
that time is resolved recursively down the model hierarchy
and the result is sent back to the parent coordinators up the
hierarchy.

Function GetNextTime(): <double, boolean>
 tempTime, minTime : double;
 tempSC, structureChangeRequested : boolean;
 minTime ← Positive Infinity

 For each model of the containedModels Do

 <tempTime, tempSC> ← model.GetNextTime()
 If (tempTime < minTime) Then
 minTime ← tempTime
 structureChangeRequested ← tempSC

Else If (time = minTime and tempSC is true)
Then

 structureChangeRequested ← true
 endIf
 endFor

 return <minTime, structureChangeRequested>
endFunction

Algorithm 2 Recursive Next Time Calculation

Function ChangeStructure()
 changeReq : set<operations>;
 For each model of the containedModels Do
 If model requested structure change then
 call model’s ChangeStructure function
 add model’s change requests to
 changeReq set
 endIf
 endFor

 Process and apply changeReq set
 Send upper-level operations to parent model
endFunction

Algorithm 3 Coordinator Change Structure

Simulator
 Next transition time and an indication of whether any
structural change request exists are sent to the parent
coordinator.

Function GetNextTime(): <double, boolean>

 return <t BN B, StructureChangeRequired>

endFunction

Algorithm 4 Simulator Next Time

 Structural change function of an atomic model is
executed if and only if its next time is imminent and a
structural change request has been made by that model.

Function ChangeStructure()
 If(StructureChangeRequired is true and t = t BN B)
 Then

 call
α

ρ

 StructureChangeRequired ← false
 send upper-level operations to parent model
 endIf
endFunction

Algorithm 5 Simulator Change Structure Transition

 If the state of an atomic model satisfies certain
conditions that require structural changes, atomic model
marks itself and informs its simulator to initiate a structural
change process and this simulator recursively sends this
request to the root coordinator. Structural change requests

can be issued by any atomic model during one of its
transition functions. These requests are handled in the next
internal transition phase. Modifications required for
supporting variable structure models can be summarized as
follows:
• A property, named ‘StructureChangeRequired’, is

added to the atomic models’ simulators.
• Atomic models that may require structural changes

while the simulation is running implement αρ
transition function.

• The get-next-time functions of the coordinators and
simulators are modified and they now return a
‘StructureChangeRequired’ flag, too. To initiate a
structural change, an atomic model simply sets its
‘StructureChangeRequired’ flag to true.

• When a structure change request arrives at the root
coordinator with the minimum advanced time value, a
structure change step is executed. For each atomic
model that requires structural changes at the new
current time, the change structure transition function is
executed.

3.3. State Synchronization Queries
 In SiMA, there is a state query mechanism between
connected ports. A port can create a query and send this
query to other source ports to which it is connected. This
mechanism works in the opposite direction of the normal
message flow and it is instrumental in supporting the
implementation of variable structure models. It enables
newly added models or newly added couplings to acquire
the current state of the simulation. This capability is crucial
for SiMA, since ports are managed by event and object
managers where object managers send only modified data
for efficiency reasons. Therefore a sink model would not
have up-to-date values of certain state variables from the
source models if before the structural change the sink model
did not use those particular state variables. If a model
requires the previously updated fields, it can prepare and
send a query to gather this information. Implementation
details of this mechanism are discussed below.
 An interface named ‘IStateQuery’ is defined in
SiMA as below:

interface IStateQuery
{
 Message[] getState(port name);
}
 This interface has only one member function which
takes a port name as the parameter and returns the port’s
related data. Each model contains a list of ‘IStateQuery’
instances for the couplings added in the last structural
change step. After all the couplings are added, the states of
the models are updated accordingly as illustrated below:

IStateQuery[] newCouplings;
foreach coupling in newCouplings
{
 coupling.DestinationPort.QueryState(
 source model, source port)
}
 Destination ports create queries and send these queries
to source ports that are connected to them. When an atomic
model receives a query, it sends its state as a response.
When a coupled model receives a query, it redirects this
query to the source ports that are connected to this port and
collects and returns the responses received from those
redirected ports. For example in Figure 3 we add a model
named ‘D’ and a coupling from C’s ‘Out1’ port to D’s ‘In1’
port dynamically. After the coupling is added, ‘In1’ port of
model ‘D’ sends a query to ‘Out1’ port of model ‘C’. Then,
‘Out1’ port of model ‘C’ redirects this query to ‘Out1’ ports
of model ‘A’ and model B. ‘Out1’ port of model C collects
response messages from ‘Out1’ ports of model A and B and
sends these messages back to ‘In1’ port of model D.

Figure 3 A Model and A Coupling Added Dynamically

 When the model initiating the query receives response
messages, it adds these messages to the message bag of the
port to be handled in the next external transition phase as the
following code snippet illustrates:

Message[] messages ← sourceM.getState(sourcePort)
messageBag.Add(messages)

4. CONCLUSIONS AND FURTHER WORK
 We have introduced our approach to implementing
variable structure support for dynamic and adaptive
simulation environments. We summarized the fundamental
properties of our modeling and simulation framework,
SiMA, and its variable structure extensions, with references
to similar approaches in the literature.
 Our approach to add dynamism to our basic DEVS
model is similar to that of dynDEVS as indicated earlier. In
particular we conform to both dynDEVS and dynNDEVS as
the underlying formal specification, with some non-
disruptive extensions to the original formal semantics. One
particular contribution we offer is the systematic framework
support for post-structural-change state synchronization
among models with related couplings. Note that we also

benefit from the strongly-typed execution environment
SiMA provides.
 Although SiMA has been used in a number of
simulation applications successfully, our dynamism
extensions to our framework are not mature yet. Our
objective is to support real world applications in the near
future, anticipating that there will be room for improvement
to the mechanisms we devised. In particular, scenarios
where supporting dynamic fidelity-level adjustments of
multiple models in a coordinated way is a requirement, are
potential use cases where we hope SiMA would provide a
viable solution for application developers.

References
Barros, F. J. 1995. Dynamic Structure Discrete Event

System Specification: A New Formalism for Dynamic
Structure Modeling and Simulation. In Proceedings of
the 1995 Winter Simulation Conference, 781-785.

Barros, F. J. 1996. Dynamic Structure Discrete Event
System Specification: Formalism, Abstract Simulators
and Applications. Transactions of the Society
forComputer Simulation 13(1): 35-46.

Barros, F. J. 1997. Modeling Formalisms for Dynamic
Structure Systems. ACM Transactions on Modeling and
Computer Simulation, Vol. 7, No. 4, 501-515.

Barros, F. J. 1998. Abstract Simulators for the DSDE
Formalism. Proceedings of the 1998 Winter Simulation
Conference. pp.407-412. Washington DC, USA.

Fujimoto, R.M., Weatherley, R.M. 1996. Time Management
in the DoD High Level Architecture. In Proceedings of
the PADS’96, pp60-67.

Himmeelspach J., and Uhrmacher, A. M. 2004. Processing
dynamic PDEVS models. Proceedings of the IEEE
Computer Society’s 12th Annual
InternationalSymposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications
Systems (MASCOTS’04). Volenlam, Netherlands.

Hu, X.L., B.P. Zeigler, S. Mittal. “Variable Structure in
DEVS Component-Based Modeling and Simulation”.
Simulation, Vol. 81, Issue 2, 91-102. 2005.

Kara, A., Bozağaç, D., and Alpdemir, M.N., “Simülasyon
Modelleme Altyapısı (SiMA): DEVS Tabanlı
Hiyerarşik ve Modüler bir Modelleme ve Koşum
Altyapısı”, İkinci Ulusal Savunma Uygulamaları
Modeleme ve Simulasyon Konferansı (USMOS), April
2007.

Ören, T. I. 1991. Dynamic Templates and Semantic Rules
for Simulation Advisors and Certifiers. In Knowledge-
Based Simulation: Methodology and Application, ed. P.
A. Fishwick and R. B. Modjeski (eds.), 53-76. New
York: Springer Verlag.

Shang, H., G. Wainer. “Flexible Dynamic Structure DEVS

Algorithm towards Real-Time Systems”. Proc. Of
Summer Computer Simulation Conf..San Diego. CA.
2007.

Uhrmacher, A. M. 2001. “Dynamic Structures in Modeling
and Simulation: A Reflective Approach”. ACM
Transactions on Modeling and Computer Simulation.
Vol. 11, No. 2, 206-232.

Zeigler, B. P. 1976. Theory of Modelling and Simulation.
 New York: Wiley.
Zeigler, B. P., T. G. Kim, and Lee, C. 1991. Variable

structure modelling methodology: An adaptive
computer architecture example. Trans. Soc. Comput.
Simul. 7, 4 (Dec. 1990), 291–318.

Zeigler, B. P., T. G. Kim, and H. Praehofer. 1998. Theory of
Modeling and Simulation. 2 ed., New York, NY:
Academic Press.

Author Biographies
Fatih DENIZ is a Researcher at TUBITAK UEKAE
ILTAREN. He received his BSc degree from Bilkent
University, Ankara, Turkey in 2007. He is currently a MSc
student in Department of Computer Engineering of Middle
East Technical University. His current research interests
include model-driven engineering and variable structure
models.

Ahmet KARA is a Senior Researcher at TUBITAK
UEKAE ILTAREN. He has been involved in design and
implementation of modeling and simulation architectures.
He received his BSc (2003) and MSc (2006) degrees from
Bilkent University, Ankara, Turkey. He is currently a PhD
student in Department of Computer Engineering of Middle
East Technical University.

M. Nedim ALPDEMİR, received his MSc (1996) in
Advanced Computer Science and PhD (2000) in
Component-Based Simulation Environments from the
Department Computer Science, University of Manchester,
UK. He worked as a Research Associate, and later as a
Research Fellow in the Information Management Group
(IMG) at the Department Computer Science of University of
Manchester, UK, until 2005. Currently he is the head of the
Software Infrastructures Group and supervises the
Simulation Software Frameworks team at TUBITAK
UEKAE ILTAREN, Ankara, Turkey.

Halit OGUZTUZUN is an associate professor in the
Department of Computer Engineering at the Middle East
Technical University (METU), Ankara, Turkey. He
obtained his BSc and MSc degrees from METU in 1982 and
1984, and PhD from University of Iowa, Iowa City, IA,
USA in 1991. His current research interests include
distributed simulation and model-driven engineering.

	INTRODUCTION
	BACKGROUND
	OUR APPROACH
	Operations on Model Structures
	SiMA Abstract Simulators Adapted for Dynamism Support
	State Synchronization Queries

	CONCLUSIONS AND FURTHER WORK

