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Abstract 
 In this paper we take a particular stand to the problem 
of dynamism support in simulation environments by 
adopting DEVS based modeling and simulation approach 
and by building upon our previous work on SiMA, a DEVS-
based simulation framework developed at TUBITAK 
UEKAE. Our contribution to the work in this field is two 
fold: 1 – we have implemented a specialized form of basic 
DEVS formalism via SiMA (Simulation Modeling 
Architecture) 2- We have extended SiMA with dynamism 
support by building upon our specialized basic DEVS 
formalism with dynamism extensions that are comparable 
(but not equivalent) to those given in dynDEVS. Our 
approach conforms to both dynDEVS and dynNDEVS as 
the underlying formal specification, with some non-
disruptive extensions to the original formal semantics. One 
particular contribution we offer is the systematic framework 
support for post-structural-change state synchronization 
among models with related couplings, in a way that benefits 
from the strongly-typed execution environment SiMA 
provides. 
 
1. INTRODUCTION 
 Analyzing the behavior of complex and adaptive 
systems through simulation often requires the underlying 
modeling and simulation approach to support structural and 
behavioral changes. This requirement may stem from the 
inherent nature of the real world system under study such as 
ecological or social systems (as indicated in [Uhrmacher 
2001]), it may stem from the modeling and simulation 
methodology of the analyst or it may be due to the way 
system modelers approach to the modeling of inherent 
behavioral complexity of their models. A good example to a 
combination of the latter two is the case where the 
simulation study involves a large number of highly complex 
systems, the analyst wants to observe the behavior of these 
systems at varying levels of fidelity, and the modeler 
constructs the models in a way to allow the models to 

exhibit different observable behaviors during the course of 
simulation. This particular case implies that models may 
switch between different behavioral specifications (e.g. 
fidelity levels) dynamically at run time depending on 
various triggering events. Allowing modifications to model 
structures and to internal functional specifications while the 
simulation is running is a challenging task due to 
instabilities and inconsistencies this may introduce, 
especially if the underlying modeling approach does not 
provide a sound formal basis upon which the run-time 
infrastructures can be established.  
 In this paper we take a particular stand to the problem 
of dynamism support in simulation environments by 
adopting DEVS based modeling and simulation approach 
and by building upon our previous work on SiMA [Kara et 
al. 2007], a DEVS-based simulation framework developed 
at TUBITAK UEKAE. We note that other approaches to 
dynamism are already proposed in the relevant literature 
[Barros 1995; Uhrmacher 2001; Zeigler et al. 1991]. We 
observe that three distinct categories of change are 
discussed in those existing approaches: 1 – A change in the 
overall compositional state of models, 2 - A change in the 
connectivity relationships (coupling) among the models, 3 – 
A change in internal functional behavior of the model.   
 We also note that there are two main formal approaches 
to the variable structure models in DEVS environment, 
which are defined by extending the classical DEVS 
formalism. The first one is DSDE (Dynamic Structure 
DEVS), introduced by F.J. Barros [Barros 1995]. The 
second one is dynDEVS, introduced by Uhrmacher 
[Uhrmacher 2001]. A brief introduction to both of these 
approaches is given in Section 2 of this paper. In addition to 
these formal extensions, there are approaches which adopt 
existing formal specifications but contribute through 
different routes. For instance [Shang and Wainer 2007] 
extend their existing simulation engine by adopting a 
combination of DSDE and dynDEVS. Similarly [Hu et al. 
2005] take a software engineering oriented stand and 
propose a component-based simulation environment. Our 
contribution to the work in this field is two fold: 1 – we 
have implemented a specialized form of basic DEVS 



formalism via SiMA (Simulation Modeling Architecture) 
(see Section 3 for more details) 2- We have extended SiMA 
with dynamism support building upon our specialized basic 
DEVS formalism with dynamism extensions that are 
comparable (but not equivalent) to those given in dynDEVS 
 The rest of this paper is organized as follows: Section 2 
gives a summary of the relevant background work Section 3 
provides a detailed discussion of our approach; Section 4 
provides the conclusions and future work 
 
2. BACKGROUND 
 The Discrete Event System Specification (DEVS) is a 
formalism introduced by Zeigler (1976) to describe discrete 
event systems. An atomic model, say M,  in classical DEVS 
formalism consists of a set of input events, a state set, a set 
of output events, an internal, external, and confluent 
transition function, an output and time advance function, 
defined formally as follows [Zeigler 1976; Zeigler et.al., 
1998]: int, , , , , ,extM X S Y taδ δ λ=< >  
where X is the set of input events; S is the set of states; Y is 
the set of output events; δint :S→S is the internal transition 
function; δext : QxX→S is the external transition function, 
where {( , ) | , 0 ( )}Q s e s S e ta s= ∈ ≤ ≤  is total state set, e is 
elapsed time since last transition; λ : S→Y is the output 
function;  ta : 0,S R+

∞
→   is the time advance function. 

Complete description of DEVS semantics can be found in 
[Zeigler 1976; Zeigler et.al., 1998]. 
 The Dynamic Structure Discrete Event System 
Specification (DSDE) is introduced in [Barros 1997] and 
allows the specification of dynamic structure networks of 
discrete event systems. A DSDE network model is 
described as follows [Barros 1996]: 

, , ,DSDEVN X Y M χχ∆ ∆=< >  where ∆  is network 

name; χ  is the name of DSDE network executive; M χ  is 

the model of χ ; X
∆
 is the set of input events; Y

∆
 is the set 

of output events. M χ , the model of the network 
executive χ , is a basic DSDE model and defined as: 

int, , , , , ,extM X S Y ta
χ χχ χ χ χ χ χδ δ λ=< > . 

 M χ contains information about network composition 

and coupling. A state sχ Sχ∈ has information about the 
structure of the network model and it is defined as: 

,( ,{ },{ },{ }, , )i i i js D M I Z SELECT Vχ χ χ χ χ

χ χ=  where 

Dχ  is the set of component names; iM χ is the model of 

component i, for i  Dχ∈ ; iI χ is the set of  component 

influencers of i,  i  D   { , }χ χ∀ ∈ ∪ ∆ ; ,i jZ χ  is the i-to-j 

output to input function, j  Ii

χ∀ ∈ ; SELECT χ  is the select 

function; V χ  represents other state variables of the network 
executive. 
 In DSDE, only the network executive can make 
structural changes and any change made in one of these 5-
tuples ,( ,{ },{ },{ }, )i i i jD M I Z SELECTχ χ χ χ

χ
 will be 

automatically reflected to the structure of the network 
model. A detailed explanation of DSDE formalism is found 
in [Barros 1997], and abstract simulators necessary to 
simulate DSDE models is found in [Barros 1998]. 
 Unlike DSDE, dynDEVS formalism [Uhrmacher 2001] 
does not introduce a specific type of model (i.e. the network 
executive model) to apply structural changes dynamically. 
Instead, transition functions, αρ  and Nρ  are added to the 
atomic and coupled model definitions respectively. There 
are two types of models defined in dynDEVS formalism. 
These are dynDEVS (atomic) and dynNDEVS (coupled) 
models. Atomic models are defined as follows: 

init init, , m , (m )dynDEVS df X Y M= < >  where X,Y are 
structured sets of inputs and outputs; m (m )init initM∈  is 

the initial model; init(m )M  is the least set having the 

structure int{ , s , , , , , }init extS ta αδ δ λ ρ< >  where S is the set of 

states; sinit S∈ is the initial state; int , , ,ext taδ δ λ  are the 
same functions as in classical DEVS formalism; 

: ( )initS M mαρ →  is the model transition function. Coupled 
models, which are composition of components and the links 
between these components, are described in dynDEVS 
formalism as follows: 

init init, , , ( )dynNDEVS df X Y n N n= < >  where X,Y are 

structured sets of inputs and outputs; init init( )n N n∈  is the 

start configuration; init( )N n  is the least set having the 

structure ,{ , ,{ }, , , }N i i i jD dynDEVS I Z Selectρ< >  where D 

is the set of component names; : ( )N initS N nρ → is the 

network transition function with 
d

m
d D m dynDEVSS S∈ ⊕ ∈= × ; 

idynDEVS  is the dynamic DEVS models with i D∈ ; iI  

is the set of influencers of i ; ,i jZ  is the i-to-j output-input 

translation function; Select is the tie-breaking function. 
More details about dynDEVS formalism are found in 
[Uhrmacher 2001; Himmeelspach and Uhrmacher  2004]. 

3. OUR APPROACH 
 Our modeling and simulation framework SiMA 
(Simulation Modeling Architecture) is based on the DEVS 



approach as a solid formal basis for complex model 
construction. SiMA Simulation Execution Engine 
implements the parallel DEVS protocol which provides a 
well-defined and robust mechanism for model execution. 
SiMA builds upon a specialized and extended form of 
DEVS formalism which: 
1 – Formalizes the notion of “port types” leading to a 
strongly-typed (and therefore type-safe) model composition 
environment. In this respect we specialize the basic DEVS 
formalism by introducing semantic constraints on the port 
definitions; 
2 – Introduces a new transition function to account for 
model interactions involving state inquiries with possible 
algebraic transformations (but no state change), without 
simulation time advance. In this respect we extend the basic 
DEVS formalism. This is similar to the notion of zero-
lookahead in HLA [Fujimoto 1996] from a time-
management point of view. 
 Our SiMA- DEVS formalism is given below: 

int, , , , , , ,

: ,

: ,

, : :

( , ) |

ext

in

out

in out

in x

f

x

d

x
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P P Set of input and output ports such that

P I I X x I

δ δ λ

τ

δ

τ

− =< >

= Γ ∧ ⊆ ∧∀ ∈{ }
{ }

'

, ,

( , ) | , ,

:    ,  
, :        ,

:

out y y y

df in in out out

x

P O O Y y O y

XMLSchema type system
data types valid wrt XMLSchema type system

PDFT P S P P

τ

ρ ρ ρ

τ ρ

δ

= Γ ∧ ⊆ ∧∀ ∈

Γ

∈ × → ⊆

 

 Note that the set of input ports PBin B, is formally defined 
as a set of pairs where each pair defines one input port of a 
model uniquely. The first element of each pair,τ , is a data 
type conforming to XMLSchema type system (denoted with 
Γ ) and the second element of the pair ( xI ) denotes the set 
of  input data values flowing through that port, where each 
element of the value set conforms to data type τ . Similar 
semantics apply to output ports, too. Thus, we make strong 
typing and type-system dependency of the ports explicit in 
the formal model. Although introducing a run-time oriented 
property into the formal model may seem unusual, we argue 
that there are a number of merits in doing so: 
1. We introduce a type discipline to the definition of the 

externally visible model interfaces (i.e. ports) leading to 
an information model for the overall system being 
modeled (coherency in modeling level information 
space), as well as for the simulation environment 
(consistency and robustness in run-time-level data 
space). 

2. We facilitate Model-Driven Engineering through well-
typed and type system dependent external plugs to 

enable automated port matching and model 
composition. In fact we have successfully implemented 
our Model-Driven simulation construction pipeline for 
SiMA, via a number of tools such as a code generator, a 
model builder and a model linker.  

3. We reduce the gap between modeling level logical 
composability constraints and run-time level 
pluggability constraints, thus forcing all 
implementations of our specialized DEVS model to 
respect our type-system compatibility and to offer a 
strongly typed environment.  

 
 Note also that, in addition, we introduce a new 
transition function, dfδ , that enables models to access the 
state of other models through a specific type of port, without 
advancing the simulation time. As such, it is possible to 
establish a path of connected models along which models 
can share parts of their state, use state variables to compute 
derived values instantly within the same simulation time 
step. As stated earlier, this is similar to the notion of zero-
lookahead found in HLA [Fujimoto 1996]. One may argue 
that the zero-lookahead behavior could be modeled by 
adjusting the time advance function of an atomic model 
such that the model causes the simulation to stop for a 
while, do any state inqury via existing couplings, then re-
adjusting the time advance to go back to normal simulation 
cycle. Although this is possible, we argue that by 
introducing a transition function and a specific port type 
which is tied (through run time constraints imposed by the 
framework) to that particular transition function we gain 
several advantages: 
1. The models can communicate and share state with each 

other without the intervention of the simulation engine 
thus providing a very efficient run time infrastructure. 

2. Allowing such communications only to occur through a 
specific port type (compile time and run-time checks 
are carried out) the framework is able to apply 
application independent loop-breaking logic at the ports 
to prevent algebraic loops, thereby ensuring model 
legitimacy. 

 
 Further, our approach to add dynamism to our basic 
DEVS model is similar to that of dynDEVS as indicated 
earlier. To be more precise, we conform to both dynDEVS 
and dynNDEVS definitions as the underlying formal 
specification, with some trivial extensions which are given 
below: 
1. We state that structured sets of inputs and 

outputs X and Y are defined in conformance to our 
strongly typed-port definitions where the formal 
definitions for ,in outP P  apply; init(m )M  is the least set 

having the structure int{ , s , , , , , , }init ext dfS ta αδ δ λ ρ δ< >  



where S, sinit , int , , ,ext taδ δ λ and αρ are the same as in 

dynDEVS formalism; dfδ is the additional transition 
function defined in SiMA-DEVS. Thus, we ensure that 
the meaning of a model in dynDEVS is firmly aligned 
with that of SiMA-DEVS, while maintaining the top-
level semantics of the dynDEVS definition. Note that 
our SiMA-DEVS extensions are non-disruptive to the 
overall semantics of the basic dynDEVS formalism.  

2. We introduce a state synchronization mechanism 
between networks of connected models, to be 
performed at the end of a structural change phase, in 
case a model wants to update the values of such state 
variables that are within the common set of pre-and 
post change models (i.e. they are not introduced newly 
after the model’s structural transition) but have values 
that stayed unchanged during pre-change simulation 
period. This mechanism is instrumental in cases where 
a model A initializes some of its state variables at the 
beginning of simulation but does not receive updates 
for those variables until some influencer model B goes 
through a structural change that causes those variables 
to be updated; or in cases where a new model B is 
added which introduces a new coupling influencing one 
of the input ports of model A. One might argue that 
after the structural change, synchronization of such 
state variables would already take place as a result of 
message passing via the coupling links during the 
normal course of the simulation. However, it is 
important to note that due to differences in state update 
rates (i.e. different step sizes), an influencee may have 
to go through many state updates and produce many 
output sets before it can receive the required updates 
from slower influencers; a case which might potentially 
lead to significant errors in the behavior of the overall 
simulation, especially if the simulation application is 
developed for an engineering analysis requiring a high 
level of behavioral sensitivity. It is worth mentioning 
that the state synchronization function must be executed 
as the last step of the structural change transition phase 
to allow the influencers to perform the necessary state 
updates  before the influencees ask for the latest values 
of the state variables that need to be synchronized 

  
 We now set out to describe the principles that govern 
the run-time algorithms of the SiMA simulation engine 
when it manages structural change.  In SiMA, like 
dynDEVS, atomic models are responsible for initiating 
structural changes. There is no a dedicated controller model 
that supervises over atomic models as described in DSDE 
formalism. This model centric approach seems to be more 
reasonable since most of the potential change-triggering 
events that require structural changes from a particular 
model are naturally handled by the external transition 

function of that atomic model, and it is that particular model 
which should have the knowledge of re-structuring itself, 
whether this re-structuring is a switch to an internally 
defined different functional model, or a re-adjustment of its 
port couplings. The only exception where the model-centric 
approach may become restrictive is the case where a new 
model (atomic or coupled) is to be added to the simulation. 
The logic for initiating the model addition may require the 
aggregation of state variables from many different models, 
or even it may be a user-initiated request which is not 
necessarily captured by a single model. In current 
implementations of dynDEVS namely AgedDEVS and 
JAMES, the atomic models are assumed to have access to a 
knowledge base from where they can collect the necessary 
information to decide for new model additions. Although 
this approach seems quite reasonable for agent-oriented 
implementations, it introduces a dependency to a specific 
architectural and behavioral semantics for simulation 
applications, which we are inclined to avoid. Therefore, in 
our approach: 
• An atomic model may add/remove models or couplings 

to its parent coupled model. But these operations are 
restricted to its bounding coupled model, thus an atomic 
model cannot modify structure outside its coupled 
model. 

• If an atomic model requires a structural change out of 
its parent coupled model it informs the parent 
coordinator about the type and content of the operations 
to apply. Coordinators store all structure change 
requests until all child models complete their 
operations. These requests will be non-ambiguously 
aggregated, since our type-safe model composition 
semantics enables the resolution of any potential 
overlapping requests. 

• An application that is running the simulation may 
require structural changes, too. This request is sent to 
the root coordinator to be executed over the model 
structure recursively. Root coordinator implements an 
interface that allows applications to send their structural 
change requests to the simulation engine. This 
operation is applied in two parts. 
o Before applying the change operation, simulation is 

suspended at the beginning of the next cycle. 
o The change request is processed by the root 

coordinator and child model operations are sent to 
the child coordinators recursively, causing all 
related child coordinators to apply change 
operations specified in the request. 

  
3.1. Operations on Model Structures 
 There are four types of structural change operations 
defined in SiMA: Adding a model, removing a model, 
adding a coupling and removing a coupling. 



• Removing a model: This operation consists of two 
steps: Removing all the connections from/to the 
model. Removing the model. 

• Adding a model: This operation consists of three 
steps:  
1. Adding a model to the parent coupled model. 
2. Calling ‘init ()’ function of the newly added 

model.  
3. Calling ‘AdvanceTime(CurrentTime)’ 

function for synchronization.  
• Removing a coupling: The specified coupling is 

removed. 
• Adding a coupling: This is also a critical operation 

in our case. After adding a coupling, a process for 
synchronizing current states of newly connected 
models is executed. For achieving this, a querying 
mechanism between connected ports is 
implemented that operates in the opposite direction 
of the normal message flow. An input port creates 
a query and sends this query to the newly 
connected ports. An answer to this query is 
generated and sent to the requesting port. These 
response messages will be handled when the 
external transition function of the model is 
executed.  

 Our framework does not support the addition and 
removal of new port types to the type space of the 
simulation at run-time. One rationale for this is to preserve 
the models’ external identity as advocated by [Uhrmacher 
2001]. Another important reason for such a restriction is the 
implied ambiguities in the run-time behavior of source and 
sink models of the newly added ports with new port types. 
To be more specific, say for instance, a new output port of a 
new type is to be added. This would normally cause new 
connections to be established between its source and some 
other sink model. To be able to process the data coming 
from the new port type, the sink model(s) have to be 
structurally and behaviorally ready to receive, interpret and 
process data coming from the new port. In a type-safe 
environment where port connectivity is regulated and 
restricted by type compatibility between connected ports 
(which is the case in SiMA), normally a new port will have 
to be added to the sink model too. However, both the source 
and the sink model may not know in advance the processing 
logic of the information flowing through those new ports. 
As such, such a support would rely on the pre-existence of 
sophisticated application–specific semantics within the 
models. We believe this case should be avoided for generic 
frameworks and therefore we exclude this functionality. 
However, we do find addition of ports having a port type 
already defined in the current type space useful, since it is 
likely to have an already defined port with the same type in 
one of the existing models and it is reasonable for a model 
to add a port to establish a new coupling with an existing 

model. Addition of a port with a known type is not included 
in our operation list above since we plan to add this property 
in our future work. 
 For an example where some of these operations are 
applicable, consider a simulation scenario involving two 
planes flying in formation. A graphical representation of the 
models involved in this scenario can be seen in Figure 1. 
When the simulation starts execution, the models 
representing the planes send their properties to each other 
from their ports once and subsequently they only send their 
current locations and directions, which are the only updated 
parameters of the planes throught the simulation period. 
Assume that at some point in time, a third plane is to be 
added to the simulation to connect to the existing planes. 
This updated model can be seen in Figure 2. Since the first 
two planes send only their updated parameters, which are 
location and direction, newly added plane will not be aware 
of the remaining two planes’ properties. Therefore a state 
synchronization is required.  
 

 
Figure 1 Initial Model 

 
Figure 2 Updated Model 

  
 Dynamic SiMA handles this case by implementing an 
automated state synchronization mechanism via a querying 
system between connected port pairs. When a coupling is 
added to the model structure while the simulation is 
running, this querying system automatically works as a 
service provided by the infrastructure, without incurring an 
additional implementation overhead on the model 
developer. A more detailed discussion of the state query 
mechanism is provided in Section 3.3.  



3.2. SiMA Abstract Simulators Adapted for 
Dynamism Support 

 Recall that SiMA is an implementation of SiMA-DEVS 
formalism as discussed at the beginning of this section. 
SiMA run-time layer is implemented in C# programming 
language but it can interface to models implemented in both 
C++ and C# programming languages. In this section, 
extensions to abstract simulators required for executing 
variable structure SiMA models are described in pseudo 
code format: 

 
Root Coordinator 
StructureChangeRequested : boolean 
CurrentTime : double 
 
While(simulation end condition not satisfied) Do 
 If a model change is requested then 
  Process change request 

Send sub-requests to related child  
    coordinators 
 End If 
 

<CurrentTime, StructureChangeRequested> ← 
   MainModel.GetNextTime() 

 
 Advance time to CurrentTime 
 
 If StructureChangeRequested is true Then 
  execute a structural change step 
  do state synchronization 
 Else 
  execute a normal simulation cycle  
 endIf 
endWhile 

Algorithm 1 Root Simulation Cycle 
 

 After a structural change operation, all models that have 
new couplings will execute state synchronization 
mechanism, discussed in Section 3.3, to update their state 
information.  
 ‘ChangeStructure’ and‘GetNextTime’ functions of both 
simulators and coordinators correspond to the case when a 
message of type sc and @ are received from the parent 
models in [Barros 1998; Himmeelspach and Uhrmacher 
2004; Shang and Wainer 2007] respectively. 
 
Coordinator 
 In ‘GetNextTime’ function, next simulation time 
calculated and whether any structural change is required at 
that time is resolved recursively down the model hierarchy 
and the result  is sent back to the parent coordinators up the 
hierarchy. 
 
Function GetNextTime(): <double, boolean> 
 tempTime, minTime : double; 
    tempSC, structureChangeRequested : boolean; 
 minTime ← Positive Infinity 
       
 For each model of the containedModels Do 

  <tempTime, tempSC> ← model.GetNextTime() 
  If (tempTime < minTime) Then 
   minTime ← tempTime 
     structureChangeRequested ← tempSC 

Else If (time = minTime and tempSC is true)  
Then 

   structureChangeRequested ← true 
  endIf 
    endFor 
 
 return <minTime, structureChangeRequested> 
endFunction 

Algorithm 2 Recursive Next Time Calculation 
 
Function ChangeStructure() 
 changeReq : set<operations>; 
 For each model of the containedModels Do 
  If model requested structure change then 
           call model’s ChangeStructure function 
      add model’s change requests to 
         changeReq set 
     endIf 
 endFor 
  
 Process and apply changeReq set 
 Send upper-level operations to parent model 
endFunction 

Algorithm 3 Coordinator Change Structure 
 

Simulator 
 Next transition time and an indication of whether any 
structural change request exists are sent to the parent 
coordinator. 
 
Function GetNextTime(): <double, boolean> 
 
 return <t BN B, StructureChangeRequired> 
 
endFunction 

Algorithm 4 Simulator Next Time 
 
 Structural change function of an atomic model is 
executed if and only if its next time is imminent and a 
structural change request has been made by that model.  
 
Function ChangeStructure() 
 If(StructureChangeRequired is true and t = t BN B) 
  Then 

     call 
α

ρ  

  StructureChangeRequired ← false 
  send upper-level operations to parent model 
 endIf 
endFunction 

Algorithm 5 Simulator Change Structure Transition 
  
 If the state of an atomic model satisfies certain 
conditions that require structural changes, atomic model 
marks itself and informs its simulator to initiate a structural 
change process and this simulator recursively sends this 
request to the root coordinator. Structural change requests 



can be issued by any atomic model during one of its 
transition functions. These requests are handled in the next 
internal transition phase. Modifications required for 
supporting variable structure models can be summarized as 
follows: 
• A property, named ‘StructureChangeRequired’, is 

added to the atomic models’ simulators. 
• Atomic models that may require structural changes 

while the simulation is running implement αρ  
transition function. 

• The get-next-time functions of the coordinators and 
simulators are modified and they now return a 
‘StructureChangeRequired’ flag, too. To initiate a 
structural change, an atomic model simply sets its 
‘StructureChangeRequired’ flag to true. 

• When a structure change request arrives at the root 
coordinator with the minimum advanced time value, a 
structure change step is executed. For each atomic 
model that requires structural changes at the new 
current time, the change structure transition function is 
executed. 

3.3. State Synchronization Queries 
 In SiMA, there is a state query mechanism between 
connected ports. A port can create a query and send this 
query to other source ports to which it is connected. This 
mechanism works in the opposite direction of the normal 
message flow and it is instrumental in supporting the 
implementation of variable structure models. It enables 
newly added models or newly added couplings to acquire 
the current state of the simulation. This capability is crucial 
for SiMA, since ports are managed by event and object 
managers where object managers send only modified data 
for efficiency reasons. Therefore a sink model would not 
have up-to-date values of certain state variables from the 
source models if before the structural change the sink model 
did not use those particular state variables. If a model 
requires the previously updated fields, it can prepare and 
send a query to gather this information. Implementation 
details of this mechanism are discussed below. 
  An interface named ‘IStateQuery’ is defined in 
SiMA as below:  
 
interface IStateQuery 
{ 
 Message[] getState(port name); 
}  
 This interface has only one member function which 
takes a port name as the parameter and returns the port’s 
related data. Each model contains a list of ‘IStateQuery’ 
instances for the couplings added in the last structural 
change step. After all the couplings are added, the states of 
the models are updated accordingly as illustrated below: 
 

IStateQuery[] newCouplings; 
foreach coupling in newCouplings 
{ 
 coupling.DestinationPort.QueryState( 
  source model, source port) 
}  
 Destination ports create queries and send these queries 
to source ports that are connected to them. When an atomic 
model receives a query, it sends its state as a response. 
When a coupled model receives a query, it redirects this 
query to the source ports that are connected to this port and 
collects and returns the responses received from those 
redirected ports. For example in Figure 3 we add a model 
named ‘D’ and a coupling from C’s ‘Out1’ port to D’s ‘In1’ 
port dynamically. After the coupling is added, ‘In1’ port of 
model ‘D’ sends a query to ‘Out1’ port of model ‘C’. Then, 
‘Out1’ port of model ‘C’ redirects this query to ‘Out1’ ports 
of model ‘A’ and model B. ‘Out1’ port of model C collects 
response messages from ‘Out1’ ports of model A and B and 
sends these messages back to ‘In1’ port of model D. 

  
Figure 3 A Model and A Coupling Added Dynamically 

 
 When the model initiating the query receives response 
messages, it adds these messages to the message bag of the 
port to be handled in the next external transition phase as the 
following code snippet illustrates:  
 
Message[] messages ← sourceM.getState(sourcePort) 
messageBag.Add(messages) 

4. CONCLUSIONS AND FURTHER WORK 
 We have introduced our approach to implementing 
variable structure support for dynamic and adaptive 
simulation environments. We summarized the fundamental 
properties of our modeling and simulation framework, 
SiMA, and its variable structure extensions, with references 
to similar approaches in the literature.  
 Our approach to add dynamism to our basic DEVS 
model is similar to that of dynDEVS as indicated earlier. In 
particular we conform to both dynDEVS and dynNDEVS as 
the underlying formal specification, with some non-
disruptive extensions to the original formal semantics. One 
particular contribution we offer is the systematic framework 
support for post-structural-change state synchronization 
among models with related couplings. Note that we also 



benefit from the strongly-typed execution environment 
SiMA provides. 
 Although SiMA has been used in a number of 
simulation applications successfully, our dynamism 
extensions to our framework are not mature yet. Our 
objective is to support real world applications in the near 
future, anticipating that there will be room for improvement 
to the mechanisms we devised. In particular, scenarios 
where supporting dynamic fidelity-level adjustments of 
multiple models in a coordinated way is a requirement, are 
potential use cases where we hope SiMA would provide a 
viable solution for application developers.  
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