
Evaluation of Scheduling Strategies by Modeling and Simulation

Eleonu Henry Chika
African University of Science and Technology

Computer Science Department
 Km 10, Airport Road, Galadimawa, Abuja,

F.C.T., Nigeria
henryeleonu@yahoo.com

Mamadou Kaba Traoré
Université Blaise Pascal, Clermont-Ferrand

LIMOS
Campus des Cézeaux, B. P. 125

63173 Aubière, France
traore@isima.fr

Keywords: Evaluation of Scheduling Algorithms, Model-
View-Controller, Design Patterns, Hoist Scheduling
Problem, Software Engineering

ABSTRACT
 The hoist scheduling problem is a critical issue in the
design and control of many manufacturing processes.
When the hoist number and tank numbers are very large,
finding an optimal schedule is very hard. As a result of
this, a lot of scheduling algorithms have been developed,
and thus created a need to evaluate these algorithms. This
calls for a cheap and efficient way of evaluating different
hoist scheduling algorithms. To address this issue, we are
proposing a generic simulator which will be a visual tool
that will be developed with Java technology. The result of
this work will help to reduce cost and also help to
guarantee product quality in production lines.

1. INTRODUCTION
The hoist scheduling problem (HSP) is encountered

in many production lines in many industries. This
problem has been proven to be NP complete problem.
Consequently many heuristic algorithms have been
proposed by many researchers to solve this problem.
Problem arises on the scheduling algorithm to adopt in an
automated hoist system. As a result of the numerous
algorithms, there is need to have a visual tool to explore,
evaluate and compare these algorithms
 We are proposing a visual tool (simulator) that can be
use to create visual simulation that can evaluate different
hoist scheduling algorithms. I am proposing that moves
computed from hoist scheduling algorithm should be used
as input to this simulator, so as to make the evaluation of
the algorithm easy and less expensive. The moves can be
in the form of a text file. We are also adopting a Model-
View-Controller (MVC) architectural design pattern for
this simulator.
 The purpose of this work is to build a simulator
which will have a graphical user interface that can
evaluate hoist scheduling algorithms. The simulator will
simulate hoist moves of different hoist scheduling
algorithms, and also evaluate these algorithms. A move is
represented by the tank numbers of the source and target

(destination) tanks and the pick time (the time the carrier
will be picked from the source). It also report violations
of imposed constraints and also compares the algorithms
to find which gives optimal scheduling. The simulator
will be implemented with Java.

2. EXISTING TOOLS
 No Visual tool has been identified to carry out the
evaluations of hoist scheduling algorithms. To the best of
our knowledge, this will be the first of its kind to be used.

3. HOIST SCHEDULING PROBLEM

3.1 Industrial Importance
The Hoist Scheduling Problem (HSP) deals with the

scheduling of hoist that move product between tanks in
electroplating facilities that perform chemical surface
treatments. Electroplating lines are totally automated
manufacturing systems that are used to cover parts with a
coat of metal. They are encountered in many industries:
mechanics, jewelry, electrical appliances, and printed
circuit boards. Hoist system is also use in electroplating
processes for the production of floppy disks, computer
hard drives, communication network connectors and
switches, Aerospace parts (airplane parts) etc. In
particular, they allow the protection of parts from
corrosion or give them some aesthetic properties. The
hoist system is used in chemical processing, food
processing, metal and pharmaceutical production (Manier
and Bloch., 2003). Integrated circuit (IC) manufacturing
is a new generation industries that try to increase their
profits by improving the process technology. To do this,
the hoist system is employed for material handling.

There are time windows constraints (a minimum and
a maximum values) for the time spend at each tank. This
time window is a quality constraint which must be
adhered to ensure the quality of the products in the
production line. In such production lines, any violation of
the time window constraint will result in defective
products, because standard must be adhered to. This
translates to losses for the company involved. As no
inventories are allowed, this soak time tolerance is the
only source of flexibility. Tanks and hoists can only

process one job at a time. We also assume that one hoist
must do all moves.

The control of the hoist's movements with respect to
those constraints is known as the Hoist Scheduling
Problem (HSP) (Lamothe et al, 1994).

Figure 1: An example of a hoist system

The scope of the study is in the area of single hoist
scheduling with multiple tanks. See Figure 1. The
objective is to minimize the total production time and also
have fewer products that are defective. Efficient
scheduling of such hoists can improve production
throughput dramatically. In many production lines,
violations of the constraints can lead to defective job.
Thus the need for efficient hoist scheduling algorithms
becomes very important. This has lead to many hoist
scheduling algorithms being proposed.

As the number of tanks increase and the number of
carriers that can be in the system at any point in time also
increases it becomes very difficult to schedule the hoist to
do all the moves, at the same time obeying all the time
window constraints and other constraints that may be
imposed on the system. Generally, the problem to
determine the scheduling for operations done by a hoist
with the objective to optimize the productivity appears as
a NP-complete problem (Lei and Wang, 1989). The
generic hoist scheduling problem is NP-hard and arises
from automated manufacturing lines (Riera and Yorke-
Smith, 2002).

3.2 HSP Solutions
Solutions to HSP are mainly heuristic algorithm. The

first solutions to the hoist scheduling problem used
mathematical programming (Phillips and Unger, 1976).
Another technique that used local search and constraint
logic programming (CLP) were applied (Baptiste et al.,
1994; Lam, 1997). More recently, a hybrid technique that
combines MIP and CLP has been developed (Rodoˇek
and Wallace, 1998) and many other algorithms that we
have not mentioned. So a problem arises on the hoist
scheduling algorithm to adopt in an automated hoist
system, and hence a need for an evaluation tool to
evaluate the numerous hoist scheduling algorithms that
may be an option for an automated hoist system.

3.3 Need for Evaluation Tool
The material-handling operations (i.e., the operations

to move jobs between stages or tanks) are performed by a
computer-programmed robot. The programs that run on
these computers are based on some of these hoist
scheduling algorithms. These numerous algorithms needs
to be evaluated, to enable a company choose the best
option that will help it to maximize profit. This calls for
the need for a visual interactive tool that will simulate the
hoist system and evaluate different moves that result from
different algorithms.

Our aim is to model, design and develop a simulator
(visual tool) that can be use to simulate some of these
hoist system classes and also evaluate some of the
heuristic algorithms that have been proposed as solutions
to the hoist scheduling problems of these hoist systems.

4. MODEL-VIEW-CONTROLLER

4.1 Design Patterns
A pattern for software architecture describes a

particular recurring design problem that arises in specific
design contexts, and presents a well proven generic
scheme for its solution. The solution scheme is specified
by describing its constituent components, their
responsibilities and relationships, and the ways in which
they collaborate. (Buschmann et al., 1996). Three
categories of patterns defined by (Buschmann et al.)
• Architectural patterns
• Design patterns
• Idioms
Architectural Patterns: Architectural Pattern is a high-
level structure for software systems that contains a set of
predefined sub-systems. The responsibilities of each sub-
system are defined and detail the relationships between
sub-systems. The Model View-Controller pattern falls
under this category.
Design Patterns: Design Pattern is a Mid-level construct
which is Implementation independent and Designed for
‘micro-architectures’ – somewhere between sub-system
and individual components. It is a documented best
practice or core of a solution that has been applied
successfully in multiple environments to solve a problem
that recurs in a specific set of situations. Some authors
don’t make this distinction. Most times, they are all
referred to as design patterns. In this paper, when we say,
design pattern, we shall assume all the categories.

Some of the important qualities of design patterns are
that it Help improve the quality of the software in terms
of the software being reusable, maintainable, extensible,
etc and it Patterns provide a way to do “good” design and
are used to help design frameworks. (Kuchana, 2004)

Most design patterns also make software more
modifiable. The reason for this is that they are time-tested
solutions. Therefore, they have evolved into structures

that can handle change more readily than what often first
comes to mind as a solution.

The design patterns in this work are descriptions of
communicating objects and classes that are customized to
solve a general design problem in a particular context, as
defined by Gamma and others (Gamma et al, 1995). In
this work, we are adopting a Model-View-Controller
(MVC) design pattern.

4.2 MVC Pattern
One of the frequently cited frameworks was the

Model-View-Controller framework for Smalltalk
(Krasner and Pope, 1988), which divided the user
interface problem into three parts. The parts were referred
to as a data model which contains the application object
or computational parts of the program, the view, which
presented the user interface, and the controller, which
interacted between the user and the view. Before MVC,
user interface designs tended to lump these objects
together. MVC decouples them to increase flexibility and
reuse.
View: it renders the contents of the model; it is
responsible for mapping graphics onto a device. A view
typically has a one to one correspondence with a display
surface and knows how to render to it. A view attaches to
a model and renders its contents to the display surface.
Controller: Serves as a bridge between the View and the
Model. A controller offers facilities to change the state of
the model. The controller interprets the mouse and
keyboard inputs from the user, commanding the model
and/or the view to change as appropriate. It is the piece
that manages user interaction with the model. It provides
the mechanism by which changes are made to the state of
the model. Based on the user interactions and the outcome
of the model actions, the controller responds by selecting
an appropriate view.
Model: The model is the piece that represents the state. It
manages the state and conducts all transformations on that
state. The model has no specific knowledge of either its
controllers or its views. A model can have more than one
view. The model represents real world objects.

4.3 Why MVC
It allows for modular separation of function.

Software developed using this design pattern is easier to
maintain. It can allow change of Interface from Swing to
three dimensions OpenGL or to another graphic API. The
model can also be changed from UML model to DEVS
(atomic and coupled) model without changing the
interface or controller. The MVC pattern can open up new
levels of robustness, code reuse, and organization.

4.4 Problem with Swing Application
In Applying MVC to swing applications, splitting the

controller from the view didn't work well in practical

terms because the view and controller parts of a
component required a tight coupling (for example, it was
very difficult to write a generic controller that didn't know
specifics about the view). So Sun Microsystems collapsed
these two entities into a single UI (user-interface) object
(Fowler, 2010). In this Simulator, we have been able to
provide logically separation at the application level
amongst the model view and controller.

5. DESIGN AND IMPLEMENTATION OF
SIMULATOR

5.1 Problem Parameter and Description
The hoist system to be modeled has the following

characteristics:
 it has a single hoist
 it has multi -tank(multi -stage)
 No-wait or the no-wait-in-process constraints,

this means that the products must be taken to the
next tank immediately it is removed from a tank,
without waiting.

 multi-carrier(multi-barrel)
 multi-product, different products can be

processed in the system
 all the product in a carrier are identical and each

product type require the same processing
sequence

 processing time in a tank is within upper and
lower bound(time window constraint)

 the tanks are in a single straight line
 Multifunction tanks.
 There is no storage for the carriers near the

facility or at the load/unload stations. Then
empty carriers must remain on the line and be
moved from tank to tank so as to prevent them
from interfering with loaded carriers.

The hoist can carry only one carrier at a time. Each tank
can only take one carrier at a time, and each carrier can
take many products to be treated. The first tank serves as
the loading tank where products are loaded to the carrier.
Empty carriers have to be taken to the first tank to be
loaded. The last tank is the unloading tank. Full carriers
must be taken to the last tank as the last stage of treatment
of the products, for the carriers to be unloaded. It has both
input and output buffer. The robot will travel to the
specified tank/location, wait if necessary, lift the job,
travel to the next tank on the route and then release the
job. After that, the hoist is ready for the next scheduled
material handling operation. The hoist should have
enough time to travel between the starts of successive
operations, which are called the traveling time constraints.

5.2 MVC STRATEGY
Figure 2 shows the MVC design for this simulator.

Figure 2 MVC of Simulator
The MVC design pattern strategy has enabled us to
separate the problem into three separate problems, the
view, the model and the controller. This has enabled us to
focus on one subsystem at a time, there by avoiding the
confusions involved in handling the whole system as one.
Much effort on MVC is directed towards web
applications, and not much is done on swing standalone
application. The design of the simulator focused on how
to use MVC in swing applications, and devising
techniques on how to achieve this. Our aim is to make a
clear separation between Model, view and controller.

Figure 3 high level sequence diagram of simulator

Figure 3, shows a high level sequence diagram of the
hoist system simulator. The user can only interact with the
system from the view which is the user interface as we
have said before. The view takes user inputs and then
passes it on to the controller which validates the inputs
and then passes it on to the model, thus changing the state
of the model. The model responds by passing its states to
the view to be rendered. When simulation starts, the
model continuously changes its states and continuously
updates the view.

5.2.1 USER INTERFACE
The main window is the interface which has the canvas
on which the simulation takes place. On the canvas, the
track, hoist, tanks and carriers are displayed. It has menus
from where other child windows could be launched. A
screen shot of this window is shown in figure 4, with two
carriers with one of the carriers with a product being
processed. The panel that appears under each tank shows

for any bath taking place in that tank, the minimum bath
time, the maximum bath time and also the soak time. If
the soak time is below the minimum time, the colour is
orange, if it is within the time window, the colour is
green, and if it is above maximum time, the colour is red.
If the product is being soaked in the wrong tank, the
colour becomes black. This visually gives the user an
instant report on the situation of the bath in the tank

Figure 4: the main window of the simulator

5.3 IMPLEMENTATION
The implementation is Java based. The simulator is

made up of three packages, the gui, which serves as the
view and the model, which is the model and the controller
which is the controller. Two libraries (Application
programming interface (API's)) that were use amongst
others are swing and Business Intelligence and Reporting
Tools (BIRT).

The Swing classes (part of the JavaTM Foundation
Classes software) implement a set of components for
building graphical user interfaces (GUIs) and adding rich
graphics functionality and interactivity to Java
applications. The GUI components used for developing
the simulator are part of this swing API. Graphical
components ranging from buttons, tables, text fields etc.
are all from swing.

The Business Intelligence and Reporting Tools
(BIRT) API is an open source API that provides reporting
and business intelligence capabilities for rich client and
web applications, especially those based on Java and Java
EE. BIRT was used to implement the time window
violation report and the treatment error report.

The eclipse and netbeans Integrated Development
Environment (IDE) where use as the development
environments. The GUI of some of the child windows
were developed under netbeans, while the other parts of
the software were developed on the eclipse IDE.

6. TESTING AND RESULTS

6.1 TESTING AND RESULTS
The total number of good baths within the time

windows is a parameter that will be used to measure the
performance of an algorithm. Three different sets of
moves will be use to test the simulator with two sets of
treatments. A set of treatments shows the sequence of
tanks that a product will be processed, and also the time
window constraints. A system with 12 tanks and 2 carriers
will be use for this test. The simulation starts with one
carrier in the first tank while the second carrier in the last
tank. Table 1 and Table 2 show the treatments that will
be used for the tests.
Table 1: Treatment 1 (T1)
Tank
Number

Minimum
Time(milliseconds)

Maximum
Time(milliseconds)

0 655 5566
1 456 7677
2 456 7778
5 333 8333
4 333 8333
5 333 9333
6 1234 23444
7 123 9456
1 345 8785
3 567 7894
10 123 8376
11 453 8679

Table 2: Treatment 2 (T2)
Tank
Number

Minimum
Time(milliseconds)

Maximum
Time(milliseconds)

0 454 7345
1 456 8754
2 234 6778
3 222 8456
4 337 8333
5 334 7456
6 123 9342
7 445 9567
8 341 7229
9 567 9667
10 556 10055
11 451 7445

6.1.1 First Test
The moves file to be use is shown in the table below.
Source Tank Target Tank Pick

Time(milliseconds)
0 1 100
11 0 200

1 2 500
0 1 1500
2 3 2500
1 2 3500
3 4 4500
2 3 5700
4 5 6700
3 4 7666
5 6 8333
4 5 9333
6 7 14000
5 6 15000
7 1 16000
6 7 17000
1 4 18000
7 8 33555
4 10 38000
8 9 40999
10 11 41000
9 10 51344
11 2 52233
10 11 53000
After the simulation run, the following reports were
generated
 Good Bath

0 T1-1 655 5566 1346
1 T1-1 456 7677 7466
1 T2-1 456 8754 8013
4 T1-1 333 8333 7994
3 T2-1 222 8456 7833
5 T1-1 333 9333 7780
4 T2-1 337 8333 7813
6 T1-1 1234 23444 7784
7 T1-1 123 9456 7764
6 T2-1 123 9342 7726
1 T1-1 345 8785 7671
7 T2-1 445 9567 7746
10 T1-1 123 8376 7683
9 T2-1 567 9667 8223
10 T2-1 556 10055 7543
Number of Good Baths: 15

 Time Window Violation

0 T2-1 454 7345 7795 soak time is above
2 T1-1 456 7778 7878 soak time is above
2 T2-1 234 6778 7789 soak time is above
5 T2-1 334 7456 7770 soak time is above
8 T2-1 341 7229 7606 soak time is above
Number of Violations: 5

Tank
Number

Product
Name

Minimum
Time(millis
econds)

Maximum
Time(millis
econds)

Soak
Time

Tank
Number

Product
Name

Minimum
Time(millis
econds)

Maximum
Time(millis
econds)

Soak
Time

Description

 TREATMENT ERROR

3 T1-1 5 3
9 T1-1 3 4
Treatment Error Count: 2

6.1.2 Second Test
The moves file to be use for this test is shown in the table
below.
Source Tank Target Tank Pick Time
0 1 100
11 0 200
1 2 500
0 1 1500
2 5 1900
1 2 2500
5 4 4500
2 3 5700
4 5 6700
3 4 7666
5 6 8333
4 5 8433
6 7 12000
5 6 13000
7 1 16000
6 7 17000
1 3 18000
7 8 33555
3 10 38000
8 9 40000
10 11 41000
9 10 51344
11 2 52233
10 11 53000
The reports generated for this test are shown below.

 Good Bath

0 T1-1 655 5566 1407
2 T1-1 456 7778 7591
1 T2-1 456 8754 7599
5 T1-1 333 8333 7761
4 T1-1 333 8333 8096
3 T2-1 222 8456 7886
5 T1-1 333 9333 7751
4 T2-1 337 8333 7798
6 T1-1 1234 23444 7897
7 T1-1 123 9456 7794
6 T2-1 123 9342 7906
1 T1-1 345 8785 7807

7 T2-1 445 9567 7671
3 T1-1 567 7894 7863
10 T1-1 123 8376 7742
9 T2-1 567 9667 8223
10 T2-1 556 10055 7632
Number of Good Baths: 17

 Time Window Violation

1 T1-1 456 7677 7953 soak
time is above
0 T2-1 454 7345 8014 soak
time is above
2 T2-1 234 6778 8032 soak
time is above
5 T2-1 334 7456 7649 soak
time is above
8 T2-1 341 7229 7933 soak
time is above
 Number of Violations: 5

 TREATMENT ERROR

Treatment Error Count 0

6.1.3 Third Test
The moves file to be use for this test is shown in the table
below.
Source Tank Target Tank Pick Time
0 1 100
11 0 200
1 2 300
0 1 400
2 5 500
1 2 900
5 4 1500
2 3 2700
4 5 3700
3 4 4666
5 6 5333
4 5 5433
6 7 7000
5 6 8600
7 1 9000
6 7 10000
1 3 11000
7 8 12555
3 10 13000
8 9 14000
10 11 20000
9 10 21344

Current
Index

Product
Name

Expected
Tank Number

Processing
Tank Number

Tank
Number

Product
Name

Minimum
Time(millis
econds)

Maximum
Time(millis
econds)

Soak
Time

Tank
Number

Product
Name

Minimum
Time(millis
econds)

Maximum
Time(millis
econds)

Soak
Time

Description

Current
Index

Product
Name

Expected
Tank Number

Processing
Tank Number

11 2 22233
10 11 31000
The reports generated for this test is shown below

 Good Bath

0 T1-1 655 5566 1889
1 T1-1 456 7677 7660
2 T1-1 456 7778 7633
1 T2-1 456 8754 7881
5 T1-1 333 8333 7726
4 T1-1 333 8333 7676
3 T2-1 222 8456 7728
5 T1-1 333 9333 7910
4 T2-1 337 8333 7845
6 T1-1 1234 23444 7897
7 T1-1 123 9456 7813
6 T2-1 123 9342 7818
1 T1-1 345 8785 7796
7 T2-1 445 9567 7994
3 T1-1 567 7894 7843
10 T1-1 123 8376 7665
9 T2-1 567 9667 8391
10 T2-1 556 10055 7761
Number of Good Baths: 18

 Time Window Violation

0 T2-1 454 7345 7713 soak time
is above
2 T2-1 234 6778 7653 soak time
is above
5 T2-1 334 7456 7930 soak time
is above
8 T2-1 341 7229 7774 soak time
is above
 Number of Violations: 4

 TREATMENT ERROR

Treatment Error Count 0

6.2 EVALUATION AND FINDINGS

6.2.1 Evaluation
The total number of good baths within time windows

is a parameter that will be used to measure the
performance of an algorithm. From the three test
performed in section 5.1, we can see that the first test had
2 treatment error, which shows that two baths were done

in the wrong tank. Treatment error is a very critical error
which should be avoided. This is an indicator that the
moves are not good enough and that the algorithms that
produced the moves does not give a good scheduling.

The second test does not have any treatment error and
the total number of good baths is 17, while the total
number of time window violations is 5. This moves
produced a better scheduling than the moves from the first
test.

The third test did not produce any treatment error,
and the total number of good baths is 18 and a total
number of time window violations of 4. Since the total
number of good bath are higher for the third test when
compared to the second test, we can say that the algorithm
for the last test is the best algorithm for the hoist system
parameters we have adopted for the test.

6.2.2 Findings
We have been able to show that given a set of moves

based on some hoist scheduling algorithm, it is possible to
use these moves as input to a visual simulator that can
simulate the hoist system operations and thus enable the
evaluation of the algorithm.

We were able to identify finite states that the hoist
and tank in a hoist system can be in any point in time.
These finite states where derived by grouping the infinite
states into finite states that could be used to model and
then implement the simulator. These states can be adopted
by those who want to model the hoist system. These states
can also be adopted while modeling the hoist system
using the Discrete Event systems specification (DEVS)
formalism or also while modeling with DEVS graphical
notations like DEVS Driven Modeling Language
(DDML) (Traoré, 2009).

We were able to device a programming technique
that enabled the separation of the controller from the view
at the application level by initializing the reference of the
GUI components in the controller class. Making a
separation between the controller and the view has always
been a very difficult task in swing application, but this
technique has proved to be very effective. This will make
it very easy to modify the view, using swing or other
APIs. This technique will create a new insight in software
engineering and most especially in the application of
MVC pattern in swing applications.

Due to MVC design pattern adopted for building the
simulator, it will be possible to change the view and use a
view that is based on a 3D interface based on the OpenGL
graphic API. The model can also be changed by adopting
a framework such as simStudio or DEVSJAVA, which
are java implementations of DEVS formalism. This will
be possible since the hoist system is a Discrete Event
System.

Tank
Number

Product
Name

Minimum
Time(millis
econds)

Maximum
Time(millis
econds)

Soak
Time

Description

Tank
Number

Product
Name

Minimum
Time(millis
econds)

Maximum
Time(millis
econds)

Soak
Time

Current
Index

Product
Name

Expected
Tank Number

Processing
Tank Number

7. CONCLUSIONS AND FURTHER RESEARCH
The result of our work will interest those who are

seeking to develop and test algorithms for the HSP and
also manufacturing outfits that make use of the hoist
systems.

The MVC pattern adopted has proved to be a very
good design pattern for the development of the hoist
scheduling simulator. This simulator can be used as
building blocks for more sophisticated hoist system
simulators in the future. Clearly, this work will be a
valuable asset to many people who are seeking to evaluate
their HSP algorithms.

Further work can be done on this simulator with less
work, because of the MVC design pattern adopted for this
simulator, since the view, model and controller are neatly
separated. Work can be done on only the view to have a
GUI that has three dimensional (3D) capabilities, based
on OpenGL API. Work can also be done on the model to
adopt a Discrete Event Specification (DEVS) modeling. A
Java based API for DEVS such as SimStudio can be use
for this implementation. Further work could also be done
to develop a version of this simulator that can run on the
web.

7. REFERENCES
(Lamothe et al, 1994) Lamothe, J., Correge, M., Delmas,
J. hoist scheduling problem in a real time context, 11th
International Conference on Analysis and Optimization of
Systems Discrete Event Systems

(Lei and Wang, 1989) Lei, L. and Wang, T. J. A proof:
the cyclic hoist scheduling problem is NP-complete,
Working paper #89-0016, Rutgers University.

(Riera and Yorke-Smith, 2002) Riera, D. and Yorke-
Smith, N. An Improved Hybrid Model for the Generic
Hoist Scheduling Problem. Annals of Operations
Research 115, 173-191, September 2002.

(Phillips and Unger, 1976) Phillips, L.W., Unger, P. S.
Mathematical Programming Solution of a Hoist
Scheduling Program, AIIE Transactions, 1976, 8, n. 2,
219-225.

(Baptiste et al., 1994) Baptiste, P., Legeard, B., Manier,
M. A. A Scheduling Problem Optimisation Solved with
Constraint Logic Programming, In: Proc. of the Intl. Conf.
on Parallel Architectures and Compilation Techniques

(Lam, 1997) Lam, K. A Heuristic Method for Multiple
Hoist Scheduling Problems by using Simulated Annealing
and Local Search'. Working Paper (1997)

(Rodoˇek and Wallace, 1998) Rodoˇek, R. and Wallace,
M. A Generic Model and Hybrid Algorithm for Hoist

Scheduling Problems , In Proc. 4th Int. Conf. on
Principles and Practice of Constraint Programming
(CP98). Springer-Verlag, LNCS 1520

(Maria, 1997) Anu Maria, Introduction to Modeling and
Simulation, Proceedings of the 1997 Winter Simulation
Conference

(Fishman, 2001) Fishman, G. S., Discrete-Event
Simulation modelling' programming and analysis,
Springer Series in Operations Research

(Wainer, 2009) Wainer, G. A., Discrete-Event Modeling
and Simulation, a practitioner's approach. Taylor &
Francis Group.

(Gamma et al, 1995) Gamma, E., Helm, R., Johnson, R.
and Vlissides, J., Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional
Computing Series. Addison-Wesley Publishing Company,
New York, 1995.

(Krasner and Pope, 1988) Krasner, G.E. and Pope, S.T.
(1988). A cookbook for using the model-view-controller
user interface paradigm in Smalltalk-80. Journal of
Object Oriented Programming, 1(3):26-49.

(Traoré, 2009)Traoré, M. K., A Graphical Notation for
DEVS, SpringSim '09 Proceedings of the 2009 Spring
Simulation Multiconference

(Buschmann et al., 1996) F. Buschmann, R. Meunier, H.
Rohnert, P.Sommerlad, M. Stal, Pattern-Oriented
Software Architecture A System of Patterns, John Wiley
and Sons Ltd, Chichester, UK, 1996 ISBN 0-471-95869-
7

(Kuchana, 2004) Kuchana, P., Software architecture
design patterns in Java, Auerbach Publications.

(Manier and Bloch., 2003) M. Manier and C Bloch, A
Classification for Hoist Scheduling Problems, The
International Journal of Flexible Manufacturing Systems,
15, 37–55, 2003

(Zeigler et al, 2000)Zeigler, B. P., H. Praehofer, and T. G.
Kim. 2000. Theory of modeling and simulation, 2nd. ed.
New York: Academic Press.

(Fowler, 2010), Amy Fowler, A Swing Architecture
Overview, an Article in Sun Developer Network (SDN),
http://java.sun.com/products/jfc/tsc/articles/architecture/

