
Uncovering DEVS Simulation Behaviour Throughout The Open Provenance
Model

Alejandro Moreno1, José L. Risco-Martı́n2, Joaquı́n Aranda1

1Departamento de Informática y Automática
Escuela Técnica Superior de Informatica

Universidad Nacional de Educación a Distancia (UNED)
28040 Madrid, Spain

amoreno@bec.uned.es, jaranda@dia.uned.es

2Departamento de Arquitectura de Computadores y Automática
Facultad de Informática

Universidad Complutense de Madrid (UCM)
28040 Madrid, Spain
jlrisco@dacya.ucm.es

Keywords: Discrete event simulation, DEVS, provenance-
aware systems, OPM, interoperability

Abstract

DEVS models are getting to be more and more sophisti-
cated due to large scale objectives such as modeling com-
plex physical continuous systems. The assurance of the valid-
ity and quality of simulation data handling and analysis may
lead to a great challenge. Thus, a need of providing insight
of DEVS simulation performance can arise. In particular, in-
formation about simulation processes workflow and internal
data values and management. Provenance-aware systems are
designed to satisfy those needs by documenting processes and
casual dependencies. Provenance is a critical concept in sci-
entific workflows, since it allows scientists to understand the
origin of their results, to repeat their experiments, and to val-
idate the processes that were used to derive data products.
Recently, the provenance community agreed that a “Prove-
nance Challenge” should be set to compare and understand
existing approaches and updated the Open Provenance Model
(OPM). We introduce provenance documentation technology
to uncover DEVS models behaviours during a simulation. In
addition, we apply the OPM formalization due to interoper-
ability reasons and provide support to the Third Provenance
Challenge.

1. INTRODUCTION
DEVS M&S is a modular and hierarchical formalism for

modeling and simulation of discrete event systems, contin-
uous state systems and hybrid continuous state systems [1].
Because of the modular and hierarchical modeling views as
well as its simulation analysis capability, DEVS formalism
is used in many application of engineering such as hard-

ware and software design or control systems. These mod-
eling views are getting to be more and more sophisticated
due to large scale objectives such as modeling of complex
dynamic continuous systems. As a result, simulation analy-
sis turns out even more confusing. The analysis and valida-
tion of a DEVS model simulation behaviour becomes a great
challenge. DEVS modeling optimization such as finding bot-
tlenecks or useless and harmful modeling elements may be
a difficult task. Therefore, the need of providing insight of
DEVS simulation performance arises, in particular, informa-
tion about simulation processes, workflow, internal data val-
ues, and data management. This necessity emphasizes if the
simulation framework applies a real time and non coordinated
architecture, since the degree of unawareness of simulation-
based behaviour is extremely high due to the self-dependent
nature of each simulator. Provenance-aware systems intend
to satisfy those needs by documenting processes and casual
dependencies. Provenance is a critical concept in scientific
workflows, since it allows scientists to understand the ori-
gin of their results, to repeat their experiments, and to val-
idate the processes that were used to derive data products.
Besides, recently the provenance community [2] decided that
it needs to understand the different representations used for
provenance, common aspects, and the reasons for their differ-
ences. As a result, the community agreed that a “Provenance
Challenge” should be set to compare and understand existing
approaches and updated the Open Provenance Model (OPM)
[3]. The OPM is a community-driven data model for Prove-
nance that is designed to support interoperability of prove-
nance technologies. Summarizing, DEVS simulation analysis
is becoming more complicated, therefore we introduce prove-
nance documentation technology to uncover DEVS models
behaviours during a simulation. And, in addition, we apply
the OPM formalization due to interoperability reasons and



provide support to the Third Provenance Challenge [4].
This document is organized as follows. Section 2 col-

lects some relevant aspects of the two formalisms DEVS
and Provenance combined in the overall approach. Section 3
presents the basics of provenance documentation process em-
bedded in the simulation execution. In section 4 we discuss
the results obtained by an experimental case study. After, in
section 5 we compare our proposal with other provenance-
aware systems oriented to scientific simulations. Finally, in
section 6 some conclusions are drawn and some future re-
search lines are presented.

2. BACKGROUND
2.1. DEVS

The Discrete Event System Specification is a general for-
malism for discrete event system modeling based on set the-
ory [1]. It allows representing any system by three sets and
five functions: input set (X), output set (Y ), state set (S), ex-
ternal transition function (δext ), internal transition function
(δint ), confluent function (δcon), output function (λ), and time
advanced function (ta). DEVS formalism provides the frame-
work for information modeling which gives several advan-
tages to analyze and design complex systems: completeness,
verifiability, extensibility, and maintainability. DEVS can also
approximate continuous systems using numerical integration
methods. Thus, simulation tools based on DEVS are poten-
tially more general than other tools including continuous sim-
ulation tools [5].

DEVS defines system behaviour as well as system struc-
ture. System behaviour in DEVS formalism is described
using input and output events as well as states. To this
end, DEVS has two kind of models to represent systems:
atomic model and coupled model. The atomic model is
the irreducible model definition that specifies the behaviour
for any modeled entity. The coupled model is the aggrega-
tion/composition of two or more atomic and coupled models
connected by explicit connections between ports. The cou-
pled model can itself be a part of component in a larger cou-
pled model system giving rise to a hierarchical DEVS model
construction. The top-level coupled model is usually called
the root coupled model.

There are varied libraries for expressing DEVS models
across the globe, such as DEVSJAVA [6], DEVS/C++ [6],
CD++ [7], xDEVS [8], etc., and all of them have efficient im-
plementations for executing the DEVS protocol. Plus, they all
manage the simulation time, coordinates event schedules, and
supply a library for simulation, a graphical user interface to
view the results, and other utilities.

2.2. Provenance
The term “provenance” is used to refer to both the concept

of how some item came to be as it is, i.e. the process that

led to that item, and the representation of that process. The
latter can be obtained as the result of a query over a set of
documentation regarding past application processes.

The Open Provenance Model (OPM)[3] is a community-
driven data model for Provenance that is designed to sup-
port interoperability of provenance technologies. Underpin-
ning OPM, is a notion of directed acyclic graph, used to rep-
resent data products and processes involved in past compu-
tations, and causal dependencies between these. The Open
Provenance Model was derived following two “Provenance
Challenges” within international and multi-disciplinary activ-
ities trying to investigate how to exchange information be-
tween multiple systems supporting provenance and how to
query it. The core data structure that OPM supports is an
OPM graph that consists of nodes and edges. Nodes are phys-
ical objects or data products, referred to as artifacts, that are
represented as ellipsis, whereas activities or processes that
produce and consume artifacts, are represented by rectangles.
Edges in OPM graphs are directional, from effect to cause,
explaining how an effect resulted from a cause. OPM Graphs
are meant to be read from bottom to top, explaining how ef-
fects are repeatedly derived from causes. An example of OPM
graph [3] is displayed in Figure 1, illustrating how a cake re-
sulted from a baking process and was made of several ingre-
dients.

In OPM there are four types of edges: Generated by: an ar-
tifact was generated by a process, if the process had to initiate
its execution, for the artifact to be produced, Used: a process
used an artifact, if the artifact had to be present for the process
to be able to complete, Derived From: an artifact was derived
from another artifact if the latter had to exist, for the former
to be generated, Informed by: a process was informed by an-
other process if the latter had to initiate its execution for the
former to complete.

All edges are characterized by the past tense, to denote that
they refer to a past execution. Since the aim of OPM graphs is
to represent executions that took place in the past, this fact is
quite important. Note that artifacts are instantaneous pieces of
data or state, whereas processes have a duration. In fact, OPM
edges have a more precise definition, based on event ordering.
An artifact was generated by a process, if the process had to
initiate its execution for the artifact to be produced.

From the example shown at Figure 1, we infer that an arti-
fact cake is Generated By the process bake that uses artifacts
100g of butter, 2 eggs, 100g of sugar and 100g of flour, and
moreover, a cake is derived from the former artifacts.

3. PROVENANCE-AWARE DEVS M&S
3.1. Methodology

This section analyzes the set of rules, procedures and meth-
ods employed to fulfill the provenance principles. The follow-
ing methodology refers to anything and everything that can



Figure 1. Baking Cake

be encapsulated for a series of processes, activities and tasks
(who, what, where, when, and why).

The output of a simulation execution should provide a doc-
ument structured in accordance to the OPM for Provenance
in regard of any customized user model outputs. In order to
make our previous DEVS simulation application provenance-
aware, we introduce the PrIMe [9] methodology. The steps
through PrIMe are as follows:

• Phase 1

– Step 1.1: Provenance use case analysis.

– Step 1.2: Identify use case information items.

• Phase 2

– Step 2.1: Identify application actors.

– Step 2.2: Map out actor interactions.

– Step 2.3: Identify knowledgeable actors.

• Phase 3

– Step 3.1: Introduce application adaptations.

For an instance, making petty distinctions may look like a
good way out, but the output provenance model of a simu-
lation might be overloaded with redundant information and
may be difficult to figure out. On the other hand, if the docu-
mentation system does not capture enough detail, some rel-
evant workflow might miss. The level of granularity must
move in some kind of equilibrium between both.

3.2. Provenance Middleware
At the moment, there are just a few provenance tools that

provide techniques to adapt an application to a provenance-
aware system. Some of the participating teams from the Third
Provenance Challenge [4] facilitate the instruments they ap-
plied over their challenge proposal. The choice of which tech-
nology to apply is not an easy task. The selection must take
into account several factors: (a) feasibility, (b) adequacy, (c)
interoperability, (d) expertise.

These factors intend to back up one unique purpose, the
provenance documentation of a DEVS simulation applica-
tion. On the one hand, the University of Southampton has
achieved a great deal of research over the past years concern-
ing provenance-aware applications within two projects: The
EU Provenance Project [10] and the Provenance Aware Ser-
vice Oriented Arquitecture (PASOA) Project [11]. Although,
these provenance projects have a great support and exper-
tise, due to their complexity, implementing them for an ini-
tial solution fattens up the task. On the other hand, Tupelo
[12] is the most widely used platform for the Third Prove-
nance Challenge [4]. Tupelo is a semantic content repository
framework being developed at the NCSA to record prove-
nance records. In addition to a Java OPM binding, Tupelo
provides a dedicated provenance Java API which allows to
weave our code to record provenance records directly into the
workflow code. The use of this provenance API records OPM
compliant records while abstracting away from the user the
means by which these observations are recorded. Thus, we
applied Tupelo fulfilling the principles elucidated above.

3.3. Validation & Visualization
The Open Provenance Toolbox [13] provides a series of

tools to manipulate OPM graphs from the command line. This
tools are listed below.

• OPM RDF to XML: converts OPM graphs represented
as Resource Description Framework (RDF) into OPM
graphs represented as Extensible Markup Language
(XML).

• OPM XML to RDF: converts OPM graphs represented
in XML into OPM graphs represented as XML/RDF.

• OPM XML validation: validates OPM graphs repre-
sented in the xml format.

• OPM to DOT: converts OPM graphs into plain text graph
description language DOT files and outputs a graphical
view in PDF format.

3.4. Provenance Workflow Documentation
This section presents the workflow of the simulation to be

documented and defines the granularity level as well. De-
tails the OPM elements, artifacts, agents, processes, roles
and edges specified at any DEVS modeling simulation docu-
mentacion procedure. The documented workflow keeps track
of DEVS functions and the information streaming (states,
inputs and outputs) among them and between simulators.
DEVS formalisation functions documented as OPM pro-
cesses are: δint : internal transition function, δext : external tran-
sition function, δcon: confluence transition function, λ: output
function, coupling: function that maps output ports to input



Figure 2. OPM DEVS Simulation Elements (1)

ports. Whereas the incoming and outcoming data artifacts of
these processes are: State: gathers σ (time to next internal
event) and phase (status), Port: Input or output port where the
messages arrive or depart, Value: Output message value from
a model, Time: Elapsed time between events.

In order to link the data artifacts formerly stated, we define
the following edges based on event ordering classified within
the detailed roles.

• Generated By: (process⇒ arti f act)

– Output Port: λ⇒ Port

– Output Value: λ⇒Value

– Output State: δint ,δext ,δcon⇒ State

– Output Port To: Coupling⇒ Port

• Used By: (arti f act⇒ process)

– Input Port: Port⇒ δext ,δcon

– Elapsed Time: State⇒ δext ,δcon

– Input Value: State⇒ δext ,δcon

– Input State: State⇒ δint ,δext ,δcon

– input Port From: Port⇒Coupling

In addition to this, we generate a time aware provenance
graph. Hence, these edges are supported by time annotations
that consist of the observed time of an iteration. Two times-
tamps (no earlier & no later) that point out a time interval for
the given iteration. This time interval may be one timestamp,
as if both timestamps no earlier and no later where the same.

Figures 2 and 3 reveal each possible atomic iteration in
our DEVS simulation platform in accordance with the upper
mentioned OPM customized elements. These documented
process iterations may belong to any of the DEVS model be-
ing simulated as part of the overall execution. This ownership

Figure 3. OPM DEVS Simulation Elements (2)

Figure 4. OPM DEVS Simulation trace

is expressed by means of the “Controlled By” edge stipulated
at the OPM definition. Figure 4 illustrates an example of a
brief simulation trace documented with OPM.

The following list enumerates the OPM simulation docu-
mentation trace represented by Figure 4.

1. A simulator executes the output function λ of the corre-
sponding model, with the current model state as an input
argument, and retrieves an output value and an output
port where that value is located. In terms of OPM, a state
is used by λ and the output value and the output port is
generated by λ.

2. That same simulator executes the internal transition
function δint of the respective model, with the current



model state as an input argument, and retrieves the new
state of the model. In terms of OPM, a state is used by
δint and the output state is generated by δint . Due to
DEVS formalism specification this iteration is always
executed after the output function λ, in other words,
T1 < T2.

3. Again, the same simulator calls the coupling function
which maps an output port of a model to the input port
a model. In terms of OPM, an output port is used by the
coupling process and an input port is generated by the
coupling process.

4. Another simulator receives an external output value
and an input port previously generated, along with the
elapsed time throughout the external transition function
δext . This iteration means that there exists a coupling be-
tween the model being simulated by the previous sim-
ulator onwards with the model being simulated by the
current simulator. In terms of OPM, an input port, input
state, input value and elapsed time are used by δext and
the output state is generated by δint .

3.5. Common Queries
In general, a query is a form of questioning in a line of

inquiry. In this sections we refer to the questions we intend
to ask to a provenance graph resultant from our DEVS sim-
ulation platform. That is, common questions that respond to
simulation aspects purely based on DEVS simulation formal-
ism with different objectives, such as validating the simula-
tion performance, or even to elucidate a DEVS component
form its behaviour.

The following list enumerates only a small group of the
overall possible queries for a DEVS based OPM graph to de-
note the capability of provenance queries.

1. Does every output function always triggers before the
internal event derived from the same state?

2. What is the maximum time model “X” has been waiting
for an input?

3. Is value “Z” generated by model “X”?

4. What is the value received by model “X” in port “W”
before generating value “Z” at port “Y”?

5. At what time did model “X” reached state “S”?

6. What is the average σ value (time for next internal event
defined in the state) of model “X”?

7. Which models received value “Z” generated by model
“X” at port “Y” after “N” internal transition events?

8. What is the sequence of processes that generated value
“Z” as an input to model “X”?

9. Did value “Z” generated by model “X” derived an input
at model “W”?

10. Does any model always receives a value at some port
with σ = ∞, moves to a state with σ 6= ∞, triggers an
output function followed by the internal transition and
finally passivates (σ = ∞)?

Some queries provide validation methods of the DEVS
formalization within our simulation platform. While others
might want to keep track of processes or artifacts derived
from the generation of an artifact, the execution of a process,
or ensure that a value is never generated, received or vice-
versa. Or even try to discover the nature of a model, weather
it is only an element in the overall root model that injects a de-
lay, or it’s simply a proportional block, or acts as memoryless
Mealy machine where its outputs depends on its inputs.

In addition to this, we define 3 categories of provenance
queries: Queries based on the OPM graph topology, Queries
based on data values, Queries based on both concepts.

4. CASE STUDY - PROCESSOR MODEL
Figure 5 depicts the ef-p model, which is a simple DEVS

coupled model consisting of three atomic models and one
coupled model. The generator atomic model generates job-
messages at fixed time intervals and sends them via the “out”
port. The transducer atomic model accepts job-messages
from the generator at its “arrived” port and remembers their
arrival time instances. It also accepts job-messages at the
“solved” port. When a message arrives at the “solved” port,
the transducer matches this job with the previous job that
had arrived on the “arrived” port earlier and calculates their
time difference. Together, these two atomic models form an
experimental frame coupled model. The experimental frame
sends the generators job messages on the “out” port and for-
wards the messages received on its “in” port to the transduc-
ers “solved” port. The transducer observes the response (in
this case the turnaround time) of messages that are injected
into an observed system. The observed system in this case is
the processor atomic model. A processor accepts jobs at its
“in” port and sends them via “out” port again after some fi-
nite, but non-zero time period. If the processor is busy when
a new job arrives, the processor discards it. Finally the trans-
ducer stops the generation of jobs by sending any event from
its “out” port to the “stop” port at the generator.

This section illustrates the OPM documentation results of
the aforementioned experiment. The OPM generated by each
simulation is initially an RDF type document in accordance
with Tupelo’s OPM binding as an OWL ontology. In order



Figure 5. Experimental Frame & Processor DEVS model

to get a graphical output, we apply the OPM toolbox. Ex-
ecute the OPM RDF to XML tool to convert the outputted
document based on Tupelo’s OPM bindings to a document
based on the Open Provenance Model XML Schema. Finally,
running the OPM to DOT tool to obtain a graphical repre-
sentation of our experiment as a plain text DOT file and a
graphical view in PDF format shown below. Figure 6 repre-
sents the graphical output from this experiment. However, the
resultant graphical representation exceeds this document fig-
ure layer output maximum size, that’s why we provide three
Figures (7, 8, 9) that zoom in to Figure 6 accompanied by
an explanation. This OPM representation is analogous with
section 3 where boxes represent a process iteration (δext , δint ,
δcon, λ or coupling) and ellipsis represent data artifacts (state,
port , value or time). Each node is identified by a name that
details the DEVS model it belongs to, the process being ex-
ecuted or the artifact being consumed or generated, and the
interaction index.

Figure 6. Experiment

Figure 7 gathers the left upper side of Figure 6. This view
represents the beginning of the simulation, where all mod-
els start from their initial states (Generator state 0, Trans-
ducer state 0 and Processor state 0). As seen on the figure,
the Generator model triggers the output function λ (Gener-

ator lambda 0) generating a job (Generator outputValue 0)
as an output message throughout an output port (Gener-
ator outputPortFrom 0) mapped to (Generator coupling 0)
the destination model inports (Generator outputPort 0 0 and
Generator outputPort 0 1). These artifacts along with the
initial states (Transducer state 0 and Processor state 0) are
consumed by the external functions of the Transducer (Trans-
ducer deltext 0) and Processor (Processor deltext 0). These
processes generate the according new state of the Transducer
(Transducer state 1) and the Processor (Processor state 1).

Figure 7. Experiment (1)

Figure 8 gathers the middle down side of Figure 6. This
view illustrates how the Transducer triggers its λ func-
tion (Transducer lambda 0) and outputs a message (Trans-
ducer outputValue 0) consumed by the Generator external
function (Generator deltext 0) and stops the job generation
process since the state generated (Generator state 6) is not
consumed by any process.

Figure 8. Experiment (2)



Figure 9 gathers the lower right side of Figure 6. This view
illustrates how the Processor triggers its λ output function
(Processor lambda 3) because it has finished the job previ-
ously assigned by the Generator. And sends a message (Pro-
cessor outputValue 3) to the Transducer external function
(Transducer deltext 7) reporting the finalization of the pre-
vious job. However, the node path that generated the Trans-
ducer previous state (Transducer state 8) points out that
the Transducer has already triggered its λ function (Trans-
ducer lambda 0) reaching its internal time event and there-
fore the job is not scored.

Figure 9. Experiment (3)

Extracting this information from graphical views may be
useful for some simple and quick consultations. But when we
encounter a greater challenge such as how to infer relevant
and meaningful data from our provenance documentation, it
is necessary to move on to Provenance queries.

All the information extracted from the OPM graphs can be
done automatically throughout Provenance queries. Further-
more, these queries may involve a degree of sophistication
unable to be managed by a simple graphical perception. They
are capable of moving throughout the generated OPM paths,
check data values, analyze topology, extract process execu-
tion timestamps, etc ... Combining them we may infer infor-
mation of a simulation behaviour that is being kept hidden or
located at the background.

Unfortunately, the Open Provenance community has not
identified yet a standard query language for OPM graphs.
Nevertheless, common patterns of provenance queries begin
to emerge, and API’s are being designed to support them di-
rectly [3]. Tupelo provides a set of API’s to gather informa-
tion from OPM graphs, but unlikely, they differ much from
a query language. However, the initial output of the simula-
tion is formatted in RDF, and with a more general purpose,
there exist RDF query languages such as SPARQL Protocol

and RDF Query Language[14]. SPARQL allows for a query
to consist of triple patterns, conjunctions, disjunctions, and
optional patterns. Implementations of SPARQL for multiple
programming languages exist, therefore it can be a conve-
nient mean to extract information, although each query must
be adapted and customized for the OPM notation.

5. RELATED WORK
A similar research but with a different view point is the

work presented by Guy K. Kloss and Andreas Schreiber [15]
as part of the Grid Provenance project [10]. They announce
the lack of mechanisms to trace the generation of simulation
results and the underlying processes. And seem to demon-
strate how trust and confidence in simulation results can be
achieved by provenance-aware applications. However, in dis-
tinction from our approach, they focus on results of simula-
tions accordant to a set of given parameters, simulation char-
acteristics and setup, instead of the internal processes car-
ried on by each simulated model while performing a simu-
lation. In other terms, most of the work done in provenance
can be classified in several categories: provenance-aware stor-
age systems, architectures for provenance systems, appli-
cation based, and methodologies. Provenance-aware storage
systems and architectures research areas center on evolving
provenance technology. On the contrary, we search for the
most suitable provenance technology for our DEVS simulator
that must be capable of dealing with the interoperable Open
Provenance Model, instead of building up a provenance sys-
tem from the bottom.

6. CONCLUSION AND FUTURE WORK
In this document, we presented a Provenance-aware DEVS

simulation platform. This arrangement was initially moti-
vated by the need of uncovering complex DEVS models
simulation behaviour and to assist the validation of a non
coordinated distributed DEVS simulation framework meant
to work with real scenarios along with simulated models.
Adding Provenance to DEVS simulations by means of the
Open Provenance Model provides descriptive documentation
of a simulation. Documentation that represents data products
and processes involved in past computations, and causal de-
pendencies between these. This dependencies are seen as re-
lations or waypoints of possible paths. Thus, a DEVS simula-
tion may benefit from provenance in several manners: Keep-
ing track of simulation models outputs and inputs, and inter-
nal behaviour based on inputs and time events, Discovering
paths or process executions that made possible the generation
of an output or the triggering of other process, Recognizing
models based on their internal event iterations ordering, Val-
idating data values of incoming or outcoming messages, Val-
idating in runtime a simulation in accordance with the prove-
nance path that is being followed.



All this information can be queried over an OPM graph re-
sultant from a DEVS simulation. The outputted information
of a DEVS simulation is data with dependencies. There are al-
ready various scientific disciplines such as machine learning,
data and process mining, and pattern matching that are con-
cerned with the design and development of algorithms that
allow computers to automatically learn to recognize complex
patterns. Hence, assembling both worlds looks like a promis-
ing research area. As an example, the Workflow Patterns ini-
tiative [16] and the process mining group from the Eindhoven
University of Technology. These research areas may supply
the necessary techniques to validate and verify DEVS models
behaviour over a simulation.

The provenance-based method proposed in this document
seems to work on very detailed information from the DEVS
simulation. Hence, a mayor issue appears: Can this approach
scale to larger simulations where hundreds/thousands of mod-
els exist in the simulation? Yes, although with the initial ap-
proach the simulation performance should decline and the
provenance documentation output complexity will increase.
But the provenance-based method can be modified to docu-
ment only certain DEVS models of the overall simulation and
specific DEVS simulation processes. Whereas the complex-
ity issue is not alarming because an end-user application that
works over DEVS provenance should scale up to different
levels of abstraction according to the final user qualification
and research purpose.

7. ACKNOWLEDGEMENT
The contributions of authors José L. Risco-Martı́n, Alejan-

dro Moreno and Joaquı́n Aranda in this paper are sustained
by the Spanish Ministry of Education and Science projects
DPI2006-15661-C02-01 and DPI2006-15661-C02-02.

REFERENCES
[1] B. P. Zeigler, T. Kim, and H. Praehofer, Theory of Mod-

eling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic
Press, 2000.

[2] R. Bose, I. Foster, and L. Moreau, “Report on the inter-
national provenance and annotation workshop,” Prove-
nance Community, Tech. Rep., 2006.

[3] L. Moreau, N. Kwasnikowska, and J. V. den Bussche,
“The foundations of the open provenance model,” Uni-
versity of Southampton, Tech. Rep., 2009.

[4] “Provenance challenge.” [Online]. Available:
http://twiki.ipaw.info/bin/view/Challenge/WebHome

[5] E. Kofman, “Discrete event simulation of hybrid sys-
tems,” SIAM Journal on Scientific Computing, vol. 25,
no. 5, pp. 1771–1797, 2004.

[6] Arizona Center of Integrative M&S (ACIMS), “Arizona
Center of Integrative M&S (ACIMS),”
http://www.acims.arizona.edu, 2008.

[7] G. Wainer, “CD++: a toolkit to develop devs models,”
Softw. Pract. Exper., vol. 32, no. 13, pp. 1261–1306,
2002.

[8] José L. Risco Martı́n and J. M. Cruz, “xDEVS: DEVS
java API,” http://www.dacya.ucm.es/jlrisco.

[9] S. Munroe, S. Miles, L. Moreau, and J. Vázquez-
Salceda, “Prime: a software engineering methodology
for developing provenance-aware applications,” in Pro-
ceedings of the 6th international workshop on Software
engineering and middleware. ACM, 2006, pp. 39 –46.

[10] University of Southampton, “The provenance project.”
[Online]. Available: http://www.gridprovenance.org/

[11] University of Southampton, “Provenance aware service
oriented architecture project.” [Online]. Available:
http://www.pasoa.org/

[12] NCSA, “Tupelo semantic content repository.” [Online].
Available: http://tupeloproject.ncsa.uiuc.edu/

[13] L. Moreau, “Open provenance toolbox.” [Online].
Available: http://openprovenance.org/

[14] W3C, “Sparql query language for rdf,” W3C Rec-
ommendation, January 2008. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/

[15] G. K. Kloss and A. Schreiber, Provenance and Annota-
tion of Data. IPAW 2006, 2006, ch. Provenance Imple-
mentation in a Scientific Simulation Environment, pp.
37–45.

[16] Eindhoven University of Technology and
Queensland University of Technology, “Work-
flow patterns initiative.” [Online]. Available:
http://www.workflowpatterns.com


