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A Hybrid Proactive Caching System in Vehicular
Networks based on Contextual Multi-armed Bandit

Learning
Qiao Wang, Student Member, IEEE, David Grace, Senior Member, IEEE,

Abstract—Proactive edge caching has been regarded as an
effective approach to satisfy user experience in mobile networks
by providing seamless content transmission and reducing network
delay. This is particularly useful in rapidly changing vehicular
networks. This paper addresses the proactive edge caching
(at roadside unit (RSU)) problem in vehicular networks by
mobility prediction, i.e., next RSU prediction. Specifically, the
paper proposes a Hybrid cMAB Proactive Caching System that
implements two parallel online reinforcement learning-based
mobility prediction algorithms and allows RSUs to adaptively
finalize their predictions to identify as proactive caching nodes.
The two parallel prediction algorithms are based on Contextual
Multi-armed bandit (cMAB) learning, called Dual-context cMAB
and Single-context cMAB. The hybrid system is further developed
into two variants: Vehicle-Centric and RSU-Centric. In addition,
the paper also conducts comprehensive simulation experiments
to evaluate the prediction performance of the proposed hybrid
system. They include three traffic scenarios: Commuting traf-
fic, Random traffic and Mixed traffic in Las Vegas, USA and
Manchester, UK. With the different road layouts in the two urban
areas, the paper aims to generalize the application of the system.
Simulation results show that the hybrid Vehicle-Centric system
can reach nearly 95% cumulative prediction accuracy in the
Commuting traffic scenario and outperform the other methods
used for comparison by reaching nearly 80% accuracy in Mixed
traffic scenario. Even in the completely Random traffic scenario,
it also guarantees a minimum accuracy of nearly 60%.

Index Terms—proactive edge caching, reinforcement learning,
multi-armed bandit, mobility prediction, vehicular networks,
roadside units(RSUs)

I. INTRODUCTION

THE automobile industry has been making road vehicles
more and more intelligent over the past decade, thanks to

the development in electronics and communication technolo-
gies. Vehicles are embedded with on-board units (OBUs) and
able to communicate with road infrastructures e.g., roadside
units (RSUs) and even with other vehicles. What is even more
incredible is the upcoming era of electric and autonomous
vehicles. This means that the vehicle no longer provides
just transportation in the traditional sense, but will become
a mobile information and entertainment center [1][2]. All of
these are essential elements of vehicular networks that are
considered as one of the most important enabling technologies
of the next generation intelligent transportation system [3].

Q. Wang and D. Grace are with the Communication Technologies Research
Group, Department of Electronic Engineering, University of York, York YO10
5DD, United Kingdom (email: qw953@york.ac.uk)

However, such a revolution also poses unprecedented chal-
lenges to the conventional vehicular networks from the per-
spective of content transmission. Currently, tremendous data
demands from vehicular users are satisfied by the remote
content provider through network infrastructure such as RSUs.
This inevitably causes problems such as high network latency
and poor quality of experience (QoE) for the users, given
the limitation of link capacity and bandwidth resources [4].
In addition to this, as fast-moving objects, vehicles may ex-
perience frequent intermittent connections with RSUs, which
results in a rapidly changing vehicular environment. High-
speed mobility causes frequent link re-connections and fast
fading of vehicle-to-RSU channels, which means that a content
transmission between a vehicular user and a RSU may not be
completed within the coverage of the RSU and the user has to
re-request the remaining content after reconnecting to a new
RSU at a dramatically reduced data rate [4][3]. This is another
cause for downgraded QoE.

The edge caching technique, which brings content closer
to end users, is considered to be an effective approach to re-
solve the challenge of network latency and backbone network
congestion due to a massive amount of remote requests to
the content provider. On top of this, proactive edge caching
has been recognized as a promising solution to the intermit-
tent connectivity challenges caused by the highly dynamic
vehicular network. It not only provides content close to the
vehicular users but also predicts where they may need content
in advance through prediction algorithms. Proactively caching
the desired content at the future RSU(s) beforehand allows
vehicles to continue their earlier incomplete content trans-
missions immediately after accessing the new RSU without
having to request the content again from the remote server.
Thanks to the rapid development of mobile edge intelligence,
mobile edge computing (MEC) [5] servers deployed at the
network edge (i.e., RSUs) are the key enabler of proactive
caching by providing both local storage and computation
functionalities, where the computation is crucial in regard to
mobility prediction.

As the name implies, proactive caching relies on predictions.
Since the focus of this paper is proactive edge caching at the
targeted RSU, the problem then becomes predicting the next
RSU that is most proper to perform proactive caching. For
this purpose, machine learning (ML) techniques can be useful.
As a matter of fact, this can be seen as a direct application
of reinforcement learning (RL) because every prediction is
a decision to make. Most of studies on proactive caching
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problem used traditional ML methods e.g., [4] and [6] and
rely heavily on massive offline training with labeled data but
none of them investigates the effectiveness of RL techniques
on such problem. This motivates us to conduct the study on
modeling proactive caching at the next RSU as a decision-
making process. The agent in reinforcement learning learns
in a trial and error manner and tries to learn a policy that is
usually associated with states and actions. Vehicular networks,
however, give rise to a rapidly changing environment and this
means that representing every single state of the network is
rather difficult. Therefore, it motivates us to utilize Multi-
armed bandit (MAB) algorithms [7][8], as a special instance
of RL, to solve the proactive caching problem in vehicular
networks. The MAB problem is single-state and model-free.
The agent in MAB has just one state and no state transition
(i.e., it is stateless), and does not have to build up a model
of the environment. This significantly reduces the number of
trials needed to learn a mature strategy and speed up the learn-
ing process [9], which resolves the difficulty that traditional
RL has in a dynamically changing vehicular environment. An
enhanced version of the MAB is the contextual multi-armed
bandit (cMAB) and it allows the agent to observe the context
and learn the relationship between the context and rewards, so
that it can predict the next best arm to play by looking at the
current context [10]. The agent in cMAB can usually make
better decisions with the assistance of contextual information
than it could in the MAB problem [8].

The objective of the paper is to address the proactive
caching problem in vehicular networks using the cMAB learn-
ing. Specifically, we aim to accurately predict the next RSU for
proactive caching by the developed Hybrid cMAB Proactive
Caching System which enables adaptive switching between
its two underlying prediction algorithms: Dual-context cMAB
and Single-context cMAB. Despite the earlier work in [11]
focusing on single-context cMAB only, the motivation here is
to design a hybrid system that can fully exploit the potential of
both dual-context and single-context cMAB in order to seek
better proactive caching performance in a variety of scenarios.
This paper further fills the gap in the studies on using multi-
independent-agent contextual MAB model to solve proactive
caching problems. Specifically, the main contributions of the
paper can be summarized as follows:

• We propose a Hybrid cMAB Proactive Caching Sys-
tem with a specifically designed switching mechanism
to allow RSUs to adaptively finalize their predictions
between the dual-context and single-context cMAB algo-
rithms. The system is further developed into two variants:
Vehicle-Centric System that realizes vehicle-level switch-
ing and RSU-Centric System with RSU-level switching,
for comprehensive performance comparison.

• We design a Dual-context cMAB algorithm that the
utilizes vehicle ID and the previous RSU together as
a two-dimensional context for next RSU prediction. To-
gether with the Single-context cMAB algorithm that uses
previous RSU as context, they serve as the two underlying
parallel prediction algorithms in the hybrid system.

• We design three traffic scenarios: Commuting traffic,

Random traffic, Mixed traffic to evaluate the system per-
formance in a comprehensive way. They are generated in
two urban areas in Las Vegas, USA and Manchester, UK
with significantly differing road planning characteristics.
The results demonstrate the adaptability of the proposed
algorithms and system to different road layouts.

The rest of the paper is structured as follows. In Section
II, some related studies on proactive caching in vehicular
networks and the applications of MAB in relevant fields are
discussed. Section III introduces the architecture of the MEC-
enabled vehicular network that this work is based on. The
proposed hybrid cMAB system and the two parallel cMAB-
based prediction algorithms are elaborated in Section IV.
Section V discusses the simulation setup, traffic scenarios, and
performance evaluation and analysis, followed by a conclusion
in Section VI.

II. RELATED WORK

This section discusses some relevant studies and is divided
into two parts: Proactive Caching in Vehicular Networks and
Reinforcement Learning and MAB in mobile networks.

A. Proactive Caching in Vehicular Networks

Research on the problem of proactive caching in mobile
networks can be broadly classified into two categories: what
to cache and where to cache. To anticipate what to cache
in advance mostly depends on content popularity prediction.
Hassine et al. [12] used a two-level prediction model for
video popularity prediction to pre-store popular videos in
a content delivery network. Popularity-based video caching
techniques in cache-enabled networks have been summarized
in [13]. Nevertheless, the reliance on collecting vehicular
users’ personal data makes these methods less effective given
the increasing restrictions and users’ attention on security and
privacy. Therefore, this paper focuses on solving where to
cache problems by predicting where a vehicle is going next,
more precisely the next RSU it is going to access. From the
network operators’ point of view, this is more manageable and
applicable.

The most recent work on next-RSU proactive caching is
in [14] where the authors proposed a sequence-prediction
based proactive caching system to address the problem. Their
model is based on Compact Prediction Tree+ model [15], a
sequence prediction algorithm, by training vehicle-specified
simulated traffic traces. Hou et al. [4] and Khelifi et al. [6] both
used the Long Short Time Memory (LSTM), a deep neural
network model, to predict the direction of a vehicle is going
and thus infer the next RSU instead of directly predicting it.
For similar purpose, Zhao et al. [16] used a hybrid Markov
chain model for future RSU prediction, depending on the
availability and quality of vehicles’ traces. Yao et al. [17] also
proposed to use Prediction-based on Partial Matching (PPM),
a tree-based Markov chain model, for mobility prediction of
reaching different hot spot regions, but they concentrated on
caching on individual vehicle nodes. Despite these meaningful
studies, the first fundamental difference is that they all need
massive offline training with labeled data in order to get a
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proper prediction model while this work focuses on online
learning with model-free learning algorithm. Additionally, in
contrast to the centralized way of prediction in [4], [6], and
[16], our approach considers a distributed system where RSUs
are learning and predicting independently.

B. Reinforcement Learning and MAB in mobile networks

One of the most widely used model-free RL techniques is
Q-Learning proposed by Watkins [18]. However, a challenge
of the traditional Q-learning is its applicability to realistic
vehicular environments. As mentioned earlier, traditional RL
techniques are required to represent the states of the learning
agent and this restricts its adaptability in mobile networks
including vehicular networks. Therefore, it is helpful to con-
sider the agents with a discrete action set as stateless in
vehicular networks as this will potentially reduce the number
of trials needed to learn a sophisticated strategy and improve
the adaptability of RL-based cognitive devices (e.g., RSUs).

The MAB problem is a representative of stateless RL
problem. While it has attracted significant attention in vari-
ous applications ranging from recommendation systems and
advertisement replacement to healthcare and finance [10], its
application on proactive caching in vehicular networks and
other mobile networks seems to be rare. The recent work
in [11] proposed two proactive caching schemes in vehicular
networks based on MAB and cMAB. RSUs in [11] act as
stateless learning agent and observe previous RSU as context
in cMAB scheme. There are some applications of MAB to
other aspects of mobile networks. Dai et al. [19] proposed a
Utility-table based Learning algorithm based on MAB to solve
distributed task assignment problem in an MEC-empowered
vehicular network. The authors in [20] proposed an intelligent
task caching algorithm based on MAB and evaluated its
benefits to task caching latency performance in the edge cloud.
Xu et al. [21] investigated collaborative caching problems in
small-cell networks by learning the cache strategies directly at
small base stations online by utilizing multi-agent MAB.

Despite the advantages of the MAB learning, we believe it
is worth more investigations in the area of proactive caching
in vehicular networks. In particular, it is meaningful to exploit
the potential of cMAB with contexts from different dimensions
i.e., dual-context. Meanwhile, it is also practical to develop
a hybrid system that can fully exploit the advantages of
cMAB algorithms with different context dimensions. To the
best of our knowledge, no prior study has focused on these
technical aspects. The novelty of the present work is the
proposed adaptive hybrid cMAB proactive caching system that
exploits both dual-context cMAB and single-context cMAB
algorithms, and the evaluation of system performance using
this approach under various realistic-like traffic scenarios.

III. NETWORK ARCHITECTURE

The vehicular network considered in the paper is deployed
with RSUs that are MEC-enabled, as depicted in Fig. 1.
The RSUs are capable of edge computing and caching with
MEC servers. With computing units, they are intelligent to
learn and predict the next possible RSU a vehicular user may

connect to next and the caching units enables them to pre-
caching content when pre-caching request is received from
other RSUs. The vehicular users frequently request content
from RSUs after they enter the network. Despite the equipped
MEC servers, computing resource consumption and content
replacement techniques are out of the scope of this paper.

Consider a vehicular network G in an urban area with M
RSUs in a set M = {m1,m2, ...,mM}. There are residential
areas and workplace areas in G where L vehicles in the set
V = {v1, v2, ..., vL} depart and arrive on a daily basis. A
RSU mi ∈M has neighboring RSUs and it predicts the next
RSU by selecting one of its neighbors. In addition, a central
node is available to help coordinate RSUs in a distributed way.
One of its main responsibilities is to observe the result of a
previous prediction and feed back a reward to a prior RSU so
that the RSU can refine its learning policies (which shall be
discussed in the next section). Furthermore, a content database
C = {c1, c2, ..., cK} exists in the Content Provider that stores
K types of content with various sizes, represented by fck∈C
fragments, each of which is of size Fc.

Working campus

School

City council

RSU Moving vehiclesMoving vehicles V2R LinksFiber Links

Railway Station

Suburban 

MEC server

Central Node

R2R Links

Content Provider

Fig. 1: Architecture of MEC-enabled vehicular network

The communication model implemented in this paper only
characterizes some basic features of transmission because the
goal of the work is to anticipate where to cache precisely.
Therefore, the following assumptions are made:

• A vehicle connects to the geographically closest RSU
• The underlying physical and MAC layers’ problems

e.g., packet loss, interference, re-transmissions are not
considered in vehicular communications and thus the
transmission rate e is a constant

• The dwell time of the vehicles in the coverage area of a
RSU is extracted from the test trace being simulated and
is known so that the number of content fragments can be
derived

• The network is completely proactive which means that
content will not be cached in a reactive way

• A vehicle will not request new content until it finishes



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. XX, NO. XX, XXX XXX 4

consuming the current one; when handover occurs, the
vehicle continue its unfinished transmission

A representative proactive caching procedure can be de-
scribed as follows. After a vehicle vi ∈ V accesses a RSU
mi ∈M, mi uses the prediction algorithm to predict the next
RSU that the vehicle is likely to access next, say mj ∈ M.
While the vehicle is in this network, it may request content
transmissions from RSUs in a random way. Now say vi
requests a new transmission ck ∈ C from mi. mi then starts
requesting the content from the content provider to transmit ck
to vi. If mi calculates that vi cannot complete this transmission
within the dwelling time, then mi sends the proactive caching
request message to mj to ask it to perform proactive caching
on the remaining fragments fr of ck. Next, vi hands over
to a new RSU. If this new RSU happens to be mj , then
this is a correct prediction and the pre-cached content is
hit. In this case, mj satisfies the remainder of vi’s previous
transmission by its cache instead of having to request that from
the content provider, hence realizing seamless transmission
and reducing network delay. Otherwise, the new RSU has to
finish the remaining transmission through the content provider
via the backhaul network. A transmission delay µ is thereby
introduced via fr×Fc

ω where ω is the backhaul link rate. In
either case, a prediction feedback message (positive reward
or negative reward) is sent back to mi via the Central Node
(depicted in Fig. 1) so that it can update its prediction policy.

IV. SYSTEM AND ALGORITHM DESIGN

The first focus of this section is to introduce the designed
hybrid cMAB proactive caching system. Then the underlying
dual-context cMAB and single-context cMAB prediction al-
gorithms will be elaborated in more details. The section starts
with a brief theoretical background of cMAB problems.

A. Background of Contextual Multi-armed Bandit Problem

The contextual multi-armed bandit (cMAB) problem is a
useful extension of the general multi-armed bandit (MAB)
problem which is a special instance of reinforcement learning.
Different from a full RL problem where a learning agent may
have multiple states associated with the environment (e.g.,
positions in a game) and may transfer from one state to
another, it only has a single state in the MAB problem [8] (i.e.,
no state transitions). From this perspective, MAB is essentially
identical to stateless Q-Learning [22] and can also be treated
as a model-free reinforcement learning technique. Despite the
additional context used in cMAB to assist decision-making
process, it shares many common features with the general
MAB problem including single-state agent, action selection
and update strategy, exploration-exploitation dilemma [23],
etc. A well-known scenario of the MAB problem is where a
gambler in a casino sits in front of a slot machine with multiple
arms and tries to get payoffs by pulling one of them. The
ultimate goal of the gambler is to achieve the highest cumu-
lative rewards through learning the inherent reward pattern of
each arm and gradually concentrating on the best lever. During
this process, the gambler will face the exploration-exploitation
dilemma: where the gambler tries out the potential arms that

may return high payoffs (exploration) or pulls the arm that
has yielded the highest reward from the past experiments
(exploitation). cMAB under the gambling scenario can be
thought of as if the gambler has been given a “clue” and this
is used to learn the best action.

A cMAB problem can be formally given as a tuple:
⟨A,S,R⟩, where A = {a1, a2, ..., ak} is a set of k actions
(i.e., arms), S = {s1, s2, ..., sj} is a set of j contexts, and
R = {θ1−1, θ2−1, ..., θj−k} associates action ak and context
sj with its reward probability distribution defined by θj−k.
This is formally formulated as follows:

• Contextual multi-armed bandit Consider a cMAB prob-
lem ⟨A,S,R⟩. The aim of any agent in the cMAB
problem is to learn a policy that maps contexts to actions,
that is, π(a ∈ A | s ∈ S). Another viewpoint is that they
now become multiple independent MAB tasks associated
with contexts, and the agent aims to learn the best policy
under these various contexts. Every time an agent is
assigned a MAB task (possibly with a certain probability),
it will observe context, take the action by looking at the
current context, and eventually learn the best action. The
agent takes an action ak from its action set A under
context sj ∈ S and this will generate a success (reward
1) or failure (reward 0). The action ak ∈ A produces a
success with probability θj−k ∈ R. In other words, for
an action ak reward r = 1 is produced with probability
θj−k and r = 0 with probability 1 − θj−k. In this case,
θj−k can be seen as the expected reward of taking action
ak at situation sj and is unknown to the agent. We can
denote the estimated value of θj−k at time step t as
Qt(ak | sj) =

sum of rewards when ak is taken under sj prior to t
total number of times ai is taken under sj prior to t .

The cumulative rewards are now to be maximized across
S over a certain amount of time T .

Generally, the agent can do better in cMAB than in a non-
contextual MAB with the assistance of context that distin-
guishes one bandit problem with another [8]. In addition,
the approaches to resolve exploration-exploitation dilemma in
MAB problems are plenty such as ϵ-greedy, upper-confidence
bound algorithm, Thompson sampling [23], etc. The purpose
of this paper is not to find out a sophisticated way to balance
exploration and exploitation so the most straightforward ϵ-
greedy is adopted. Despite the fact that cMAB involves
learning policies, it still resemble the general MAB tasks, as
the action taken only affects the immediate reward, and makes
no difference to the next situations, as well as their rewards.
Therefore, it is an intermediate between the MAB problem
and the full RL problem.

B. Hybrid cMAB Proactive Caching System

The topic of this subsection is to introduce the design of the
proposed Hybrid cMAB Proactive Caching System (HCPC)
used for proactive caching. The basic concept behind the
hybrid system is that it implements a switching mechanism
that allows a RSU to adaptively finalize its prediction between
two cMAB-based prediction algorithms: Single-context cMAB
and Dual-context cMAB algorithms. In general, the agents
in cMAB problems use context to help choose which action
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to play in the current iteration. The context observed is
actually an N-dimensional context, where each dimension is a
source of side information that may or may not be the same
type. Therefore, single-context cMAB is a one-dimensional
cMAB problem where the agent only observes one source
of information (e.g., previous RSU) to consider as context.
The agent in dual-context cMAB, however, is able to detect
information from two sources (e.g., previous RSU and vehicle
ID), together forming a two-dimensional context.

The single-context cMAB that makes use of the previous
RSU as context has been exploited in [11]. As one of the
underlying prediction algorithms in the HCPC system, it is
enhanced in this paper with a Win-or-Learn-Fast variable
learning rate. The advantage of single-context cMAB is that it
has sufficient learning opportunities for every related context
s in the early stage of learning, but in some situations it may
still suffer from the similar dilemma as in the non-contextual
MAB problem even though the previous RSU provides a
good reference to a vehicle’s incoming direction (which will
be detailed in the next subsection). On the other hand, the
dual-context cMAB designed in this paper utilizes a two-
dimensional context that consists of vehicle ID and previous
RSU. It reinforces the single-context cMAB and could result
in more explicit context for an agent RSU to distinguish
different tasks. Nevertheless, its disadvantage is the shortage
of learning samples in the early stages, since a vehicle passes
through a RSU from a particular prior RSU only once a
day. Therefore, the motivation behind the HCPC system is to
combine the advantages of both in order to ensure the accuracy
of the prediction as much as possible. The designed switching
mechanism is the enabler of adaptive selection between single-
context and dual-context, depending on the comparison of
their historical prediction performance. In the meantime, it
guarantees a lower bound on its prediction performance, i.e.,
single-context cMAB.

A complete procedure of a RSU selecting the next RSU as
the proactive caching node in the HCPC system starts when a
vehicular user connects to the RSU. It makes two predictions
(performs two action selections) with dual-context and single-
context cMAB algorithms, respectively, denoted as PD and
PS . It then performs the switching mechanism to finalize
its decision PF ∈ {PD, PS} and send its proactive caching
request to the predicted RSU (i.e., PF ). In other words, the
final decision can also be seen as the result of either dual-
context cMAB or single-context cMAB.

The key point in the switching mechanism is the way
to compare historical prediction accuracy of the two cMAB
algorithms. One thing to consider in the comparison is whether
the RSU extracts its past predictions made for all the ve-
hicles that have connected to it or just the prediction data
of the current vehicle, which corresponds to RSU-Centric
and Vehicle-Centric, respectively. In the HCPC RSU-Centric
system, the RSU finalizes its prediction (PD or PS) for all
of the connecting vehicles, once it computes which cMAB
algorithm may benefit its overall prediction performance in
the current simulation cycle. On the other hand, the RSU
in the HCPC Vehicle-Centric system does this on a vehicle
level. It uses the past prediction performance of this particular

vehicle to compute and determine what is the best option for
the vehicle in the current cycle. The advantage of Vehicle-
Centric system is that it allows “customization” for different
vehicular users, which will intuitively benefit individual users
because the best decision is customized for them. The two
systems use different window sizes (WS) for backtracking
length to calculate past prediction performance, because for
Vehicle-Centric system, to obtain a similar past prediction
sample size it needs longer backtracking length i.e., larger
WS than RSU-Centric system. We summarize the switching
mechanism of HCPC system in Algorithm 1 and meanwhile,
a comprehensive flow of the system in the flowchart is shown
in Fig. 2.

Algorithm 1: Switching mechanism in Hybrid cMAB
Proactive Caching System

while not the end of the test do
if Vehicle Vu connects to RSU m then

Predictions by parallel algorithms:
PD ← Dual-context cMAB;
PS ← Single-context cMAB;
Finalize prediction PF - switching scheme:
Vehicle-Centric System: Extract past
predictions of Vu made by RSU m in the last
WS tests;

RSU-Centric System: Extract past predictions
of all vehicles made by RSU m in the last
WS tests;

Compute cumulative average accuracy:
AccD ← Dual-context cMAB;
AccS ← Single-context cMAB;
if AccD > AccS then

PF ← PD;
else

PF ← PS ;
end

end
end

In a proactive caching enabled vehicular network, the ob-
jective is to realize seamless content delivery to vehicular
users. This is achieved by high cache hit ratio which relies on
accurate mobility prediction. Therefore, achieving high predic-
tion accuracy is the objective of the hybrid cMAB proactive
caching system. In the following, the detailed implementation
and design of the two parallel cMAB prediction algorithms
will be discussed.

C. Two Parallel cMAB-based Mobility Prediction Algorithms

Finding the best RSU to pre-cache relevant content for a
vehicular user is a matter of mobility prediction. It is crucial
that the currently associated RSU is able to predict the next
possible RSU the vehicle is about to access, as accurately as
possible. As discussed earlier, a cMAB problem is composed
of action set, context set, and rewards. By taking appropriate
actions, the agent hopes to maximize its payoff eventually.
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Fig. 2: Flowchart of the Hybrid cMAB Proactive Caching System: this is a general cycle of an agent RSU serving a connecting
vehicle, from Start when a vehicle connects to the RSU, to Finish when its action-value table is successfully updated with
corresponding rewards and relevant prediction data is stored sufficiently.

In the next RSU proactive caching problem, the currently
connected RSU helps a vehicle to continue the unfinished
content transmission immediately when it reconnects to a new
RSU, provided that the new RSU has the requested content.
This completely depends on whether the last RSU predicts
or selects the correct RSU from its neighboring RSUs. If it
was a correct prediction, positive feedback is given; otherwise,
negative feedback is generated. From this point of view, they
resemble each other in terms of action (RSU) selection and
reward (feedback) generation. How the mobility prediction

is modeled as a single-context cMAB problem has been
elaborated in [11]. However, the proposed dual-context cMAB
algorithm differs in terms of the dimension of context. The
remainder of this subsection will focus on the composition
of the context in the dual-context cMAB in contrast to the
single-context cMAB, and introduces how to solve them with
the variable learning rate proposed in this paper.

1) Context in cMAB In cMAB problems, a specific Q-
table that consists of multiple actions’ quality values
(Q-value) is associated with specific context s ∈ S .
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The agent aims to learn a Q-table of s. Generally, the
purpose of introducing context is to help the agent make
better decisions compared to a general MAB problem
(i.e., non-contextual MAB). The effectiveness of single-
context cMAB with the previous RSUs as the context has
been proved in [11], since this information is a useful
source to help RSUs distinguish the incoming directions
of vehicles. Despite its excellent performance, there may
still exist occasions where the RSU’s actions have close
Q-values, which results in high uncertainty and limits
the prediction accuracy. Therefore, it is meaningful to
investigate the performance of cMAB with additional
context from a different dimension and this motivates the
proposal of the Dual-context cMAB-based algorithm.

Specifically, the context in the Dual-context cMAB-
based Mobility Prediction algorithm combines two-
dimensional context i.e., vehicle ID and previous RSU.
As in single-context cMAB, the information of previous
RSUs is easily accessed and used as a reference to such
directions compared to other sorts of information e.g.,
road information, vehicle angle, etc. Moreover, the use
of vehicle IDs, sometimes referred to as OBU IDs in
literature e.g., [16], as additional contextual information
is also legitimate as the IDs are important and useful iden-
tifiers in the next generation vehicular networks. In both
algorithms, when the agent RSU needs to predict the next
RSU (action selection) for a newly connected vehicle, the
vehicle’s relevant context will first be identified, which
corresponds respectively to vehicle ID plus previous RSU
as dual context or previous RSU only as single context.
The task of the agent RSU is to learn the action values
associated with the identified context through trial and
error. This enables the agent RSU to solve separate bandit
tasks associated with them, thereby guaranteeing a more
effective policy learned. Since the dual-context cMAB
solution is tailored to a specific vehicle, in principle it is
likely to provide more accurate prediction than single-
context cMAB. The context of dual-context cMAB is
summarized as follows:
• Context - Previous RSU and Vehicle ID: The previous

RSU and the vehicle id together form the context in
dual-context cMAB. The agent RSU can identify the
previous RSU that a connected vehicle coming from
and its ID. It then combines these two and retrieves
the Q-table associated with combined context so that
an action can be predicted properly according to the
action selection algorithm. If there does not exist such
Q-table, it will initialize one for the combined context
and perform its decision.

2) Mobility prediction Mobility prediction (i.e., next RSU
prediction) in the modeled cMAB-based prediction algo-
rithms is essentially an action decision for an agent RSU.
Action selection plays an important role in solving cMAB
problems and is fundamentally based on the estimated
true values of actions. In a cMAB problem, the learning
agent learns its actions quality values corresponding to a
type of context through trial and error. We use Q(a | s)

to denote this value and name it Q-value as in Q-learning
[9][22], where a ∈ A and s ∈ S . The agent then uses
the corresponding exploration-exploitation scheme (i.e.,
ϵ-greedy) to select the appropriate action based on their
Q-values: the best action is selected with probability of
1 − ϵ; Otherwise, with small probability ϵ, actions will
be selected randomly with equal probability regardless of
their Q-values.

A =

{
argmaxa Q(a | s), 1− ϵ

random, ϵ
(1)

3) Q-value update For economy and clarity, we use the
simplified term Q(a) of Q(a | s) to denote the Q-
values of the actions under context s. In [11], we have
derived the recursive action-value updating formula using
incremental implementation [8]:

Qn+1 = Qn +
1

n
(rn −Qn) (2)

where Qn+1 is the value after the action a has been
selected for n times.

Equation (2) is further generalized as follows by re-
placing the so-called step-size 1

n with a constant learning
rate α. This is because vehicular networks are dynamic
environment with varying traffic density, which results
in a nonstationary bandit problem. Therefore, recent
rewards should be given more weights when updating
action values.

Q(a)← (1− α)Q(a) + αr (3)

The Q-values of actions under a particular context s ∈ S
are hence updated according to Equation (3).

The agent RSU accepts a reward after taking an action
and observing its relevant outcome. The outcome is
translated to a reward through the reward function R.
In other words, given an action a taken at time step
t and the observed outcome as b (which may or may
not occur immediately), its reward can be computed with
rt = R(b). In the cMAB-modeled mobility prediction
problem, the outcome of an agent RSU predicting one
of its neighboring RSU as the next possible RSU is
either b = True or b = False. In order to introduce
punishment for a wrong prediction and inspired by the
reward function used in the Dynamic Spectrum Access
problem in [9], the reward function R adopted by this
work is:

r = R(b) =

{
1, b = True
−1, b = False

(4)

4) Win-Or-Learn-Fast Variable Learning Rate The learn-
ing rate α is a key parameter for any RL problems
including cMAB. It has a significant influence on the
dynamics of the learning process. A fixed learning rate
for both positive outcome and negative outcome is often
seen in the literature such as [24] and [25]. Bowling and
Veloso proposed Win-Or-Learn-Fast (WoLF) method in
[26] and provided the method to adapt different learning
rates when different outcomes are observed. The principle
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behind this method is that the authors stated that the
learning agent should learn faster when it is losing and
more slowly when winning. This principle of learning
faster when unsuccessful or “cautiously” when successful
is also relevant in dynamic vehicular environments, e.g.,
when a change in network topology or traffic distribution
requires the RSUs to readjust their learned policies. Be-
sides, this feature of WoLF also encourages exploration
in the early stage of learning and is important in terms
of avoiding rapid convergence towards a local optima in
the beginning of the learning process.

Therefore, a straightforward adaption of WoLF is to
split the value of the learning rate α in Equation (3)
into two cases, αwin and αlose: the Q-value is updated
with αwin if r = 1 and αlose if r = −1. Therefore, the
Equation (3) is rewritten using separate terms for Q-value
estimates before (Q(a)) and after the update (Q

′
(a)) as

follows:

Q
′
(a) =

{
(1− αwin)Q(a) + αwin, r = 1

(1− αlose)Q(a)− αlose, r = −1
(5)

Again, Q
′
(a) is still a simplified term of Q

′
(a | s) that

omits the context s. The learning agent RSU updates Q-
values of its actions for each independent context s using
Equation (5).

As mentioned earlier, the single-context cMAB adopted in
[11] is enhanced in this paper to accommodate the WoLF. To
sum up, the two underlying parallel cMAB-based prediction
algorithms in HCPC Vehicle-Centric system are summarized
in Algorithm 2. They are referred to as dual-context cMAB
and single-context cMAB, respectively.

V. SIMULATION AND PERFORMANCE EVALUATION

A. Simulation Setup

1) Test Scenarios: Three vehicular test scenarios are de-
signed in this paper to simulate realistic traffic scenarios and
the corresponding test data is generated by Simulation of
Urban MObility (SUMO) [27]. They are summarized as the
following:

• Scenario I - Commuting traffic:
This scenario aims to simulate daily commuters in

reality. Normally, such commuting vehicles depart and
arrive from one area in a city to another. We focus
on two urban areas, Las Vegas as the primary city and
Manchester as the secondary city to generalize the appli-
cation of the proposed HCPC Vehicle-Centric system on
two cities with two very different road layouts. 5 traffic
zones (TAZs) are defined in SUMO to simulate realistic
residential and workplace areas (assuming that a TAZ
contains both areas) and each two of them form a TAZ
pair, which results in 20 TAZ pairs. 10 vehicles commute
between a TAZ pair, resulting in 200 vehicles in total. Fig.
3(a) and Fig. 3(b) shows the distribution of the TAZs and
RSUs in two cities.

Another feature of the commuting traffic is that com-
muters generally follow a point-to-point daily routine.

Algorithm 2: cMAB-based Next RSU selection Algo-
rithm

Initialization (if not done): For RSU m ∈M with the
number of actions (RSU neighbors) Am, their
Q-values are initialized to Q(a) = 0 for a ∈ Am ;

while not the end of the test do
if A vehicle connects to RSU m then

Context detection:
Dual-context cMAB:
1. Detect context s1 ← previous RSU before
m;

2. Detect context s2 ← Vehicle ID ;
3. Dual context sD ← s1 + s2 ;
Single-context cMAB:
Single context sS ← previous RSU before m
if s∗ (sD or sS) is a new detection then

Create an entry of s∗ to its action values;
Initialize Q(a | s∗) = 0, ∀a ∈ Am;

end
Predict the next RSU a∗ (aD or aS) by:
(aD | sD)← action taken based on Eq. (1);
(aS | sS)← action taken based on Eq. (1);

end
if Handover happens then

Reward r∗ (rD or rS) generation:
rD ← observe the reward of aD according to
Eq. (4);
rS ← observe the reward of aS according to
Eq. (4);

Update Q-tables of RSU m with rD and rS
for Dual-context cMAB and Single-context
cMAB by Eq. (5):

if r∗ is 1 then
Q(a∗ | s∗)← (1− αwin)Q(a∗ | s∗) + αwin

end
if r∗ is -1 then

Q(a∗ | s∗)← (1− αlose)Q(a∗ | s∗)− αlose

end
end

end

Thus, to approximate this pattern, a specific vehicle
traveling between two TAZs departs from a specific
road in the originating TAZ as its home address and
arrives at a specific road in the terminating TAZ as its
workplace address, which is referred to as a “departure
trip” and, conversely, as a “return trip”. A “departure test
trace” and a “return test trace” consist of 200 departure
trips (i.e., vehicles) and 200 return trips, respectively.
Furthermore, an individual vehicle is associated with an
ID (ranging from 0 to 199 in this case) and its ID remains
unchanged throughout all the test traces which reinforces
the fact that they are commuters. Fig. 3(c) and Fig. 3(d)
show an example of routes of all commuting vehicles in
the two cities.

• Scenario II - Random traffic:
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This scenario is an extreme random scenario where
vehicles randomly depart and arrive at locations on the
map, independent of TAZs, but still follow the shortest
path. Additionally, vehicle IDs in one test trace are
different from those in another test trace (i.e., no du-
plicated IDs exist). This scenario may not be totally
realistic but is meaningful to assess the performance
of the proposed proactive caching system under such
extreme circumstances. For consistency, there are also
200 random trips in each test trace of this scenario. Fig.
3(e) and Fig. 3(f) show an example of this scenario in
the two cities.

• Scenario III - Mixed traffic:
In reality, it is very likely that the daily traffic in an

urban area is mixed. In other words, it is composed of
both commuting traffic and random traffic. The former is
the commuters and the latter is generally new and random
traffic going through the area. Therefore, the purpose of
Scenario III is to simulate this more realistic scenario and
is a mixture of Scenario I and II. For simplicity, traffic
is mixed with an equal percentage of 50%, which results
in two groups of vehicles: 200 commuting vehicles and
200 random vehicles, in each test trace of Scenario III.
In addition to the mentioned traffic features in Scenario I
and II, this test scenario also differentiates the two vehicle
groups by their IDs (i.e., random vehicles do not use IDs
ranging from 0 - 199). An example of this scenario can
be referred to as the combination of Fig. 3(c) and 3(e) or
Fig. 3(d) and 3(f).

2) Traffic simulation: Each of the above scenarios has 200
test traces including departure test traces and return test traces.
These 200 test traces are organized in the order of departure-
return-...-departure-return during simulation for simulating
a complete workday in an urban area, though this is not
important for Scenario II that simulates completely random
traffic.

On the other hand, 200 test traces also aim to simulate 200
workdays and the simulation period in SUMO is between 8am
to 9am for departure trips and 5pm to 6pm for return trips. The
vehicles’ routes are defined by the tool duarouter and follow
the Shortest or Optimal Path Routing rule. They depart at the
maxSpeed and follow the default Car The Following Model is
used to set the maximum the safe speed in the sense of being
able to stop in time to avoid a collision. Other road behaviors
apply as well such as lane changing, acceleration/deceleration,
intersections, etc. Technical details about these settings can be
found in SUMO documentation1.

3) Network simulation: Discrete event-driven system sim-
ulation [28][14] is a common simulation method to use in
wireless networks including vehicular networks. It enables
simulation to perform through a series of events. Such discrete
events are generated from SUMO test traces as described ear-
lier, which include departure and arrival of vehicles, content
request, handover, and finishing of content consumption. A
complete cycle of the simulation is 200 test traces, each of
which is technically a workday. As this is an online learning

1https://sumo.dlr.de/docs/

process, the RSUs make predictions as they learn throughout
the simulation cycle and become increasingly knowledgeable
as the simulation runs. In addition, Table I summarizes the
important parameters used in traffic simulation and network
simulation.

TABLE I: Simulation Parameters

Parameter Description Value

αwin WoLF learning rate when winning 0.05
αlose WoLF learning rate when losing 0.5
ϵ ϵ-greedy exploration-exploitation 0.05
N No. of test traces 200
VC No. of Commuting Vehicles 200
VR No. of Random Vehicles 200
TS SUMO Simulation Time 1 hour

M No. of RSUs 32 (Las Vegas)
30 (Manchester)

ω Backhaul Link Rate 5Gbps
e Transmission rate 50Mbps
K Size of content database 30
Fc Fragment size 100MB

B. Performance Evaluation
Five proactive caching systems are studied to evaluate their

prediction performance:
• HCPC Vehicle-Centric System: The vehicle-centric vari-

ant of the hybrid cMAB system. It implements the
switching mechanism at the vehicle level. The window
size WS chosen for extracting the historical prediction
data is 20 in order to obtain sufficient past prediction
samples.

• HCPC RSU-Centric System: The RSU-centric variant of
the hybrid cMAB system. Different from HCPC Vehicle-
Centric system, it focuses the switching mechanism at the
RSU level. The window size WS chosen for extracting
the historical prediction data is 3, because it is sufficient
to obtain similar sample size with WS = 20 in the
Vehicle-Centric system.

• Previous-RSU cMAB-based Proactive Caching System:
This is the system that only uses the previous RSU as
the context in cMAB. Its superiority has been tested and
verified in the work [11]. In this paper, the WoLF variable
learning rate is further implemented in order to maintain
consistency with the HCPC system.

• CPT+ based Proactive Caching System: This system is
based on the sequence prediction algorithm Compact
Prediction Tree+ (CPT+). Different from the work [14],
we have adjusted the algorithm to be used in an online
mode. Briefly, a RSU trains its prediction tree model with
all the available vehicles’ data and when predicting the
next RSU for a vehicle, it matches all the past RSUs this
vehicle has connected and gives out the most possible
RSU (highest score). To some extent, CPT+ also makes
use of “context”.

• PPM based Proactive Caching System: This system im-
plements the first-order Prediction by Partial Matching
(PPM). It is a broadly used technique for context mod-
eling and prediction as in [17]. Again, we have adjusted
this technique to exploit online learning.
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(a) RSU and TAZ distribution in Las Vegas (b) RSU and TAZ distribution in Manchester

(c) Commuting traffic example in Las Vegas (d) Commuting traffic example in Manchester

(e) Random traffic example in Las Vegas (f) Random traffic example in Manchester

Fig. 3: Vehicle routes of different test scenarios in two urban areas: for clarity, the positions of RSUs in (c) - (f) are shown
in green dots. Their labels can be mapping to (a) and (b), respectively.
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Remark: For clarity, the above five systems are referred to
and denoted in the following figures as: HCPC Vehicle-
Centric, HCPC RSU-Centric, PrevRSU-cMAB, CPT+ and
PPM, respectively.

1) Evaluation metrics: The performance of proactive
caching system is assessed with cache hit ratio. For these
systems, cache hit ratio completely depends on how accurately
a learning RSU can predict or select the correct next RSU.
In other words, a selected action is considered correct if and
only if it matches the actual RSU that a vehicle transits
to. Therefore, we define the following metrics for system
evaluation:

• Cumulative Prediction Accuracy with Sliding Window:
Denoting the total number of predictions as Qprediction

i

and correct ones as Qcorrect
i of particular test trace i ∈ N .

A fixed sliding window sw is applied to the cumulative
accuracy. Thus, prediction accuracy PAn up till test trace
n ∈ N is defined as:

PAn =


∑n

i=1
Qcorrect

i∑n

i=1
Qprediction

i

, n ≤ sw∑n

i=n−sw+1
Qcorrect

i∑n

i=n−sw+1
Qprediction

i

, n > sw

2) Simulation results: We treat Las Vegas as our primary
city for simulation. Therefore, all the three scenarios have
been tested with the traffic data of Las Vegas. As the purpose
of using the Manchester city is to show the generalization
of the proposed system to different road layouts, only the
most detailed Scenario III is included to achieve this. In the
following, we demonstrate and analyze these results on a
scenario basis.
A) Scenario I - Commuting traffic

Fig. 4 demonstrates the prediction performance of the
five proactive caching systems under Commuting traffic
scenario in Las Vegas. As the traffic pattern of this
scenario focuses on purely commuting traffic, their routes
should be predictable. The accuracy of the two HCPC
systems that reaches nearly 95% after convergence further
validates this. The lost 5% accuracy results from ϵ-
greedy exploration algorithm where 0.05 is adopted. The
significant superiority of HCPC systems benefits from the
switching mechanism which guarantees a best accurate
action to be taken. It is obvious that the prediction
accuracy of both HCPC systems does not show clear
difference and again, this is due to 1) the nature of the
commuting traffic pattern in this scenario and 2) the intro-
duction of vehicle ID in dual-context cMAB algorithm.
After a certain period of learning (approximately 20 test
traces as depicted in Fig. 4), overall the RSUs in both
HCPC Vehicle-Centric and HCPC RSU-Centric tend to
finalize their decisions with the prediction of dual-context
cMAB.

They outperform the PrevRSU-cMAB system by 20%
and nearly 30% over the CPT+ system despite the fact
that it is experiencing a slow growing trend as the CPT+
model gets increasingly mature with more data being
used to establish its model. With this trend, we could
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Fig. 4: Overall Prediction Accuracy in Las Vegas -
Commuting Traffic Scenario

infer CPT+ may reach a similar level of performance as
HCPC systems perhaps after 1000 more test traces. Nev-
ertheless, this is also its limitation in terms of adaptability
and flexibility. The first-order PPM system performs the
worst because essentially it is the same to the baseline
Probability-based Proactive Caching System investigated
in [11] and therefore cannot break the intrinsic limit of a
certain scenario.

B) Scenario II - Random traffic
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Fig. 5: Overall Prediction Accuracy in Las Vegas - Random
Traffic Scenario

The performance of the systems under extreme Ran-
dom traffic in Las Vegas depicted in Fig. 5 shows obvious
degradation especially for cMAB-based systems. Recall
the traffic pattern in this is extremely random including
both randomness in routes and vehicle IDs. Due to this
nature, the HCPC systems always finalizes their predic-
tions with single-context cMAB because the accuracy of
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dual-context cMAB is constantly outperformed by single-
context cMAB. This makes both systems identical to the
PrevRSU-cMAB system that uses previous RSU only as
context. Despite this, they still outperform CPT+ and
PPM based ones. Such randomness in this scenario is also
reflected in the oscillations of the result curves, unlike a
much more smooth curve as in the purely commuting
scenario.

C) Scenario III - Mixed traffic
Prediction performance of the proactive caching sys-

tems in Las Vegas and Manchester under the mixed
scenario, is shown in Fig. 6 and Fig. 7 respectively.
HCPC Vehicle-Centric system outperforms other four
systems and shows similar performance of nearly 80%
accuracy in both cities. Therefore, the proposed HCPC
Vehicle-Centric system can be generalized and applicable
in various urban areas.
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Fig. 6: Overall Prediction Accuracy in Las Vegas - Mixed
Traffic Scenario

Compared to Commuting traffic and Random traffic
in Scenario I and II, its accuracy falls in between. One
reason for this is because of the co-existence of both
commuting traffic and random traffic. On the other hand,
it is in this relatively more realistic scenario that the pro-
posed HCPC Vehicle-Centric system shows its superiority
over its counterpart HCPC RSU-Centric system that has
70% of overall prediction accuracy. Thanks to its vehicle-
centric feature, most possible prediction is always made
for an individual vehicular user (most likely a commuter
vehicle) independent from other users. However, a RSU
in the HCPC RSU-Centric system may make a less
accurate prediction for a vehicle due to its RSU centric
feature. For instance, a vehicular user may benefit if the
RSU finalizes its prediction for this user with dual-context
cMAB but for historical reason, the RSU still believes the
prediction of single-context cMAB can benefit most of
users connecting to it. This is when inaccurate predictions
are made. In contrast, HCPC Vehicle-Centric system
avoids such situations by guaranteeing that the finalized
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Fig. 7: Overall Prediction Accuracy in Manchester - Mixed
Traffic Scenario

prediction is vehicle-specific. To further validate this
argument, Fig. 8 demonstrates the prediction accuracy of
all the commuting vehicles in the two HCPC systems in
Las Vegas and Manchester. For Las Vegas, the cumulative
accuracy of these vehicles in the HCPC Vehicle-Centric
system is the same as in purely commuting scenario and
is not affected by the random traffic, but they experience
degradation in the HCPC RSU-Centric system. Although
not shown, this is also a valid argument in the purely
commuting traffic in Manchester.
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Fig. 8: Prediction Accuracy of Commuting Vehicles Only in
Two Cities - Mixed Traffic Scenario

VI. CONCLUSION

Proactive edge caching is an effective approach to achieve
high quality of experience in vehicular networks by reducing
transmission delay. This paper addresses the problem of proac-
tive caching at the next RSU with a Hybrid cMAB Proactive
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Caching System that exploits two parallel underlying cMAB-
based prediction algorithms: Dual-context cMAB and Single-
context cMAB. The system allows RSUs to adaptively finalize
its predictions between two algorithms. The hybrid system is
further developed into two variants, Vehicle-Centric System
and RSU-Centric System, and their prediction performance
is evaluated by comparing with three other systems, namely
Previous-RSU cMAB, CPT+ and PPM, under three realistic-
like traffic scenarios in two urban areas of Las Vegas, USA
and Manchester, UK. Simulation results have shown the ex-
cellent performance of the proposed hybrid proactive caching
system. It has reached approximately 93% prediction accuracy
under the Commuting traffic scenario and the Hybrid Vehicle-
Centric System, in particular, still reaches nearly 80% accuracy
in the Mixed traffic scenario while keeping the excellent
prediction performance for commuting vehicles the same as
in the Commuting traffic scenario. The results of the two
cities demonstrate its superiority over the other three proactive
caching systems, as well as its adaptability and applicability
to different test scenarios and road layouts.
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