
A comparative study of pending event set implementations for PDEVS simulation
Romain Franceschini, Paul-Antoine Bisgambiglia, Paul Bisgambiglia

University of Corsica
UMR SPE 6134 CNRS, UMS Stella Mare 3460 TIC team

Campus Grimaldi, 20250 Corti
{r.franceschini,pa.bisgambiglia,bisgambi}@univ-corse.fr

Keywords: Discrete event simulation, DEVS, PDEVS,
DEVS-Ruby, Pending event set, PES, Future event set,
DEVStone, benchmark, comparison, performance analysis

Abstract
The choice of a particular event-list implementation can dra-
matically improve or reduce performance of a discrete event
simulation (DES). For more than 40 years, several data struc-
tures had been proposed to address this problem. We present
new empirical results using the parallel discrete event system
specification (PDEVS) formalism and a DEVStone bench-
mark. Similar analyzes were previously conducted, the last
one being published in 2007. This paper includes most recent
proposals, particularly the LadderQueue [TGT05], evaluated
using the DEVS-Ruby simulator.

1. INTRODUCTION
Discrete event systems (DES) represent many technolog-

ical and engineering systems such as communication net-
works, computer networks, manufacturing systems, trans-
portation systems, natural systems, and more. DES are driven
by events. These events have to be scheduled and sorted by
execution time. Large-scale models can be long to simulate
because there are many events to manage. Among the ac-
celeration methods (parallelization, etc.), we suggest to study
data structures to hold scheduled events. Our interest focuses
on DEVS (Discrete EVent system Specification) [ZPK00],
which is a formalism for modeling systems based on the DES
theory [CL99]. A Discrete Event System (DES) is a discrete-
state, event driven dynamical system in which the state space
is described by a discrete set, and states evolve in terms of
asynchronous occurrence of discrete events over time. In DES
theory, states, events and transition functions are defined by
the following tuple: M = 〈S,s0,λ,δ,Σ〉 where: S is the set
of states; Σ is the set of events containing detectable (i.e.
an event is detectable if it produces a measurable change in
the system output) and undetectable events, which are gener-
ally fired asynchronously; δ : S×Σ→ S the state transition
function; λ : S×Σ→ Σd the output function, where Σd and
Σud the set of detectable and undetectable events, respectively
Σ = Σd ∪Σud ; and s0 is the initial state vector. Many model-
ing approaches of DES have been proposed and developed,
including the DEVS formalism.

The DEVS formalism allows composition of reusable
models. It is an open, flexible formalism with a great capacity
for extension. Recent studies have shown that DEVS may be
considered as a multi-formalism because it allows encapsula-
tion of other modeling formalisms. This capacity for opening
and extension is very interesting, as the representation of the
various entities which constitute a complex system can be ac-
complished by using the most appropriate methods. In DEVS,
the number of models and the complexity induced by their
couplings are an issue in terms of performance, particularly
because of the events exchanged. Generally, the way events
are handled in DES can dramatically improve or reduce sim-
ulation performance. This problem is commonly known as
the pending event set problem (PES).

The pending event set (PES) problem is one of the oldest
and most important problems in the field of discrete event
simulation [HU07]. A great research effort was made dur-
ing the last 40 years to find the most appropriate data struc-
tures to hold pending events, through comparative studies
and new original data structures claiming amortized con-
stant time complexity. Several interesting studies comparing
priority queue data structures available were already con-
ducted, the first being published in [VD75]. Other compar-
isons appeared as new algorithms were proposed [MS81,
Jon86, NM93, RA97] and the most recent study [HU07] was
for the first time realized with the PDEVS formalism in mind.
In this paper, we present new experimental performance re-
sults using two methods. An experiment model measuring
performance of queue operations inspired by a PDEVS sim-
ulation and real PDEVS-based simulation using the DEV-
Stone [WGGA11] benchmark and the DEVS-Ruby simula-
tor [FBBH14]. We include most recent proposals, particularly
the LadderQueue [TGT05].

The remainder of this paper is structured as follows. Sec-
tion 2 describes the pending event set problem and several
priority queue data structures suitable for implementing the
pending event set. Section 3 presents performance measure-
ment techniques and tools used to generate experimental re-
sults. Conclusions are found in section 4.

2. THE PENDING EVENT SET
In this section, we describe the pending event set problem

in discrete event simulation and we give an overview of pri-

ority queues for implementing the pending event set.

2.1. Problematic
In discrete event simulations, a system is represented by

one or several entities influencing at each other through mes-
sages, or scheduled events. The current simulation time of the
system depends on those events. As the simulation advances,
the clock is skipped to the timestamp of the next scheduled
event to occur. The pending event set (PES) represent the set
of all future events to be evaluated, some of these pending
as a result of previously simulated events. Regardless of the
point in time at which events are scheduled, they are executed
in a strict order of precedence. The way the pending event set
performs these insertion and deletion operations has a crucial
impact on the overall simulation execution time, especially as
systems become more complex.

Typically, the future event set is represented as a priority
queue data structure with two basic operations: enqueue and
dequeue. The first insert an event to the set and the latter re-
move and returns the event with the highest priority (the lower
the timestamp is, the higher is the priority). Note that if sev-
eral events scheduled at the same time, all are removed. But
several discrete event simulation systems such as the DEVS
formalism requires another important operation: delete. In-
deed, if the execution of one event can involve the scheduling
of any number of events, it also can lead to the cancellation
of a queued pending event, hence the delete operation.

For better understanding, consider how PDEVS models are
simulated. In PDEVS, models report the next timestamp at
which their δint internal transition should be activated through
the ta (time advance) function. But before executing the inter-
nal transition, the simulator will give a chance to the model
to throw some output to its influencees by executing the λ

function. When the influenced model receives input through
the δext external transition, it leads to a new state and maybe
a new timestamp of activation and thus, a new call of the ta
function. If a model was scheduled for the current simulation
time t its the δcon confluent transition that is activated (which
default behavior is to activate δint and δext sequentially) to
give a chance to the model to handle the conflict. Executing
a δ transition (δint or δext or δcon) function at time t will re-
sult in a change of state from St to St+ta. Because a δext and
a δcon transition can update the timestamp of next activation
of a model while it was already scheduled (at t or further in
the future), the model need to be adjusted (or deleted and re-
inserted) in the event set.

Among a wide range of general-purpose priority queue al-
gorithms available, many recent publications proposed pend-
ing event set algorithms alternatives for discrete event simu-
lation. The next subsection gives an overview of commonly
used priority queues along with these new suggested algo-
rithms.

2.2. Priority queue data structures
A priority queue differs from a regular queue in that each

element is ordered by its associated priority. They are used
in a wide range of applications such as bandwidth manage-
ment, operating systems, data compression and discrete event
simulation. There are a variety of ways to implement a pri-
ority queue, more or less naively. Here we present the pri-
ority queue data structures that we implemented in DEVS-
Ruby [FBBH14]. Table 1 shows operations complexity in big
O notation for each structure. We specify expected and worst
amortized performance if available or worst case performance
in each column. Excepted for the most inefficient ones based
on simple lists, they fall in two different groups: tree based or
multi-list based algorithms. The first includes priority queues
based on Binary Heap, Fibonacci Heap, Pairing Heap, Splay
Trees [ST85] and the latter includes Calendar Queue [Bro88],
Lazy Queue [RRA91], Ladder Queue [TGT05].

Table 1. Worst case or expected and worst amortized perfor-
mance of listed priority queues in Big O notation.

Structure enqueue dequeue delete
MinimalList O(1) O(n) O(n)
SortedList O(n

log(n)),
O(n2)

O(1) O(log(n))

BinaryHeap O(1),
O(log(n))

O(log(n)) O(log(n)),
O(n)

SplayTree O(log(n)) O(1),
O(log(n))

O(log(n)),
O(n)

CalendarQueue O(1), O(n) O(1), O(n) O(1), O(n)
LazyQueue O(1), O(n) O(1), O(n) O(1), O(n)
LadderQueue O(1), O(n) O(1), O(n) O(1), O(n)

2.2.1. Simple priority queues
Sorted List Elements in the sorted list are kept sorted.
When enqueue, the element is appended is a sorted fashion.
Depending on the sorting algorithm, this operation can be
done in O(n log(n)). The dequeue operation is constant and
the delete operation can be done in O(log(n)) using a binary
search algorithm, since the list is always sorted.

Minimal List The minimal list is a simple list where ele-
ments are kept unsorted. The element with the highest priority
is cached. The dequeue operation has extremely bad perfor-
mances (O(n) complexity) because the entire list has to be
iterated in search of the new highest priority.

2.2.2. Tree oriented priority queues
Binary Heap A binary heap is binary tree structure which
satisfies the heap ordering property. The element with the

highest priority is always stored at the root. It is a com-
mon implementation of a priority queue that use only a sin-
gle list as an internal representation. Its performance offers a
O(log(n)) complexity for all operations.

Splay Tree The Splay Tree is a self-adjusting balanced bi-
nary search tree invented by D. Sleator and R. Tarjan [ST85]
back in 1985. It is essentially a binary tree with particular ac-
cess and update rules that allows recently accessed elements
being quick to find. Common operations are combined with
the splay operation, which consist in placing a targeted el-
ement to the root of the tree by re-arranging the tree while
maintaining elements ordered. The shape of splay trees is not
constrained, and varies based on what lookups are performed
unlike other trees such as the AVL tree, which structure is
constrained at all times so that the height of the tree never
exceeds O(log n).

2.2.3. Multi-list oriented priority queues
Calendar Queue Suggested in 1988 by Brown [Bro88], the
Calendar Queue was not the first multi-list structure to appear.
The idea of dividing the queue elements appeared with the
Two List [BHP81], which holds elements with highest prior-
ity into a short sorted list and keeps elements with lower pri-
ority into an unsorted list. The Calendar Queue was inspired
by the way humans solves the problem of ordering a future
event set with desk calendars. It is essentially composed of
an array of buckets, each bucket containing an ordered list
of events that fall within a particular time gap. The time in-
terval associated to each bucket represent a day whereas the
array of total buckets represent the time interval of a year.
Figure 1 shows its structure. During enqueue, an index in-
dicating which bucket the event belongs to is computed. To
dequeue an event, the bucket from which the last event was
dequeued is checked to find the next event with the highest
priority for the current year. If the bucket is empty or full of
events scheduled for future years, next buckets are checked
until the highest priority is found. If no more event belongs
to the current year, the next year starts and the next event is
re-searched. The calendar queue try to keep a reasonable size
for its buckets. When needed, that is if the queue size exceeds
an upper threshold or falls below a lower threshold, a resize
operation is triggered. The resize operation double or halve
the number of days and re-order all elements. This operation
has high performance costs (O(n) complexity), but is amor-
tized over time. The main disadvantage of this queue is its
sensitivity to skewness and peaks in priority distribution.

Ladder Queue The Ladder Queue [TGT05] is the most re-
cent, especially designed priority queue structure for manag-
ing the pending event set that achieves O(1) amortized per-
formance. Its name was inspired from its multi-list structure

...
Figure 1. Representation of the calendar queue structure

recalling a ladder and its rungs. The structure divide elements
into three parts:

1. Bottom, a list which is kept sorted and holds all events
scheduled to a near future.

2. Ladder, the middle layer which consists in several rungs
of buckets where each bucket contains an unsorted list.
Events in this tier of the queue are considered scheduled
to a far future. They are not sorted but grouped with each
other based on the time-gap.

3. Top, a simple unsorted list which serves as a buffer for
events scheduled into a very far future.

It strength comes from two ideas: (1) the event sorting pro-
cess is deferred until absolutely necessary and (2), it adapts
its structure to event distribution. Events are sorted only when
they are close to being dequeued, when transferred to Bot-
tom. This means that most events are simply either appended
to the Top structure or appended into buckets of the Ladder
structure without sorting. The number of rungs in the Ladder
tier varies depending on event distribution, each rung hav-
ing a different granularity of inter-event time-gap. This way,
the queue is much less sensitive to skewness or peaks in the
priority distribution. Figure 2 shows a representation of its
structure.

...

...

...

... ...

Top

Ladder

Bottom

Rung 1

Rung 2

Figure 2. Representation of the ladder queue structure

Another similar structure can be found in the literature,
named the Lazy Queue [RRA91]. It is also organized as three
tiers, holding events in a similar fashion but the middle tier is

simpler and algorithms are different. [RA97] showed that it
performs similarly or worse (depending on the distribution)
than the Calendar Queue, so we will not include it in our per-
formance analysis.

3. COMPARISON
In this section we present results of the performance mea-

surements of each PES implementation. A first subsection de-
tails our methodology and test environment while a second
subsection present the actual results.

3.1. Methodology
To study a priority queue in the context of the PDEVS

formalism, it is important to find a method which covers as
closely as possible all practical aspects of a discrete event
simulation. If we refer to the most used methods in the lit-
erature for similar comparative studies we count several ap-
proaches:

1. the hold model introduced in 1975 [VD75] and com-
pleted by [Jon86] take a basic approach. Each event pro-
cessed leads to only one event being scheduled. With
an initially randomly populated event queue, an event is
dequeued followed by an enqueue of a new event until
reach a given number of steps.

2. the up/down model suggested by [RRA91] takes a dif-
ferent approach. Events are enqueued until reach a given
queue size and then dequeued until the queue is empty.

3. a variant of the hold model imitating a PDEVS simula-
tion, proposed by [HU07] consist in dequeuing all events
scheduled for the same time at once instead of dequeu-
ing a unique event. Then, an equal number of new events
will be enqueued. Finally, a random number (between 0
and 50) of events in the queue are adjusted (their priority
is updated to a new one). These operations are repeated
until a given number of steps.

With the hold model, the size of the queue remains the same
during the complete test. Conversely, the up/down model
grows and shrinks at each step of the test. Theoretically, the
static nature of the hold model is not an issue for PDEVS sim-
ulation as there is always one event per model. But one model
can be scheduled to occur at infinity, and as some structures
such as the calendar queue or the ladder queue are disturbed
by an infinite priority, we don’t add them to the PES. Fur-
thermore, if the model structure is static in PDEVS, some ex-
tensions (such as [Bar95]) allows a dynamic structure. Con-
sequently, the queue size can change in a PDEVS simulation
depending on the implementation. This does not mean the up-
/down model is ideal either because as we said in section 2.,
PDEVS requires a PES that support adjusting an event and

both the hold model and the up/down model are not consid-
ering it. The latter approach, however, does and is the closest
to a real PDEVS based simulation as Himmelspach [HU07]
concludes. From the three methods presented, we use this
one, along with an original new one, based on DEVStone.

3.1.1. DEVStone
DEVStone [WGGA11] is a generic benchmark used to

study the performance of DEVS and PDEVS based simu-
lators. It is able to generate automatically a suite of models
with varied structure and behavior. It is designed to evaluate
efficiency of several (P)DEVS simulation engines and differ-
ent software versions of the same simulator. We propose to
present the results obtained with DEVStone to compare the
performances of all pending event set. We measure elapsed
wall clock time in seconds for a simulation involving a DEV-
Stone suite of models. Events traverse all models of the gen-
erated structure with a fixed depth (number of nested coupled
models in the hierarchy) of 2, HI coupling type (a type of
models interconnections defined in [WGGA11]) and δ tran-
sitions times set to 0 seconds. The varying parameter is the
width (number of components in each coupled model).

3.1.2. Distribution
Among the variables that can affect the performance of a

priority queue, the initial and increment priority distribution
is a crucial one. We had to adapt DEVStone so it could sup-
port different distributions. Given as a parameter, the distribu-
tion is used to compute the return value of the time advance
(ta) function of all generated atomic models. Table 2 lists the
different distributions we used in our performance analysis
and that are commonly used in the literature to compare pri-
ority queues with the expression used to compute the random
value. The differences perceptible between two distributions
shape are important because a particular skewness or peak
can expose a weakness in a priority queue implementation.

Table 2. Priority increment distributions
Distribution Expression
Constant 1
Uniform (0, 1) rand
Uniform (0.9, 1.1) 0.9+0.2∗ rand
Exponential −ln(rand)
Triangular (0, 1.5) 1.5∗ sqrt(rand)
Neg Triangular (0, 1000) 1000∗ (1− sqrt(1− rand)
Bimodal 0.95238∗rand+rand < 0.1 ?

9.5238 : 0
Camel (2, 0.8, 0.2) cf. [RRA91]

3.1.3. Experimental framework
The environment used to run our benchmarks is based on

an Intel(R) Core(TM) i5-3360M CPU @ 2.80GHz (3MB L2
cache), 16 GB (2 x DDR3 - 1600 MHz) of RAM, a Toshiba
MK5061GS hard drive, running on Ubuntu 14.04 (64bit). Re-
garding software, the DEVS-Ruby simulator in its 0.6 ver-
sion running on the official Ruby 2.2.0 VM. DEVS-Ruby
[FBBH14] is a library developed at University of Corsica that
allows formal specifications of classical DEVS and parallel
DEVS models.

For our performance analysis, we ran two different bench-
marks. In the first, we run a DEVStone simulation for each
priority queue listed in section 2. and for each of the eight
distribution. We measure wall clock time in seconds with a
varying width and a fixed depth of 2, HI coupling type and
δ transition times set to 0 seconds. The second benchmark is
based on the method suggested by [HU07].

3.2. Performance analysis
3.2.1. DEVStone experiment
Unsurprisingly, the results of the two most naive imple-

mentations (Figures 3 and 4) are far behind other tree and
multi-list based queues. The sorted list forms the performance
lower bound. We should emphasize that it could perform bet-
ter if we used a more stable sorting algorithm. Our imple-
mentation use a quick sort algorithm, which is known to have
a worst case performance of O(n2) especially when the ele-
ments are almost sorted, but it could never exceed O(n log(n))
a performance. The minimal list have slight better results
than the sorted list but remains extremely inefficient. It worth
noted that concerning the constant distribution, which rep-
resent a discrete time simulation (which is a special case of
DES), the minimal list does not offer the worst results.

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 3. Wall clock time of a DEVStone simulation using
the Minimal List based PES

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 4. Wall clock time of a DEVStone simulation using
the Sorted List based PES

At first sight, other queues (Figures 5, 6, 8 and 7) seems
to be on an equal footing although the advantage goes to the
multi-list queues family. The binary heap (Figure 6) is slightly
better than the splay tree (Figure 5). Between the ladder queue
(Figure 7) and the calendar queue (Figure 5), the ladder queue
is fastest. If our DEVStone benchmark offers a good overview
of pending event set performances since it is based on a plain
and compliant PDEVS simulator, the results are not offering
major indications concerning the behavior of each scheduler.

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 5. Wall clock time of a DEVStone simulation using
the Splay Tree based PES

3.2.2. PDEVS model experiment
The second benchmark, however, reveals much more dif-

ferences, first between multi-list (Figures 11 and 12) and tree
based (Figures 9 and 10) priority queues. The splay tree has

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 6. Wall clock time of a DEVStone simulation using
the Binary Heap based PES

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 7. Wall clock time of a DEVStone simulation using
the Ladder Queue based PES

more performance costs with small queue sizes compared to
the binary heap. Globally performances remains on the same
scale but the splay tree is more sensitive to variations in the
distribution.

Which is more surprising on the multi-list queues side is
that on this benchmark, the calendar queue has lower ac-
cess times than the ladder queue unlike the results of our first
benchmark. We explain this because the initialization time is
not measured in the original PDEVS benchmark method. Yet,
this measure is important because the calendar queue adapt its
internal structure also during enqueue operations while the
ladder queue does it mostly over dequeue operations. Two
new figures (13 and 14) are showing ladder queue and calen-
dar queue results for the PDEVS benchmark but with init time
taken into account. This clearly expose superiority of the lad-

 0

 5

 10

 15

 20

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

devstone width

uniform(0,1)

constant

biased(0.9,1.1)

exponential

bimodal

triangular

neg triangular

camel

Figure 8. Wall clock time of a DEVStone simulation using
the Calendar Queue based PES

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 9. Runtime results of the Splay Tree based on the
PDEVS benchmark method

der queue. It is faster and more stable than the calendar queue,
which performances are depending on priority distribution.

4. CONCLUSIONS
This work present a qualitative study based on the perfor-

mance of several data structures suitable for the implemen-
tation of a pending event set. This issue is essential in the
context of event-driven simulation. We realized two different
experiments found in the literature to compare our priority
queue implementations within our (P)DEVS compliant sim-
ulator DEVS-Ruby. Our results shows that the Ladder Queue
is the fastest and most reliable implementation.

As a future work, it would be interesting to complete this
study with additional data structures such as the Dynamic
Calendar Queue [OA99], the Lazy Queue [RRA91], or the

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 10. Runtime results of the Binary Heap based on the
PDEVS benchmark method

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 11. Runtime results of the Ladder Queue based on
the PDEVS benchmark method

P-Tree [AN05]. We also consider running additional bench-
marks with varying DEVStone couplings and specific simu-
lation models to feed this study.

REFERENCES
[AN05] Katerina Asdre and Stavros D. Nikolopoulos.

P-tree structures and event horizon: Efficient
event-set implementations. In Proceedings
of the 37th Conference on Winter Simulation,
WSC ’05, pages 2700–2709, Orlando, Florida,
2005. Winter Simulation Conference.

[Bar95] Fernando J. Barros. Dynamic structure discrete
event system specification: A new formalism for
dynamic structure modeling and simulation. In

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 12. Runtime results of the Calendar Queue based on
the PDEVS benchmark method

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 13. Runtime results of the Ladder Queue based on
the PDEVS benchmark method with PES init time

Proceedings of the 27th Conference on Winter
Simulation, WSC ’95, pages 781–785, Wash-
ington, DC, USA, 1995. IEEE Computer Soci-
ety.

[BHP81] John H. Blackstone, Jr., Gary L. Hogg, and
Don T. Phillips. A two-list synchronization pro-
cedure for discrete event simulation. Commun.
ACM, 24(12):825–829, December 1981.

[Bro88] R. Brown. Calendar queues: A fast 0(1) priority
queue implementation for the simulation event
set problem. Commun. ACM, 31(10):1220–
1227, October 1988.

[CL99] C. G. Cassandrass and S. Lafortune. Introduc-
tion to Discrete Event Systems. 2nd ed. 2008.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

w
al

l
cl

o
ck

 t
im

e
(s

ec
s)

queue size

uniform

camel

triangular

neg triangular

bimodal

exponential

biased

Figure 14. Runtime results of the Calendar Queue based on
the PDEVS benchmark method with PES init time

Kluwer Academic Publishers, springer edition,
1999.

[FBBH14] R. Franceschini, P.-A. Bisgambiglia, P. Bisgam-
biglia, and D. R. C. Hill. DEVS-Ruby: a Do-
main Specific Language for DEVS Modeling
and Simulation (WIP). In DEVS 14: Proceed-
ings of the Symposium on Theory of M&S, pages
393–398. SCS International, April 2014.

[HU07] Jan Himmelspach and Adelinde M. Uhrmacher.
The event queue problem and PDevs. In Pro-
ceedings of the 2007 Spring Simulation Multi-
conference - Volume 2, SpringSim ’07, pages
257–264, San Diego, CA, USA, 2007. Society
for Computer Simulation International.

[Jon86] Douglas W. Jones. An empirical comparison of
priority-queue and event-set implementations.
Commun. ACM, 29(4):300–311, April 1986.

[MS81] William M. McCormack and Robert G. Sar-
gent. Analysis of future event set algorithms
for discrete event simulation. Commun. ACM,
24(12):801–812, December 1981.

[NM93] Stavros D. Nikolopoulos and Roderick
MacLeod. An experimental analysis of
event set algorithms for discrete event simula-
tion. Microprocessing and Microprogramming,
36(2):71–81, March 1993.

[OA99] SeungHyun Oh and JongSuk Ahn. Dynamic
calendar queue. In Simulation Symposium,
1999. Proceedings. 32nd Annual, pages 20–25,
1999.

[RA97] Robert Ronngren and Rassul Ayani. A com-
parative study of parallel and sequential priority
queue algorithms. ACM Trans. Model. Comput.
Simul., 7(2):157–209, April 1997.

[RRA91] Robert Ronngren, Jens Riboe, and Rassul
Ayani. Lazy queue: An efficient implementation
of the pending-event set. In Proceedings of the
24th Annual Symposium on Simulation, ANSS
’91, pages 194–204, Los Alamitos, CA, USA,
1991. IEEE Computer Society Press.

[ST85] Daniel Dominic Sleator and Robert Endre Tar-
jan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, July 1985.

[TGT05] Wai Teng Tang, Rick Siow Mong Goh, and
Ian Li-Jin Thng. Ladder Queue: An O(1) Pri-
ority Queue Structure for Large-scale Discrete
Event Simulation. ACM Trans. Model. Comput.
Simul., 15(3):175–204, July 2005.

[VD75] Jean G. Vaucher and Pierre Duval. A compar-
ison of simulation event list algorithms. Com-
mun. ACM, 18(4):223–230, April 1975.

[WGGA11] G. Wainer, E. Glinsky, and M. Gutierrez-
Alcaraz. Studying performance of DEVS
modeling and simulation environments using
the DEVStone benchmark. SIMULATION,
87(7):555–580, July 2011.

[ZPK00] B. P. Zeigler, H. Praehofer, and T. G. Kim. The-
ory of Modeling and Simulation, Second Edi-
tion. 2000.

Acknowledgements
The present work was supported in part by the French Min-
istry of Research, the Corsican Region and the CNRS.

Biography
Romain FRANCESCHINI is a PhD student at the University
of Corsica (UCPP). He received a MSc in CS in 2013. His
research interests include multi-agent systems, discrete event
systems (DEVS) and simulation.

Paul-Antoine BISGAMBIGLIA is an Associate Professor
at the UCPP. His research interests include complex sys-
tems, fuzzy systems, multi agent systems, discrete systems
(DEVS) and simulation. His web page is http://paul-antoine-
bisgambiglia.univ-corse.fr/.

Paul Antoine BISGAMBIGLIA is full Professor at the UCPP.
His research activities concern the techniques of modeling
and simulation of complex systems and the test of systems
described at high level of abstraction.

	Introduction
	The Pending Event Set
	Problematic
	Priority queue data structures
	Simple priority queues
	Tree oriented priority queues
	Multi-list oriented priority queues

	Comparison
	Methodology
	DEVStone
	Distribution
	Experimental framework

	Performance analysis
	DEVStone experiment
	PDEVS model experiment

	Conclusions

