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ABSTRACT

System Entity Structures (SES) are used to define families of systems. In this context they are employed in
combination with a model base (MB) to describe a set of simulation models. Using a framework, simulation
models are generated from the SES/MB in a goal-oriented manner, executed and their results analyzed.
The entire process is automated, iterative and reactive. A concrete system variant in the family of systems
is derived by pruning an SES. For the process of automated model generation, it is necessary to provide
automatic pruning mechanisms. Especially for some types of nodes comprised in an SES, automatic pruning
is a big challenge. Here, the challenges that arise when pruning SES containing hierarchies of multi-aspect
and specialization nodes are analyzed and a solution is proposed.

Keywords: System Entity Structures, automated pruning, restructuring of SES.

1 INTRODUCTION

Variability modeling can be seen as an approach to describe more than one system configuration. A system
configuration is characterized by a specific system structure and parameterization of its components. Ac-
cording to Capilla, Bosch, and Kang (2013), a software variability model has to describe the commonality
and variability of a system at all stages of the software lifecycle. In simulation engineering, the problem of
variability modeling is known from the eighties. One of the first high level approaches for variability mod-
eling was introduced with the System Entity Structure (SES) by Zeigler (1984) and is continuously further
developed to this day (Rozenblit and Huang 1991; Zeigler and Hammonds 2007; Zeigler and Sarjoughian
2013; Santucci, Capocchi, and Zeigler 2016; Schmidt 2019). The SES describes a set of system configu-
rations. It was early connected with a model base (MB) organizing basic models which describe dynamic
behavior (Rozenblit and Zeigler 1993; Zeigler, Kim, and Praehofer 2000). With the SES/MB approach a set
of simulation models (SM) for a family of systems can be generated.

An SES is represented by a tree structure comprising entity nodes, descriptive nodes and attributes. Entity
nodes describe an object of the real or imaginary world. Descriptive nodes describe the relations among
at least two entities and are divided into aspect, multi-aspect and specialization nodes. An aspect node
represents the composition of an entity. The multi-aspect node is a special aspect node and describes the
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decomposition of an entity into several entities of the same type. The specialization node describes the
taxonomy of an entity. Descriptive nodes can specify variation points in context of variability modeling
using specific rules.

In engineering, simulation of a system to find a best design is a common approach (Maria 1997). In many
engineering problems a huge number of different design variants need to be examined, e.g. in the automo-
tive sector (Oster 2012; Grönniger et al. 2014). Models in this field usually follow a modular-hierarchical
structure. Due to the high number of variants the modeling as well as the execution of simulation experi-
ments is a time consuming, error prone, and thus expensive process. Considering e.g. a control development
there can be a fairly high number of different system structures and controller configurations to achieve an
optimal design. The variety of different system structures and parameter settings can be coded in an SES
and the dynamic behavior can be implemented in basic models that are organized in an MB. However, with
the increasing complexity and variety of technical systems, the need for an automated search for the best
system design increases.

The derivation of one single system configuration coded in an SES is called pruning. The resulting design
describing a single system configuration comprising structure as well as parameters settings is called Pruned
Entity Structure (PES). During pruning all variation points in the SES need to be resolved. The pruning
can be done interactively or automated. When doing the pruning interactively the user needs to have the
knowledge on how to find decisions at the variation points. Pruning an SES interactively means to manually
decide at each variation point to find a certain system configuration. This is a time intensive and error-prone
process which is hard to carry out (Zeigler and Sarjoughian 2013). Thus, the automation of the pruning
process is desirable. One approach for automated pruning is the enumerative pruning as described in Zeigler
and Sarjoughian (2013). When following the approach of enumerative pruning all PES coded in the SES
are produced once. Due to the high number of variants in engineering problems the interactive pruning is
often not feasible, while enumerative pruning can be neglected since this approach is not goal-directed. A
goal-directed automation of the pruning and model building process requires an extension of the SES/MB
approach. Knowledge on how to find decisions to resolve the variation points during pruning needs to be
defined before starting the pruning process. In Zeigler and Sarjoughian (2013) the suggestion is made to
specify rules for pruning in a script. Another approach is the extension of the SES with features to specify
all knowledge necessary for automatic pruning in the SES as suggested in Pawletta et al. (2016). This paper
builds on these extended features. In Deatcu et al. (2018) some basic design patterns on how to construct
SES and prune them automatically are evaluated. However, SES composed of hierarchical multi-aspect
nodes and multi-aspect nodes in combination with specialization nodes are not studied.

Multi-aspect nodes and their combination with specialization nodes provide a powerful modeling mecha-
nism. However, this can lead to problems regarding an automated, goal-oriented pruning of SES. A sys-
tematic study of possible problems is the focus of this paper. Prior to this, Section 2 briefly introduces the
Extended SES/MB (eSES/MB) framework to promote the understanding of automated, goal-oriented model
generation. Section 3 then studies step-by-step modeling with multi-aspect nodes and hierarchies of multi-
aspects in combination with specializations. Problems of such SES structures regarding automated pruning
are analyzed and possible solutions are proposed. Finally, in Section 4, reference is made to some other
related work, followed by a conclusion.

2 EXTENDED SES/MB FRAMEWORK

In Zeigler, Kim, and Praehofer (2000) a general framework for the SES/MB approach was introduced. In the
modeling phase a set of system configurations for a family of systems is coded as an SES or in a set of SES,
which can be merged according to Zeigler and Hammonds (2007). The system behavior is mapped in basic
models, which can be composed in a modular-hierarchical manner. The basic models are organized in an
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MB. In addition, the framework defines a pruning method for deriving a single system configuration from
an SES. The resulting structure is a PES which contains all information necessary for model generation.
Based on the configuration information in the PES and basic models from the MB a simulation model (SM)
is generated by a build method.

The extended SES/MB (eSES/MB) framework, as depicted in Figure 1, was introduced in Pawletta et al.
(2016) and Schmidt, Durak, and Pawletta (2016) for the automation of goal-directed simulation experi-
ments using different system configurations. That means, experiments with different system structures and
parameterizations of components can be defined, carried out, and evaluated automatically.

Figure 1: Extended SES/MB framework based on Pawletta et al. (2018).

The main objective of the classic SES/MB framework is an interactive model generation process. Its general
structure corresponds with the Model Generation component in Figure 1. The definition of experiments and
the simulation of generated models are not covered in the classic SES/MB framework and are first introduced
with the eSES/MB framework. The extended framework requires extensions of the SES approach (eSES),
of which the main ones will be discussed briefly. Although reference is made to eSES below, the term
SES will continue to be used for linguistic simplification. The integration of the SES/MB approach into
an infrastructure for automated simulation experiments requires an interface to the SES and its methods to
derive goal-driven system configurations and to generate SM. The interface to the SES is established by a
set of variables with a global scope, the SES variables (SESvar). In addition, global functions can be defined
on the SES to allow the definition of procedural knowledge. They are called SES functions (SESfcn). Some
types of variability, such as dynamic coupling relations of components, can be described more easily with
SESfcns (Folkerts et al. 2019). For automatic pruning, selection rules at descriptive nodes need to be
defined, such as aspectrules for aspect and multi-aspect siblings or specrules at specialization nodes. Like
all other node attributes of the SES, the selection rules can use SESvars and SESfcns to specify variable
rules. Current values must be assigned to the SES variables before pruning. SES function calls to calculate
variable node attributes are executed during pruning. A more detailed explanation of the SES extensions
can be found in Deatcu et al. (2018) and Folkerts et al. (2019).

During the modeling phase the user specifies a set of system configurations in the SES and creates a sim-
ulator specific MB. Moreover, the user has to specify the overall goal of an experiment and the logic for
the Experiment Control (EC), which governs the automated, goal-oriented experimentation process. In the
execution phase, an experiment cycle starts with the assignment of current values to the SESvars by the EC.
Then, the model generation part derives a certain system configuration as a PES and generates an SM. The
EC optionally adds execution parameters to the SM and starts the simulation execution by the EU. The EU
controls the simulation execution in a target simulator. The results of the execution process are returned
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to the EC, where they are evaluated. Based on the result of evaluation, the EC reactively decides whether
a further experiment cycle is started or whether the current experiment is terminated. Prototypes of the
eSES/MB framework were implemented using MATLAB (Pawletta et al. 2016) and the Python language
(Folkerts et al. 2019).

Methods for automatic pruning of SES are a crucial part in the eSES/MB framework and a set of arising
problems for complex hierarchies are discussed in this paper.

3 MODELING AND PRUNING OF SES WITH MULTI-ASPECT NODES

Multi-aspect nodes and their combination with specialization nodes provide powerful mechanisms for vari-
ability modeling of system configurations. However, structures with multi-aspect nodes and succeeding
specialization nodes or with several hierarchical multi-aspect nodes in a path have proved to be hard to be
pruned automatically. Multi-aspect nodes define an attribute number of replications, named numRep, which
specifies how many incarnations of the succeeding entity have to be generated. In contrast to the other de-
scriptive nodes, pruning results in a tree expansion. During pruning, at a multi-aspect node parts of the tree
are not cut away, but the tree is expanded by the number of generated children. In Zeigler and Hammonds
(2007) it was proposed to restructure an SES in order to avoid hierarchies of multi-aspects or their combi-
nation with specializations. Restructuring an SES means to find a tree structure that describes the same set
of system configurations. The restructured SES might be pruned more easily. However, when restructur-
ing the SES new attributes may be necessary due to the changed structure. Automated restructuring in the
context of automated pruning is difficult, because it is not specified how values are to be assigned to the
new additional attributes. In the following subsections solutions for an automated pruning of SES trees with
hierarchical multi-aspects or combinations of multi-aspects with specializations are discussed. To illustrate
this, an artificial example without reference to the system simulation is used and extended step by step. The
term pool is subsequently used for a related set of resources, such as a set of computers in a laboratory.
Consequently, the term pools refers to a set of pools.

3.1 Single Multi-Aspect

In Figure 2 the simplest case of an SES with a single multi-aspect node is depicted. The SES specifies a
set of systems with a varying number of pools. The root entity pools is followed by the multi-aspect node
poolsMASP with the attribute numRep = NumPools, which describes the varying number of pools. In this
example, the numRep attribute is set by the SESvar NumPools, which defines the input interface of this SES.
According to the Semantic Condition the SESvar NumPools has to be element of N. The multi-aspect node
is followed by the entity pool. This entity represents a kind of class from which replications are generated
during pruning. Due to this property, the entity following a multi-aspect is referred as the generating entity in
Zeigler and Hammonds (2007). We propose that in the context of automatic pruning an attribute beginning
with an underscore and followed by the name of the entity is added to a generating entity, in this case the
attribute is _pool. The value of this attribute remains undefined in the SES. The reason for introducing this
underscore attribute is pointed out in the next subsections.

Before pruning, values must be assigned to all SESvars of the input interface. In the example in Figure 2,
the constant value two is assigned to the SESvar NumPools. Pruning a multi-aspect node, a number of
entities according to the numRep attribute is created and the multi-aspect is converted to an aspect node.
Accordingly, the PES in Figure 2 describes a system configuration pools consisting of two subpools, named
pool_1 and pool_2. Additionally, the number of each created entity is assigned to its attribute _pool.
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Figure 2: SES with multi-aspect and a possible PES.

3.2 Multi-Aspect with Succeeding Specialization

In this subsection the example from Section 3.1 is expanded by a further layer. With reference to the
considered example, an entity pool shall be of type desktop or type notebook. Therefore, as depicted in
Figure 3, the SES additionally specifies a specialization node poolSPEC, which has the entities notebooks
and desktops. While the numRep attribute at the multi-aspect poolMASP is defined by the SESvar NumPools
as before, the specialization poolSPEC defines a specrule using an SESfcn named fun. The SESfcn defines
the selection depending on the additional SESvar Types and the attribute _pool at the generating entity pool.
According to the Semantic Condition the SESvar Types is a vector with elements ’nb’ or ’dt’ and it needs to
have as many elements as the value of the SESvar NumPools.

Figure 3: SES with multi-aspect, succeeding specialization, and a possible PES.

In Figure 3 the pruning process with all intermediate steps is depicted. In the first step a number of pools is
generated analogous to Section 3.1. In the second step the specialization poolSPEC is resolved. Specializa-
tion nodes express a kind of variation point defining an xor-selection. The selected child in a specialization is
united with the parent node of the specialization. Other children as well as the specialization node itself are
cut away. In this example depending on the value in the attribute _pool the SESfcn evaluates either to ’nb’
or to ’dt’. According to its result the pool entities specialize either to notebooks_pool or to desktops_pool.

3.3 Multi-Aspect with Succeeding Specialization and Multi-Aspects

The SES from Section 3.2 is expanded by one more layer. For each specialized pool the number of desktops
or notebooks can be defined. As depicted in Figure 4, in the SES the notebooks and the desktops entities
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are now followed by multi-aspect nodes notebooksMASP and desktopsMASP respectively. They specify the
possible number of the notebooks and desktops in each pool. The number of entities is variable. Therefore,
the attributes numRep1 and numRep2 need to be set dynamically using an SESfcn, named fun2. The SESfcn
returns the number of elements for a pool. The introduced attribute _pool and the SESvar NumRepInPool
are passed as parameters. NumRepInPool is a vector with elements of N and the number of elements has to
be equal to the SESvar NumPools, as defined in the Semantic Condition.

Figure 4: SES with multi-aspect and specialization followed by multi-aspects and a possible PES.

The first and second pruning steps are the same as in Section 3.2, while in the third pruning step the attributes
numRep1 and numRep2 are evaluated using SESfcn fun2. Depending on the value in attribute _pool and the
SESvar NumRepInPool the number of notebook and desktop entities are generated. For evaluation of the
SESfcn all attributes in the paths from notebooksMASP and desktopsMASP respectively to the root node
need to be accessible.

3.4 Multi-Aspect with Succeeding Specialization and Sequenced Multi-Aspects

Now the SES is once again expanded by a new layer. Each entity notebook or desktop can be detailed
with a different number of processor cores. As depicted in Figure 5, the notebook and desktop entities are
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therefore followed by multi-aspects coresMASP. Due to the SES axiom of uniformity, nodes with the same
name need to have the same variables and isomorphic subtrees. Thus, the nodes coresMASP need to have
the same numRep attribute in both specialized branches, here named numRep3. The value assignment to
numRep3 is variable, because the number of cores can be different for each desktop or notebook. Therefore
it is set dynamically by the SESfcn fun3. An SESvar NumCores is passed as input argument. The Semantic
Condition for NumCores defines that it is a list of vectors. The number of list elements is equal to the number
of pools, defined by NumPools. The number of elements in each vector is equal to the number of entities in
the corresponding pool, defined by NumRepInPool(i).

The pruning process is described for the following SESvar values:

• NumPools = 2
• Types = [’nb’, ’dt’]
• NumRepInPool = [2, 3]
• NumCores = [ [1, 2], [1, 2, 1] ]

The first, second, and third pruning steps are known from previous sections. In the fourth pruning step
the values of all numRep3 attributes are calculated using the SESfcn fun3. The SESfcn uses a predefined
function path(), which is a general graph function that returns a list of all node objects in a path from the
calling node up to the root. Here, the SESfcn fun3 is called at each node coresMASP. Using the _pool and
_notebook or _desktop attributes of the objects in the path fun3 determines the respective value in the SESvar
NumCores and returns the number of cores.

A fundamental prerequisite for the described approach for automated pruning of SES with hierarchical
multi-aspects is the introduction of the additional underscore attribute at a generating entity. As can be
seen in Figure 5, the axiom uniformity is no longer valid in the PES, because nodes with the same name
have no isomorphic subtrees. However, the axiom can be relaxed in the context of the motivation shown
in Section 2. Of course, one could have avoided some of the challenges discussed before for example by
choosing different names for the nodes coresMASP in the different branches or by restructuring the SES.
The disadvantage is then a more complex tree. Complex trees are beautiful in nature, but quickly confusing
in modeling and simulation.

The suggested approach using the additional underscore attribute and the general path function can be ap-
plied to problems with deeper hierarchy, such as the SES depicted in Figure 6, in the same manner.

4 RELATED WORK

The research is motivated by current problems in the field of engineering, which is proven in Section 1 by
selected works from the automotive sector. The method developed is based directly on SES/MB approach.
Essential work on the state of research of SES/MB formalism is described and listed in Section 1. Besides the
SES/MB approach that is derived from general system theory, a multitude of methods for variant modeling
and variant generation have been developed in the field of software engineering. A good overview about
these methods, some tools and experiences are given by Capilla, Bosch, and Kang (2013). In the context of
engineering applications, feature-based modeling approaches, such as by Oster (2012) or Fang et al. (2016),
are often used. Furthermore, the widely used UML has been extend with feature-based approaches to model
variability of system families, such as by Robak, Franczyk, and Politowicz (2002).

The work in software engineering continuously influences the field of modeling and simulation. For describ-
ing system structures and their configurations, various XML based composition schemes, which distinguish
between interfaces and the concrete implementations of the models were proposed, such as by Röhl and
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Figure 5: SES with multi-aspect and specialization followed by sequenced multi-aspects and a possible PES.
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Figure 6: SES with deep hierarchy of multi-aspects.

Uhrmacher (2006) or by Wang and Wainer (2015). Although that research does not explicitly address model
families, some of the basic ideas are similar. Moreover, the ideas in Röhl and Uhrmacher (2006) and Wang
and Wainer (2015) are important for the design of reusable model components and their organization in an
MB. The relations between the SES formalism and XML are discussed by Zeigler and Hammonds (2007).

A common practical tool for today’s modeling and simulation applications in engineering is MAT-
LAB/Simulink (MathWorks 2019). Simulink as one of the most popular tools for model-based development
provides special blocks for switching between model structures on the dynamic system level, the Variant
Subsystems Blocks. This approach can be combined with MATLAB’s Variant Manager or third party prod-
ucts, such as pure::variants (Pure Systems 2019), which are specialized for variant management. Anyhow,
all system variants need to be coded on the low dynamic system level. In contrast, the SES/MB approach
offers the possibility to define "growing" systems in a structured, clearly arranged way. A comparative
evaluation of both approaches is given by Deatcu, Pawletta, and Folkerts (2019).

5 CONCLUSION

This paper deals with challenges of using SES for modeling specific families of systems and deploy the SES
in frameworks for automated, reactive simulation experiments. For efficient variability modeling, the con-
sidered problems require the usage of multi-aspect and specialization nodes in a deep hierarchical manner.
Extensions of the SES for goal-directed automated pruning of such SES trees are introduced. The modeling
of SES and the pruning process are illustrated using an artificial example, which is extended step by step.
The case study clarifies that the discussed approach is applicable to such SES. However, with increasing
hierarchy depth of multi-aspects and specializations, the specification of the introduced SES variables can
become complicated and thus error-prone.

In simulation engineering, modeling of versatile systems and their automated, goal-directed study is a chal-
lenging task. This work opens the perspective to solve such problems and to implement appropriate software
frameworks as also discussed in the paper. Future works will especially cover the usage of the presented
methods in real engineering applications.
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