
AIX-MARSEILLE UNIVERSITE

ED 184 - ECOLE DOCTORALE EN MATHEMATIQUES

ET INFORMATIQUE DE MARSEILLE

UFR SCIENCES D'AIX-MARSEILLE UNIVERSITE

LABORATOIRE DES SCIENCES DE L'INFORMATION ET DES SYSTEMES

Thèse présentée pour obtenir le grade universitaire de docteur

Discipline : Informatique

Aznam YACOUB

Une approche de véri�cation formelle et de simulation pour les

systèmes à événements : Application à PROMELA

An approach for formal veri�cation and simulation of

discrete-event systems: A PROMELA Application

Soutenue le 08/12/2016 devant le jury :

Vincent ALBERT Université Paul Sabatier Examinateur
Florence SEDES Université Paul Sabatier Examinatrice
Bernard P. ZEIGLER University of Arizona Rapporteur
Eric RAMAT Université du Littoral Côte d'Opale Rapporteur
Claudia FRYDMAN LSIS Directrice de thèse
Maâmar el-amine HAMRI LSIS Co-Directeur de thèse
Jacques PINATON ST Microelectronics Encadrant

Cette oeuvre est mise à disposition selon les termes de la Licence Creative
Commons Attribution - Pas d’Utilisation Commerciale - Pas de Modification 3.0
France.

http://creativecommons.org/licenses/by-nc-nd/3.0/fr/
http://creativecommons.org/licenses/by-nc-nd/3.0/fr/
http://creativecommons.org/licenses/by-nc-nd/3.0/fr/

An approach for formal veri�cation and

simulation of discrete-event systems

A PROMELA Application

Abstract

For many years, the new technological advances have enabled the development
of software and physical systems which considerably help people in their daily
tasks or in manufacturing processes. Although they look like simple objects,
those signboards, those manufacturing chains and even those autopilots are be-
come more and more complex to understand and to master. Because they im-
plied more interactions than before, with more and more components which
communicate with each other, these systems require more vigilance from their
designers and from their engineers. Those ones must ensure that their products
do not generate unexpected and maladjusted behaviours. This finding is the
same than the one that we do when we are interesting in modeling and simula-
tion of complex physical phenomena, such as a climatic event, or the behaviour
of the human brain which also involves intricate interactions between dozens,
hundreds and even thousands of different entities.

Nevertheless, if the advances have been tremendous in these technological
fields, and even in scientific fields, the domains of Verification and Validation
have also known a significant progress, with the emergence of new concepts
and new automatic methods that ensure reliability of systems. Among all these
techniques, we can find two great families of tools : the Formal Methods and
the Simulation. For a long time, these two families have been considered as op-
posite to each other. However, recent work tries to reduce the border between
them. In this context, this thesis proposes a new approach in order to integrate
Discrete-Event Simulation in Formal Methods. The main objective is to improve
existing model-checking tools by combining them with simulation, in order to
allow them detecting errors that they were not previously able to find, and espe-
cially on timed systems. This approach led us to develop a new formal language,
called DEv-PROMELA. This new language, which relies on the PROMELA and on
the DEVS formalism, is like both a verifiable specifications language and a sim-
ulation formalism. By combining a traditional model-checking and a discrete-
event simulation on models expressed in DEv-PROMELA, it is therefore possible
to detect and to understand dysfunctions which could not be found by using

4

only a formal checking or only a simulation. This result is illustrated through the
different examples which are treated in this work.

Keywords : Verification and Validation, Modeling and Simulation, Discrete-
Event Systems, Formal Methods, Timed Systems, PROMELA, DEv-PROMELA.

5

Résumé

Depuis quelques années, les nouvelles avancées technologiques ont permis la
mise au point de systèmes physiques et logiciels qui aident considérablement
l’Homme dans ses tâches, que ce soit dans la vie quotidienne ou dans des pro-
cessus industriels. Aux allures simples, ces panneaux publicitaires, ces chaînes
de fabrication automatisées ou même ces pilotes automatiques sont devenus, au
fil du temps, de plus en plus complexes à comprendre et à maîtriser, entraînant
en permanence de nouveaux lots de problématiques et de questions. Du fait
qu’ils impliquent davantage d’interactions qu’auparavant, avec de plus en plus
de composants qui communiquent entre eux, ces systèmes demandent encore
plus de vigilances à leurs concepteurs qui doivent s’assurer que ces systèmes
ne génèrent pas de comportements inadaptés ou imprévus. Ce constat, que nous
faisons pour les systèmes et les processus que nous développons, est identique au
constat réalisé dès lors que nous souhaitons modéliser et simuler un phénomène
physique complexe, tel qu’un évènement météorologique ou le fonctionnement
du cerveau humain, qui impliquent aussi des interactions compliquées entre des
dizaines, des centaines voire des milliers d’entités différentes.

Mais si les avancées ont été énormes dans les champs technologiques et scien-
tifiques en général, les domaines de la Vérification et de la Validation ont égale-
ment connu un bond significatif avec la mise au point de nouveaux concepts et
de nouvelles méthodes, automatiques ou non, pour répondre à ce besoin de fi-
abilité. Parmi elles, se dégagent notamment deux grandes familles : celle de la
Vérification Formelle et celle de la Simulation. Longtemps considérées comme
à l’opposée l’une de l’autre, les recherches récentes essaient de rapprocher ces
deux grandes familles de méthodologies. C’est dans ce cadre que les travaux de
cette thèse proposent une nouvelle approche pour intégrer la Simulation dites
à Evènements Discrets aux Méthodes Formelles. L’objectif d’une telle approche
est alors d’améliorer les méthodes formelles existantes, en les combinant à la
simulation, afin de leur permettre de détecter de potentielles erreurs qu’elles
ne pouvaient déceler avant, notamment sur des systèmes temporisés. Cette ap-
proche nous a conduit à la mise au point d’un nouveau langage formel, le DEv-

6

PROMELA. Ce nouveau langage, créé à partir du PROMELA et du formalisme
DEVS, est à mi-chemin entre un langage de spécifications formelles vérifiables
et un formalisme de simulation. En combinant alors un model-checking tradi-
tionnel et une simulation à évènements discrets sur le modèle exprimé dans ce
nouveau langage, il est alors possible de détecter et de comprendre des dysfonc-
tionnements qu’un model-checking seul ou qu’une simulation seule n’auraient
pas permis de trouver. Ce résultat est notamment illustré à travers les différents
exemples étudiés dans ces travaux.

Mots clés : Vérification et Validation, Modélisation et Simulation, Systèmes
à Evènements Discrets, Méthodes Formelles, Systèmes temporisés, PROMELA,
DEv-PROMELA.

7

Remerciements
La valeur d’un homme tient dans sa

capacité à donner et non dans sa capacité à recevoir.
Albert Einstein

La reconnaissance est la mémoire du coeur.
Hans Christian Andersen

En premier lieu, je tiens à remercier celui sans qui rien de tout cela ne serait
arrivé et qui se reconnaîtra sans que je le nomme.

Je tiens à exprimer mes plus vifs remerciements à mes deux directeurs de thèse,
Madame Claudia FRYDMAN, et Monsieur Amine HAMRI, qui m’ont donné la
chance d’effectuer cette thèse dans d’excellentes conditions, ainsi que pour leur
disponibilité, leur attention et leur rigueur scientifique. Leur apport a été ines-
timable et j’ai beaucoup appris d’eux. Ils ont été et resteront des modèles dans
mon travail de chercheur.

J’exprime également ma gratitude à Monsieur Bernard P. ZEIGLER et à Mon-
sieur Eric RAMAT pour avoir accepté d’être rapporteurs de cette thèse, ainsi qu’à
Monsieur Vincent ALBERT et Madame Florence SEDES pour avoir accepté d’être
membre du jury. C’est un grand honneur pour moi.

Je remercie également Monsieur Mustapha OULADSINE pour m’avoir accueilli
au sein de l’unité de recherche, et je remercie également tous les membres
du personnel du LSIS et de l’Université d’Aix-Marseille qui m’ont permis de
passer cette thèse dans d’agréables conditions, ainsi que toutes les personnes
formidables que j’ai rencontrées grâce au laboratoire. Un grand merci égale-
ment à tous les doctorants, ainsi qu’à toute l’équipe MoFED, à Radhia et Rabah,
à notre chef d’équipe Madame Isabel DESMONGODIN, et également à Monsieur
Norbert GIAMBIASI dont les conseils m’ont été précieux pour éclaircir ce travail.
Grand merci aussi à mes collègues qui m’ont accueilli à bras ouverts durant ces
trois années et qui ont contribué à adoucir les moments de stress.

9

Egalement, un grand merci à ST Microelectronics et Monsieur Jacques PINA-
TON sans qui cette thèse n’aurait surement pas existé, mais aussi au Professeur
Bernard P. ZEIGLER et son équipe qui m’ont accueilli et avec qui ce fut un très
grand plaisir de collaborer.

Je voulais également exprimer ma gratitude envers tous les enseignants et pro-
fesseurs que j’ai eu durant l’ensemble de ma scolarité et qui ont très largement
contribué à me transmettre le goût du travail acharné, et qui d’une certaine
façon, ont permis l’existence de ces travaux de thèse. Merci également à Mon-
sieur Patrice TORGUET et Madame Minica PANCHETTI qui m’ont accueilli lors
de mon passage à l’IRIT, mais surtout un grand merci à Monsieur Noel NOVELLI
qui est sans doute l’enseignant qui m’a le plus appris et qui a le plus influencé ma
façon de penser, en particulier dans le domaine du Génie Logiciel, et qui a donc
indirectement influencé l’orientation prise dans cette thèse. Un grand merci aussi
à M. VAN CANEGHEM et M. MORIN qui m’ont fait confiance lors de mon pas-
sage à l’Université et qui m’ont donné l’occasion de personnaliser mon cursus. Un
grand merci aussi à l’ensemble de mes étudiants d’AMU et de Polytech, mais aussi
à mes amis et amies, en particulier Paul, Valentin, Alexandre, Alexia, Ludivine,
Delphine, Roxanne, Alexia, Sandhya, Claire, Marina, Lucie, Léonore, Ibrahima
et Kandel, pour m’avoir donné du courage dans les périodes difficiles et pour
m’avoir changé les idées dans les moments délicats. Et je n’oublie évidemment
pas Romain, Sylvain, Gregory, Thibault et Thibaut, Toni, Nathalie et tous mes
anciens collègues d’Exkee et d’Ubisoft auprès de qui j’ai beaucoup appris, ainsi
que toutes les personnes que je n’ai pas citées mais que je n’oublie pas, y compris
mes anciens enseignants, Monsieur Christophe BOULLAY et Madame Nathalie
BOUQUET, ainsi que mes anciens camarades de l’EPITA et de l’Université. C’est
grâce à toute l’expérience que j’ai accumulée auprès de vous que ce travail a été
rendu possible.

Enfin, les mots les plus simples étant les plus forts, je voudrais simplement dédier
ce travail à mon grand-père Amirdine YACOUB qui m’a certainement transmis,
d’une façon ou d’une autre, le goût pour la recherche. Merci pour tout. Sans ou-
blier mes parents, mon frère Taher et ma soeur Chamila à qui j’adresse toute mon
affection. Merci beaucoup pour votre soutien, votre amour et votre patience, et
merci de m’avoir supporté durant toutes ces années, et en particulier ces trois
dernières années.

10

Contents

Abstract 5

Résumé 7

Remerciements 10

List of Figures 15

List of Tables 16

Introduction 23

1 State of the Art 25
1.1 Introduction 25
1.2 Definitions of Primal Concepts 26
1.3 Theory of Modelling and Simulation 30

1.3.1 M&S as activies: Why Modelling ? Why Simulate ? 30
1.3.2 System Specification Hierarchy and Morphisms 31
1.3.3 Entities 33
1.3.4 Timed Models 36
1.3.5 The DEVS Formalism 38
1.3.6 Hierarchy of Simulation Formalisms 40

1.4 Overview of Verification and Validation 43
1.4.1 Verification and Validation in Project, Quality andRiskMan-

agement 43
1.4.2 Verification and Validation in Software Engineering 45
1.4.3 Verification and Validation of Simulation Models 50
1.4.4 Model Accreditation and System Certification 54

1.5 Formal Verification and Formal Methods 55
1.5.1 Introduction to Formal Methods 55
1.5.2 Model-Checking Theory 57

12

1.5.3 Timed Automata 62
1.5.4 Hybrid Automata and others methodologies 64
1.5.5 Abstraction and The Great Debate 66

1.6 Towards Integrating Formal Verification and Simulation for V&V 67
1.6.1 Integration of Multiple Formal Verification Tools 68
1.6.2 Combining Formal Verification and Simulation 70
1.6.3 Formal Verification of Simulation Models 72

1.7 Conclusion 73

2 A Combined Formalism: DEv-PROMELA 75
2.1 Introduction to Combined Methods 75
2.2 General Approach 76

2.2.1 Abstract Approach 77
2.2.2 Proofs and discussion 78
2.2.3 Approach using Model-Driven Engineering 80

2.3 Introduction to DEv-PROMELA 82
2.3.1 PROMELA Overview 82
2.3.2 PROMELA in Details 84
2.3.3 Building DEv-PROMELA: Syntax 94
2.3.4 Meaning of DEv-PROMELA : Semantics 103

2.4 Relations and Morphisms 105
2.4.1 Relations between DEv-PROMELA and DEVS 105
2.4.2 Relation between DEv-PROMELA and PROMELA 109

2.5 DEv-PROMELA and Simulation Formalisms Hierarchy 113
2.6 Verification, Simulation, Interoperability and Limits 114

2.6.1 Model-checking and Static Verification 114
2.6.2 Simulation and Dynamic Verification 115
2.6.3 Interoperability 117
2.6.4 Comparison with other PROMELA timed extensions and

Limits 118
2.7 Conclusion 123

3 Modelling, Verification and Validation with DEv-PROMELA 125
3.1 Introduction 125
3.2 Framework Entities and Intuitive Relationships 126
3.3 Modelling and Verification of Software 127

3.3.1 Verification techniques 127
3.3.2 Validation techniques 128

3.4 Modelling and Verification of Simulation Models 130
3.5 Integrated Verification and Validation Environment (IVVE) 132
3.6 Conclusion 134

4 Applications : Modelling, Verification and Validation of ... 137

13

4.1 ... Mutual Exclusion Protocols 137
4.2 ... A Video Game Software : PACMAN 143

4.2.1 Requirement Phase 143
4.2.2 Requirement Analysis 145
4.2.3 High Level Design 145
4.2.4 Low Level Design 147
4.2.5 Verification using Model Checking 150
4.2.6 Verification using Simulation 151
4.2.7 Coding 154
4.2.8 Validation using Simulation 154
4.2.9 What about V&V of simulation model ? 154

4.3 ... A Manufacture Chain : ST Microelectronics’ Case Study 155
4.3.1 The Problem 155
4.3.2 Results 158

4.4 Conclusion 159

Conclusion 163

Bibliography 164

14

List of Figures

1.1 Schema of Complexity [ZKP00]. 29
1.2 Homomorphism relation [ZKP00]. 33
1.3 Space of Timed Models. 37
1.4 Hierarchy of discrete-event formalisms. 41
1.5 Schema of V&V Process from [AQH15]. 47
1.6 Waterfall model representation from [DA12]. 48
1.7 V-model representation from [DA12]. 49
1.8 V&V in Software Development Life Cycle proposed by Desai and Ab-

hishek [DA12]. 51
1.9 The Sargent Circle for V&V of Simulation Model [Sar91]. 53
1.10 Simplified V&V proposed in [Pet10]. 54
1.11 Model-checking schema from [BK08]. 56
1.12 Simplified Semantics of LTL operators [BK08]. 60
1.13 A conceptual model of the challenges involved in using automatic

verification tools. [Owe07]. 69
1.14 Approach of combining PROMELA specifications with TSM. 71

2.1 Schema of Combined Model Verification Space. The grey arrows
means the increasing space by adding data. 76

2.2 Example of mapping UML diagram to ER diagram [LWK10] - Source
metamodel, target metamodel, sourcemodel (abstract syntax), target
model (abstract syntax), source model (concrete syntax), and target
model (concrete syntax) 80

2.3 PROMELA Metamodel proposed by McUmber and Cheng [MC01]. 81
2.4 PROMELA Assignment. 85
2.5 PROMELA Assertion. 85
2.6 PROMELA Send statement generated statespace. 86
2.7 PROMELA Select. 87
2.8 PROMELA Loop. 88
2.9 State space generated by the unless structure. 88
2.10 State space generated by the proctype structure. 90

15

2.11 DEv-PROMELA Assignment. 97
2.12 DEv-PROMELA Event Channel. 98
2.13 DEv-PROMELARendez-vousHandshake (receive). [clt:τ →emit:valuea]

a?3; 99
2.14 PROMELA selection construct generated statespace. 100
2.15 Generated statespace by the Algorithm 4. 102
2.16 Representation of the relation between DEv-PROMELA, PROMELA

and DEVS. 113
2.17 DEv-PROMELA LTL Verification using Simulation. 115
2.18 Modular system using DEv-PROMELA. 118
2.19 Time representation in DT-PROMELA [BD98a]. 120
2.20 Combining Model-Checking and Simulation. 124

3.1 Combined V&V Entites. 126
3.2 V&V in Software Development Life Cycle. 127
3.3 V&V of Simulation Models. 130
3.4 V&V of Simulation Models using DEv-PROMELA. 131
3.5 Combined V&V Environment Architecture. 132
3.6 The DEv-PROMELA Studio Environment. 134

4.1 Example of an invalid path generated by the Program 8 for the prop-
erty (1). Pi_j indicates the current line executed by the process Pi. 141

4.2 MS4 Me Environment. 142
4.3 DNL model of a Process. 142
4.4 Example of Pacman. 144
4.5 Components Model of Pacman. 146
4.6 Representation of the PROMELA model for Pacman. 153
4.7 Example of Pacman UML Diagram - Red classes are real software

classes, while white classes are simulator classes. 155
4.8 The Manufacture Chain. Each square represent a step or a process/-

operation. 156
4.9 Example of the operation 1180. 156

List of Tables

16

2.1 A list of PROMELA basic datatypes. 88
2.2 Comparison between PROMELA timed extensions. 122

4.1 Fisher’s Mutual Exclusion Protocol in different timed extensions of
PROMELA [NJJ08]. 139

4.2 Results of Verification of concurrent access property. 143
4.3 Comparison between Results of Verification using Model Checking

and Simulation. 152
4.4 Results of chain checking. 159

17

In memory of Prof. Norbert GIAMBIASI.
In memory of my grandfather Amirdine YACOUB.

Introduction

Making reliable systems and software has always been a big challenge in any
research fields for decade, and this challenge is even more true in the 21st cen-
tury. Our world has become connected, and involves billions of systems that
communicate with each other at each second of our life. Whether in transport,
economics, health, manufacturing, schools, or even business, automation is ev-
erywhere. Simple systems, if we can qualify them as "simple", have even been
replaced by more elaborated solutions, like System of Systems (SoS) concepts
[Ack71]. These new technologies are so elaborated that they can take important
decisions in microseconds. For instance, the avionics of the Airbus A380 is able
to achieve from 105 to 106 functionalities in few microseconds, in order to pilot
the aircraft without any human interference [Iti07; But10; Bie+12]. We can also
talk about software that allows companies to earn daily billions of dollars in any
stock exchange.

However, because our life strongly depends on them, the slightest mistake
is not permitted and it is important to ensure that these huge interconnected
systems successfully fulfill their tasks. Therefore, understanding the exact be-
haviour and the consequences of the several interactions between all of these
complex systems is more than important. However, if Verification and Validation
procedures [Sha16] have evolved with the complexity of systems, and substan-
tially allowed the improvement of quality, reliability and safety of new prod-
ucts, they are always heavy and costly to implement in the development cycle
[KCB02]. A lot of the existing procedures are time- and effort-consuming, and
some of existing tools in fact are not able to fully capture the real behaviour, but
just focus on a part of the system under study.

At first glance, we can easily divide these approaches in two categories [Dil98].
The first one concerns mathematical studies and formal verification. These ap-
proaches try to represent exactly the reality with a plenty of equations. Proofs on
these equations then guarantee that the represented systems work as intended,
however they need a strong knowledge and strong mathematical background.

21

The second one concerns empirical techniques. They are based on experiments
and on computer simulations. If they are easy to implement and to understand,
they face to two major problems: repeatability and consistency. Indeed, simula-
tions and experiments depend more on the human capabilities than automatic
proofs, and by extension they are more error-prone, even if many solutions have
been developed in order to reduce this risk. To these considerations, another one,
which increases the difficult of applying these methodologies, must be added:
automation. Because manufacturing needs quick development and deployment,
proofs and simulations have also been computerized and automated. However,
if making a model that really represents the reality is hard, automatic proofs on
these models are in many cases likely impossible. The true fact is that many of
these problems are already proved undecidable, especially on timed systems, or
need too much time to get a correct answer. As a result, tests and real experi-
ments are more used than automatic proofs, while these latter are applied only
on critical systems. Moreover, even in these cases, automatic proofs are applied
on a reduced model with a strong hypothesis: if the correctness of the checked
property is verified on the model, it will also probably be true on the real system.
If we can prove this hypothesis in some cases, experience shows that it doest not
guarantee the effectiveness of the result on the real system.

From these findings, research has been oriented in three directions: improv-
ing modelling and simulation methodologies, finding new algorithms that re-
duce the size of models without losing informations in order to perform auto-
matic proofs, and proving that the computerized models used in simulations are
trully representations of the real systems that they are supposed to stand for.
If these three approaches have similarities, they seem to evolve independently
each other. For instance, formal methods use simulation only as a supportive
method, while some work recommends to use only simulation to perform vali-
dation. Concerning the third approach, it focuses only on the correctness of the
computerized simulation model against the specifications of the abstract model
or of the simulator, and not trully against the real system. If we look at deeper
the literature, we can also see a new tend that tries to combine mathematical and
empirical approaches especially in circuit designs. These methods try to select
the less time-consuming approach in order to validate models. If the existence
of these approaches shows that simulation can be integrated with formal verifi-
cation, they bring two crucial question: Are formal verification and simulation
trully checking the same stuffs ? What exactly the differences between formal
verification and simulation results ?

The work presented in this thesis is not revolutionary, and is not intended to
make deep changes in the Verification and Validation procedures. It is a part of
this new tend that tries to combine formal verification and simulation. The main
goal is to introduce an approach that makes easier deep integration between

22

model-checking and discrete-event simulation. Literature of the two last decades
has many attempts to reduce the gap between these two families, but they focus
on special cases or see the one or the other just as a supportive method. We tried
to propose a more generic approach that really allows combining simulation
and formal verification, especially by introducing the DEVS formalism [Zei76;
ZKP00] into model-checking tools. Then, we tried to apply our methodology on a
real example of software, and we tried to propose a way to use our methodology
in a development cycle.

The Chapter 1 focuses on the existing work in the literature about Verification
and Validation, Formal Verification and Simulation. Indeed, it is important to
well understand the different notions and problems behind the design and the
implementation of systems and software. The existing solutions are introduced
and analyzed in order to understand the benefits and the limits of them.

The Chapter 2 introduces our approach of integration of a simulation for-
malism into formal methods. We develop in this chapter a new extension of
a verifiable specifications language called DEv-PROMELA as an illustration of our
methodology. The syntactic changes and the semantics mapping are addressed.
We also talk about performing model-checking and simulation on DEv-PROMELA
models, and how modifying DEv-PROMELA in order to use it with other simula-
tion formalisms.

The Chapter 3 shows the effects of our approach on Verification and Validation
procedures. We focus on two aspects: verification and validation of simulation
models on the one hand, and verification and validation of software on the other
hand. Indeed, because DEv-PROMELA has a kind of reflective property, we can
see two levels of verification and validation which can have their importance
when checking software.

The Chapter 4 addresses three cases of study of Verification and Validation of
software.

Finally, the conclusion recaps the important points of the work and discusses
about the weakness and the limits of such an approach. It also presents some
future work to do in order to make it more robust and more effective.

23

Chapter

1 State of the Art

The only true wisdom is in knowing
you know nothing.

Socrates

Any fool can know. The point is to understand.
Albert Einstein

1.1 Introduction

Nowadays, we cannot deny that systems, software or hardware, have become
more and more complex. They involve more and more interactions and the
amount of exchanged data is constantly increasing. Moreover, development
methodologies have enormously changed from small team performing small
tasks to large operations involving hundreds or thousands of people. With the
increasing of complexity of systems and software, and the growing size of teams,
development processes and development life cycles have deeply changed [Sha16]
in order to take into account these new considerations. Moreover, the need of
reliability and quality, especially in critical systems, makes more important eval-
uation procedures. As a consequence, Verification and Validation (V&V) proce-
dures have also deeply changed from informal processes performed by the engi-
neer himself during the development to a separate activity performed during the
overall development life cycle [And86].

Furthermore, over the 20 past years, plenty of new V&V concepts, methods
and tools have been proposed to make safer systems and to make more efficient
V&V. Some research fields, like Formal Verification (FV) or Simulation, have
developed, in the same time, specific techniques related to particular systems.

25

CHAPTER 1 - STATE OF THE ART

This sometimes leads to divergent interpretations of a same problem, while it is
well-accepted that all these activities are complementary.

The objective of this chapter is thus to clearly define key concepts behind the
V&V procedures. Complementary tasks like Certification and Accreditation are
also tackled. Once the definitions of the main notions are given, we make a
survey of the existing methods and tools proposed by the Formal Verification
and Simulation research fields. We will also be interested in existing approaches
that combine all these methods.

1.2 Definitions of Primal Concepts

Before entering the real subject, it is important to give clear definitions which
will be used in this thesis. Indeed, as stated by Gaudel [Gau11], literature about
Verification and Validation are facing up to multiple concepts and approaches,
due to advances in these domains. The main problem is that terminology and
vocabulary are often misused, and sometimes appear as in opposite while they
mark out the same thing. Sometimes, terms are really so vague that we do not
know exactly what we are doing or talking about. We do not pretend that the
definitions that we will give in this section are the most appropriate, but they
will make more clear the work introduced in this thesis.

System The notion of system is touched on in the almost all research works
and all the scientific domains. Regardless of the domain, physics, economics,
sciences, etc. all people talk about systems. But what is exactly a system ? If we
refer to the definition given in [Gau11], a system is:

Definition 1: System

A dynamic entity of the real world, and which can be observed only thanks
to some limited interface or procedure.

A system is therefore a complex thing whose the real behaviour cannot be
exactly captured. The only way to understand it is to execute it, namely giv-
ing some inputs, and then observing the outputs. Zeigler, Kim, and Praehofer
[ZKP00] talk about "a black-box" and define the behaviour of the system as "the
relationship between input time histories and output time histories". As a conse-
quence, the real behaviour of a system can never be entirely and exactly defined.
In fact, only its expected behaviour can be known through some specifications,
models or programs. Then testing a system is just equivalent to stimulate it on
a finite set of chosen inputs. This definition includes software, for which un-
expected behaviours can also occur and lead to errors, defects/bugs, faults or
failures.

26

Definitions of Primal Concepts

Program The second question is: what is exactly a program ? Indeed, software
can be programmed and behaviours of programs are reputed to be well-known.
The same author [Gau11] says that a program is:

Definition 2: Program

A piece of text written in a well-defined language. In some case, it is anno-
tated by assertions: pre- and postconditions, invariants, that are formulas
in another well-suited language.

A program is therefore like a text which can be read and that have an under-
standable meaning. Then, we can formally reason on a program either by using
the rules of the operational semantics of the programming language, or by us-
ing a formal system that considers annotated programs. So, the behaviour of a
program is fully known and can be proved. If the language is a formal language,
with a formal semantics, we talk about formalism. However, in computer sci-
ences, it is well-known that a model is obtained thanks to a modelling language
or a formalism. Then, what is the difference between a model and a program ?

Model The term of model is certainly the most difficult to define, as its meaning
depends on the domain. A first definition given by Gaudel [Gau11] says that:

Definition 3: Model

Models or specifications are something which omit the details that appear
in the program, and used for system description, design and analysis.

In computer sciences, there is a lot of types of models depending on
the kind of requirements, but it is generally a state-transition structure
that represents the behaviour of a program.

In physics, a model may be a differential equation. In biology, it is
often an homogeneous population of mice or frogs...

while Petty says in [Pet09; Pet10] : "In general terms, a model is a representa-
tion of something else, e.g., a fashion model representing how a garment might
look on a prospective customer".

If we refer to the definition of Minsky [Min65], a model is

Definition 4: Model

To an observer B, an object A* is a model of an object A to the extent that
B can use A* to answer questions that interest him about A.

If we look at the definition given by the mathematics,

27

CHAPTER 1 - STATE OF THE ART

Definition 5: Model

A model is a description of a system using mathematical concepts and
language. Furthurmore, a model of a theory is a structure (e.g. an inter-
pretation) that satisfies the sentences of that theory.

A model cannot therefore represent all the reality [Rot89]. A model is then an
abstraction, a simplification, a cheap representation of something and in which
interesting properties are verified. These properties are called specifications or
requirements.

Specifications Petty [Pet09] says that "the requirements specify which aspects
of the object of interest must be modeled, and for those to be included, how
accurate the model must be. The requirements are driven by the intended ap-
plication". Gaudel [Gau11] notes that there exists "other sorts of high-level de-
scriptions, that could be also called models, are based on logical formulas: set of
axioms, pre- and postconditions, predicate transformers, etc.". These models are
called formal specifications [Lam00].

In other words, a specification is

Definition 6: Specification

A description of an expected behaviour of a model. A collection of proper-
ties some system under study should satisfy, at some level of abstracton.

Using these definitions, we can deduce that a model of a program is more ab-
stract than the model of the system. Specifications are models for model, models
are models for program, and programs are models for system. Consequently, we
can deduce that any object which can be manipulated and whose the behaviour
can be fully described is a model, including software source code.

This statement implicitely makes a relation between models. Indeed, if a pro-
gram is a model of system, and a model is a representation which has less details
than the program, we can deduce the model is something like generic or general.
In fact, a model lacks details that are not interesting for its intended use.

Abstraction This relation between models is called abstraction [CC77] and
defined by Zeigler, Kim, and Praehofer [ZKP00] as

28

Definitions of Primal Concepts

Definition 7: Abstraction

A method, process or algorithm that extracts, from a complex reality, set
of entities and relationships. Applied to a model, abstraction reduces its
complexity while preserving its validity. It is a valid simplification.

Therefore, abstraction is way to represent a low-level model with fewer details.
The reverse process, from a high-level model to a low-level model with more
details is called refinement [WWZ10]. We thus talk about level of abstraction and
accuracy. Abstraction and Refinement are essential because they are morphisms
that preserves certain properties between models. The simplication makes the
study of a model more easier but reduces its accuracy, while the refinement
makes that the model is closer than the represented object, but increases the
difficulty of its study.

Complexity of a Model Then, to each model, it is possible to associate a com-
plexity. Zeigler, Kim, and Praehofer [ZKP00] define the complexity of a model as
a product (figure 1.1) of

Figure 1.1: Schema of Complexity [ZKP00].

1. size : the number of components (submodels) of a model;

2. resolution : the size of each component in term of states;

Then, the authors define three types of complexity:

• the analytic complexity which is strictely the definition given above;

• the simulation complexity which measures the resources needed to execute
the model (memory size, time, etc.);

• the exploratory complexity which characterizes the resources needed to ex-
plore a statespace.

We can understand that the objective of modelling is therefore the reduction
of the complexity by keeping as much as possible accuracy and details.

29

CHAPTER 1 - STATE OF THE ART

1.3 Theory of Modelling and Simulation

All these concepts underlie an important theory: the Theory of Modelling and
Simulation (M&S) [Zei76; ZKP00] is a well-known theory whose the objective is
to make uniform the concepts of modelling and simulation, which are extensively
used in many disciplines like medicine, physics, etc. It also defines a global and
universal framework and methodology for modelling and simulation, and which
is not dependent on the domain of application.

1.3.1 M&S as activies: Why Modelling ? Why Simulate ?

The previous definitions suggest that it is impossible for human people to under-
stand the reality without making representations of objects of their environment.
Therefore, modelling is, as said by Rothenberg [Rot89], just the ability to think,
imagine and communicate using signs and languages. Modelling is a way to deal
with the reality without its complexity, a way to experiment things that we are
not able to test in the real world. Suggested, all cognitive operations that we
do are relative to a model and never the system (except the real and physical
manipulations). This implies that we are able to understand and analyze mod-
els and not systems. Rothenberg defines three attributes that characterize the
modelling process, and which summarize the definitions given before:

• Reference: the "of something";

• Purpose: the intended use of the model;

• Cost-effectiveness: it is better to use the model than the reference for the
intended purpose.

The simulation activty is therefore the reproduction of the behaviour of an ex-
isting system in order to understand it. In fact, modelling cannot exist without
simulation because modelling is the activity of constructing a representation of
something in order to understand it, while simulation is the fact of using this
model in order to understand what it represents. This means that the notion of
modelling encompasses the concept of simulation. Consequently, we can even
consider model analyzing as a simulation. In order to make clear these notions,
Sokolowski and Banks [SB11] reserve the term of modelling for "model build-
ing", and simulation for:

• a method for implementing model over time;

• a method for testing, analyzing and training;

• a method for extracting information from a model by observing its be-
haviour;

30

Theory of Modelling and Simulation

• imitation.

Then, [BC86; Ban98; Mar97] say that simulation would be used when:

• it is impossible or extremely expensive to observe certain processes in the
reality, or to interact directly with them;

• the real system has some level of complexity, interaction or interdepen-
dence between various components, or pure size that makes it difficult to
grasp in its entirety;

• there is no simple analytic model or it is impossible or extremely expensive
to validate the mathematical model describing the system.

In fact, the existance of simulation implies the incapacity of even understand-
ing a model, which is always too complex to be analyzed. Indeed, modelling is
the process of simplifying the reality in order to get a grasp of it. If simulation, in
the sense of executing, is needed, then that means the model is always too hard.
Then, why not making another model of this model ? This is the start point of
the model-checking best practices which considered the model must be as simple
as possible. In fact, simplification involves loosing the meaning of certain parts
of a model for its intended use.

If simulating helps to understand, it has also major drawbacks:

• often simulations are time- and data-consuming, and costly;

• simulation is a reproduction of the behaviour of a system through a model,
meaning that if the model is not correct (invalid model or erroneous as-
sumptions), the result is not guaranteed, like in any model-based method-
ology;

• if the simulation is done through another system (like a simulation soft-
ware), errors can come from defects of this system;

• simulation results can be difficult to interpret.

Fortunately, literature provides a plenty of works for making correct models
and simulations.

1.3.2 System Specification Hierarchy and Morphisms

The underlying basis of the Theory of Modelling and Simulation [Zei76] is rel-
atively simple. It assumes that basically a system behaves over time, meaning
that inputs and ouputs evolve according to a duration. As a consequence, the
model would have to use time as a basics of what it is representing. From this
postulate, Zeigler introduces a system specification hierarchy based on the Klir
system hierarchy [Kli85] which helps the designer to describe the system under
study, in order to produce a model that represents its dynamics:

31

CHAPTER 1 - STATE OF THE ART

• At the level 0, the description gives the variables to observe, the inputs used
in order to stimulate the system, and how to observe their dynamics over
time;

• At the level 1, the description consists on a time-indexed input/ouput pairs;

• At the level 2, the initial state is known, and each input produces a unique
output;

• At the level 3, the state structure is highlighted;

• At the level 4, the model describes the interaction between components
(which can be themselves subsystems).

However, just decribing system at these levels is equivalent to make several
models of the system under study. Then, if one of these models statifies a specifi-
cation, it is important to ensure that the others models also satisfy it. For that, it
is important to make a relationship between the levels. This is done by a simple
association, by construction. Furthermore, because a model is just a represen-
tation of a system at one of the level of specifications, it is also important to be
able to establish a correspondance between different models at the same level of
specifications. Zeigler defines the concept of morphisms for that.

Definition 8: Morphism

A morphism is a relation between two system descriptions that places in
correspondance elements at the same level of specifications.

These two concepts imply that if a morphism exists between two models at
an upper level, then there exists a morphism at a lower level that holds the
properties satisfied at the upper level. In other world, a model, at any level
of specifications, is a representation of a system if it is possible to establish a
morphism between the real system (or what we know about it) and the model.
Then, as long as we can make a relation between models, we can consider the
model as a good representation of the system, meaning that it holds all the
properties of the modelled system. In other words, we can say that this is a
model in the mathematical meaning (definition 5). Furthermore, the concept
of morphism establishes a relation between two different systems. This seems
obvious, but this statement gives an important result: given two models, if we
can prove the existence of any relationship between them and that the morphical
properties given in [Zei76] are preserved, and if these models are expressed at
same level of specifications, all the properties satisfied by one of the models are
satisfied by the other.

Especially, [Zei76] defines a specific morphism called homormorphism. Two
state-transition systems are homomorphic if we can place in correspondance

32

Theory of Modelling and Simulation

theirs states, and if for each path on the first transition system, there exists a
path, in the second one, that links the corresponding states (figure 1.2).

Figure 1.2: Homomorphism relation [ZKP00].

That means two homomorphic state-transition models hold the same proper-
ties and are valid representations of one or several aspects of the system under
study.

1.3.3 Entities

Now we have given elements for turning systems into models, we talk about
the main relationships that support the Framework of Modelling and Simula-
tion. Zeigler [Zei76] and Petty [Pet09] define four entities linked by two mains
relationships.

The system or simuland this is the object that we want to model, with its
environment. Thus, the simuland is composed by the data gathered from the
observations and the experiments done on the real system, or the hypothesis
done about its behaviour. Zeigler, Kim, and Praehofer [ZKP00] introduce the

33

CHAPTER 1 - STATE OF THE ART

notion of experimental frame, which is a specification of the conditions under
which the system is observed. In other words, the experimental frame is the
reason of modelling the object. Petty [Pet10] calls that requirements, and this
is exactly the definition of the experimental frame. Therefore, an experimental
frame is just a specification. A system can be viewed from many experimental
frames, and that is the experimental frame which validates the model through the
validity relations, whose one is important for this thesis: the structural validity.

Themodel This is what we are talking about the beginning of this chapter. Zei-
gler [Zei76] defines it as a system specification at any of level discussed before,
while Petty [Pet10] distinguishes two notions: the conceptual model and the ex-
ecutable model. The first one is the model as a representation of the simuland.
Liu, Yu, Zhang, et al. [Liu+11] suggest that the conceptual model is composed
by

• The simulation context which is a set of requirements;

• The simulation concept which is a set of constraints from the simulation
environment;

• The simulation elements which are the model itself.

Nance [Nan81] identifies the core elements as:

1. A model is a set of objects and their relationships, equivalent to the level 4
of the specification hierarchy;

2. An object is a set of attributes to which values are assigned;

3. Attributes describe an aspect of an object, or an aspect of a relation;

4. Values are something that gives a meaning to the attributes (like numerical
values);

The executable model is therefore a model which can be executed, meaning
a computer program. Sargent [Sar91] calls that the computerized model or the
simulationa model.

aCarson [Car04] considers a simulation model as "a representation that incorporates time and
the changes that occur over time". We don’t retain this definition which is the definition of
the conceptual model in general.

34

Theory of Modelling and Simulation

The simulator Zeigler, Kim, and Praehofer [ZKP00] calls simulator an agent, a
system which can read and execute the instructions given by a conceptual model,
and which generates its behaviour. In general, a simulator can be viewed as a
generic computer or software, or even the previous simulation model. Indeed,
we just have seen that a simulation model is a computer program which can be
executed. However, identifying the simulator to the simulation model can lead
to some misunderstanding in the next of this thesis. That is why we use the
following definitions:

Definition 9: Simulator

On the one hand, we call simulator the software, represented by its source
code, which executes the model, independantly of how it is generated
(meaning a generic simulator or a model-specific simulator).

Definition 10: Simulation Model

On the other hand, the simulation model is any model of a simulator.

A simulation relation is defined between the simulator and the model: the
simulator correctness. A simulator is correct if it is guaranteed that it reproduces
the behaviour of the model, meaning it generates the correct outputs given in-
puts. These all definitions allow us to establish a stronger relation: if there exists
a morphism between a simulator and a simulation model, and if there exists a
morphism at level 2 of the previous hierarchy between the simulation model and
the conceptual model, then the simulator is correct.

It is important to note that if a model is correct, it can be also seen as a valid
simplification, in other word as the result of an abstraction process.

Simulation A simulation is therefore just the execution of a model over time
in order to generate its behaviour by acting on its inputs and its parameters
[Zei76; Pet10], according to the experimental frames. We can thus easily un-
derstand why simulation is an empirical methodology, which strongly depends
on the observations done on the real system. The second most important thing
in simulation is time. While executing consists on launching the real system and
using it in a physical real time (which can be measured with a real clock), sim-
ulation consists on stimulating a model using a logical time which is somehow
embedded in the model. However, if time is not taken into account in the sim-
ulation, or if the goal is only to generate the statespace, we talk about execution
of a model or animation of specifications [Bic+97; MS10].

35

CHAPTER 1 - STATE OF THE ART

All these notions are important because it means that it is possible to simulate
a simulator, while executing a simulator is making a simulation of a conceptual
model. This difference is the base of all of the work that we will introduced in
the next chapter.

1.3.4 Timed Models

Because simulation models include time in their definition, it is important to be
able to represent this attribute. Modelling time involves defining certain con-
cepts [Nan81; Ban+10]:

• An instant is a value of system time at which the value of at least one
attribute of an object can be assigned (altered).

• An interval is the duration between two successive instants.

• A span is the contiguous succession of one or more intervals.

• The state of an object is the enumeration of all attribute values of that
object at a particular instant.

• An event is a change in object state, occurring at an instant. An event is
fully determined by its occurence, in other word by a function of time.

• An activity is the state of an object over an interval, meaning between two
events.

• An object activity is the state of an object between two events describing
successive state changes for that object.

• A process is the succession of states of an object over a span (or the con-
tiguous succession of one or more object activities).

Then, litterature defines four main paradigms for modelling time.

Untimed/Timeless Model This kind of designs does not explicitely model the
time, meaning that the evolution of variables is not expressed in a function of
time. That is the case for example of the famous Moore and Mealy machines.
Time is implicit in the way that the model is generally interested in the possible
execution paths. Then, the order of the executed transitions implicitely models
the time. Untimed model are appropriate for modelling timed-constant system
or simplifying model. It is certainly the less expensive representation of time and
the easier to deal with.

36

Theory of Modelling and Simulation

Discrete-Time Model Discrete-time models are the most intuitive from all the
four paradigms. They model time as a tick that occurs at a fixed rate. Thus, the
interval between two tick is always constant, allowing a stepwise execution of
the model like in untimed models. Time is then a multiple of ticks, which gives
an explicit time measure. This kind of time representation involves an explosion
of the complexity of the model, because this latter is evaluated even when no
change overcomes.

Continuous Model In continous models, time is considered as continuous.
Then, the current state, meaning the values of the variables at time t, is expressed
via a differential equation. Simulating a continuous model generally needs a
costly integrator or needs to discretize the space in order to derivate the time
function.

Discrete-Event Model There are models of systems whose the state changes at
various time instants, depending on instant occurrences of events. Between two
events, the model is constant, whereas it changes its state only when an event
occurs. This event can be the result of an autonomous behaviour or a reaction
to an incoming event. It is certainly the best compromise between efficiency and
accuracy.

Figure 1.3: Space of Timed Models.

All the stakes of timed modelling is to know if all time modelling are equivalent
(figure 1.3). Indeed, if there is the case, all the computational aspects can be
reduced in the simpliest model (the untimed model). The second representation
expresses the notion of abstraction, while the third representation suggests that
untimed models and timed models finally represent different things. A fourth
representation can also be imagined: the existance of an intersection between
timed and untimed models.

37

CHAPTER 1 - STATE OF THE ART

1.3.5 The DEVS Formalism

A first answer to this question is given by the Discrete-Event System Specifica-
tions (DEVS) formalism, introduced by Zeigler [Zei76]. The DEVS formalism
can be seen as an generalization of the Moore Machine formalism by associating
each state with a lifespan. DEVS was proved to be unique and universal, and
allows modelling of a large variety of systems thanks to its multicomponent and
multiformalism capabilities. The Classic DEVS relies on the following notions:

• Each state is associated with a real number called lifespan. This real num-
ber can take its value on [0; +∞]. When the lifetime of a state has expired,
the system emits an output and changes its current state according to the
transition table;

• When an input is consumed, the state of the system changes according to
the transition table, regardless of the current lifetime of the current state;

• As a result of the previous point, transitions can be characterized as internal
or external transitions. Internal transitions model autonomous behaviours
while external transitions correspond to reactions to any external events;

• Events are well-dated and can be ordered;

• There is no non-deterministic behaviour. If two events occur at the same
time, thus either they are equivalent events (e1 = e2) or they are prioritized;

• The state, input and output trajectories are piecewise segments; the distri-
bution of events can follow any non-linear function, unlike for discrete-time
systems in which the time is determined by a linear function of periods;

DEVS Atomic Model More formally, a DEVS model is a coupling of DEVS
atomic models. A DEVS atomic model is the smallest simulable unit defined
by

A = (X, Y, S, δint, δext, λ, ta)

where:

• X is the set of input values;

• Y is the set of output values;

• S is the set of states;

• δint : S → S is the internal transition function;

• δext : Q×X → S is the external transition function;

38

Theory of Modelling and Simulation

• λ : S → Y is the output function;

• ta : S → R+ is the time advance function;

• Q = {(s, e) | s ∈ S, e ∈ [0, ta(s)]} is the total state set; e is the time elapsed
since the last transition.

DEVS Coupled Model Then, a DEVS coupled model is defined by

M = (X, Y,M,EIC,EOC, IC, Select)

where:

• X is the set of input values;

• Y is the set of output values;

• M is the set of components (atomic or coupled models);

• EIC is the external input coupling that connects external inputs to compo-
nent inputs;

• EOC is the external output coupling that connects component outputs to
external outputs;

• IC is the internal coupling that connects component outputs to component
inputs (without direct feedback loops);

• Select is the tie-breaking function that chooses the next event from the set
of simultaneous events.

Semantics of DEVS The meaning of a DEVS is given by its abstract simulator
and can easily be depicted as follow. At any time t, the system is in a state s.
If no external event occurs, the system stays in s for time ta(s). If the lifetime
expires, meaning the elapsed time e from the last event is equal to ta(s), the
system outputs the value λ(s) and changes to the state δint(s). If an external
event x occurs before the expiration time, meaning that the system is in a state
q = (s, e) with e ≤ ta(s), then the system changes its state to δext(q, x). The
event can transit into the coupled model using the previously defined coupling:
an external event coming in the system is transmitted to the components using
EIC, while an output generated by a component transits using EOC or IC.

Closure under coupling One of the best properties of DEVS is the closure
under coupling. Given a coupled model, Zeigler [Zei76] shows that it is possible
to obtain an atomic DEVS which behaves exactly as the coupled model. This
property therefore ensures that a DEVS hierarchical model is always simulable,
if the DEVS is really the expression of a system.

39

CHAPTER 1 - STATE OF THE ART

Legitimacy This property sets the condition under a DEVS structure is indeed
a system. It is shown that this property is verified if always the time advances
during the simulation [ZKP00].

Simulation model of DEVS The power of DEVS comes also from the sepa-
ration between the conceptual model and the simulation model. This is a key
notion because it makes independant the model of the system under study and
the implementation of the simulator. However, the simulator of DEVS is obtained
thanks to two mapping:

1. Associate to each atomic model a simulator which makes operations on
states and transitions of the model;

2. Associate a coordinator to each coupled model which computes the time
advance function, propagates events and synchronizes sub-models.

These mapping have for consequence that the structure of the simulation
model is morphic to the structure of the conceptual model (at the level 4), while
each atomic simulation model is homomorphic to its corresponding atomic con-
ceptual model. Moreover, this hierarchical DEVS has the advantage to allow
formalisms interoperability, and modular, multicomponent, multifacetted and
multiformalism modelling [Zei84; ZKP00].

1.3.6 Hierarchy of Simulation Formalisms

The literature about DEVS Modelling and Simulation is too large to be exhaus-
tively tackled in this work. Many extension of DEVS were developed to model
particular aspects of systems like Generalized DEVS [GC06], Real-Time DEVS,
RTA-DEVS [SW10], Fuzzy DEVS, etc. Each extension encapsulates the others,
increasing the DEVS modelling capabilities. Some of these extensions have been
classed in hierarchies [Wai09; Gia09; Hwa11; Hwa14] according to their ex-
pressiveness. We choose to use the hierarchy proposed in [Gia09] which can
be represented as a hierarchy of top-down pyramids (Figure 1.4), in which the
pyramid at the top represents the less expressive and most restrictive formalism,
and the pyramid with the lowest base represents the most expressive and less
restrictive formalism.

40

Theory of Modelling and Simulation

Figure 1.4: Hierarchy of discrete-event formalisms.

Sequential Machine With Transitory States (SMTS) SMTS allows represent-
ing reactive systems which will react to events only when they are in a steady
state. For instance, an old analogic elevator which cannot be stopped when go-
ing up can be modelled as a SMTS system. Formally, a SMTS model M is defined
as a 7-uplet:

M =< X, Y, S, δi, δe, λ >

where

X is a finite set of input events;

Y is a finite set of output events;

S = ST ∪SS where ST ∩SS = ∅, SS is the set of steady states (i.e. the model
remains in these states until an event occurs), and ST is the set of transitory
states;

δi : ST → S is the internal transition function which describes the au-
tonomous behaviour of the model;

δe : SS × X → S is the external transition function which describes the
reactive behaviour of the model;

λ : ST → Y which defines the output event generated by the model when
it transits from a transitory state to the next state.

We must also denote that the notion of timed events is not defined in SMTS.

Temporal Moore Machine (TMM) TMM can be viewed as an extension of
SMTS, with the introduction of two concepts (timed event and state lifespan).
TMM is very useful to describe systems which will perform tasks when they re-
ceive an event, and which will then immediately return to a passive state. Thus,

41

CHAPTER 1 - STATE OF THE ART

formally a TMM model M is an 8-uplet:

M =< X, Y, S, δi, δe, ta, λ >

where

X is a finite set of input events;

Y is a finite set of output events;

ta : S → R+ ∪∞ defines the lifetime of each state;

S = ST ∪SS where ST ∩SS = ∅, SS is the set of steady states (i.e. s ∈ SS ⇒
ta(s) = +∞), and ST is the set of transitory states (i.e. s ∈ ST ⇒ ta(s) ∈
[0; +inf [);

δi : ST → SS is the internal transition function;

δe : SS ×X → ST is the external transition function;

λ : ST → Y is the output function defined only for transitory states.

We can denote the restriction on δi and δe which enforces that a steady state is
followed by a transitory state, and a transitory state is followed by a steady state.
In fact, in semantics of TMM and SMTS, this is not a restriction. Because the
notion of lifespan and timed event were introduced, a succession of transitory
states in SMTS is compressed in one transitory state with a finite lifetime in
TMM.

TMM also supports coupling which allows modular building of models. This
notion is important because it introduces the capability to model complex sys-
tems by components which could interact with each other.

Temporal Sequential Machine (TSM) TSM is a distension of TMM by allow-
ing events to occur in transitory states. TSM allows the modelling of a new
elevator which can stop at each level even if a call button is pressed during an
elevation phase. A TSM model M is an 8-uplet:

M =< X, Y, S, δi, δe, ta, λ >

where

X is a finite set of input events;

Y is a finite set of output events;

ta : S → R+ ∪∞ defines the lifetime of each state;

42

Overview of Verification and Validation

S = ST ∪SS where ST ∩SS = ∅, SS is the set of steady states (i.e. s ∈ SS ⇒
ta(s) = +∞), and ST is the set of transitory states (i.e. s ∈ ST ⇒ ta(s) ∈
[0; +inf [);

δi : ST → S is the internal transition function;

δe : S ×X → S is the external transition function;

λ : ST → Y is the output function defined only for transitory states.

We can note that restriction of the succession of input/ouput events was re-
moved, allowing TSM without autonomous cycle.

Using such a hierarchy helps designers to focus on interesting models and
involves implicit requirements. At least, the structure imposed by each formalism
must be respected by the model (otherwise, there is not a model !). This notion is
important for model validity and ensures that the model is a good representation
of the system. We also saw that models are used to understand the reality, and
to validate hypothesis about an existing or a future system. This process is called
Verification and Validation. However, we said that the only things we can extract
from a model concern the model itself. Then, a question can be asked: are
informations extracted from a simulation really validating assumptions on the
real system ?

1.4 Overview of Verification and Validation

Verification and Validation became two common words in many industries and
institutions : Software and Computer Systems, Food and Drug, Health Care,
Traffic and Transport, Model, Civil Engineering, Economy, etc. The literature
about these two activities is also furnished, many works attempt to verify and
validate something. However, the first main question that is important to an-
swer is : what are exactly Verification and Validation ? Depending on the point
of view, many definitions of Verification and Validation can be found in the lit-
terature. Moreover, as Tran [Tra99] stated, terms Verification and Validation are
often misused or used to refer the same thing, while they denotes two differ-
ent processes. It is thus important to clearly distinguish the differences between
Verification and Validation. We will study them through three points of view:
software development, systems, and modelling and simulation.

1.4.1 Verification and Validation in Project, Quality and Risk Management

The two base definitions of Verification and Validation are given in the Project
Management Body Of Knowledge (PMBOK Guide [Ins04]).

43

CHAPTER 1 - STATE OF THE ART

Definition 11: Verification

The evaluation of whether or not a product, service, or system complies
with a regulation, requirement, specification, or imposed condition. It is
often an internal process. Contrast with validation.

Verification is thus an activity that checks that a system meets its development
constraints and specifications. In other words, Verification consists on ensuring
that the final resulting system fits to the initial model.

Boehm [Boe81; Boe91] summarizes this definition by saying about Verification
: "Are we building the system right ?" This means that the goal of Verification is
thus not to check if the product meets the needs of the final customers, but
only to check if the product is well made. For example, typically verification
techniques in machinery concerns [SK97] design qualification (is the equipment
well acquired ?), installation qualification (is the equipment well installed ?),
operation qualification (is the equipement working ?). However, if these three
procedures are performed from the final user point of view, meaning these tests
consist on verifying that the equipment suits to the uses of the final customer,
they fall into the Validation process.

The PMBOK [Ins04] defines Validation as:

Definition 12: Validation

The assurance that a product, service, or system meets the needs of the
customer and other identified stakeholders. It often involves acceptance
and suitability with external customers. Contrast with verification.

According to this definition, Validation is an external activity that checks that a
system meets the real operational needs of the final user. Validation thus focuses
on the intended uses of the product. Boehm [Boe81] says about it: "Are whe
build the right product ?". Unlike the Verification in which requirements are de-
fined by the designers, Validation requirements are expressed by the customers.
Validation checks for example that the characteristics of a future product will
meet the safety requirements defined in the legislative rules (prospective vali-
dation), or that an existing product meets the initial expectations (retrospective
validation). Validation also concerns full-scale validation (using a real sample),
partial validation (tests concern only critical aspects), cross-validation (if sample
is generated by using two or more methods, it is validated against each method),
revalidation (validation is periodically performed), concurrent validation (vali-
dation are duplicated and carried out by a lot of validators).

44

Overview of Verification and Validation

If we consider only these definitions and these activities, we can clearly un-
derstand why Verification and Validation are often confounded. Indeed, the only
apparent difference between these two activities is that Verification is done from
the developers’ point of view, while Validation is done from the users’ point of
view. They are both related to requirements, and at this time, differences be-
tween design and final specifications are not clearly defined. Moreover, if we
consider V&V activities themselves as products, it appears that we can verify and
validate V&V procedures. Verifying a verification/validation procedure would
mean that we check that this procedure is well built — i.e. it has all the verifi-
cation/validation steps. However, these steps clearly depend on their intended
uses. Validating would mean that we check that any modifications performed
on the verification/validation procedures will lead to modifications on the final
product; and, that modifications must ensure the resulting product always fulfills
its design requirements. In other words, validating a verification/validation pro-
cedure is related to the same properties than verifying a verification/validation
procedure. Then, how te be sure we are verifying or validating ?

In fact, the difference between V&V is mainly the "stage of the product" in
which they are applied. On the one hand, Validation is mainly performed only
on the release candidate or the release version of the product, and mainly concerns
tests on [Gre96]:

• Selectivity/Specificity: is the product has the characteristics needed by the
customer ?

• Accuracy : is the product answering the needs with precision ?

• Repeatability : are the tests repeatable ?

• Reproducibility : are the tests reproducible ?

• System suitability : are the product able to fit to changes of its conditions
of use ?

On the other hand, Verification is performed at each step of the development in
order to check that the "used tools" are well used for building the product.

The most important thing is that V&V refers here to the real system.

1.4.2 Verification and Validation in Software Engineering

This difference between Verification and Validation can be easily understood if
we look at the definitions given by the Software Engineering discipline. Accord-
ing to IEEE Standard [IEE90; IEE12; Abr+04] and the Capacity Maturity Model
[Pau+93], Verification and Validation are :

45

CHAPTER 1 - STATE OF THE ART

Definition 13: Software Verification

The process of evaluating software to determine whether the products of
a given development phase satisfy the conditions imposed at the start of
that phase.

Definition 14: Software Validation

The process of evaluating software during or at the end of the development
process to determine whether it satisfies specified requirements.

Tran [Tra99] and Desai and Abhishek [DA12] then use these definitions to
clearly defines Verification and Validation. According to these authors, Verifica-
tion consists on checking that at the end of each phase of development whether
the software behaviour conforms to the input defined at the start of the phase.
Verification does not care to know if input – i.e. the requirement specifications
– are correct and complete, but only assesses whether the system acts as it was
defined for or not. As a consequent, Verification cannot detect errors resulting
from incorrect specifications, and it is not its purpose. Consequently, errors may
propagate without detection through next stages.

On the opposite, Validation checks, at the end of development (figure 1.5)
whether software acts as expected by the final user. Then, Validation tries to
detect errors that come from incomplete or incorrect specifications, by checking
the correctness of the input to a phase, and whether incorrect requirements have
introduce defects in the system. Therefore, validation allows pointing out errors
in inputs/ouputs while verification only shows that the software doesn’t act as
intended for a given set of specifications. Through this definition, reader can see
appearing in background the system specification hierarchy defined in the pre-
vious section. Validating is then strongly connected to the experimental frame,
while verifiying is strongly connected to morphisms.

46

Overview of Verification and Validation

Figure 1.5: Schema of V&V Process from [AQH15].

As for V&V in Management, the author arrives to the conclusion that Verifi-
cation answers to the question Are we building software right ? while Validation
answers to the question Are we building right software ?. Then, the objectives of
Software Verification and Validation can be grouped in five general activities, as
said in [Col88] and in another version [DK12]:

• checking correctness: the fact that the software is fault free;

• checking consistency: Is the software consistent within itself and with other
products ?

• checking necessity: Is everything in the software necessary ?

• checking sufficiency: Is the software complete ?

• checking performance: Is the software fulfilling its performance require-
ments ?

Wallace and Fujii [WF89] goes further by saying that Software V&V allows
designers to discover earlier errors and avoid bad bugfixes. Moreover, Software

47

CHAPTER 1 - STATE OF THE ART

V&V give a better comprehension of the quality of the system under develop-
ment, and a better view of the system performance. Then, we can easily under-
stand that the goal of Verification and Validation is the discovering of errors as
soon as possible during the development. But how V&V can be useful at earlier
stage of development if validation is done at the end of the development, and
noted by Ryser and Glinz [RG99] as a problem ?

A first answer is given by looking at techniques used in Software Verification
and Validation, and even before if we look at the models of Software Develop-
ment Life Cycle (SDLC). The old "Testing" phase in the Waterfall SDLC model
(figure 1.6) was replaced by many testing step in the modern V-model (figure
1.7).

Figure 1.6: Waterfall model representation from [DA12].

These testing phase were replaced by more elaborated Verification and Valida-
tion techniques. Because the base of the techniques are tests, Adrion, Branstad,
and Cherniavsky [ABC82] talk about Verification, Validation and Testing of Soft-
ware. Then, Tran [Tra99], Desai and Abhishek [DA12], and Wallace and Fujii
[WF89] divide software verification techniques into two categories: static testing
and dynamic testing.

According to the authors, static testing corresponds to strategies that perform
a static analysis of the system representation in order to detect faults and er-
rors. By this, we mean that requirements and source code are compared without
executing this latter. Static testing is itself subdivided in two categories:

• consistency techniques that verify correctness of syntax, parameters match-
ing, correct requirements and specification translations;

• and measurement testing in which some measures are done on the source
code to get its globale quality (formal or informal review, peer review, in-
spection, technical review, etc.).

48

Overview of Verification and Validation

Figure 1.7: V-model representation from [DA12].

On the other hand, dynamic testing execute the source code to detect defects
and errors. In this case, some scenarios are played by the software. Outputs
are retrieved and compared with the expected outputs. These tests can be per-
formed using white- or black-box testing. White-box testing are using to check
the consistency and the correctness of the source code, while black-box is used
to check functionalities. Always according to the authors, dynamic testing falls
into three sub-categories:

• structural testing tests all the internal functions of the software (its struc-
ture);

• functional testing, including emulation, which tests functions of the sys-
tem as defined within the specifications;

• random testing which chooses randomly test cases among all possibles
scenarios. That’s the case of exhaustive testing for instance, even it is in
fact almost impossible to do.

From these definitions, we can make three interesting observations. Firstly,
there is a clear sharing between verification about the syntax and the structure
of the software on the one hand, and the verification of its dynamics/behaviour

49

CHAPTER 1 - STATE OF THE ART

on the other hand. Moreover, while static testing seems to be performed by
formal techniques, dynamic testing relies on execution. Secondly, all these ver-
ifications techniques are performed directly on the software. We mean that it
is directly the real source code which is tested. Gaudel [Gau11] talks about
program proving, which is possible as software is a set of programs. The third
thing is that verification does not rely only on a mathematical layer, but it is also
relative to empirical tests.

Now, if we look at the software validation techniques, among fault injection
and dependability analysis, the authors talk about formal methods and logic sim-
ulation. If simulation can be assimilated to a test, Tran [Tra99] clearly says:

"Formal methods is not only a verification technique but also a val-
idation technique. Formal methods means the use of mathematical
and logical techniques to express, investigate, and analyze the speci-
fication, design, documentation, and behavior of both hardware and
software."

More surprising, these two last techniques involves models (we talk about this
term in the next section) and not the real software, whereas the definition of
Validation involves the evaluation of the final product, generally by the customer
itself as we have seen. Then, if software validation is done through a model,
this means necessarily that the model must also been verified and validated.
Otherwise, the model cannot be used for Verfication and Validation purposes.
Then, what about V&V of models ?

1.4.3 Verification and Validation of Simulation Models

If the limit between Verification and Validation seems to be blured in the domain
of Software Engineering, the Modelling and Simulation (M&S) domain does not
make it more clear. Kleijnen [Kle95] admits that the "Terminology in the area of
verification and validation is not standard", and adopts two definitions:

Definition 15: Simulation Model Verification

Verification is determining that a simulation computer program performs
as intended, i.e., debugging the computer program...

Definition 16: Simulation Model Validation

Validation is concerned with determining whether the conceptual simula-
tion model (as opposed to the computer program) is an accurate represen-
tation of the system under study".

50

Overview of Verification and Validation

Figure 1.8: V&V in Software Development Life Cycle proposed by Desai and Ab-
hishek [DA12].

If debugging is not an activity of verification in the sense of Software Engineer-
ing [DA12], this definition gives details about the context of V&V of Simulation
Models. This definition becomes more obscure if we take the definitions given
by Sargent [Sar91], who recalls the definitions given by Schlesinger et al.:

Definition 17: Model Verification

Ensuring that the computer program of the computerized model and its
implementation are correct.

Definition 18: Model Validation

Substantiation that a computerized model within its domain of applicabil-
ity possesses a satisfactory range of accuracy consistent with the intended
application of the model.

If there is no ambiguity concerning Verification, Validation is more equivocal.

51

CHAPTER 1 - STATE OF THE ART

Indeed, while Verification concerns the computerized model (i.e. the real simu-
lation software) in both definitions, Validation seems to concern both conceptual
model and computerized model. Moreover, if simulation is used as a validation
technique for software, the question is : what are we really verifying and validat-
ing when we perform a V&V of simulation models ? Are we really verifying the
software, the conceptual model or are we evaluating the simulator (i.e. are we
validating the simulation computerized model against the conceptual model ?).
Then, if the verification is about the simulation model, which is a transformation
of the conceptual model, don’t we need to verify also the conceptual model ?

All these blurred questions find a first answer is given by Gaudel [Gau11]:

"A problematic issue is the gap from the model to the program and
the system. What is checked is that the model satisfies a property. It
is not a guarantee that the program or the system do so but in spe-
cial circumstances such as: the program is derived via some certified
translation from the model, or conversely, the model is extracted from
the program."

Therefore, there is another level of V&V, called Model Verification and Valida-
tion [Bal07]:

Definition 19: Model Verification

Model Verification is substantiating that the model is transformed from one
form into another, as intended, with sufficient accuracy. Model verification
deals with building the model right. This includes tranformations between
models.

Definition 20: Model Validation

Model Validation is substantiating that the model, within its domain of
applicability, behaves with satisfactory accuracy consistent with the study
objectives. Model validation deals with building the right model.

Definition 21: Model Testing

Model Testing is ascertaining whether inaccuracies or errors exist in the
model. In model testing, the model is subjected to test data or test cases
to determine if it functions properly.

We then see appearing many levels of Verification and Validation, which are
well represented in the Sargent Circle [Sar91] (figure 1.9). A relation between
Verification and Validation is also implicitely defined. Indeed, a model is veri-
fied against requirements, then the morphisms that allows translating a source

52

Overview of Verification and Validation

model to a target model is also verified, because all the requirements properties
are hold by the verified model. Then, validation of the target model involves also
validation of the source model. Finally, Operational Validation achieves the over-
all validation process. That is why the simulation specification model is verified
against a conceptual model, and that the simulation model is verified against
the simulator specifications. Conceptual Validation and Operational Validation
ensures that both the conceptual model and specifications are validated.

Figure 1.9: The Sargent Circle for V&V of Simulation Model [Sar91].

If the system entity is a program, a verification step is added between the
system theories and the conceptual model. If we complete this model with those
one proposed in [Pet10] (figure 1.10), meaning by adding a verification step
between requirements and conceptual model, then we can deduce that: if the
conceptual model is a correct model of the software, and if the conceptual model
verifies the requirements, then the software also verifies the specifications.

Simulation Verification is then the fact to verify that the computerized model
(the simulator) conforms to the simulation model specifications, while the Simu-
lation Validation is the fact that the simulator simulates correctly the conceptual
model. A validated simulator can be then used to validate the real system.

53

CHAPTER 1 - STATE OF THE ART

Figure 1.10: Simpli�ed V&V proposed in [Pet10].

Concerning the techniques, Sargent [Sar01] preconizes to use tests, compar-
isons between models, animations, historical validation, traces, etc., which are
classical Software V&V techniques. Kuhn, Craigen, and Saaltink [KCS03] pro-
poses the introduction of formal methods for the conceptual model validity and
for the implementation verification. This is interesting to see that formal verifi-
cation approaches are again proposed for validation purposes.

1.4.4 Model Accreditation and System Certification

The last relation between Model and System concerns accreditation and certifi-
cation. Tran [Tra99] defines the certification as

Definition 22: Certification

A written guarantee that a system or compnent complies with its specified
requirements and is acceptable for operational use.

A certified system is then a verified and validated system. In the same manner,
M&S domain defines the notion of accreditation [Pet10]:

Definition 23: Accreditation

Accreditation is the official certification that a model is acceptable for use
for a specific purpose.

Accreditation concerns both conceptual model and simulation model. From
that, we can deduce a fact: a simulator must be certified before the model it
represents can be accredited.

54

Formal Verification and Formal Methods

1.5 Formal Verification and Formal Methods

1.5.1 Introduction to Formal Methods

In the last section, as in introduction, we talk about Formal Verification (FV)
and Formal Methods (FM). Formal Verification is a verification methodology that
“dates back to the origin of computer sciences” [CC10], and whose objective is to
check whether a system is correct against some formal specifications. FV meth-
ods are based on rigorous and mathematical proof techniques: Formal Methods
(FMs) are a set of formal notation and tools allowing strict and rigourous de-
scription of the system under study, with formal semantics and an automatic
proof mechanism [BH95].

Formal Methods are divided into two families:

• Automated theorem proving methods show that a set of statements of a
system can be deducted from another set of statements. Formally, we con-
sider Γ, a set of logical properties describing the system (we called them
axioms and hypothesis), and φ a set of specifications (that we called con-
jectures). Theorem proving methods try to find a proof that Γ ` φ, in other
words, that we can syntactically deduce specifications from properties of
the system.

• Model Checking methods show that a system satisfies a set of properties.
Formally, we consider M , a model (in the mathematical sense) of the sys-
tem, and φ, a set of logical properties. Model Checking methods check
whether M |= φ : all models M syntactically and semantically satisfy φ.
In fact, because the system is generally modelled by a finite automaton,
model checking tools systematically explore the entire state space of the
system model, inducting to the well-known state space explosion problem,
which is extensively treated in the literature [Cla08; HR05; BK08].

FMs are powerful methods to check the correctness of a system. However, it
is well-known that these techniques could become very heavy, time and effort
consuming because they require advanced mathematical skills and knowledge
[Hei98], and are not very practical in large and complex systems. Although
formal methods research is focusing on efficiency and scalability, formal methods
are faced with the complexity of systems and the of data domains [Zer+13].

We will here discuss only the case of Model-Checking. Indeed, even it is a pure
verification method at its origin, the literature seen before seems to consider it
as a validation technique. Therefore, as both Verification and Validation method,
it is interesting to see what is really behind model-checking.

55

CHAPTER 1 - STATE OF THE ART

Model-Checking was introduced by Clarke and Emerson [CE82] and Queille
and Sifakis [QS82]. It is a model-based verification techniques that explores sys-
tematically the all system statespace, and whose the most elaborated algorithms
can handle statespace with more than 10476 [BK08] states for specific problem.
The process of Model-Checking (figure 1.11) is similar to the M&S Framework
seen previously.

Figure 1.11: Model-checking schema from [BK08].

Given a system model and requirements, the model-checking tries to apply the
requirement to each state. If one state does not satisify the property, a counter-
example is returned by the checker. While model-checking is presented as an
exhaustive verfication method, it does not suffer from the empirical aspects of
simulation and tests which focus on the most probable defects. However, model-
checking suffers from several drawbacks [BK08]:

• it is not suited for data-intensive applications;

• it is subject to decidability issue. For example, infinite-state systems like
G-DEVS cannot be checked [HG05];

• Verification concerns the model and not the system. Like for simulation,
complementary verification and tests are needed;

• Like for simulation, it checks only stated requirements. Therefore, there is
no guarantee of completeness.

• It suffers from the state-space explosion problem;

56

Formal Verification and Formal Methods

• It requires some expertise in finding appropriate abstractions to obtain
smaller system models and to state properties in the logical formalism used;

• The model-checker itself could have errors;

• It does not allow checking generalizations: in general, checking systems
with an arbitrary number of components, or parameterized systems, can-
not be treated. Model checking can, however, suggest results for arbitrary
parameters that may be verified using proof assistants.

Thus, it is possible to see many common points with the Modelling and Sim-
ulation drawbacks. If both suffers from the same problems, Model-checking is
more restrictive than Simulation.

1.5.2 Model-Checking Theory

The idea behind the model-checking theory is trivial. Given a model, the idea is
to explore the total statespace. Model-checking is not relative to execution like
simulation, that is why non-deterministic models are not a problem, and even
are necessar. Indeed, the strong assumption is that, because all the statespace
will be explored, all the scenarios will be covered. This is can be achieved only
if we can go through any of the concurrent transitions at each instant.

The verification model From a formal point of view, the model M is a non-
deterministic finite automaton

A = (Q,Σ, δ, Q0, F)

where

Q is a finite set of states;

Σ is an alphabet;

δ : Q× Σ→ 2Q is a transition function;

Q0 ⊂ Q is the set of initial states;

F ⊂ Q is the set of final (accept) states.

with a Buchi [Büc66] acceptance criterion.

Definition 24: Run

We call run any ordered set of pairs of {(q0, σ0, q1), (q1, σ1, q2), ...} such that
∀i, (i ≥ 0) =⇒ qi+1 = δ(qi, σi).

57

CHAPTER 1 - STATE OF THE ART

Definition 25: Accepted word and accepted language

Given a finite word w = σ0σ1...σn−1, w ∈ Σ∗ is an accepted word by A if
there exists a run {(q0, σ0, q1), (q1, σ1, q2), ..., (qn−1, σn−1, qn)} such that:

q0 ∈ Q0

qn ∈ F (the last state of the run is a final state).

The set of accepted words is called the accepted language of A and is de-
noted L(A).

Definition 26: ω-acceptance (Buchi acceptance)

Given A a non-deterministic finite automaton, and w an infinite word on
Σ∗. w is accepted if there exists an accepting infinite ω-run σ such that

σ = {(q0, σ0, q1), (q1, σ1, q2), ...} ∈ Σω

∃qf , qf ∈ F∧qf ∈ σω where σω is the set of states that appear infinitely
often in σ.

This means a run is ω-accepted only iff an accepting state is visited in-
finitely often in the run.

Theorem 1: Langage Emptiness is equivalent to Reachability

Given A a non-deterministic Buchi Automaton. Therefore, L(A) 6= ∅ iff
∃q0 ∈ Q0 and qf ∈ F such that qf ∈ Reach(q0).

Proof - Theorem 1. L(A) 6= ∅ means that there is at least one accepted infinite
word by A, i.e. it exits at least one accepting ω-run. Then, there exists at least
one qf ∈ F which is reachable from an initial state q0 ∈ Q0.

58

Formal Verification and Formal Methods

Definition 27: Synchronous Product of Automata

Given two automata A = {(SA, s0A
, LA, TA, FA)} and B =

{(SB, s0B
, LB, TB, FB)}, the synchronous product A ⊗ B is defined

as:

S = S ′A × SB, where S ′A is a set of states in which an ε self-loop is
attached to every states of SA that have no successor [Hol03];

s0 = (s0A
, s0B

);

L = L′A × LB;

T = {(ta, tb), ta ∈ T ′A, tb ∈ TB} such that t = (ta, tb) if

ta = qa
A→ qa′ ∧ tb = qb

A→ qb′

(qa, qb) A→ (qa′ , qb′)
;

F = FA × FB; f = (fa, fb) ∈ F =⇒ fa ∈ FA ∨ fb ∈ FB.

By construction,
L(A⊗B) = L(A) ∩ L(B).

Linear Temporal Logic Temporal Logic is the branch of logic which allows
reasoning both casual and temporal relation of properties [Pnu77; HR05]. There
are a plenty of temporal logics but Baier and Katoen [BK08] classify them in
three categories:

• Linear Temporal Logic (LTL) is based on a linear-time perspective, meaning
at each moment in time, only one moment sucessor is possible. Then, LTL
models time as a sequence of states, extending infinitely into the future;

• Computation Tree Logic (CTL) [CE82] is a branching-time model, meaning
time is view as a tree structure, and may split into alternative paths;

• Timed-CTL is an alternative version of CTL with quantified time.

We present here only the LTL syntax and semantics, while it is the most used
and implemented in modern model-checkers [SAK06; Cla08]. We also focus
only on the most important operators of the LTL formulae, whose a simplified
semantics is given in figure 1.12.

59

CHAPTER 1 - STATE OF THE ART

Figure 1.12: Simpli�ed Semantics of LTL operators [BK08].

Definition 28: Until

Given two boolean formulae p and q, and an ω-run σ, we say "p until q"
and we note pUq (or pU q) if

(weak until) σ[i] |= pUq ⇔ σi |= q ∨ (σi |= p ∧ σ[i+ 1] |= (pUq))

(strong until) σ[i] |= pU q ⇔ σ[i] |= pUq ∧ ∃j, j ≥ i, σj |= q

The weak until definition says that a sub-formula p becomes false as soon as a
sub-formula q becomes true, but never requires that q becomes true. The strong
until adds this requirement.

Definition 29: Always

Given a boolean formula p, and an ω-run σ, we say "always p" and we note
�p if

σ |= �p⇔ (p U false)

This definition captures the fact that p is invariantly true.

Definition 30: Eventually

Given a boolean formula p, and an ω-run σ, we say "eventually p" and we
note �p if

σ |= �p⇔ (true U p)

60

Formal Verification and Formal Methods

This definition captures the fact that p becomes true at least one time through-
out a run.

Definition 31: Next

Given a boolean formula p, and an ω-run σ, we say "next p" and we note
X p if

σ[i] |= X p⇔ σi+1 |= p

This definition simply states the immediate next state in a run holds p.

Types of property which can be expressed in LTL Using the LTL, it is then
possible to express two categories of properties [Lam77]:

• A safety property asserts that nothing bad happens. The most simple safety
property consists on checking that all states variables satisfies conditions.
Especially deadlocks are detected through safety properties;

• A liveness property asserts that something good eventually happens. Es-
pecially progress property guarantees that certain actions will eventually
happen.

Interpretation of LTL formulae and Verification It was shown [BK08] that
verifying a LTL formula can be interpreted as finding accepting paths in a Kripke
Structure [Kri63], which is a transition systems labelled by atomic propositions.
Indeed, a LTL formula defines a set of infinite words that satisfies it. Then, as a
consequence, it is equivalent to find a path in the reachability graph of a transi-
tion system. Pnueli [Pnu77] shows also that a LTL formula can be translated into
a Buchi automaton. Then, in order to verify that a system holds a LTL formula,
model-checkers proceed as follow:

1. The LTL claim p is translated into a LTL never claim (the opposite of the
property which must be verified).

2. The LTL never claim is transformed into a Buchi automaton.

3. If an automatonM holds the property p, then it never holds the correspond-
ing never claim. This means that the intersection between the language
defined by M and the language generated by p is empty. However, as given
in definition 27,

L(A⊗B) = L(A) ∩ L(B)

Then, the synchronized product between the two automata is performed.

4. Theorem 1 states that the emptiness problem is equivalent to the reacha-
bility problem. Moreover, as said before, verifying a LTL formula can be

61

CHAPTER 1 - STATE OF THE ART

interpreted as finding accepting paths in a Kripke Structure. Then, the
reachability graph of the synchronized product is generated.

5. If the reachability graph is not empty, then the never claim is hold by the
modelled system, meaning that the initial property is not verified.

Efficiency of model-checking hence depends on the efficiency of the algorithm
[SAK06; Fra+10] used in order to compute the reachability graph. Many ap-
proaches were given using Binary Decision Diagram, symbolic verification, par-
tial order reductions, etc [Cla08]. We won’t discuss about the efficiency of al-
gorithm, but we can clearly see why model-checking is subject to decidability
problem. Indeed, a minimal condition for using model-checking is that the ini-
tial model is finite, or at least countable. Otherwise, it is impossible to compute
the reachability graph. Therefore, infinite models can be infinite checked only if
finitary abstractions can be found, unlike simulation for which infinite systems
are not a problem.

1.5.3 Timed Automata

As stated in [BK08], the basic model-checking is only interesting in how reactive
systems evolve from one state to another, without taking into account timing
aspects. For example, there is no way to describe the fact that a system will stay
in a state for a time. Then, these time-critical systems cannot be modelled. The
authors also state that

"Correctness in time-critical systems not only depends on the logical
result of the computation but also on the time at which the results are
produced."

This statement will be debated in a next section. Nevertheless, we present
theories elaborated to face this problem. The first and the more simple technique
was to consider that operations are done in a tick. By this way, time is modelled
as discrete-time, and clocks are modelled as loops. One loop corresponds to
a time pulse. In this manner, LTL and CTL can be used for checking properties.
However, we can easily imaginate that this method leads to very huge statespace.

Another approach called Timed Automata (TA) was developped by Alur and
Dill [AD94]. Timed Automata are transition systems in which transitions are
constrained by a real-valued clock variables. These clocks can be only inspected
and reset to zero. Formally, a timed automaton TA is

TA = (S,Act, Clock, T, Inv, S0, AP, L)

where

L is a finite set of states;

62

Formal Verification and Formal Methods

Act is a finite set of actions;

Clock is a finite set of clocks;

l0 is a an initial states;

T ⊆ S × C(Clock) × Act × 2Clock × S is a finite set of transitions. C(Clock)
represents a set of constraints on clocks;

AP is a set of atomic propositions;

L is a labelling function;

Inv is an invariant that associates an invariant to each states.

Then, the semantics of TA is defined by a Timed Transition System (TTS)

T = (S, S0,→,Σ)

where

S = L× RClock is a set of states;

s0 = (l0, v0) is a initial state; v0 is the clock valuation function and v0(x) = 0
for each x ∈ Clock;

→⊆ S × (Σ ∪ R+)× S is a relation between states:

1. → is a action transition (l, v) a→ (l′, v′) iff ∃t ∈ T, t = l
g,a,r→ l′ such that

v |= g (v satisifies the clock constraint), v′ = [r ← 0]v (the clock r
are resetted), v′ |= Inv(l′) (the invariant of the next location is always
respected);

2. → is a delay transition (l, v) d→ (l, v + d) iff v + d |= Inv(l). Delay
transitions increase all the clock by the same amount of time.

Model-Checking of Timed Automata Laroussinie et al. recall in [NM13] the
decision procedure for checking reachability in TA, proposed by Alur and Dill
[AD94]. Alur states that the problem of TA is that the number of states can be
uncoutable, due to the extended states (s, v) where v is a clock interpretation.
However, if it is possible to build a finite automaton that mimics the behaviour
of the TA, then the verification becomes possible. As the problem comes from
the clock valuation, Alur proposes to build an equivalence relation between v
and v′, thanks to an intuitive observation: given two valuation v and v′ and two
extended states (s, v) and (s, v′), if v and v′ have the same integer parts on all
clock values, and if all the clocks values can be ordered in the same manner
according to the fractional part, then all runs starting from the two extended
states are similar. This allows defining an equivalence relation noted v ∼ v′

which is hold iff:

63

CHAPTER 1 - STATE OF THE ART

1. ∀c ∈ Clock, (bv(x)c = bv′(x)c) or v(x) ≥ cx ∧ v′(x) ≥ cx, where cx is the
largest interger c such that x ≤ c or x ≥ c in a subformula of some clock
constraints appearing in →; this constraint imposes that both valuation
have the same integer parts (or both have the same order with the bounding
constraint);

2. ∀x, y ∈ Clock with v(x) ≤ cx and v(y) ≤ cy, frac(v(x)) ≤ frac(v(y)) ⇔
frac(v′(x)) ≤ frac(v′(y)); all the clocks values can be ordered using their
fractional part;

3. ∀x ∈ Clock with v(x) ≤ cx, frac(v(x)) = 0 ⇔ frac(v′(x)) = 0; this defines
the condition for having the same integer parts.

Using this equivalence, Alur shows that the number of clock regions (a class of
clock interpretations induced by ∼) is finite and bounded. As a consequence, it
is possible to build a finite region automaton which behaves exactly as the timed
automaton. Then, the model-checking can be applied for verifying temporal
properties.

Clock constraints and limits Clock constraints in Timed Automata are ex-
pressed using the following grammar:

δ := x ≤ c|c ≤ x|¬δ|δ1 ∧ δ2

where c is an integer constants or any linear combinaisons of constants. More-
over, actions are only limited to accessing and resetting clocks, meaning it is
impossible to define state variables that explicitely depend on time. Alur shows
that without these constraints (for example by allowing linear combinaisons of
clocks), the problem of emptiness of timed automata becomes undecidable. In
fact, the model is not more timed regular, and it becomes impossible to build an
untimed automaton with the same behaviour.

As a consequence, if we want model datas that have a time-dependant evo-
lution, it must be done in a manner similar to those used in discrete-time mod-
elling. Then, the size of the statespace dramatically increases. Finally, Timed
Automata are only able to model systems with delayed transitions.

1.5.4 Hybrid Automata and others methodologies

In order to solve this problem, Alur, Courcoubetis, Halbwachs, et al. [Alu+95]
and Henzinger [Hen96] propose to develop a class a model called hybrid au-
tomata, in which states variables evolve using differential equations.

Formally, an hybrid automaton HY is

HY = (S, T,Σ, X, Init, Inv, F low, Jump)

64

Formal Verification and Formal Methods

where

S is a finite set of states;

T ⊆ Loc× Loc a finite set of discrete transitions;

Σ a set of events, with a labelling function lab : T → Σ;

X a finite set of real-valued variables.

Init, a function that gives the initial values of variables;

Inv, an invariant function that gives the condition of variables at each state;

Flow, a function that describes of variables of each state;

Jump a function that gives the guards that enable the transition and how
the variables are updated before transiting.

Given such an automaton, Alur showed the problem of emptiness is undecid-
able except for a subclass called Linear Hybrid Automata (LHA), in which vari-
ables evolve following constant differential equation. The demonstration of this
resultat is not recall here, but it illustrates the impossibility of formally check-
ing certain classes of timed systems. Otherwise, for the LHA, the methodology
consists on using convex polyhedra to abstract the LHA into a finite-state au-
tomaton. This automaton is then checked using the classical model checking
theory introduced before.

Litterature on model-checking introduces many other types of abstraction in-
cluding Abstract State Machine [SBS01; Bör05; Rei12], Probabilistic and Stochas-
tic Model Checking [KNP07; Kat10; KP12], etc. but all of them suffer the same
problem of abstraction, explosion statespace problem or decidability.

Probabilistic Model Checking is efficient for the analysis of systems which ex-
hibit stochastic behaviour, and which can be modelled by Markov Chains. For
instance, PRISM Model Checker [Hin+06; KNP07] supports the verification of
both Discrete-Time Markov Chains (DTMC) and Continous-Time Markov Chains
(CTMC). DTMC express probabilistic choices, in the sense that the designer ex-
presses the probability of performing an action. In these models, time is mod-
elled as discrete steps. CTMC model probabilistic choice and the continuous
time, in the sense that designer can models the rate of performing a transition
from one state to another. Then, stochastic model checking achieves the reach-
ability analysis like traditional model checking, and computes likelihood of the
occurrence of certain events during the execution of a system. But as stated
in [SV13a], "this approach suffers the well known state-space explosion problem,
i.e. it does not scale well when the system complexity grows". That is why Sta-
tistical Model Checking (SMC) [LDB10] has been studied. Indeed, SMC uses

65

CHAPTER 1 - STATE OF THE ART

discrete-event simulations in order to approximate the behaviour of a probabilis-
tic system, and use hypothesis testing to infer whether the samples provide a
statistical evidence for the satisfaction or violation of the specification. However,
the main drawback is that SMC does not provide exact results.

1.5.5 Abstraction and The Great Debate

From the previous section, we can deduce that efficiency and results of model-
checking strongly depends on the capability of making abstraction of models.
Abstraction-Refinement [HL98; GS05; Gru06] is then the main process in the
model-checking activity. Even, model-checking and theorem proving are both
performed in a top-down manner, by refining an abstract model to the imple-
mentation, or in a bottom-up manner, by extracting a model for an implementa-
tion, using a certified translation. The main question is: how ensuring that two
models express the same thing ? Is the certified extraction enough ?

Informally, refinement can be defined as adding details to a model, while ab-
straction is the reverse process, in which some elements of the source model are
identify to a unique element of the abstracted model. Implementation relations
are then used for comparing models, meaning that transition systems from an
abstract system specification and a detailed system specification are compared
[BK08]. Then, if the second one is a correct refinement (implementation) of the
first one, that means the abstracted model has enough relevant details for the
analysis of a given property. Grumberg [Gru06] identifies three abstraction types
whose one is discussed here: data abstraction [Lon93]. It consists on, for each
variable, choosing an abstract domain that is smaller than the original domain.
Then, an abstraction function maps concrete data to abstract data, and therefore
induces a mapping function from concrete states to abstract states. In the most
of cases, this guarantees the finiteness of the checked model. Data abstraction is
supposed to ensure that the abstracted model behaves like the concrete model.
This leads to time abstraction like argues in [Hol03]. The author says that

"Verification of system properties is based on the fundamental assump-
tion that correctness should be independent of performance".

However, explicit time is not just relative to performance. Moreover, the ex-
istence of formalism like Timed Automata or Hybrid Automata shows that in
practice, untimed model are not equivalent to timed models. Indeed, variables
generally evolves according to the time like shown in the M&S Theory. We agree
that in certain cases, time-invariant properties can be abstracted, but generaliz-
ing this fact to all variables leads to unaccurate models. Then, this question is
relative to know : which is the relation between timed and untimed model that
we have represented in figure 1.3.

66

Towards Integrating Formal Verification and Simulation for V&V

The other debates concern states vs event approaches and open vs closed sys-
tems. For the first one, as model-checking enumerates states and does not inter-
est in events, adopting a state approach makes easier the formalizing of temporal
properties. Indeed, they are built up from simple boolean conditions holding by
states. The nature of model-checking then makes more intuitive the use of state-
based models. Concerning the second debate, closed system enforces designer to
embbed all the sources of input in the model. If this is helpful and enforces the
designer to focus explicitely on hidden assumptions, the drawback is it is likely
impossible to built a modular and hierarchical systems like in M&S theory. Then,
it can blur and make more difficult the modelling of huge systems with several
inputs sources. Moreover, designers sometime want to hide the details of input
generation, in order to focus only on relevant details of the model. Therefore,
closed models are not appropriate for modelling systems with many interactions
between components.

The last thing is : why model-checking is considered as a validation method
? Model-checking is a verification method but which is interested in behavioural
properties. Indeed, it is possible to check safety and liveness properties, but
both of them can express structural and behavioural properties. For the second
one, model-checking is just look for ordered actions, in opposite in simulation
which stimulates the model according to a time-advance function. As model-
checking is therefore able to check behavioural properties, it can check final user
requirements. If the model is verified (and validation), then model-checking can
be used for validating the initial system by checking properties on the model.

Knowing all these drawbacks, some work try to limit them by combining
model-checking and simulation approaches.

1.6 Towards Integrating Formal Verification and Simulation for V&V

Gaudel [Gau11] states that:

"It is now quite well acceptedthat activities such as model-checking,
proof-supported refinement, program proving, system testing, etc, are
complementary[...]: for instance it is different to perform concur-
rently two of the activities mentioned above, drawing global conclu-
sions at the end, and to transpose one method developed for one of
these activities to another one in order to improve it."

For instance, the author talks about techniques which have been combined
and which blur the line between static and dynamic verification methods, like
symbolic execution, concolic testing or runtime verification. At a higher level,
formal verification techniques have also been combined, and attempts on com-
bining formal verification and simulation exist.

67

CHAPTER 1 - STATE OF THE ART

This section will try to make a short survey of how techniques are combined
for achieving efficient Verification and Validation.

1.6.1 Integration of Multiple Formal Verification Tools

The first category of combination between tools is the integration of multiple for-
mal methods. For instance, Kindler, Rubin, and Wagner [KRW06] propose to in-
tegrate multiple models into components which are connected each other. Each
component can be verified or simulated using a defined technique (for example:
Petri nets, Timed Automata..). The authors also talk about transformations that
allow translating a model which can be understood by a method into another
model understandable by another method, using what they call the triple graph
grammar, and which is based on Model-To-Model techniques [SK03]. However,
the author do not say how they guarantee the correctness of the transformations,
nor the benefits on changing methods without changing level of abstraction.

In another work, Owen [Owe07] shows the inconsistency of the results ob-
tained by different model-checkers and different model-checking algorithms when
checking a same property on a same model. The most impressive result is the
the disagreement between NuSMV [Cim+00] and CadenceSMV [McM00] which
are both symbolic model-checkers. Then, Owen proposes to combine model-
checkers to improve accuracy, performance and robustness. To achieve this, the
specification is encoded into the SCR Toolset and translated into different speci-
fication languages which can be used with different checkers [Hei+05].

Owen gives the figure 1.13 to summarize its proposed approach, and argues
that

The SCR Toolset’s translators used in our experiments are complemen-
tary, for example, in the sense that the output for SMV is a smaller
model than the output for SPIN, and so can be verified more effi-
ciently; yet the output for SPIN is a more complete representation of
the specification.

If this statement is true as explicit model-checking performs less abstraction
than symbolic model-checking, it can be discussed if we take into account the
fact that all model-checkers finally reduce the model to a finite state-machine.
As stated before, it is generally not enough to increase accuracy.

68

Towards Integrating Formal Verification and Simulation for V&V

Figure 1.13: A conceptual model of the challenges involved in using automatic
veri�cation tools. [Owe07].

In a similar way, He [He01] states also that formal methods based on a sin-
gle fundation have limits, and are just suitable to represent specific aspects of
software systems. To overcome this problem, He proposes to study the relation-
ship between formal methods and builds a new formalism called PZ-Nets which
integrates Petri nets and the Z formal notation. In this way, he makes a new for-
mal verification approach in which a unified formal model is used for specifying
different aspects of a system (structure, control flow, data types, and function-
ality) and for specifying different types of systems (sequential, concurrent, and
distributed systems).

69

CHAPTER 1 - STATE OF THE ART

1.6.2 Combining Formal Verification and Simulation

While Godefroid [God13] says that "model checking can be combined with test-
ing to define a dynamic form of software model checking based on systematic
testing", confirming that static and dynamic approaches can be both used for
Verification and Validation, Goldberg [Gol08] admits that simulation and for-
mal verification are complementary. The author states that if formal verification
proves that a model holds property for all point, the main problem is its unsca-
bility. On the other, simulation probes the search space at a subset of points,
and "works surprisingly well even though the set of test points (further referred
to as the test set) comprises a negligible part of the search space". Then, she
proposes a way to build a sufficient test set for SAT-circuit and shows how sim-
ulation can be used for verifying sequential circuit. In the similar way, Stuart,
Brockmeyer, Mok, et al. [Stu+01] defines a new analysis methodology that he
calls Simulation-verification. In this approach, simulation is used for generat-
ing a computation prefix that restricts the reachability graph on which formal
verification is performed.

Li, Szygenda, and Thornton [LST05] state that modern formal verification
methods overcomes the weakness of non-exhaustive simulation, and can be used
for validating designs. The authors propose an architecture for validation of inte-
grated circuit design. In this architecture, the model is partitioned and analyzed
in order to select the most efficient techniques (formal validation or simulation-
based validation). After performing the validation, a coverage analysis is done
and reintegrated in the validation loop. In a similar approach, Abdulhameed,
Hammad, Mountassir, et al. [Abd+14] proposes to validate SysML models by
using Timed Automata and SystemC simulator. Using the Model-Driven Engi-
neering approach, the authors translate the SysML specifications into a SystemC
model which is simulated for validating non-functional properties. The SystemC
model is then translated into a Timed Automata and checked against the re-
quirements translated from the SysML model. The cons of this approach is that
the translation from SystemC to Timed Automata can be done under restrictive
conditions [Poc+11]. The authors don’t provide way to ensure the translation
is possible. In [YHF14b; YHF14a], we propose to combine PROMELA and TSM
by extracting the behaviour of a verification model and completing the speci-
fications with timed informations (figure 1.14). The resulting model was then
encoding in TSM and simulated. However, the cons of this approach is the same
than the previous work: we have no guarantee that there is a relation between
abstractions.

70

Towards Integrating Formal Verification and Simulation for V&V

Figure 1.14: Approach of combining PROMELA speci�cations with TSM.

In a very recent approach which can be seen as another application of the work
introduced in this thesis and confirms our results, Aliyu, Maïga, and Traoré[AMT16;
AT16a; AT16b] choose to achieve the combination of formal methods and sim-
ulation by using Model-Driven Engineering methodology. They create the High
Level Language for System Specification (HiLLS) which integrates system-theoretic
concepts from DEVS and software engineering concepts from Object-Z. As a re-
sult, HiLLS have the semantics of DEVS and is able to model both concepts de-
scribed in DEVS and Object-Z. HiLLS model is then derived into a DEVS model
and Object-Z model using a MDE approach, while we choose in our work to use
a direct mapping between automata.

In the opposite direction, Kunzli, Poletti, Benini, et al. [Kun+06] proposes to
combine formal analysis methods and simulation to speed-up simulation, in the
case of System-Level Performance Analysis. By defining an interface between
simulator (in this case, SystemC) and formal method (in this case, Real-Time
Calculus [CKT03]) which converts data output from one method to the other,
the run-time of simulation is divided by two.

71

CHAPTER 1 - STATE OF THE ART

In another work, Girard and Pappas [GP06] show how simulation can be used
for verification of metric transition systems using a finite number of simulations.
However, this approach does not work for non-metric systems (i.e. without an
observation map).

Savicks [Sav16] integrates formal methods and simulation by defining an op-
erational semantics for Event-B models. The Event-B components is then coupled
to others simulation models, and the master model is co-simulated in the mas-
ter environment. This is achieved using an open standard for tool-independent
model exchange and cosimulation called Functional Mock-Up Interface. In this
case, interoperability is done through the tools and not through the conceptual
models.

The last discussed methodology is the Assertion-Based Verification (ABV) [FKL04].
This approach, appreciated in circuit design, consists on putting assertions in the
model when this latter is written. Assertions are logical properties that must be
verified by the model during the execution. When executed or simulated, asser-
tions are monitored and trigger errors if there are not verified. Assertions can
also be used in formal verification, as they are evaluated without participating
to the behaviour of the model.

1.6.3 Formal Verification of Simulation Models

The last way to consider combination of formal verification and simulation mod-
els in through the V&V of simulation models. As an active research domain, a
lot of works were done for increasing the confidence put into simulation mod-
els. Beyond the V&V Framework [WL07], many of attempts consist on trans-
lating DEVS models into verifiable models like Timed Automata [DG05; DG07;
Ino+16] (only in the case of the DEVS model is a TCDEVS model), by reduc-
ing the model to a finite and deterministic model [HZ06; HZ09] and applying
the model-checking algorithms, by translating DEVS models into TLA+ [Cri07].
Trojet, Frydman, and Hamri [TFH09; Tro10] propose to encode some structural
properties of DEVS model into Z specifications for verifying properties like de-
terminism and completeness. Maiga, Bright Ighoroje, and Kaba Traoré [MBK12]
transform the DEVS simulation model into Z, CSP and CTL models, depending
on the level of abstraction. However, whatever these techniques, it was shown
that they can be applied only on subsets of DEVS, while Generalized DEVS can-
not be verified [HG05].

In [BJ14; ZN15; ZNS16], the authors discuss the use of the morphism concepts
proposed by M&S theory for transforming DEVS models into models more suit-
able for analysis by model checking, symbolic extraction of test cases, etc. They
give an example of how mapping DEVS into a PROMELA model. Simulation is

72

Conclusion

used for exploring the system’s parameter space and identifying boundaries be-
yond which any particular proof fails to hold, or for checking scenarios that are
outside the scope of model-checking, while model-checking is used for checking
the property in a smaller statespace. The authors state, like what we state in our
work, that the extended conditions space is greater than the idealized conditions
space. This confirms the approach that we will introduce in the next chapter.

1.7 Conclusion

We have given in this chapter some key definitions concerning models, systems
and software. Modelling is the central activity of Verification and Validation of
Systems, whatever the domain. We have also seen that all activities of V&V, other
than testing directly the real system, is equivalent to checking only the model.
Then, if we can prove there is a relation between the system and the model,
then we can infer the validity of the system. This relation is proved through a
model verification process. Then, a V&V process involves many kind of levels of
verification and validation: the simulator, the simulation model, the conceptual
model and the real system. They involve also independantly static and dynamic
techniques, proving that both approaches are complementary.

Especially in software engineering, model-checking is both a verification and
validation technique. However, model-checking reasons on the model, and re-
sults can be transposed to the software only if the model extraction was proved.
Model-checking as simulation supposes also that the checker was verified and
validated. Moreover, we have shown that model-checking suffers from decidabil-
ity issues and state-space explosion as soon as timed-variables are introduced in
the model. There, to ensure the model can be checked – i.e. it is a finite model
– data and events must be abstracted. As a consequence, model-checking is not
really appropriate for event-driven architecture, and nor for data-driven archi-
tecture.

Then, Formal Methods and Simulation have the same objectives. We showed
also that what seems in opposite are complementary. Indeed, what formal meth-
ods cannot detect can be detected by simulation while what takes time to be
checked using simulation can be quickly verified using formal methods.

Our idea is then to integrate simulation and model-checking in a same frame-
work, and use them in combination in order to improve V&V processes.

73

Chapter

2
A Combined
Formalism:
DEv-PROMELA

Alone we can do so little; together we
can do so much.

Hellen Keller

The strength of the team is each individual
member. The strength of each member is the team.

Phil Jackson

2.1 Introduction to Combined Methods

As seen in the previous chapter, goals of simulation and verification are sensibly
the same. There are also existing Verification and Validation methodologies that
combine formal verification and simulation. The approach that we propose in
this work looks for filling weaknesses of model checking by using discrete-event
simulation.

We have seen in this previous chapter that abstraction guarantees that the
abstracted model is greater than the concrete model [Gru06], in the meaning
that it represents more things because it is more generic. However, the practi-
cal abstract model takes less memories than the concrete model thanks to sym-
bolic representations, meaning that concrete model is physically greater than
the abstract model. If we take this sentence literally, we are facing a "contra-
diction". And this is that contradiction which we will exploit. Our idea is that
it is possible to use the fact that the simulation-space including data is greater
than the verification-space, whereas the abstract model is more general. In fact,
the accuracy is loss when data abstraction is applied to the model, and that is

75

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

data that makes harder formal verification. Therefore, reintroducing data in the
simulation-space (figure 2.1) will allow modelling of time-dependent systems.
By this, we do not mean just applying time constraints on transitions, but re-
ally model time-dependent states and variables. The verification space then can
be seen as the union of a restricted formal verification space for time-invariant
properties, and a simulation-based verification space for time-dependent prop-
erties.

Figure 2.1: Schema of Combined Model Veri�cation Space. The grey arrows means
the increasing space by adding data.

This is achieved by creating a new specification language that will support
model checking and discrete-event simulation thanks to morphisms. Then, mod-
ellers can use models expressed in this new formalism in order to perform ver-
fication and validation of properties by using model-checking and dicrete-event
simulation.

As a realization of our approach, we develop an extension of the Process Meta
Language (PROMELA) called Discrete-Event PROMELA (DEv-PROMELA). As we
will see, the DEv-PROMELA language can be reduced using a simulation for-
malisms hierarchy, that gives more control to the modellers.

Note that in this chapter the term simulation refers to discrete-event simula-
tion.

2.2 General Approach

76

General Approach

2.2.1 Abstract Approach

The approach that we propose [YHF16a] consists on building a specification
language upon an existing specification language by introducing discrete-event
concepts. We can summurize the methodology in the following steps:

1. We choose the verification formalism that we want to improve among the
existing specification formalisms. We call this formalism the source formal-
ism. As verification formalism, in the case of model-checking, we mean the
final language (like PROMELA or UPAAL Timed Automata, etc..) used by
the model-checking tools to model systems. Indeed, as seen in the previ-
ous section, model-checking approaches always use an underlying transi-
tion systems as models. The resulting transition systems depends on the
capabilities of the specification language and the algorithm used by the
model-checking tools. For conveniance, we call the initial model the source
model.

2. We choose the simulation formalism that we want to use to improve the
source formalism. We call this the target formalism. The target formalism
must be chosen so that it represents the system under study at best. How-
ever, it must at least have an operational semantics [Hen90; Plo81; Plo04;
Sco77; Ten76].

3. We determine from the target formalism what discrete-event concepts are
missing in the source formalism. At least, these notions are: event, state
lifespan and types of transition (internal or external).

4. We introduce new syntactical elements into the source formalism in order
to model the previous concepts. If needed, we also add a abstract real
datatype to represent infinite and unbounded values.

5. We define a new operational semantics for the source formalism and based
on the target formalism. The initial structure of the underlying automaton
is not changed.

6. We use the new specification language for modelling systems. For conveni-
ance, we call the model obtained the target model.

Then, we can be sure that we are able to easily define a morphism which
translates models expressed in the new formalism into models expressed in the
source formalism and which conserve all their structural properties. Indeed,
step 5 ensures that the automaton underlying the new formalism is built upon
the automaton underlying the source formalism. Moreover, we are also sure that
there exists a simulation model which has the same behaviour than the behaviour
of the model expressed in the new formalism. Then, our new model can be
verified and validated using both model-checking and discrete-event simulation.

77

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

2.2.2 Proofs and discussion

This section discusses about the validity of the general approach. Two impor-
tant questions must be argued. The first concerns structural preservation and
semantics alignment.

These two properties can be approached by talking about the simulation pre-
order [Par81].

Definition 32: Simulation Preorder (Similarity) [Par81]

Given a labelled transition system (S,Λ,→), and a relation R ⊆ S × S. R
is a simulation preorder iff

∀(p, q) ∈ R, ∀α ∈ Λ, ∀p′ ∈ S, p α→ p′ =⇒ ∃q′ ∈ S, q α→ q′, (p′, q′) ∈ R .

We say that q simulates p or p and q are similar, and we denote p ≤ q. If p
simulates q and q simulates p, then p and q are said bisimilar.

Moreover, as we saw in the Chapter 1, the model underlying model-checking
theory is Kripke Structure, which can be seen as Moore Machine. Our proposed
methodology suggests that the target formalism must at least have a Structural
Operational Semantics, meaning it is possible to generate an automaton. Then,
by extension, if the model generated by target formalism simulates the model
generated by the source formalism, this means:

• all the structural and invariant properties of the initial model are preserved
on the obtained model, but the reverse is not true (1);

• the final model contained at least the behaviour of the initial model, but
the reverse is not true (2).

Proof - Property 1. Considering two state-transition systems T ′ = (S ′,Λ′,→′) and
T ′′ = (S ′′,Λ′′,→′′), and a transition system T = T ′ t T ′′. Then, the definition 32
involves that T ′′ simulates T ′ if there exists a simulation order R ∈ STATE (T)×
STATE (T) in which all states p ∈ S ′ has a corresponding state q ∈ S ′′. Then,
there is two cases:

1. The target model (i.e. the automaton representing its semantics) is ob-
tained by introducing no modification into the structure of the source model
(i.e. the automaton representing its semantics), for example just by only
adding state lifespan. In this case, all states q ∈ S ′′ simulate at least one
state p ∈ S ′. In this case, T ′ is exactly an abstraction of T ′′ [Zei84; ZKP00;
Gru06].

2. The target model is obtained by adding one or several states or transitions.
In this case, this means that a new abstraction (i.e. a refined source model)

78

General Approach

which takes into account these new states/transitions can be found. Be-
cause abstraction guarantees structure preservation [Gru06], the property
(1) remains valid. The refined abstraction source model can be obtained by
introducing states/transitions which have no effect on the state variables.

Proof - Property 2. This property is a direct consequence of the property 1. In-
deed, if there exists one path between two states p and p′ in the source model,
there exists at least one path between the corresponding states q and q′ in the
target model. Consequently, the state space generated by the source model is at
least contained in the generated state space of the target model [KW16].

In the case in which the target formalism is DEVS, [Gia09] shows that any
sequential machine [Brz03] can be easily rewritten in a DEVS atomic model.
This strong result implies that any formalism which can be checked using model-
checking can be rewritten using a DEVS model. Ensuring the simulation preorder
between the models generated by the two formalisms is only needed.

Furthermore, if the models are bisimilar, thus this mean that any properties
verified on the source model is true on the target model, and all properties ver-
ified on the target model are true on the source model. This property is usefull
in the case of Verification and Validation of Simulation Models.

The second question is about the point 3 of the methodology. Are the concepts
of event, state lifespace and types of transition enough to define a discrete-event
model ? If we refer to Zeigler [Zei76], and as we have already seen in the
Chapter 1, a discrete-event model is constant between two occurences of events.
Events are well-defined by their respective date. If the dynamics of the model is
defined by an automaton, then it remains to define a time-advance function in
order to describe events occurences and the reaction of the model according to
these events. Like in the DEVS formalism, the time-advance function can easily
be defined by associating a lifespan to each state. This lifespan will describe
when the automaton can autonomously behave. Then, for each transition, we
must define if it corresponds to an autonomous behaviour or a reaction to an
input event. This type of transition is then just a way to define this behaviour.

This semantics alignement can be done using the mapping and homomor-
phism concepts introduced by Zeigler, Kim, and Praehofer [ZKP00]. If the source
and the target formalism have an operational semantics, the proof of alignment
consists only on mapping states and transitions from one model to the other.

79

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

2.2.3 Approach using Model-Driven Engineering

When we talk translation of models, we think about Model-Driven Engineer-
ing (MDE). This approach provides a natural way to perform transformation of
models. Indeed, Model-To-Model (M2M) transformation is the most important
concept of MDE [SK03]. Kleppe, Warmer, and Bast [KWB03] define the trans-
formation as “an automatic generation of a target model from a source model,
according to a transformation definition. A transformation definition is a set of
transformation rules that together describe how a model in the source language
can be transformed into a model in the target language. A transformation rule is
a description of how one or more constructs in the source language can be trans-
formed into one or more constructs in the target language”. M2M thus allows
defining conceptual or syntactic transformations between models.

Figure 2.2: Example of mapping UML diagram to ER diagram [LWK10] - Source
metamodel, target metamodel, source model (abstract syntax), target
model (abstract syntax), source model (concrete syntax), and target
model (concrete syntax)

Using M2M has two advantages: it allows to directly translate one syntactic

80

General Approach

language to another, meaning it can be used for translating directly the formal
specifications into the simulation model (or into the conceptual model then into
the simulation model). If the metamodel (model of models) is well-specified, au-
tomatic translation can also be checked using formal proof. The other advantage
is that the metamodel can express both syntax and semantics.

Figure 2.3: PROMELA Metamodel proposed by McUmber and Cheng [MC01].

However, more the language is complex, more the metamodel can be diffi-
cult to generate. In some cases, like for PROMELA (figure 2.3), the metamodel

81

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

brings a lot of useless informations (in this case states and transitions are hid-
ding by syntactic elements). Indeed, while the underlying model generated by
the model-checking algorithm is an automaton, it is easier and less error-prone to
directly align the transition models themselves. Moreover, if using M2M makes
easier the automatic translation, the proof of simulation preorder can be harder.

2.3 Introduction to DEv-PROMELA

Discrete-Event PROMELA (DEv-PROMELA) [Yac+15] is an extension of the Pro-
cess Meta Language (PROMELA) [Hol91; Hol97; HNS00; Hol03] for the ver-
ification of asynchronous processes. DEv-PROMELA was developed using the
methodology introduced in the previous section. It allows the verification and
validation of discrete-event systems using both model-checking and discrete-
event simulation. DEv-PROMELA was built using both PROMELA structure and
the DEVS abstract simulator semantics. We have done manually the semantics
alignment, but note the MDE approach could be applied, since there exists works
on how transforming State-Transition models to DEVS models [GSB13]. Before
introducing the syntactic and semantics of DEv-PROMELA, we need to make re-
call about PROMELA and its interpreter SPIN.

2.3.1 PROMELA Overview

PROMELA is a specification language, suited for modelling concurrent processes.
It allows the verification of concurrent protocols, involving synchronous or asyn-
chronous communication between processes. Based on Djikstra’s Guarded Com-
mand Language, its syntax is close to any imperative language like the C-language,
making their use very easy, compared with other formal methods. Indeed, PRO-
MELA was developed to make easier the translation from any implementation
to a verification model, and reduce the risk of translation errors. Even in its
semantics, PROMELA is close to the C language. The difference is in the level
of abstraction: PROMELA is interesting in only interactions between compo-
nents/processes and not in computations. As a result, while a C software is
deterministic, a PROMELA model is not. A PROMELA specification is thus a set
of two separate parts: the system specification, on the one hand, which describes
the behaviour of the model, and on the other hand, the properties to verify on
the model.

System Specifications A PROMELA system is a finite set of components: in-
stances of asynchronous processes. These ones can communicate each other
thanks to different mechanisms as buffered messages, shared global variables or
rendez-vous handshakes. Each instance of each process is modelled by a fi-
nite set of guarded or labeled command called statements. A statement is said
non-blocked if the state of the system allows its execution, otherwise it is said

82

Introduction to DEv-PROMELA

blocked. Then, one execution of the specifications, at any time ti, corresponds to
the execution of one among all of non-blocked statements, without any assump-
tion about duration of the statement execution.

ALGORITHM 1: A simple example of PROMELA program.
1: int z = 1;
2:
3: active proctype A {
4: int x = 2, y = 2;
5: if
6: :: (x == 2)→ x = 3;
7: :: (y == 2)→ y = 4;
8: fi;
9: }

10:
11: active proctype B {
12: int x = 2, y;
13: do
14: :: (y == 2)→ x = 2;
15: :: (x == 2)→ y = 4;
16: od;
17: }
18:
19: ltl {[](z == 1); }

Instructions are divided into two categories: statements that modify the sys-
tem state and control-flow instructions. Statements relative to state changes are
assignments and message exchange instructions. Assignment statements involve
local and global variables, whereas communication statements involve buffered
channels. It is important to note that, if assignements are always considered as
enabled statements (i.e. they can be always executed), the instructions relative
to channels can be blocked if the associated buffered channel is empty or full.
Control-flow statements are classical conditionnal and loop instructions. These
ones allow selection of the next statement among different branches regarding a
guard. Because PROMELA processes are non-deterministic, if several guards are
satisfied, a random one is selected. If none of them is satsfied, the control-flow
structure is blocked. PROMELA also provides a timeout instruction (usable as a
guard) which is enabled if all instructions are blocked in the whole system.

Datas in PROMELA are represented by local and shared variables. Local vari-
ables are those which are relative to only the process which they belong to,
whereas global variables are shared by all processes. A variable is characterized
by its value and its type, or any finite combination (structures) or finite arrays of
these types. Each PROMELA type represents a finite set of values.

83

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Properties Specifications SPIN supports the verification of Linear Temporal
Logic (LTL) properties on the PROMELA models. LTL properties are converted
into a never-claim process (comparable to any normal processes) which don’t
"participate" to the behaviour of the system. The goal of a never-claim process
is only to guarantee the system satisfies the property which is encoded in it.
In this sense, a never-claim process acts as a monitor. To get the final verified
system, all the processes (including the monitors) are combined into a huge
model on which formal verification is performed. Then, the formal verification of
PROMELA specifications intuitively corresponds to the checking of all executable
paths against a given property, without any assumptions of duration. It results
that the next state of a PROMELA model does not depend on the time elapsed in
a previous state.

2.3.2 PROMELA in Details

Now we have introduced PROMELA, we can see how it works in details. This
part analyzes the syntactic elements of PROMELA and their semantics given in
[Hol03]. It is interesting to note that the semantics of PROMELA is given by the
SPIN interpreter. Natarajan and Holzmann [NH97] tries to give some outlines
to define a formal operational semantics independant from the implementation.
Because this semantics was redefined in an operational model in the chapter 7
of [Hol03], we use it as reference. For each element of the language, we give its
syntax and its semantics. The whole semantics of PROMELA is then tackled.

As said in the previous subsection, PROMELA is a finite set of processes, whose
each of them is a finite set of statements. PROMELA defines six basic statements:
assignments, assertions, print statements, send and receive statements, and ex-
pressions. Each of these statement can be evaluated (as any C-statement) with
two values (blocked and non-blocked) and acts on variables. Blocked state-
ments correspond to a control state without transition (in the generated states-
pace), while a non-blocked statement corresponds to two control states linked
by a transition. Each transition is labelled by the statement that corresponds to
the action performed on the state variables.

Skip skip is the most basic statement. It is just a non-blocked transition be-
tween two states, and which performs no operation.

Assignment The assignment statement is just the fact to set the value of a
given variable (local, global shared). Syntactically, it is defined as :

x = value ;

where x is a variable. This statement is always evaluated as non-blocked, mean-
ing it can be performed regardless of the state of the system. Semantically, it

84

Introduction to DEv-PROMELA

corresponds just to a transition between two states 0 and 1. The value of x after
triggering the transition is value (figure 2.4).

Figure 2.4: PROMELA Assignment.

Assertion The assertion statement is a simple way to state simple safety prop-
erties. This statement is always executable like assignment, and has only one
side effect: change the control state of the process that executes it.

assert(condition);

Assertion works like in C: if the argument is evaluated to false, an assertion
violation is returned by the checker. However, assertions has no effect in the
semantics of the modelled system. That is why it is just a transition between two
states 0 and 1, and that set a special flag to true or false (figure 2.5).

Figure 2.5: PROMELA Assertion.

Send statement The send statement is used in order to send message through
a buffered channel. Channels are global sets of messages. A message is a set
of global variables. Channels can be used for sharing data in a synchronous
(rendez-vous handshake) or asynchronous manner.

85

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

chan a = [1] of int;
...
a!3; // Send 3 through a

The expression is evaluated to blocked if the channel is full. As a consequence,
the automaton stops and will perform its next action as soon as the channel
is free. Otherwise, the send statement is non-blocked. Then, the statespace
generated by a send statement depends on the emptiness of the channel. It can
be one state without transition, or a transition between two states (figure 2.6).

Figure 2.6: PROMELA Send statement generated statespace.

For rendez-vous handshake, the send statement is blocked until a corresponding
statement is called (and conversely). In the case in which the rendez-vous is
accepted, the send statement is called and the receive statement is immediately
executed (meaning the next state of the system is the result of the both two
operations).

Receive statement The receive statement is exactly the opposite of the send
statement.

chan a = [1] of int;
...
a?3; // Receive 3 from a

The statement is evaluated to blocked if the channel is empty, or if the retrieved
value from the channel does not match to the expected value. Otherwise, the
statement is evaluated to non-blocked.

Expression Expression corresponds to any logic expressions or arithmetic com-
putations. If the expression is a boolean condition, it is blocked until the value
become true. If the expression is a computation, it is non-blocked.

86

Introduction to DEv-PROMELA

Selection Selection is a control-flow construct that allows defining the under-
lying automaton. Selection is composed by a set of guards called options, which
are expressions, and has a unique start and stop state. Each option corresponds
to a path whose the first transition outgoes from the start state. The end of
selection structure leads to the control state of the next construct (figure 2.7).

if
:: a == 2;
:: a == 3 -> a + 1;
fi;

Selection construct allows evaluation of each guard. Because a guard is an ex-
pression or a basic statement, only the executable guards can be executed. If
several guards can be executed, one is chosen in a non-deterministic manner. If
no guard can be executed, the system is blocked.

Figure 2.7: PROMELA Select.

Note that there is a special statement called else whose the semantics is dif-
ferent from its classical semantics in programming language. else is true if all
the other guards are non-executable.

Loop Loop is similar to selection construct. The difference with the selection
is that the path returns to the contral state before the construct (figure 2.8).

do
:: a == 2;
:: a == 3 -> a + 1;
od;

The break statement is the only one that is evaluated to non-blocked and
which go to the next control state of the next structure.

87

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Figure 2.8: PROMELA Loop.

Unless The unless construction is a way to allow defining priority between
statements. The left part is called the main sequence, while the right part is
called the escape sequence.

a = b unless b = c

Figure 2.9: State space generated by the unless structure.

Main and escape sequences are finite block of statements. However, the exe-
cutability of the main sequence depends on the non-executability of the whole
escpace sequence. In other word, the main sequence is executed unless one of
the statement of the escape sequence becomes executable (figure 2.9). If the
main sequence is executed and one of the statement of the escape sequence be-
comes executable, the remainder of the escape sequence is executed and never
returns to the main sequence.

Table 2.1: A list of PROMELA basic datatypes.

Type Size (bits) Value Range
bit, bool 1 [0; 1]

byte 8 [0; 255]
mtype (constants) 8 [0; 255]

short 16 [−215; 215 − 1]
int 32 [−231; 231 − 1]

88

Introduction to DEv-PROMELA

Processes A process is a labelled finite set of local variables and sequential
statements. Each variable is defined by a name and a type (see Table 2.1). The
type defines a finite domain of data. Syntactically, a process is defined in a
proctype block which can take one or several formal parameters.

proctype A (int a) {
int b = 0; // Define a b variable
b = a;
a = 2;

}

Semantically, a process is denoted as

P =< pid, lvars, lstates, initial, curstate, trans >

where:

• pid is a positive value which identify the process;

• lvars is a set of variables {(name, scope, domain, inival, curval)};

• lstates ⊆ INT , which defines the identifiers of the local states of the pro-
cess; lstates hold no information;

• initial is the initial state of the process; when curstate = initial, ∀v ∈
lvars, v.curval = v.inival;

• curstate is the current state of the process.

• trans is a the finite set of transitions {(tr_id, source, target, cond, effect, prty, rv)}.

If this operational model suggests that a PROMELA process is a Moore Ma-
chine, it can be simplified and viewed as a simple finite state machine A =
(S, T, s0, FA) in which:

1. S ∈ {(id, v0, v1, .., vn) ∈ D × D × ... × D} where D is a domain defined by
the type of the variable i (i ∈ [0..n]) and id is an identifier of the state. This
means the state is directly defined by the value of its local variables; then,
each state holds informations about the local variables;

2. T ⊆ S × L× S, the finite set of transitions where L is the set of statements
syntactically defined. Formally, a statement l can be seen as a function
l : S → S which is a valuation function. Thus, (s0, l, s1) ∈ T and noted
s0

l→ s1 if there exists a statement l in the specifications for which l(s0) = s1.
T defines thus a partial transition function;

3. s0 is the initial state;

89

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

4. FA is the set of final states.

Thus, the automaton of a process is sequentially built by make transitions be-
tween the control states generated by each instruction. The final state is special
state for which the ingoing transitions are labelled by the special "end" instruc-
tion. For instance, the previous example is defined by:

S = {(0, i, 0), (1, i, i), (2, 2, i), (F, 2, i)}

T = {s0
b=a→ s1, s1

a=2→ s2, s2
end→ sF}

s0 = (0, i, 0)

F = {(F, 2, i)}

Figure 2.10: State space generated by the proctype structure.

Program A PROMELA program is a finite set of global variables, processes
blocks and LTL blocks. Global variables are like local variables, but are defined
outside from any processes. Their scope is global. The operational model defines
a program as a set of system states

Pr = {(gvars, procs, chans, exclusive, handshake, timeout, else, stutter)}

defined as followed:

• gvars is a set of variables (variables are defined as before);

• procs is a set of processes;

• chans is a set of channels;

• timeout and else, two boolean that enforces the corresponding PROMELA
statements.

90

Introduction to DEv-PROMELA

ALGORITHM 2: PROMELA Semantics Engine.
1: while((E = executable()) 6= {})
2: {
3: for some {p, t} from E
4: {
5: s′ = apply(t.effect, s)
6: if(handshake == 0)
7: {
8: p.curstate = t.target
9: s = s′

10: }else
11: { // try to complete an rv handshake
12: E′ = executable()
13: // if E’ is {}, s remains unchanged
14:
15: for some {p′, t′} from E′

16: {
17: p.curstate = t.target
18: s = apply(t′.effect, s′)
19: p′.curstate = t′.target
20: }
21: handshake = 0
22: }
23: }
24: }
25: while(stutter){s = s} /* the ’stutter’ extension */

91

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

These system states are interpreted by the operational engine of SPIN (Al-
gorithm 2). The algorithm randomly takes an executable statement from all
the executable statements in the program (i.e. all the processes). It executes
this stamement (l.5) and applies its effect to the current global state, possibly
changes the values of the variables, channels,... and gets the next system state.
If no synchronization is needed (l.6), the global current state is set to the next
state. Otherwise, we verify that another process can match the synchronization.
If it is the case, the current state of both processes are updated, otherwise the
algorithm chooses another executable transition. A transition is said executable
if its condition is satisfied and it is not a synchronization request.

PROMELA introduces also a timeout statement which becomes true et can be
executed only if there is no more executable instruction in the program. Timeout
is useful to enforce the execution of a program which is in a deadlock situation.

Intuitively, the semantics previously defined corresponds to the asynchronous
product between all processes.

Definition 33: Asynchronous Product of Automata

Given n automata Ai = {(S, s0, L, T, F)}, the asynchronous product A =∏n−1
i=0 Ai is defined as:

S = ×n−1
i=0 Ai.S, the Cartesian product of each automaton set of states;

s0 = (A0.s0, A1.s0, ..., An−1.s0);

L = ∪n−1
i=0 Ai.L;

T = {t = (s′, l, s′′)} where (s′, s′′) ∈ S×S and l ∈ L. t exists if l labels
a transition state change the valuation of any components of s′ to any
components of s′′;

F ⊂ S whose at least one components of each elements is a final state
of one of the Ai.

Then, we can consider a PROMELA Program M as a finite state machine

P = (Q, T, s0, F)

where

Q = {qi = (id, l1, ..., lm, g1, ..., gn, c1, ..., co) ∈ N×mi=1 Li×nj=1 Gj ×ok=1 Ck}, the
finite set of states; a state is characterized by the values of each local and
shared variables, and channels (the all sets Li, Gj and Ck);

92

Introduction to DEv-PROMELA

T ⊆ S × S, the set of transitions. By definition, T is left-total, meaning
∀s ∈ S,∃s′ ∈ S such as (s, s′) ∈ T ;

s0 = (s01 , ..., s0n) where ∀i ∈ [1;n], s0i
is the initial state of the process pi;

F ⊂ Q, the finite set of final states of the program;

Denote r = (sm, sn) ∈ S2. We note qmi
, the state of the process pi in sm, and

qni
, the state of the process pi in sn. Thus, r ∈ T =⇒ ∃t ∈ Ti \ t = (qmi

, li, qni
),

where Ti is the set of transitions of the process pi and li ∈ Li (here, Li is the
set of statements of the process pi). By this, we mean r is a transition of a
PROMELA program only if there exists a transition t that changes the state of
one of the processes composing the program, or changes the value of a global
variable/channel. For the second part, l does not affect the state of a process but
the state of the program. This means that we can also see a PROMELA program
as a kind of hierarchical automaton [Har87; MLS97; AY98; Alu03] in which
superstates are

Q = {qi = (a1, ..., am, g1, ..., gn, c1, ..., co) ∈ ×mi=1Ai ×nj=1 Gj ×ok=1 Ck}

where Ai is the automaton of a PROMELA process.

LTL Properties LTL properties are ltl blocks of logical instructions. They use
a particular set of binary operators:

[] the always operator;

<> the eventually operator;

! the negation operator;

U the strong until operator;

V the dual of U ;

-> the implication operator;

<-> the equialence operator.

LTL properties are encoded into never claim automata which are built in the
same manner than any processes. The automaton is executed with the other
processes in the PROMELA program. In fact, these never claim automata cor-
responds to Büchi automata and are multiplied in a synchronous manner with
the system automaton. That is why there is no semantics interpretation of ltl
elements. Then, we can consider never claim automata as processes which have
no effect on the behaviour of the system, and that act just as monitors.

93

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

ltl { <> (b == 3) } // Eventually b == 3

is equivalent to

never {
accept: !(b != 3);
if
:: assert(!(b==3)) -> goto accept;
fi;

}

2.3.3 Building DEv-PROMELA: Syntax

Now we have made recalls about the PROMELA syntax and semantics, we can
use our proposed methodology to build our DEv-PROMELA formalism. We use
the DEVS formalism we have defined in Chapter 1 as target formalism. The first
step is to identify missing discrete-event concepts in the source formalism. We
can quickly see that PROMELA and DEVS have both structure and semantics
based on automaton. However, PROMELA does not use the following concepts:

• Events: the notion is missing because PROMELA makse the choice to fo-
cus on states for verification purpose. If an event occurs, PROMELA makes
the assumption that the consequences of the event will necesserally appear
in the state. Thus, if we want to record an occurence of an event, we
just need to check that the implied modifications exist in the executions.
Non-occuring events are thus the result of non-executable transitions. Con-
cerning the concept of handshake and rendez-vous, it is represented by the
channels synchronization mechanisms (send and receive statements).

• Time: as a direct consequence of the previous point, PROMELA makes the
choice to focus only on untimed models. Thus, it is not possible in PRO-
MELA to represent states that explicitely depend on time (i.e. depending
on the elapsed time in the previous state).

• Transitions: Because there is no notion of events, there is no notion of
autonomous behaviour or reactive behaviour. Indeed, we can interprete
PROMELA Programs as closed systems which have only an autonomous
behaviour. The internal behaviour of each process can be reactive (through
the channel handshake), but they normally evolve independently from each
other.

• Finiteness: As a restriction of formal verification, PROMELA enforces finite-
ness of the underlying model, even they can have an infinite behaviour.
Then, states, transitions and data sets are finite, while DEVS allows infinite
models.

94

Introduction to DEv-PROMELA

Now we have identified the missing notions, we can define syntactic and se-
mantics changes in order to allow modelling them.

A new datatype Firstly, a new abstract datatype real is introduced. It allows
the representation of infinite and unbouded real values. This is especially needed
for the modelling of time, but it can be used for modelling data. As any other
PROMELA datatype, real can be used for defining local and global variables, like
any scalar variables:

real i, j, k;

Real variables can also be used in structures and in arrays, without restriction.
Because real is an abstract datatype, its semantics depends on the context. In
simulation, real will be interpreted as a floating value, while it will be restricted
to the integer domain in formal verification (in order to enforce the finiteness).

Events Events are just defined by integer constant values. #define or mtype
can be used as follow:

#define evta 1 // Define evta
mtype = { evta, evtb, evtc } // Define evta, evtb, evtc

Statements PROMELA statements define the actions which are done when the
system changes its state. DEv-PROMELA extends statements by prefixing each
of them with an event descriptor. Event descriptors describe the delay between
the execution of any previous statement and the prefixed one, or describe an
event which will trigger the execution of this statement. By doing this, we define
the concept of events and allows modelling of autonomous/reactive behaviours.
Event descriptors are defined as follows in the Backus-Naur Form:

<event stmnt> ::= "[" <timed trans> "]" <stmnt> | <stmnt>
<timed trans> ::= <clt expr> | <evt expr> | <clt expr> <op> <evt
expr>
<clt expr> ::= "clt:" <real expr> "->emit:" <evt val>
<evt expr> ::= "evt:" <evt val> [<op> <evt expr>]
<op> ::= "|"
<evt val> ::= <mtype> | "silent"
<real expr> ::= <real> | "infinity" | /* Any C-function returning a
real value */

clt descriptors are called autonomous descriptors and describe the autonomous
behaviour which the model will have after an amount of time. When it occurs, a
message is generated by the model. evt descriptors are called reactive descriptors
and correspond to reactions to an input message.

95

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Consider the following examples:

1. [clt: 3.0→ emit:newa] a = a + 10;

2. [evt:newb] b = a - b;

3. [clt:lifespan(c) → emit:newc | evt:newd | evt:newe] c = c * d;

(1) means that the execution of a = a + 10 is performed 3.0 units of time
after the execution of a previous statement. Before executing this statement, an
event newa is emitted.

(2) means that the statement will be triggered only if the event "newb" is
received.

(3) means that the statement c = c * d will be triggered either if the elapsed
time between the execution of a previous statement and this one is equal to
the value lifespan(c) (in this case, "newc" will be outputed) or, if the the event
"newd" or "newe" occurs.

The third example shows one of the main characteristics of DEv-PROMELA:
a statement can be executed in different manners, with at most one explicit
timed descriptor (defined by clt command) and with at most one descriptor per
event. Note that the clt command is optional. If it is not defined, we consider
the elapsed time before the execution of the statement is equal to∞. For conve-
nience, if there is no event descriptor (no clt command nor evt command), the
statement is interpreted as if it is prefixed by

[clt: 0.0→ emit:silent].

The statement is executed without any delay by emitting the default silent event.
The silent event is a predefined event which does not cause any explicit change
in the system.

Variables DEv-PROMELA supports global variables but their semantics is changed.
Global variables (and channels) are in fact duplicated in each local process, and
are considered as local variables. This ensures the principle of encapsulation of
the DEVS theory.

Skip The only difference between the old and new skip is the event descriptor.
Skip statement remains always executable. The event is sent before applying the
skip action.

[clt:τ →emit:silent] skip ;

96

Introduction to DEv-PROMELA

Assignment As other statements, assignments are prefixed by an event de-
scriptor. Evaluation of the new value and assignments are done in the same
time. This corresponds to two states with one transition per event descriptor.

[clt:τ →emit:silent | evt:evta] x = a+b ;

Figure 2.11: DEv-PROMELA Assignment.

Assignement structure is also changed for global variables. When the value of
a global variable is changed, an event is emitted to inform the other processes of
this changes. Synchronization mecanisms that change the local value of a global
variable can be considered as skip statement in the corresponding PROMELA
model.

Send and Receive statement As we have seen, send and receive statements
are used in order to allow communications between processes in a synchronous
or in an asynchronous manner. The communication between processes in DEv-
PROMELA can be done using events, but events cannot exactly simulate the asyn-
chronous communication. However, Event Channels allow delayed synchronous
and asynchronous communications. The underlying structure changes from the
PROMELA structure seen previously.

chan a = [1] of int;
...
[clt:τ →emit:valuea] a!3; // Send 3 through a
[evt:valuea] a?3; // Receive 3 through a

Communications with event channels work in three steps (figure 2.12):

1. if the current state is a state in which channel is full (resp. empty) and
the next statement is send (resp. receive), the state waits an event that
informs the channel is usable;

2. the message is put in (resp. retrieve from) the channel according to event
specification; the silent event is emit;

97

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Figure 2.12: DEv-PROMELA Event Channel.

3. an event is immediately emitted in order to inform other processes of the
change of the channel;

4. the real event (those specified in the model) is emitted.

This behaviour allows avoiding of retrieving values from an inconsistent chan-
nel. Indeed, because the event associated to a transition is emitted before pro-
cessing the action, directly emitting the message could lead to inconsistent situ-
ation (trying to read an empty channel for instance).

Another question concerns the validity of this structure. The answer can be
given only by describing the semantics of DEv-PROMELA. However, we can
give some trivial elements for now. From a strict point of view, the behaviour
of the DEv-PROMELA send/receive statement is not exactly the same than the
PROMELA send/receive statement. Indeed, communication through a channel
is a transition between two system states in PROMELA (because channels are
global). However, DEv-PROMELA expresses the blocked transition by an infinite-

98

Introduction to DEv-PROMELA

state. That is the reason why we can have two initial states. Secondly, the first
transition (0→1) is used for updating the value of the channel. When it is done,
the two next transition are immediately executed without changing the local
state (i.e. the values of the variables). Thus, these transitions exist only for
synchronozing purpose. Then, the equivalent PROMELA model is:

chan a = [1] of int;
...
atomic{
a!3; // Send 3 through a
skip;
skip;
}

Concerning rendez-vous handshake, DEv-PROMELA simulates it by adding an
event that resizes the channel size to 1 when the receive statement is called. By
this way, the send statement can be executed, and immediately after the receive
statement is then executed. At the end of the receive statement, an autonomous
transition resizes the size of the channel to 0.

Figure 2.13: DEv-PROMELA Rendez-vous Handshake (receive).
[clt:τ →emit:valuea] a?3;

99

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Selection construct The DEv-PROMELA Selection construct is like the PRO-
MELA selection a way to define the structure of the underlying automaton. Each
statement of each option can be prefixed by an event descriptor (Algorithm 4).
However, the meaning of the DEv-PROMELA selection construct is not exactly
the same than the one of the PROMELA selection.

PROMELA chooses the executed path according to the executable guards and
allows non-deterministic behaviours. Take a look at the Algorithm 3. The mean-
ing of this program is that if the statement x==2 is executable, the path l.2 can
be chosen by the program. In the same manner, if the statement x==3 becomes
executable, the path l.3 can be also chosen. Then, the statepace generated by
the Algorithm 3 is ambiguous (figure 2.14).

ALGORITHM 3: PROMELA conditional structure.
1: if
2: :: (x == 2)→ x = 3;
3: :: (y == 2)→ y = 4;
4: fi;

Figure 2.14: PROMELA selection construct generated statespace.

In the DEv-PROMELA model, such a construct defines transitions between a
set of equivalent states. By this, we mean that the guard (the first statement of
each option) clearly identifies the current state. Thus, the guards are evaluted
according to three criteria in that order:

1. the logic of the first guard; for example, x==3 means all states in which x
is equal to 3, while x=1 means all the states (because x=1 can be performed
on any states);

100

Introduction to DEv-PROMELA

2. the lifespan; for example, Algorithm 4 means that if y is equal to 2, then
the l.3 will be ever executed;

3. if multiple guards can be fulfilled in the same time, only the first declared
guard can be executed.

ALGORITHM 4: DEv-PROMELA conditional structure.
1: if
2: :: [clt: 3.0→ emit:silent] (x == 2)→ [clt: 0.0→ emit:newx] x = 3;
3: :: [clt: 1.3→ emit:silent] (y == 2)→ y = 4;
4: fi;

In this way, DEv-PROMELA enforces a deterministic behaviour needed by any
discrete-event simulation models. If at first glance this can be viewed as a re-
striction, it is not really the case. Indeed, this enforces designer to fully define
the behaviour of the modelled system, and reduces the risk of error (even if pur-
poses of abstraction is effectively to not take care of the determinism).

Note that the event descriptor can be placed before the control structure. In
this case, this means that all evaluations of each guard will occur after the same
delay.

Repetition construct The repetition construct works as the selection construct.
The difference is that the outgoing transition returns to the begin of the loop.

ALGORITHM 5: DEv-PROMELA loop structure.
1: do
2: :: [clt: 3.0→ emit:newx] (x == 3)→ y + +;
3: :: [clt: 1.3→ emit:newy] (y == 2)→ break;
4: od;

Consider Algorithm 5. If the program is in a state (x = 3, y = 1), the first
transition will be triggered after 3.0 units of time, leading to a new state (x =
3, y = 2). The next instruction y == 2 is then executed after a delay of 1.3 units
of time.

Process priority Priority between processes is another thing that we need to
be able to define. Indeed, if two events occur at the same time, we need to know
what event must be processed in first. For that, DEv-PROMELA defines a process
descriptor using the following grammar:

<proctype decl> ::= "[" priority "=" <int> "]" <proctype> .

101

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Figure 2.15: Generated statespace by the Algorithm 4.

Note that PROMELA includes a concept of process priority with a different
meaning. PROMELA process priority enforces the execution of the process with
the highest priority, unless it is blocked. In DEv-PROMELA, priority is handled by
event order and process priority resolves conflict between two events that occur
at the same time.

Clock and timeout The last syntactic element concerns time handling. PRO-
MELA defines a timeout keyword used as an escape for a blocked system (i.e. a
system for which there is no more enabled statement), for example when a sys-
tem has no valid option to progress through a selection construct. Thus, timeout
models, in an abstracted way, the fact that the system is able to handle deadlocks.
In DEv-PROMELA, such a case means that the system is not well specified, or the
model is incorrect. Deadlock must be handled through events. For this reason,
timeout is not allowed in DEv-PROMELA.

Each process is also associated to a virtual local clock which measures the
elapsed time since last event. DEv-PROMELA allows transitions depending on
the elpased time. Two convenient instructions, getElapsedTime and getCur-
rentDate, allow access to the clock valuation.

102

Introduction to DEv-PROMELA

2.3.4 Meaning of DEv-PROMELA : Semantics

After modifying the syntax in order to allow modelling of DEVS concepts, we
introduce the semantics of DEVS abstract simulator, and we align it with the
semantics of PROMELA.

Semantics of a DEv-PROMELA process A DEv-PROMELA process P with a
set of statements L is an automaton T = (Sτ , E, δi, δe, s0, F) where

• Sτ = {si = (ts, i, l1, ..., lm,∈ N×∏m
i=1 Li ×

∏n
j=1 Gj ×

∏o
k=1 Ck)} is the set of

states. i is the identifier of the state related to the statement l which defines
it; the sets Li (resp. Gj) are the sets of values of each local (resp. global)
variable li (resp. gj).

• E is the set of events; E contains at least the silent event denoted ε;

• δi : Qf → Q0 × E is the internal transition partial function; δi is partial
because it can be not defined for all q ∈ Qf (especially when ta(s) =∞);

• δe : Q × E → Q is the external transition partial function; δe is partial
because it can be not defined (especially when e = ε).

• s0 is the initial state;

• F is the set of final states.

Moreover, we define:

- ta :
{
Sτ → R+

ta(s) 7→ ts
is the state lifetime function; the lifetime of each state is

given by the delay before executing the next statement in the specifications;

- Q = {q = (s, dt),∀s ∈ Sτ} such that 0 ≤ dt ≤ ta(s) is the set of total states;
dt denotes the time elapsed in the state s;

- Q0 = {q = (s, 0),∀s ∈ Sτ} ⊂ Q;

- Qf = {q = (s, ta(s)),∀s ∈ Sτ} ⊂ Q.

Consider a DEv-PROMELA process P in a state s at time t, and the next state-
ment l with its event descriptor. We can admit the process P is in fact in a state
q = (s, t) (if t denotes the elapsed time since the last event). If l denotes an
internal transition and if t = ta(s), then the statement l is enabled. The event
associated with the transition is emitted to all the other processes composing the
program, before the transition is triggered, and the next event for the process P
is defined by :

de′ = getCurrentDate+ ta(s′)

103

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

with ((s′, 0), e′) = δi(s). If l denotes an external transition on an event e, then
the transition is triggered only if the process receives the event e. In this case,
denote t the date of the event e. The next state is given by q′ = δe(q, e) with
q′ = (s′, 0). If δe is not syntactically defined for (s, e), then the next state is given
by q′ = (s, dt) and ta(s) = ts. This behaviour corresponds to the semantics given
by the DEVS abstract simulator.

The automaton underlying a DEv-PROMELA process is thus built by making tran-
sitions between control states (represented by each statement). The automonous
event descriptors define the lifespan of the initial control state, while the reactive
descriptors define external transitions between the initial control state and the
end control state.

Semantics of a DEv-PROMELA program A DEv-PROMELA program Pr is a
transition system T = (S,Λ,→) where

• S = Sτ0×...×Sτn is the cartesian product of the set of states of each process;

• Λ is the union of the sets of all statements;

• → the set of transitions. t ∈→ and t = s→ s′ if:

1. given two states s = (spi
, sqj

, ...) and s′ = (s′pi
, s′qj

, ...). Then, s l→ s′

with l ∈ Λ if there exists an internal transition from spi
to s′pi

, or from
sqj

to s′qj
, ... and if it does not exist any other internal transition which

can be triggered before the date t. In other words, the next event of
Pr is the minimum value of all the next events of each process and
external events. If two events can occur at the same date, the first
proceeded event is those generated by the highest priority process;

2. given two states s = (spi
, sqj

, ...) and s′ = (s′pi
, s′qj

, ...). Then, s l→ s′

with l ∈ Λ if there exists an external transition from spi
to s′pi

, or
from sqj

to s′qj
, ... and if it does not exist any other external transition

which can be triggered before the date t. If two events can occur at the
same date, the first proceeded event is those generated by the highest
priority process;

3. if (s′pi
, e) = δip(spi), then s′ = (s′pi

, δeq(sqj
, e), ...). Thus, s′ is the state of

the program after processing all internal and external transitions at the
date t. Moreover, this property ensures that a process can not proceed
its own generated event.

In the case in which we consider that global variables and channels are han-
dled at the system level like in PROMELA and don’t need synchronization, the
semantics of DEv-PROMELA Program slightly changes. In this case, a DEv-
PROMELA program Pr is a transition system

104

Relations and Morphisms

T = (S,Λ,→)

where

• S is the cartesian product of the set of states of each process, the set of
global variables and channels that compose the program;

• Λ is the set of all statements, including statements changing the value of
global variables and channels.

• → the set of transitions;

These two definitions are strictely identical. Indeed, the second definition
generates a transition system that simulates the first one.

2.4 Relations and Morphisms

The main goal of DEv-PROMELA is to provide another way to enhance mod-
elling, verification and validation of discrete-event systems by using simulation
and model checking. To do that, we must demonstrate that a DEv-PROMELA
model can be simulated and verified, namely we have the relationship described
in figure 2.16.

2.4.1 Relations between DEv-PROMELA and DEVS

The first relation can be easily demonstrated by showing that, for a given DEv-
PROMELA model, there exists a DEVS model that simulates it.

Proposition 1: DEv-PROMELA Process Simulation

A DEv-PROMELA process P is a DEVS atomic model A, and A simulates P.

This demonstration is relatively easy, thanks to the construction of DEv-PROME-
LA. Consider a DEv-PROMELA process P = (Sτ , E, δi, δe, s0, F) and a DEVS atomic
model A = (X, Y, S, δint, δext, λ, ta). P will define the same system as A if and
only if :

1. Sτ = S, both models have the same state space;

2. X ⊆ E and Y ⊆ E; the sets of inputs and outputs are subsets of the set of
events;

3. given s and s′ two states such that s′ = δint(s) and y = λ(s); then, there
exists sτ and s′τ such that ((s′τ , 0), y) = δi((sτ , ta(sτ))) and ta(s) = ta(sτ);

4. given s and s′ two states, and x an input such that δext(s, x) = s′; then there
exists sτ and s′τ such that s′τ = δe((sτ , x);

105

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Proof. Considering a DEVS atomic model built upon a DEv-PROMELA process
model, in which X = E, Y = E, and S = Sτ . We define δint and λ such that:

• if ta(s) 6=∞ and δi(q) = (q′, e) such that q = (s, ta(s)) and q′ = (s′, 0), then
δint(s) = s′ and λ(s) = e.

• if ta(s) = ∞, δint(s) = s and λ(s) = ∅. s is a passive state, then this
transition will never be enabled.

We define δext as follows: if δe(q, e) = q′ with q = (s, dt) and q′ = (s′, dt′), then
δext(q, e) = s′. If q = q′ and ta(s) 6= ∞, then ta(s′) = ta(s) − dt and q′ = (s′, 0).
This condition ensures that δext is defined for all (q, e) ∈ Q × X and time is
preserved.

Then, we can show that A simulates P. Considering the transition system
< S ′,Λ,→> where

• S ′ = Sτ ∪ S;

• Λ = (X ∪ E)× (Y ∪ E);

• →= Im(δi) ∪ Im(δint) ∪ Im(δe) ∪ Im(δext);

where ∪ denotes the disjoint union operator. Therefore, A simulates P if there
is a simulation R = S ′ × S ′ such that for all (p, q) ∈ R and l = (x, y) ∈ Λ, if

p
l→ p′

then
q

l→ q′

However, p l→ p′ only if

1. (p′, y) = δi(p), meaning that p′ is reached by an internal transition that
outputs y. By construction, we know that there exists (q, q′) ∈→ such that
q′ = δint(q) and y = λ(q). Moreover, ta(p) = ta(q) and ta(p′) = ta(q′) by
construction.

2. p′ = δint(p) and y = λ(p), meaning that p′ is reached by an internal transi-
tion that outputs y. By construction, we know that there exists (q, q′) ∈→
such that (q′, y) = δi(q). Moreover, ta(p) = ta(q) and ta(p′) = ta(q′) by
construction.

3. p′ = δe(p, x), meaning that p′ is reached by an external transition that con-
sumes x. By construction, we know that there exists (q, q′) ∈→ such that
q′ = δext(q, x). Moreover, ta(p) = ta(q) and ta(p′) = ta(q′) by construction.

4. p′ = δext(p, x), meaning that p′ is reached by an external transition that
consumes x. By construction, we know that there exists (q, q′) ∈→ such that
q′ = δe(q, x). Moreover, ta(p) = ta(q) and ta(p′) = ta(q′) by construction.

106

Relations and Morphisms

Thus, A simulates P. Symetrically, we can show that for all (p′, q′) ∈ R, if

q
l→ q′

then
p

l→ p′

Thus, P simulates A, meaning P and A are bisimilar.

We can then build a DEVS atomic model that simulates exactly the behaviour
of a DEv-PROMELA process.

Proposition 2: DEv-PROMELA Program Simulation

A DEv-PROMELA program Pr is a DEVS coupled model C (or a DEVS
atomic model A).

Proof. Given a DEv-PROMELA program Pr with n processes P1 to Pn. Given
EV ENT , a convenience function such that EV ENT (Pi) is the set of events of
Pi. Then, we can define a DEVS atomic model A = (X, Y, S, δint, δext, λ, ta) which
simulates the DEv-PROMELA program:

1. Sτ = ∪ni=1Si×
∏n
j=1 Gj ×

∏o
k=1 Ck, where Si are the sets of the states of each

process, Gj the sets of the values of the global variables, and Ck the sets of
the values of the channels;

2. X ⊆ ∪nEV ENT (Pn) and Y ⊆ ∪nEV ENT (Pn); the sets of inputs and
outputs are subsets of the set of events;

3. δint : Sτ → Sτ . Given s = (s1, s2, ...) and s′ = (s′1, ...) and s′′ = (..., s′2, ...) in
Sτ . Then:

• if δi1(s1, ta(s1)) = (s′1, 0, e) where δi1 is the internal transition function
of the process 1, then δi(s) = s′ ;

• if δint(s) = s′ and λ1(s1) = e, and δe2(s2, dt, e) = (s′2, dt′), then δint(s′) =
s′′ and ta(s′) = 0 ; this case describes the internal coupling of DEv-
PROMELA processes ;

4. ta : Sτ → R. s = (s1, s2, ...) and s′ = (s′1, ...), then:

• if s is the initial state, ta(s) = min(ta(s1), ..., ta(sn));
• if s′ = δint(s), then ta(s′) = min(ta(s′1), ta(s2)−ta(s1), ..., ta(sn)−ta(s1))

;

• if s′ = δext(q, e) and q = (s, dt), then ta(s′) = min(ta(s′1), ta(s2) −
dt, ..., ta(sn)− dt)) ;

107

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

5. δext : Q×X → Sτ ; Given s = (s1, s2, ...) and s′ = (s′1, ...) and s′′ = (..., s′2, ...)
in Sτ . If δe1(s1, dt, x) = (s′1, dt′), then δext(s, e) = s′ ;

6. given s = (s1, ...), λ(s) = y if λ(s1) = y;

We must show that A simulates Pr. We denote by STATESPACE(Pr) the
total statespace of the DEv-PROMELA program Pr. If A simulates Pr, this means
that for each (p, p′) ∈ STATESPACE(Pr) such that p→ p′, there exists (q, q′) ∈
Sτ such that there exists an internal or an external transition to go from q to q′.
But, p→ p′ if:

1. p = (spi
, ..), p′ = (sp′

i
, ..) and →= (δip , ...) such that (sp′

i
, y) = δi(spi

); by
construction, we know that there exists δint(q) = q′ and y = λ(q) that
corresponds to the transition δi(spi

). Moreover, ta(p) = ta(q) and ta(p′) =
ta(q′). Indeed, the next event in Pr is generated by the minimum value
of all the future events. And by definition, ta(q′) = min(ta(s′1), ta(s2) −
ta(s1), ..., ta(sn)− ta(s1)).

2. p = (spi
, ..), p′ = (sp′

i
, ..) and→= (δep , ...) such that (sp′

i
) = δe(spi

, x) where x
is an internal event generated by any other process of the system. This tran-
sition is enabled before the internal transition that has emitted the event is
triggered. However, by construction, we know that there exists δint(q) = q′

and ∅ = λ(q) that corresponds to the transition δe(spi
), and ta(q) = 0.

3. p = (spi
, ..), p′ = (sp′

i
, ..) and →= (δep , ...) such that (sp′

i
) = δe(spi

, x) where
x is an external event received by the system. However, by construction,
we know that there exists δext(q, x) = q′ that corresponds to the transition
δe(spi

, x).

Thus, A simulates Pr.

We can then define a DEVS atomic model which simulates exactly the be-
haviour of a DEv-PROMELA program. It is interesting to note that in the case of
a DEv-PROMELA program without global variables and channels (or using the
definition 1 of the DEv-PROMELA Program), we can build a DEVS coupled model
that simulates the DEv-PROMELA specifications, but encoding each process by
an atomic DEVS model. In that case, the property of closure under coupling gives
exactly the DEVS atomic model described above, and in this case, the coupled
model is similar to the DEv-PROMELA program.

Proposition 3: Legetimate Property

A DEv-PROMELA program Pr is legitimate if the DEVS equivalent model is
legitimate.

Because a DEv-PROMELA program can be simulated by a DEVS model, we can
deduce all the properties of the program from the DEVS model. Particularly, a

108

Relations and Morphisms

DEv-PROMELA program is legitimate if the DEVS equivalent model is legitimate.
For example, if the DEVS model goes into an infinite loop of internal events
where time does not advance beyond a certain point, we can deduce that the
DEv-PROMELA program has the same behaviour.

2.4.2 Relation between DEv-PROMELA and PROMELA

Model-checking on a DEv-PROMELA model is possible only if we can at least
find an equivalent PROMELA model, meaning the structure expressed by the
DEv-PROMELA model is at least included in the PROMELA model. For that, we
must prove that there exists at least one PROMELA model which is an abstrac-
tion of the given DEv-PROMELA model. We can do that by using the pre-order
simulation relationship between models.

Proposition 4: DEv-PROMELA Structural Preservation Property

Given a DEv-PROMELA process model P , there exists a PROMELA process
model P ′ that preserves the structural properties of P .

Proof. The proof is done by construction. Consider a DEv-PROMELA process
model P . We get a PROMELA process model P ′ by removing all the event de-
scriptors and abstracting data from P . P and P ′ are two state-transition systems,
whose respective entire statespace is denoted S and S ′. Thus, P ′ preserves the
structure of P if and only if

∀(s, s′) ∈ S × S,∃(t, t′) ∈ S ′ × S ′, δi(s) = (s′, e) ∨ δe(s, e) = s′ ⇒ t
l→ t′

where l is a statement. Look at each type of statement defined previously.

Assignment A DEv-PROMELA assignment is a statement l with an event de-
scriptor ev that defines one or several transitions between two states s and s′. A
PROMELA assignment is a statement l that defines only one transition between
two states t and t′. Then, if P ′ is obtained by removing the event descriptor ev,
there exists a (t, t′) ∈ S ′ × S ′ such that t l→ t′.

Selection and repetition constructs A DEv-PROMELA selection (repetition)
construct defines transitions between subsets of S. Given Sa ⊂ S and Sb ⊂ S
such that Sa verifies a guard, and Sb is the subset of end states related to the
selected option. This means

∀sa ∈ Sa, ∃sb ∈ Sb, δi(sa) = (sb, e) ∨ δe(sa) = (sb, e)
by executing the option. Then, if P ′ is obtained by removing the event descriptor,
each couple (sa, sb) can be mapped to a (ta, tb) such that ta

l→ tb. Moreover, we

109

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

can be sure there exists at least one such couple because PROMELA allows non-
deterministic behaviours.

Channels As viewed previously, the mechanism of channels is exactly pre-
served in DEv-PROMELA. Sending and receiving operations link two states s
and s′. Only the lifespan and the meaning of transitions are changed. Thus,
removing the event descriptor preserves the link between the states.

Therefore, we can find a PROMELA process model that preserves the structure
of the DEv-PROMELA model. Note that we are talking about the automaton
underlying the DEv-PROMELA model, not the generated statespace.

Definition 34: Symbolic DEv-PROMELA

We call Symbolic DEv-PROMELA a DEv-PROMELA model in which events
are ocurring in symbolic time. Then, we call instance of a DEv-PROMELA
model P any parametrization of the lifespans of states and events (events
occurences are not expressed in symbolic time).

Consequently, the Symbolic DEv-PROMELA statespace corresponds to all the
possible scenarios and ordering of events of a DEv-PROMELA specifications.

DEv-PROMELA model allows modelling systems whose next states depend on
the time elapsed in the current state. This behaviour can obviously, for example,
lead to deadlock in passive state. Because PROMELA does an abstraction of time,
these kinds of behaviours cannot be captured or modelled. However, a PRO-
MELA model will be a good abstraction if it covers at least all the parametriza-
tions of the DEv-PROMELA model without passive state.

Proposition 5: DEv-PROMELA Process Verification

Given a DEv-PROMELA process model P , and a PROMELA process model
P ′ obtained by removing all the event descriptors. Then, all instances of P
simulates P ′.

This proposition can also be interpreted in the following way: there exists a
PROMELA process model P for which the Symbolic DEv-PROMELA model cor-
responding to the specifications simulates the former.

Proof. As demonstrated, by construction, P ′ preserves all the structural prop-
erties of P . The set of instances of P (meaning the Symbolic DEv-PROMELA
model) contains all the possible orders of events. Moreover, because P is a
process, only a change in conditional/loop structures can lead to different be-
haviours between instances, because non-determinism can occur only in these
structures. However, the PROMELA model P ′ contains all the possible paths

110

Relations and Morphisms

for these structures. As a consequence, P ′ is simulated by all the autonomous
instances of P .

More formally, considering a Symbolic DEv-PROMELA process P = (Sτ , E, δi, δe,
s0, F) and the PROMELA process A = (S, T, s0, FA). By construction, we have:

∀(p, p′) ∈ S × S,∀l \
l

p→ p′, then ∃(q, q′) ∈ Sτ × Sτ\ δi(q) = (q′, e) ∨ δe(q, e) = q′

Moreover, q′ is obtained by applying the action l to q. This property is true thanks
to the abstraction process. Then, there exists a simulation preorder between the
states of P and P ′ in which some states of P simulates all states of P ′. Then, the
Symbolic DEv-PROMELA simulates the PROMELA abstraction.

Proposition 6: DEv-PROMELA Program Verification

A PROMELA program P ′r obtained from a DEv-PROMELA program Pr by
removing all event descriptors preserves the structural properties of Pr.
Moreover, all instances of Pr′ simulates Pr.

Proof. A global state of a DEv-PROMELA program is the cartesian product of the
set of states of each process. Thus, at a time t, the next event (and the next
statement) is selected by taking the minimum value of the date of the next event
of each process. This means that the statespace represented by all autonomous
instances contains all the possible permutations between statements of several
processes. This is exactly the reachability graph of the PROMELA model P ′r.

Thus, there exists a PROMELA model that is an abstraction of a DEv-PROMELA
model. This model is obtained by only removing the event descriptors from the
source model. Moreover, we can say that the DEv-PROMELA model simulates
the PROMELA model.

More formally, denote P a DEv-PROMELA process with L the set of statements.
As previously introduced, P is an automaton A = (Sτ , E, δi, δe, s0, FA). Denote
P ′, a PROMELA process represented by a finite state machine B = (S, T, s′0, FB).
If P ′ is a structural equivalent to P , that means there exists a morphism M that
transforms P to P ′, such as:

- ∀s′i = (l1, ..., ln, g1, ..., gm) ∈ S,
∃si ∈ Sτ , si = (ts, l1, ..., ln, g1, ..., gm); we denote S ⊂ Sτ by abstraction and
φ : Sτ → S, the abstraction function; (1)

- ∀ts ∈ R+, si = (ts, l1, ..., ln, g1, ..., gm) ∈ Sτ =⇒
∃! s′i ∈ S such as s′i = φ(si) = (l1, ..., ln, g1, ..., gm); (2)

- ∀t = (s′i, l, s′j) ∈ T, ∃(si, sj, e) ∈ Sτ × Sτ × E such as δi(si) = (sj, e) or
δe(si, e) = sj, and φ(si) = s′i and φ(sj) = s′j; (3)

111

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

- ∀(si, sj, e) ∈ Sτ × Sτ × E, δi(si) = (sj, e)
or δe(si, e) = sj =⇒ ∃(s′i, s′j) ∈ S × S \ ∃t = (si, l, sj) ∈ T and φ(si) = s′i
and φ(sj) = s′j; (4)

- s′0 = φ(s0); (5)

- F ′ = φ(F). (6)

(1) and (2) mean that we can always make a projection of any state of Sτ
to a corresponding state of S. Moreover, all states s of Sτ sharing the same
memory state are projected to an unique state s′ of S with the same memory
representation. φ is thus a surjective function.
(3) and (4) mean that if there exists a transition function, either internal or
external, from any state si to any state sj, and if s′i (resp. s′j) is a projection of si
(resp. sj) by φ, then there exists a transition from s′i to s′j.
(5) and (6) means that initial and final states are preserved by abstraction.

Suppose M is constructed by only removing the event descriptors of P. By this,
we mean that we delete the concepts of event, state lifetime and the charac-
terization of each transition, in other words the notion of internal and external
transition. M is thus an time-abstraction function such as (1) and (2) are veri-
fied (all timed states are projected to their untimed equivalent depending only
on their memory state). Because we don’t remove any statement, (3) and (4) are
trivially verified. Indeed, even if a DEv-PROMELA (internal or external) transi-
tion is defined between two states qi = (si, dti) and qj = (sj, dtj) in Q, a such
transition exists only if there is a relationship between si and sj. However, a such
relationship is defined syntactically (transitions are defined by the statements).
Because we don’t remove any statements, a such relationship is always existing,
and even for the branching structures. For the same reason, (5) and (6) are also
true.

Because a PROMELA program is a asynchronous product of each automaton
that composes it, the graph of DEv-PROMELA program P is included in the one
of P ′. Indeed, the graph of P ′ is composed by the all possible permutation be-
tween statements, whereas the graph of P is only composed by the permutation
of ordered events. That means, given two events e1 and e2 associated to two
statement l1 and l2, if date(e1) < date(e2)), the graph of P will semantically not
take into account the path where l1 is executed before l2 (the path may exists,
but may be not valid). Thus, the morphism M defined previously is also valid for
the entire program. As a consequent, the reachability graph of the Symbolic DEv-
PROMELA can be abstracted to the reachability graph of the PROMELA model.
Then, we can easily deduce that the symbolic DEv-PROMELA model simulates
the PROMELA model.

112

DEv-PROMELA and Simulation Formalisms Hierarchy

Figure 2.16: Representation of the relation between DEv-PROMELA, PROMELA
and DEVS.

2.5 DEv-PROMELA and Simulation Formalisms Hierarchy

Before talking about of verification and simulation using DEv-PROMELA, we can
talk about one aspect of DEv-PROMELA: the use of the simulation formalisms
hierarchy that we have described in Chapter 1. This is useful if modellers want
to restrict the behaviour of the model. Because DEv-PROMELA embbeds the
semantics of Classic DEVS, it is possible to model all subclasses of Classic DEVS in
the hierarchy. As example, we use the hierarchy proposed by Giambiasi [Gia09].

Sequential Machine with Transitory States (SMTS) SMTS can be modelled
using the SMTS-PROMELA formalism, which is a DEv-PROMELA model with
these syntax restrictions:

1. A SMTS-PROMELA model have only one process, no channel and no global
variable.

2. An event descriptor can emit an output.

3. Only one type of descriptor (autonomous or event) is permitted by state-
ment.

4. Lifetime of transitory states is 0.

The first constraint ensures the model is atomic (a SMTS is not modular). The
second constraint allows modelling of the ouput function. The third constraint
allows differentiation between steady and transitory states.

113

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Temporal MooreMachine (TMM) TMM-PROMELA enforces these restrictions:

1. A TMM program can not involve channels or global variables;

2. Only one type of descriptor (autonomous or event) is permitted by state-
ment.

3. An event descriptor can be followed only by an autonomous descriptor, and
vice-verse.

The first constraint ensures that the synchronozing actions for channels and
global variables do not break the TMM semantics. The second ensures that a
steady state is followed by a transitory state and vice-verse. Because a TMM-
PROMELA is a TMM, it is possible to compose a TMM program by modelling
each process with a TMM atomic model. The closure under coupling described
in [Gia09] ensures the TMM-PROMELA program is a TMM.

Temporal Sequential Machine (TSM) TSM-PROMELA specifications are DEv-
PROMELA specifications with :

1. A TSM program can not involve channels or global variables;

2. An pure event descriptor must be followed by an autonomous descriptor;

3. Clock are reset.

Classic DEVS Finally, the DEv-PROMELA model is a Classic DEVS model with-
out restriction. Using the hierarchy allows modeller to be sure to respect some
structural properties. By translating the syntax of DEv-PROMELA into formal
specifications, these structure properties can be verified using a theorem proving
on the language (syntax proof) for example.

2.6 Verification, Simulation, Interoperability and Limits

2.6.1 Model-checking and Static Verification

Now we have proved the relations between DEv-PROMELA, PROMELA and DEVS,
the question is what can be verified using DEv-PROMELA ?

Considering the definition 32 and that the PROMELA model is an abstraction
of the DEv-PROMELA model, we can deduce that if a structural property is not
fulfilled by the former model, then it will be not fulfilled by the second one.
However, this property does not ensure structural equivalence in the generated
statespace (i.e the behaviour of the models). By this, we mean that the absence
of structural errors in the PROMELA model does not ensure the absence of error

114

Verification, Simulation, Interoperability and Limits

in the DEv-PROMELA generated statespace (because of data abstraction). Struc-
tural deadlocks and static errors then can be found thanks to model-checking.
However, behaviours and time-dependant properties must be verified/validated
using both model-checking and simulation.

Furthermore, we have a proved there is a bisimilarity relationship between
DEv-PROMELA models and their equivalent DEVS models. This means that DEv-
PROMELA offers a way to formally verify invariant properties and structural
deadlocks on a subclass of DEVS problems (those we can translate into a DEv-
PROMELA specifications). Moreover, non-determinism cannot occur because the
DEv-PROMELA syntax and semantics enforces determinism. DEv-PROMELA is
thus a way to model a subclass of discrete-event systems.

Figure 2.17: DEv-PROMELA LTL Veri�cation using Simulation.

2.6.2 Simulation and Dynamic Verification

In the previous section, we show that a DEv-PROMELA model can be simulated
as a DEVS model. Another way to consider the dynamics of a DEv-PROMELA
program is to define a simulator. As for the DEVS simulator, the DEv-PROMELA
simulator employs two time variables tl and tn.

115

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

ALGORITHM 6: DEv-PROMELA Simulator Algorithm.
1: DEv-PROMELA-simulator
2: variables
3: tl // time of the last event
4: tn // time of the next event (init value: ∞)
5: model // associated model
6: when receive i-message(i,t) at time t
7: tl = t - e
8: for each next imminent instruction s sorted by process priority
9: tn_old = tn

10: tn = min(tl + ta(s), tn)
11: when receive *-message(*, t) at time t
12: if t != tn then error: bad synchronization
13: y = λ(s);
14: for each next instruction s’ belonged to other processes than p(s)
15: s’ = δe(s’, t - tl, y)
16: send y-message (y, t) to parent coordinator
17: s = δi(s)
18: tl = t
19: for each next imminent instruction s sorted by process priority
20: tn_old = tn
21: tn = min(tl + ta(s), tn)
22: when receive x-message(x, t) at time t with input value x
23: if not (tl ≤ t ≤ tn) then error: bad synchronization
24: for each next imminent instruction s sorted by process priority
25: s = δe(s, t - tl, x)
26: tl = t
27: for each next imminent instruction s sorted by process priority
28: tn_old = tn
29: tn = min(tl + ta(s), tn)
30: end DEv-PROMELA-simulator

116

Verification, Simulation, Interoperability and Limits

The simulator of DEv-PROMELA is simple as shown in Algorithm 6. At each
step, the simulator evaluates the next imminent instruction among all of the
next instructions of each processes. The next event is the event with the mini-
mum delay. An internal state transition message (*,t) causes the sending of an
output message which is consummed be other processes. Then, the transition
is executed and the date of the next event is recomputed among all imminent
instructions.

When an input message (x,t) is received by the simulator at time t, all pro-
cesses consummed the event. The date of the next event is then computed by
taking the minimum delay among all imminent instructions.

Because simulation takes into account elapsed time, it can be used for verifying
and validating behavioural properties like variables evolution. This can be done
by encoding the LTL properties into a DEVS atomic model (we recall that a LTL
property can be encoded through an automaton) which will act as a monitor
(figure 2.17). This monitor registers all the fluctuations of interesting variables
and changes its state according to the LTL semantics. If a property is violated, it
emits an output event to the outside.

2.6.3 Interoperability

The most important and interesting functionnality of DEv-PROMELA is this prop-
erty of equivalence between DEv-PROMELA and DEVS conceptual models. In-
deed, this property allows DEv-PROMELA to benefit all the advantages of DEVS,
including the independance between the conceptual model and the simulator on
the one hand, and the DEVS Bus [ZKP00] on the other hand.

For the first, this means that DEv-PROMELA model can be implemented using
any DEVS simulator. This allows a kind of interoperability between tools, which
is an important thing even for the validation of simulators. Moreoever, that also
means that a DEv-PROMELA model can be validated as a closed system, but also
as an opened system. Indeed, it is possible to model the entire environment of
the system and couple it with the DEv-PROMELA model. In this way, modelling
interactions between components of the environment and the DEv-PROMELA
model is easier than expressing all constraints in a formal language. The verifi-
cation model can be as simple as possible, respecting the philosophy of formal
verification, and validated under complex conditions.

This fact is pictured by the DEVS bus. The DEVS bus is a concept that allows
multiple discrete-event formalism to interoperate each other. In other words,
it allows multicomponent and multiformalism modelling and simulation. As a
discrete-event formalism, DEv-PROMELA can be integrated in a such environ-
ment (figure 2.18). This is useful for example to model computations using

117

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

any of other DEVS formalisms, and pass the data to the DEv-PROMELA model
which will not focus on computational aspects of the system. Verification of the
DEv-PROMELA part is then done without remodelling the component. That al-
lows modeller to choose where he wants to apply formal verification, and have
more control on the complexity of the model. Then, we can easily see a DEv-
PROMELA model as an autonomous component, or a subpart of an algorithm
whose we want check only a part.

Figure 2.18: Modular system using DEv-PROMELA.

2.6.4 Comparison with other PROMELA timed extensions and Limits

The most effective way to appreciate the benefits and the limits of DEv-PROMELA
is to make a comparison between DEv-PROMELA and existing PROMELA timed
extensions. A summary is done in Table 2.2.

Real-Time PROMELA Real-Time PROMELA (RT-PROMELA) [TC96] was the
first extension introduced to model real-time systems in PROMELA. The moti-
vation was to introduce "quantitative aspect of time" into formal specifications,
while "traditional formalisms dealed only with qualitative aspect of time, that is,
the order of certain system events". Even this statement is not fully true from
the point of view of discrete-event modelling as we will see in the next section,
quantitative aspect of time is effectively important as said previously.

RT-PROMELA considers time as dense. Like Timed Automata (TA) [AD94], RT-
PROMELA is not interested in the real order of events, but considers that a finite

118

Verification, Simulation, Interoperability and Limits

number of successive events can occur between two defined moments. More
precisely, this means RT-PROMELA is only interested in intervals of time in which
events can occur, not in the date and the full order of the events. Taking into
account the semantics of PROMELA, RT-PROMELA introduces two new concepts:
clock and timed statements.

As in TA theory, a clock measures the time which linearly elapses. By this,
many clocks can be used and be compared in guards of timed statements. These
latter are those which depends on time. Because statements represent transitions
between states, a timed statement is thus an action which is fired when a certain
quantity of time was elapsed. This can be interpreted as two manner:

1. either a system must stay in a state during at least or at most d units of
time;

2. or an action is fired before or after d units of time;

As a result, a RT-PROMELA program is thus a Timed Transition System (TTS)
Sτ =< Qτ ,→τ> where:

- Qτ = {(q, v)} with q ∈ Q and v is a clock valuation (i.e. the tuple composed
by the value of each clock)

- →τ⊆ Qτ ×Qτ is the set of timed transitions.

Denote qτi = (q, v) and qτj = (q′, v′) in Qτ . Given a timed statement l =
(st, R, µ) labelling a transition t = (qτi, qτj) ∈→τ , t is enabled if v ∈ µ, in other
words if v satifies all timed constraints of l, and if (q, st, q′) ∈ T is enabled. RT-
PROMELA also defines time transitions between (q, v) and (q, v+ δ) with δ ∈ R+.

If this is enough to explain relations between set of actions, RT-PROMELA
does not explicitly enforce an order between events. Because the operator ==
is defined, date of events can be precisely defined (on N) with conjunction of
process priority. As a consequent, a DES can be modelled with a RT-PROMELA
model with some tricks: If all clock constraints are encoded with the operator
==, lifespan can be encoded in the same manner as in DEv-PROMELA (because
the semantics of clock valuation is given by s = (q, v) with v, the values of all
clocks for the state q). Events are then encoded using channels, and priority
using PROMELA priority concept, to resolve the problem of non-determinism.
So, what is the difference between RT-PROMELA and DEv-PROMELA ?

First, the RT-PROMELA clocks linearly evolve like in TA and can be compared
only with integer values, restricting their possible valuation. This means, the
following kind of properties cannot be expressed in RT-PROMELA:

next(e) = e ∗ e
If we want to model such time evolution, modellers need to use a polynomial
function to approximate the time curve, resulting a new state space explosion.

119

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Second, RT-PROMELA allows non-deterministic behaviours which can lead to
invalid paths in the sense of discrete-event simulation, while DEv-PROMELA en-
forces determinism and reduces the complexity of the model (if the model is
deterministic, non-existing paths can be not generated).

Third, DEv-PROMELA allows modelling states that depends on the elapsed
time. Datas in DEv-PROMELA can be function of time, while it is more difficult
(but not impossible) to express that in RT-PROMELA without generating a new
combinatorial explosion.

Last, DEv-PROMELA proceeds formal verification on the simpliest verifica-
tion model, in the philosophy of formal verification. Timed properties and be-
havioural properties are verified and validated by simulation. As a resultat, the
global speed of the model-checking is speed up and the complexity of the formal
verification is reduced (because DEv-PROMELA avoids the double state space
explosion induced by the introduction of time in the model-checking).

Discrete-Time PROMELA Discrete-Time PROMELA (DT-PROMELA) [BD98a;
BD98b] also relies on the notion of time bounds. Time is sliced into intervals of
fixed size indexed by natural numbers (called ticks), and events are framed into
each slices. By this way, events belonged to two different frames can be ordered
with a good quantitative approximation of the time that elapses between them.
But inside a same frame, events have only a qualitative relation (Figure 2.19).
Like RT-PROMELA, DT-PROMELA introduces timers which define the value of the
current tick. In this sense, while RT-PROMELA uses a dense-time representation
with a linear progression, DT-PROMELA assumes a discrete-time representation.

Figure 2.19: Time representation in DT-PROMELA [BD98a].

Formally, a DT-PROMELA program is a PROMELA one, for which each action is
guarded by an integer value that represents the time. This value is decreased (or
increased) by a monitoring process, enabling then transitions which depend on
it. While in DEv-PROMELA time evolves along to events, DT-PROMELA provides
a discrete representation of time, in which timed is "simulated" by increasing
a tick. As a consequent, events cannot be fully ordered and systems modelled
with DT-PROMELA are not event-based. However, the fact that DT-PROMELA
is based on a discrete-time representation inevitably increases the statespace
because variables are evaluated at each tick.

120

Verification, Simulation, Interoperability and Limits

Timed PROMELA A third extension called Timed PROMELA (T-PROMELA)
[NJJ08] also relies on time bounds. Similary to RT-PROMELA, each statement is
bounded by an upper or a lower value, but with the difference that T-PROMELA
statements do not depend on clocks. An instruction can be simply delayed or
executed at exactly after d units of time. By this way, a T-PROMELA can be
seen as a RT-PROMELA with one clock. It results that the semantics of a T-
PROMELA is likely the same than the semantics of Timed Automata with Discrete
Data (TADD). Verification of properties on T-PROMELA is done by performing
verification on its TADD equivalent. From a strict theorical aspect, T-PROMELA
suffers the same problem than RT-PROMELA.

Extensions of PROMELA for Hybrid Systems Finally, we shortly discuss
about extensions of PROMELA for hybrid systems. "A hybrid system is a system
that evolves following a continuous dynamic, which may instantaneously change
when certain internal or external events occur" [GP14]. Hybrid automata [Hen96]
have been developed in order to model hybrid systems and some verification
techniques have been studied for particular classes of hybrid systems. Mainly,
Alur et al. [Alu+93] show that the reachability problem is undecidable for hy-
brid automata and propose techniques for verifying safety properties of piecewise-
linear hybrid automata.

Bosnacki [BD98b] propose an extension of PROMELA called HyPROMELA for
modelling and verification of discrete-time rectangular automata. A discrete-
time rectangular automaton is a rectangular automaton in which implicit time
transitions that represent the time flow and the evolution of the variables is per-
formed with a fixed duration of one time unit. In this way, an underlying
discrete-time automaton of the rectangular automaton can be obtained and used
for verifying properties.

In [GP14], the authors propose an non-intrusive methodology to extend SPIN
and PROMELA for the verification and the analysis of some decidable classes of
hybrid automata like linear hybrid automata, whose continuous variables evolve
following constant differential equations, and rectangular hybrid automata. The
verification is achieved by making a convex polyhedra abstraction of continu-
ous behaviour of the system, as in Hybrid-PROMELA [SCR06]. However, the
proposed methodologies always face to the state space explosion due to the con-
tinuous components.

Limits of DEv-PROMELA Finally, DEv-PROMELA seems to be a good com-
promise for modelling and verification of discrete-event models. However, DEv-
PROMELA is suffering two major drawbacks. The most evident concerns the
behavioural verification using simulation. How can be sure the verification and
validation are really finished ? This problem is inherited from the empirical
aspect of simulation. This problem is the same than completeness of tests in ver-
ification and validation of software. Efficiency of tests depends on the coverage

121

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

Table 2.2: Comparison between PROMELA timed extensions.

DEv-PROMELA PROMELA RT-PROMELA DT-PROMELA
Supports
Formal

Verification
with SPIN for

non-timed
properties

Supports
Formal

Verification
with SPIN

Model-Checker

Supports
Formal

Verification
with RT-SPIN

Supports
Formal

Verification
with DT-SPIN

Supports
Discrete-Event

Simulation
using any

Classic DEVS
Simulator

Simulation is
likely execution

of the model
- -

Supports time
modelling
through

discrete-event
behaviour

No explicit time Linear clocks Discrete-Time

Infinite sets can
be modelled
(only real for
the moment)

Finite Sets Finite Sets Finite Sets

Models can be
combined with

any
discrete-event
models thanks

to the DEVS Bus

- - -

Verification can
be not

exhaustive

Exhaustive
verification

Exhaustive
verification

Exhaustive
verification

of the scenarios played. If it is possible to simulate all the statespace, the process
can be long. A possible solution would be to integrate coverage tests of scenarios
in the process, but that is not the object of this work.

The second limitation concerns the kind of systems that DEv-PROMELA can
handle. In fact, DEv-PROMELA is able to check properties on a subclass of Classic
DEVS problems, meaning all the Parallel DEVS models can not be expressed
in DEv-PROMELA. This is because of the semantics of PROMELA. This is not

122

Conclusion

really a problem at this point because we could apply our general approach to
improve DEv-PROMELA or use another verifiable specifications language which
would be more appropriate to represent the systems under study. Indeed, like
stated by Zeigler, Kim, and Praehofer [ZKP00], "Formalisms are proposed, and
sometimes accepted, because they provide convenient means to express models
for particular classes of systems and problems".

2.7 Conclusion

In this chapter, we have proposed a generic approach in order to integrate simu-
lation formalisms into formal specifications languages. This approach is decom-
posed in three global steps and consists on adding to the verifiable formalisms
some discrete-event concepts. These concepts can be identified using the for-
mal definitions of the language, or using an MDE approach (which allows au-
tomations of translation). The second step consists on aligning the semantics
between the two formalisms and defining two morphisms that respects a sim-
ulation preorder relations between models. Finally, the model described in the
new specifications language can be translated (figure 2.20) into the initial formal
specifications for formal checking of structural properties (especially invariants
and deadlocks), or into the simulation language for verification and validation
of behavioural properties (properties depending on time). The most advantage
is that we move out the complexity problem to the simulation, and performs
simple formal verification on the model. The global result of verification and
validation is then given by using both methodologies: if an error is found dur-
ing the model-checking, we can be sure the model is incorrect, while only both
formal verification and simulation can detect behavioural problems.

Then, we have introduced a new formalism called DEv-PROMELA which is
the result of combining Classic DEVS and PROMELA using our approach. DEv-
PROMELA gathers all the advantages of DEVS with a formal verification capabil-
ity. As an event-based formalism, it can also be seen as a PROMELA extension
that implements an hybrid event-state approach for modelling processes. We
show how we can use DEv-PROMELA in a verification and simulation environ-
ment using multiple formalisms and multiple components.

We succinctly compared DEv-PROMELA and other timed extensions, and present
the two majors drawbacks of PROMELA: the empirical aspect of simulation and
the limit of the class of problems. Also, a more precise study of the generated
statespace is needed to reduce the complexity of simulation. Indeed, since a DEv-
PROMELA model is equivalent to a DEVS model, reduction techniques could be
applied.

123

CHAPTER 2 - A COMBINED FORMALISM: DEV-PROMELA

The question is now: how using efficiently a combined V&V approach in a
development cycle. This will be the topic of the next chapter.

Figure 2.20: Combining Model-Checking and Simulation.

124

Chapter

3

Modelling,
Verification and
Validation with
DEv-PROMELA

Design is an art, creative artist must
have a beautiful mind.

Bhupesh B. Patil

An algorithm must be seen to be believed.
Donald Knuth

3.1 Introduction

In the previous chapter, we have defined a new specifications language DEv-
PROMELA which can be used for modelling, verification and validation of discrete-
event systems. We also touched on the interoperability between tools and for-
malisms. However, we must tackle the topic: How can we really use DEv-
PROMELA in the Verification and Validation process of Simulation Models ? of
Software ? What is the impact of such a methodology in the Software Develop-
ment Life Cycle ?

We will answer these questions in this short chapter. Firstly, we will inter-
est in how using DEv-PROMELA for the verification and validation of software,
and especially event-driven software implemented using the event-driven pro-
gramming paradigm (even if it works also for any software that have timed con-
straints). This will allows us to define the notion of level of V&V which will help
to understand what exactly designers are verifying and validating. Then, we will
see what is the impact of DEv-PROMELA in the V&V of simulation models.

125

CHAPTER 3 - MODELLING, VERIFICATION AND VALIDATION WITH
DEV-PROMELA

3.2 Framework Entities and Intuitive Relationships

The framework of Combined V&V of Software can be easily depicted as in fig-
ure 3.1. Given a software source code (which is a program, and so a model)
and requirements (or conceptual model), a DEv-PROMELA model is extracted
or generated. If the source code of the software is generated from the DEv-
PROMELA model, a syntax proof is performed to ensure that the translation is
correct. Then, in order to perform combined Verification and Validation of the
Software Model, the DEv-PROMELA model is translated into a PROMELA model
and into a DEVS conceptual model. Syntax verifications are performed in these
step in order to ensure correctness of the translation. The PROMELA is then ver-
ified using the SPIN model-checker, achieving the formal part of the combined
V&V.

The DEVS conceptual is implemented into a simulation model. Classic V&V
techniques of simulation models are applied (or a combined approach can be
used). Then, the simulation-based part of the combined V&V is performed using
the simulation model. If all the morphisms and translations are correct (in-
cluding the certification of the simulator), then properties verified using the
combined approach are guaranteed on the software. During the process, all
properties which the model-checker was not able to verify were checked using
simulation and vice-verse.

Figure 3.1: Combined V&V Entites.

126

Modelling and Verification of Software

3.3 Modelling and Verification of Software

As we seen in the Chapter 1, Software V&V essentially consists on performing
static and dynamic tests on the software at each phase of the SDLC, while vali-
dation was performing at the first phase and at the coding phase. We also saw
that prototyping could help validation and it was possible to compare results of
the prototype and the final software. We extend this cycle by introducing new
activities at each phase as shown in figure 3.2.

Figure 3.2: V&V in Software Development Life Cycle.

3.3.1 Verification techniques

Requirement phase During this phase, a DEv-PROMELA model can be made
as supportive model for the prototype, or can be the prototype. In the first case,
the DEv-PROMELA model is simulated to generate outputs and to give a first
idea of the behaviour. The outputs of the models can be compared with the
outputs of the prototype in order to determine if the constraints and assump-
tions made during the requirement phase are conformed to the needs of the user
(validation). In the second case, simulation models are already software that
simulates the behaviour of the final product. Because DEv-PROMELA simulator

127

CHAPTER 3 - MODELLING, VERIFICATION AND VALIDATION WITH
DEV-PROMELA

can be syntactically built from the conceptual model, prototyping is faster and
easier. Moreover, this is in this step that test datas are generated, and test sce-
narios elaborated. Then, in summary, the DEv-PROMELA model at this step is
just coupling input/output functions.

Requirement analysis In this step, informal requirements are formalized, and
system test cases are written. The DEv-PROLEMA model at this step is refined
from the DEv-PROMELA model at the previous step. Combined Formal Verifica-
tion and Simulation is used for verifying that the conceptual model represented
by the DEv-PROMELA model holds the requirement of the previous phase (for
example, bounds valuations, mathematical function definition).

High level design At this level, the DEv-PROMELA model is then refined to
make appearing coupling processes. Behaviour and communications between
black boxes are verified. Simulation-based verification helps to detect missing
input/output.

Low level design At the this level, the DEv-PROMELA model is refined to make
appearing state-transition structure in the white box. Formal Verification can
help to verify the structure of the state-machine while simulation-based verifi-
cation helps to verify if the behaviour is always conformed to the requirements
defined above.

Coding At this level, the DEv-PROMELA model is close to the implementation,
and remains a conceptual model of the source code, even if the correspond-
ing simulation model is used as base for the final code (especially if the event-
driven programming [Dab+02] or time-driven programming [PT96] paradigms
are used). The final source code can be checked using formal syntax proof, while
the conceptual model is verified using model-checking for invariant properties.
Simulation-based verification completes the formal verification by checking the
behaviour of the model.

All these steps can be completed by using traditional static techniques that we
have introduced in Chapter 1.

3.3.2 Validation techniques

For Validation, we take the right side of the ’V’ from bottom to up.

Coding Validation is proceeded after debugging, by executing the software in
its real environment. Furthermore, because we have a simulation model of the
code, it is possible for the customer to validate the behaviour of the software in
a logic time. The ouputs of the simulation model and the software must be the

128

Modelling and Verification of Software

same. Note that the simulator must have been certified. Model-checking is used
as a complementary formal validation technique.

Low level design As for the validation step, unit testing are completed with
simulation-based validation. In fact, some tests can be performed on the simu-
lation model. If both simulation model and software have different behaviour,
then designers can deduce that something were wrong during the development.
At this level, tests are focusing on atomic models. Model-checking is used as a
complementary formal validation technique.

High level design Integration testing are completed by tests on the coupled
models (the components of the software). Scenarios are played also on the
simulation model to make a double validation of the conceptual model and the
software.

Requirement analysis Systems testing and simulation-based validation vali-
dates the behaviour of the simulation model and of the software in its real envi-
ronment.

Requirement phase Acceptance tests are performed on the software and used
as scenarios of the simulation model.

It is interesting to note that model-checking on the DEv-PROMELA model can
also be used to check some properties during the validation phase. In this case,
validation is performed combining a simulation-based validation, tests and for-
mal validation. Moreover, our proposed workflow implies the use of a conceptual
model and a simulation. Indeed, each step of Verification and Validation uses a
DEv-PROMELA model which is a model of the software, in addition of the tra-
ditional tests on the software and requirements. However, this is possible only
if the simulation model is conforms to the conceptual model embbeded in the
DEv-PROMELA model. This means the model must be verified between each
step and that the simulation model (which is a computerized simulator) must
also be verified and validated.

As a consequent, our proposed workflow have at least two levels of Verification
and Validation:

1. The software level which consists on really verifying and validating the
software using tests and conceptual models (DEv-PROMELA, UML..);

2. The simulation level which consists on verifying and validating the simula-
tion model used in the higher level;

129

CHAPTER 3 - MODELLING, VERIFICATION AND VALIDATION WITH
DEV-PROMELA

3. The model level which consists on validating the conceptual model used in
the higher levels. This level is likely included in the top level, during the
requirement phase, using the prototype and the simulation model.

The next section will talk about the second level of V&V: Modelling and Verifi-
cation of Discrete-Event Simulation Models.

3.4 Modelling and Verification of Simulation Models

A simulation model is software that implements the behaviour of a conceptual
model. Thus, like any software, it must be verified and validated before used.
Figure 3.3 recalls the step of the V&V of simulation models seen in Chapter 1.

Figure 3.3: V&V of Simulation Models.

There are five critical points:

• Data Validation ensures that the data used to perform V&V are correct and
corresponds to the modelled system;

• Conceptual Model Validation that ensures the conceptual model represents
the modelled system;

• Specification Verification which checks that the computerized model speci-
fications (the software) fulfills the requirement;

• Implementation Verification which ensures the simulation model (the soft-
ware) meets the requirements of the specifications;

• Validation which ensures that simulator is well built and works as expected
using the validated data.

130

Modelling and Verification of Simulation Models

Figure 3.4: V&V of Simulation Models using DEv-PROMELA.

In our workflow, we use also DEv-PROMELA for V&V of Simulation Models
(figure 3.4). In the case of Software V&V, the problem entity is the software
which will be developed. Data and conceptual model are created during the
Requirement Phase using DEv-PROMELA. Then, the Conceptual Model is vali-
dated using the prototype. The specifications of the computerized model are
verified using traditional methods (as introduced in Chapter 1), but also using
DEv-PROMELA formal verification and simulation. Readers can ask a question:
"How can I verify and validate a conceptual model using both model-checking
and simulation, whereas I am building the simulator that helps me to perform
the combined V&V introduced in this work ?"

The answer is simple: by using another existing simulator. Yes, the purpose
of this part is building a simulator corresponding to the conceptual model and
which will help to perform the combined V&V. However, if another simulator
already exists, it can be used in order to verify and validate the simulator we are
building using the combined V&V approach.

Implementation verification can be done using theorem proving or also us-
ing the combined method introduced in this work. Indeed, DEv-PROMELA is a
syntactic model, then MDE can be used in order to generate the source code of
the simulator. In this same manner, syntax proof can be used for ensuring that
the translation was correctly done. Finally, Validation of the simulator is per-
formed by simulating data. Also, in this step, simulation-based validation can be
performed.

This workflow shows an important property: a DEv-PROMELA simulator is
a discrete-event software and can be itself verify and validated using our com-
bined methodology. This creates between models strong relations that make

131

CHAPTER 3 - MODELLING, VERIFICATION AND VALIDATION WITH
DEV-PROMELA

that the simulator is likely the final software. As a consequence, if a DEv-
PROMELA simulator is built, verified and validated, writting the conceptual
model of any discrete-event software in DEv-PROMELA (or any formalism that
combined discrete-event simulation and model-checking) will potentially gives a
clean base for the development of the real software.

The architecture of the implementation of the DEv-PROMELA simulator is not
discussed in this work, but can be inspired by the event-driven programming
paradigm and the object-oriented implementation of DEVS proposed by Zeigler,
Kim, and Praehofer [ZKP00].

3.5 Integrated Verification and Validation Environment (IVVE)

Figure 3.5: Combined V&V Environment Architecture.

132

Integrated Verification and Validation Environment (IVVE)

In order to understand exactly how works the combined Verification and Valida-
tion, we describe the architecture of the environment of Combined V&V (figure
3.5).

First, a DEv-PROMELA model can be extracted from the Software Source Code
(in case of Reverse Engineering). The DEv-PROMELA Specifications consists on
a text file which is processed by a DEv-PROMELA compiler. This compiler makes
a lexical, syntatical and semantical analyzing of the specifications and produces
three outputs:

1. the PROMELA specifications corresponding to the equivalent structural model
as introduced in Chapter 2;

2. the LTL specifications to verify on the model;

3. A Classic DEVS conceptual model in an intermediate format.

Both the PROMELA model and LTL specifications are sent to the SPIN model-
checker which will perform the classic verification. The LTL specifications and
the DEVS Intermediate Format are passed to a DEVS transducer that produces
the simulation model for the target simulator. The LTL specifications are encoded
into DEVS monitor and coupled with the DEVS model. When verification is
performed, outputs from the simulation and the model-checking are compared.
If both results are different, the environment warns the designer.

The advantage of a such architecture is that it is possible to reuse existing tools
without reimplement all the algorithms. Moreover, if the source or the target
language changes, only the corresponding components needs to be changed. For
example, if we want to use TMS-PROMELA, only replacing the DEv-PROMELA
compiler by a TMS-PROMELA compiler is needed.

As an example of environment, we are developing an integrated verification
and validation environment for DEv-PROMELA (figure 3.6). This environment
embbeds the SPIN model checker, a DEv-PROMELA simulator and code genera-
tor which generates the simulation model in a C++ implementation which can
be used as base for software implementation. The C++ implementation can be
itself verified and validated using traditional V&V approaches, while the V&V of
the software (or its conceptual model) is checking using both techniques: it is
simulated and formally verified.

133

CHAPTER 3 - MODELLING, VERIFICATION AND VALIDATION WITH
DEV-PROMELA

Figure 3.6: The DEv-PROMELA Studio Environment.

3.6 Conclusion

As a conclusion, we saw in this chapter how using DEv-PROMELA in the Ver-
ification and Validation procedures. Concerning Verification and Validation of
Software, and especially Discrete-Event Software, a DEv-PROMELA model can
be used as a conceptual model at each step of the development in order to
help designers to ensure the correctness of their design. Combined Verifica-
tion uses Formal Verification and Simulation on the DEv-PROMELA simulation
model. However, because a simulation model is also a computerized model,
V&V of software will be correct only if the DEv-PROMELA model is verified and
validated. It thus appears a second level of V&V, which is Verification and Vali-
dation of Simulation Models. Then, by defining a process for V&V of Simulation
models, we see that it is finally the same thing than verify the real modelled
software. A kind of reflectivity similar to the work in [Wan06] appears, mean-
ing that a simulation model can be verified using our proposed methodology or
using the existing techniques. Moreover, because DEv-PROMELA is a syntactic
languague, proofs of correctness between the DEv-PROMELA conceptual model
and the DEv-PROMELA simulation model are easier, using formal proofs.

134

Conclusion

We also introduce an environment architecture for the combined Verification
and Validation. This architecture reuses existing simulation and model-checking
tools in order to perform the verification using model-checking and simulation,
and the validation using model-checking and simulation. Thanks to the proper-
ties of DEv-PROMELA, both techniques can be applied to verify structural (static)
/ behavioural (dynamic) properties on the model without any remodelling.

The next chapter gives concrete examples of case studies, in which our method
was applied.

135

Chapter

4

Applications :
Modelling,
Verification and
Validation of ...

Any physical theory is always
provisional, in the sense that it is only a hypothesis: you can never prove it. No

matter how many times the results of experiments agree with some theory, you can
never be sure that the next time the result will not contradict the theory.

Stephen Hawking

It doesn’t matter how beautiful your theory is ...
If it doesn’t agree with experiment, it’s wrong.

Richard Feynman

4.1 ... Mutual Exclusion Protocols

The first example concerns the well-known Fischer’s Mutual Exclusion Protocol
[AL94] which is regulary cited in the model-checking litterature. The algorithm
(given in Algorithm 7) is easy: firstly, the process p checks whether another
process either is already or wants to enter the critical section (line 4). If it is the
case, the process stays in an active wait. Then, the process p declares its willing
to enter the critical section before entering a sleep mode. When it weaks up, it
checks whether another process is entered the critical section during its sleeping.
If it is the case, the protocol restarts from the beginning, else the process can
enter the critical section.

Fisher’s protocol can be seen as a timed system, and also a timed event system.
Table 4.1, Program 8 and Program 9 give all variants of this algorithm using each
timed extension of PROMELA presented in this work.

137

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

ALGORITHM 7: Fischer’s Mutual Exclusion Protocol (1984).
1: while true do
2: begin
3: /* non-critical section */
4: L: if id 6= 0 then goto L;
5: id := i;
6: pause(delay);
7: if id 6= i then goto L;
8: /* critical section */
9: id := 0;

10: end

ALGORITHM 8: Fischer’s Mutual Exclusion Protocol in Classic PROMELA.
1: int pid = 0;
2:
3: active proctype P (int id) {
4: do ::
5: /∗ non-critical section ∗/
6: wait_L:
7: if
8: :: pid != 0→ goto wait_L;
9: :: else→ skip;

10: fi;
11: pid = id;
12: if
13: :: pid != id→ goto wait_L;
14: :: else→ skip;
15: fi;
16: /∗ critical section ∗/
17: pid = 0;
18: od;
19: }
20:

Let’s doing the analysis of each version. The Classic PROMELA version is an
untimed specification of the Fisher’s algorithm. The notion of time explicited
line 6 with the pause can’t be modelled. Thus, the property

"Two processes cannot be in critical section in same time." (� ¬(ci ∧ cj)) (1)

is as expected invalid on this model. Indeed, in this case, all possible permuta-
tions between n processes are verified without any notions of priority, generating
the path given in Figure 4.1. However, this model well verifies the property

"Is there cases in which two processes cannot be in critical section in same time ?"
(3 ¬(ci ∧ cj)) (2)

138

... Mutual Exclusion Protocols

RT-PROMELA DT-PROMELA Timed PROMELA

clock y[5];
proctype P(byte id) {
do::

reset{y[id]} X == 0 →
when{y[id] < deltaB}
reset{y[id]} X = id+1 →
atomic{when{y[id] > deltaC}
X == id+1; in_crit++; } →
atomic{X = 0; in_crit--;}

od
}

proctype P(byte id) {
timer y, y1;
do::

udelay(y);
X == 0 →
atomic{
bdelay(y, deltaB, y1)} →
X = id+1;

}
atomic{delay(y,deltaC);
udelay(y)} →

atomic{
X == id+1;
in_crit++;

} → udelay(y);
atomic{X = 0; in_crit--;}

od
}

proctype P(byte id) {
do::

X == 0; →
if
:: true → X = id+1;
:: [timeout deltaB] → skip;
fi;
[wait deltaC] X == id+1 →
in_crit++; →
atomic { in_crit--; X = 0; }

}

Table 4.1: Fisher's Mutual Exclusion Protocol in di�erent timed extensions of PRO-
MELA [NJJ08].

ensuring that there are cases in which the Fisher’s algorithm is able to guarantee
the property of non-concurrency in critical section.

Now, take the RT-PROMELA or the T-PROMELA version: time representation of
the sleeping phase is given as a lower bounding value. Firstly, the first condition
can be checked at any time. Then, all next instructions are timed. Affectation
of X must overcome in a finite delay (expressed by the upper bound deltaB),
and the pause takes at least delay units of time (modelled by the lower bound
deltaC). That means that the second test is not effective at t = deltaC, but at
some time after this delay. By this, we mean that a process can be indefinitely
blocked, which is not something expressed by the algorithm (pause necessarily
means to wake). Verification is thus made on irrelevant paths and implies an ex-
plosion of the statespace which would be avoidable. But, take the case in which
the condition on the lower bound deltaC is expressed as an equality instead of
an inequality. In that way, the infinite behaviour is not expressed anymore. And
the result of the verification is the same: the Fischer’s algorithm guarantees the
property (1) iff deltaB < deltaC (otherwise, for instance if deltaB = 5 and
deltaC = 1, the invalid path given in Figure 4.1 can be generated). However,
when deltaB >= deltaC, RT-PROMELA is able only to ensure the correctness
of the property (2). RT-PROMELA allowed thus getting more precision about
the conditions under which the Fischer’s protocol was valid, but without any

139

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

ALGORITHM 9: Fischer’s Mutual Exclusion Protocol in DEv-PROMELA.
1: int pid = 0;
2: mtype = { changepid }
3:
4: [priority = id]
5: active proctype P (int id) {
6: real delay = 2.0 * id;
7: do ::
8: /∗ non-critical section ∗/
9: wait_L:

10: if
11: :: [clt:0.1→ emit:silent] pid != 0→ goto wait_L;
12: :: [clt:0.1→ emit:silent] else→ skip;
13: fi;
14: [clt:0.1→ emit:changepid] pid = id;
15: if
16: :: [clt:delay→ emit:silent | evt: changepid]
17: pid != id→ goto wait_L;
18: :: [clt:delay→ emit:silent] else→ skip;
19: fi;
20: /∗ critical section ∗/
21: [clt:0.1→ emit:changepid] pid = 0;
22: od;
23: }
24:

precision on the invalid cases.
Concerning the DT-PROMELA version, the specification focus on the second

test can overcome in [delay; delay+ 1]. There is also no notion of ordered events
in this interval. In this case, if we take any process P with the same delay, DT-
PROMELA generates the same statespace as the Classic PROMELA one (because
all of the processes can execute the second condition at [delay; delay + 1], so the
resulting graph is composed by all of the possible permutations of instructions).

140

... Mutual Exclusion Protocols

Figure 4.1: Example of an invalid path generated by the Program 8 for the property
(1). Pi_j indicates the current line executed by the process Pi.

DEv-PROMELA offers a discrete-event interpretation of the Fischer’s protocol.
Because all instructions correspond to autonomous behaviours, we consider they
depends only on the current state. Because of priority, we know that each pro-
cess will have the hand in turn. When a process is sleeping, it is blocked until the
delay is exactly expired. In other words, for a process p, the next event will be at
getCurrentDate() + delay after the execution of line 14. But if the global value
of pid is changed, we know that we must return to the beginning. This corre-
sponds to the receiving of an event changepid. If two processes wakes up at the
same time, priority will decide of the next proceed event. By this, the execution
of this DEv-PROMELA program is deterministic, and only one path of the total
graph will be possible for the same configuration. Thanks to structural preser-
vation, the DEv-PROMELA model guarantees the correctness of the property (2)
(thanks to the formal verification on the Classic PROMELA equivalent program),
but performance and real behaviour analysis are made through simulation. For
instance, the DEv-PROMELA model ensures that the Fischer’s algorithm verifies
the property (1) if all processes are symmetrical (i.e their execution occurs in
the same way), regardless the relation between deltaB and deltaC. Simulation-
based verification also provides a great advantage: checking of irrelevant paths
is avoided. For instance, while the path given in Figure 4.1 was verified in Classic
PROMELA and RT-PROMELA, it simply does not exist in DEv-PROMELA.

For this example, we verify the property

"Is always at most one process in critical section in same time ?"

using only model-checking (with RT-SPIN) and using DEv-PROMELA (using SPIN
for Model Checking and MS4 Me environment – figure 4.2 – for simulation
[Yac+15]). For that, the DEv-PROMELA specifications is encoded in a DNL
Model (figure 4.3), while a PROMELA abstract model is extracted from the DEv-
PROMELA model. Results are given in Table 4.2. We can easily see that timed
verification generates a statespace nineteen times bigger for a simple algorithm,
while memory usage is multiplied by two. The results show also that as ex-
pected SPIN was unable to prove the non-violation of the property. Indeed, in

141

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

that case, the property was not a structural property but a behavioural property.
Simulation is thus needed to confirm the model-checking result.

Figure 4.2: MS4 Me Environment.

Figure 4.3: DNL model of a Process.

142

... A Video Game Software : PACMAN

Table 4.2: Results of Veri�cation of concurrent access property.

RT-PROMELA DEv-PROMELA
State Space 4632 159 (PROMELA)

Returning Path 1001 128 (PROMELA)
Visited Transitions 5633 287 (PROMELA)

Memory 428 Ko 289 Ko

Results Violation not found

Violation found
(model-checking) -

Simulation confirms the
inexistance of cases in

which the property is not
verified (153 played

scenarios)

4.2 ... A Video Game Software : PACMAN

Pacman is a well-known and well-developed video game, released on many plat-
forms since 1980. Its source code has been experienced for many years, and a
great number of bugs have been fixed, but it is a good example to illustrate the
use of DEv-PROMELA in the software development process, as Pacman was used
to illustrate the benefits of formal specifications [Gor15] or graph transforma-
tions for the evaluation of the playability of a game through Simulation [SV08;
SV13b]. This example was already tackled in [YHF16b]. However, we will illus-
trate here how using the Software V&V Approach introduced in Chapter 3. Thus,
we will follow the workflow step-by-step and explain what we are exactly doing
at each step.

Note that a DEv-PROMELA model in this section is any models that contains
DEv-PROMELA specifications. We mean that a multicomponent multiformalism
simulation model that contains a DEv-PROMELA component is considered as a
DEv-PROMELA model.

4.2.1 Requirement Phase

Take a Pacman game with relatively simple specifications expressed in an infor-
mal language:

• A human player plays a character called Pacman (in yellow in the figure
4.4);

• Ghosts are controlled by a computer artificial intelligence (AI);

143

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

Figure 4.4: Example of Pacman.

• Pacman can move in the labyrinth in vertical and horizontal direction, or
stay in place; Pacman cannot walk through the walls;

• Pacman’s speed depends on the duration of pressure on the controller;

• Pacman eats balls; each ball gives points to the player;

• If a ghost eats Pacman (i.e. Pacman and a ghost are in the same place), the
player loses a life; if the player loses their three lives, the game is over.

Acceptance tests and playable scenarios can then be:

1. Test that the pacman can move when the player controls it. For that, push
the pad controller to up, down, left and right and look at what happens.

2. Test that the ghost can move only when the AI take a decision.

3. Push the controller in up-left and test the pacman cannot move in diagonal
direction.

144

... A Video Game Software : PACMAN

4. Test what happens when Pacman goes on a ball.

5. etc.

We note also that the next state of a video game is rarely independent from
the time elapsed in a previous state. A game is reactive and for the sake of real-
ism, the time must be taken into account. Traditionally, a game is implemented
using a game loop which runs until the end game condition is reached. At each
loop, entities like pacman and ghost are updated according to the time elapsed
in the loop (the time needed in order to compute a frame). However, taking into
account the time in a traditional model-checking process could lead to an ineffi-
cient verification. That is why a verification model will generally simply ignore
the time. However, discrete-event models represent good abstraction (especially
when a game is implemented using a event-driven architecture). For this reason,
we can use DEv-PROMELA.

At this step, a first prototype of the game can be developed. This proto-
type can be a simulation model built from a DEv-PROMELA specifications or
any other simulation model, or a fast prototype (figure 4.4) built or not from
a DEv-PROMELA specification. The DEv-PROMELA model can be also built by
modelling the prototype, the simulator or other. Validation is then performs:

• By executing the prototype. That helps to know the real bounds, datas, etc.

• By simulating the simulation model and comparing results with the proto-
type (if the prototype is not the simulator itself).

4.2.2 Requirement Analysis

Specifications are formalized at this step, and LTL properties are defined. For
instance:

If p is the pacman at position x,y and b a ball at position x,y
then: never p and b.

If p is the pacman at position x,y and g a ghost at position x,y
and l, the life of the player, then : p ∧ g =⇒ l-1.

The DEv-PROMELA model is refined by introducing the LTL properties, while
static verification are performed on the document to ensure they respect the
requirements defined in the project management.

4.2.3 High Level Design

At this step, the first game models are designed and focus on interaction between
the components of the game. UML Components Diagrams are used and develop-
ment paradigm are chosen. Traditionnaly, video games are rarely independent

145

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

from time, and event-driven paradigm or time-driven paradigm are chosen. In-
deed, the components of a game respond to event coming from the players. If
event-driven programming paradigm is chosen, then making a DEv-PROMELA
model from the UML components diagram is easier. For instance, we could have
the structure illustrated in figure 4.5.

Figure 4.5: Components Model of Pacman.

Then, the DEv-PROMELA model is refined to make appearing the compo-
nent structure (one process per box), and defining input/output events between
boxes. The model can be structurally verified using model-checking and simula-
tion against the requirements defined in the previous phase, and compared with
the UML model, using for example syntactic proof. New LTL properties are also
introduced, representing the constraints on the input/output event couples.

146

... A Video Game Software : PACMAN

4.2.4 Low Level Design

Internal FSM structures are defined at this step and the boxes are filled. Pac-
man and ghosts can be seen as asynchronous processes because they can move
independently. Score, lives and positions can be modelled by number. For conve-
nience purposes, we will focus on an example with one pacman and one ghost,
as given in Algorithms 10 and 11. The DEv-PROMELA model can also be com-
pleted with UML diagrams. LTL propeties on bounds and limits are added for
the possible invariants.

Modelling the Pacman Algoritm 10 shows the DEv-PROMELA model of the
Pacman. Pacman is seen as a process. Each 0.1 unit of time (line 9), this pro-
cess checks if the game is finished. If it is not the case, it waits an event from
the player (the all PAC_* event), and updates its position according to the time
elpased between the first check and the occurence of the given event. If the pac-
man and the ghost are in the same position, the game is over. Furthermore, the
discrete-event nature of the game can be seen through two elements. Firstly, we
can consider that each instruction is performed after a delay, which corresponds
to the time needed by the processor before performing the next instruction. In
other words, this is the time before that the video game changes its state to an-
other state by performing the next instruction. Thus, this delay corresponds to
the lifespan of the current state. This is modelled by the constant 0.1 (line 9) for
instance. The designer can change this constant by any value, or any variable or
any function which can be evaluated as a real. When the lifespan of its current
state expires, a process can emit an event to the others processes in order to
notify them its change. This is done through the emit instruction.

Secondly, if a process can emit an event, it can also consume it. Thus, a process
must react to an event which comes from another process or from the outside,
for instance when the player press a button of its controller. An example of this
type of external event is given in line 11. The assignment is done only if the
event PAC_LEFT is received. Furthermore, DEv-PROMELA allows to combine a
clt clause and with an evt clause. In this case, if the external event is received
before the end of the delay, the internal transition is preempted by the external
transition. DEv-PROMELA also allows mixing clauses in the selection constructs.

Modelling the Ghost Ghost is just the symetrical of Pacman as shown in Algo-
ritm 11. Each 0.1 unit of time (line 9), this process checks if the game is finished.
If it is not the case, it waits an event from the computer (all the GHS_* events),
and updates its position according to the time elpased between the first check
and the occurence of the event. If the pacman and the ghost are in the same
position, the game is over.

147

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

ALGORITHM 10: DEv-PROMELA model of Pacman Process.
1: real pacman_x, pacman_y, opacman_x, opacman_y;
2: bool end_game = false;
3:
4: [priority = 1]
5: active proctype PACMAN()
6: {
7: real t = 1;
8: do
9: :: [clt:0.1→emit:silent] end_game == false→

10: if
11: :: [evt:PAC_LEFT] t = getElapsedTime;
12: if
13: :: atomic { (end_game == false && pacman_x < 5 && pacman_x

> 0)→
14: opacman_x = pacman_x;
15: opacman_y = pacman_y;
16: pacman_x = pacman_x - t*1
17: }
18: :: else→ skip;
19: fi;
20: :: [evt:PAC_RIGHT] t = getElapsedTime;
21: if
22: :: atomic { (end_game == false && pacman_x < 5 && pacman_x

> 0)→
23: opacman_x = pacman_x;
24: opacman_y = pacman_y;
25: pacman_x = pacman_x + t*1
26: }
27: :: else→ skip;
28: fi;
29: // Stuff and other code ;
30: fi;
31: if
32: :: atomic { (pacman_x == ghost_x) && (pacman_y == ghost_y)→
33: end_game = true
34: };
35: :: else→ skip;
36: fi;
37: :: end_game == true→ break;
38: od;
39: }

148

... A Video Game Software : PACMAN

ALGORITHM 11: DEv-PROMELA model of Ghost Process.
1: real ghost_x, ghost_y, oghost_x, oghost_y;
2:
3: [priority = 2]
4: active proctype GHOST()
5: {
6: real t = 1;
7: do
8: :: [clt:0.1→emit:silent] end_game == false→
9: if

10: :: [evt:GHS_LEFT] t = getElapsedTime;
11: if
12: :: atomic { (end_game == false && ghost_x < 5 && ghost_x >

0)→
13: oghost_x = ghost_x;
14: oghost_y = ghost_y;
15: ghost_x = ghost_x - t*1
16: }
17: :: else→ skip;
18: fi;
19: :: [evt:GHS_RIGHT] t = getElapsedTime;
20: if
21: :: atomic { (end_game == false && ghost_x < 5 && ghost_x >

0)→
22: oghost_x = ghost_x;
23: oghost_y = ghost_y;
24: ghost_x = ghost_x + t*1
25: }
26: :: else→ skip;
27: fi;
28: // Stuff and other code ;
29: fi;
30: if
31: :: atomic { (pacman_x == ghost_x) && (pacman_y == ghost_y)→
32: end_game = true
33: };
34: :: else→ skip;
35: fi;
36: :: end_game == true→ break;
37: od;
38: }

149

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

4.2.5 Verification using Model Checking

The pacman and the ghost processes check the state of the game after 0.1 units
of time. If the game is running, then they wait for an event to move. In this
model, if the pacman and the ghost are in the same position, the game is over.
Now that the DEv-PROMELA model is designed, we can use it to verify some
properties:

1. Is eventually the game over ?

2. Is it possible that the pacman goes out of the limit of the board ?

3. Is it possible that the pacman and the ghost intersect without the game
being over ?

4. Can the life of the player be a negative number ?

5. Can any process always progress ?

6. Is there any unreachable state ?

7. Can the score be a negative number ?

The PROMELA model is obtained by removing the event descriptor and mak-
ing an abstraction of real values, using the rules described before. Then, the
three properties are encoded into LTL:

1. (� end_game) : "Eventually the game is over". If this property is verified
by the model-checking, that means there is a great chance that the DEv-
PROMELA model also ends at time t;

2. (�(p_x >= 0 && p_x <= 5 && g_x >= 0 && g_x <= 5 && p_y >= 0
&& p_y <= 5 && g_y >= 0 && g_y <= 5)) : "Always the positions of pac-
man and ghost are inside the limit of the labyrinth";

3. (� !(end_game && ((og_x < op_x && g_x > p_x) || (og_x > op_x &&
g_x < p_x) || (og_y < op_y && g_y > p_y) || (og_y > op_y &&
g_y < p_y)))) : "It is never possible that the game is over and the dis-
tance between the previous pacman and ghost positions is greater than the
distance between the new positions".

Then, the model-checker will explore all the statespace, meaning all the exe-
cutable paths will be checked against these properties. Because each executable
path in the PROMELA model is an abstraction of a DEv-PROMELA model, we
know that if a property is not true in the PROMELA model, it will not be true
in the DEv-PROMELA model. Concerning the first properties, the SPIN model
checker says that the model satisfies the property. That means the model has no

150

... A Video Game Software : PACMAN

structural deadlock and the game can be ended. The second property is always
verified, meaning the ghost and the pacman will always stay in the labyrinth.
The third property is also verified by the model according to SPIN, meaning the
pacman and the ghost cannot cross each other without the game being over. The
other properties are also verified by the model.

4.2.6 Verification using Simulation

The DEv-PROMELA model is then encoded into a DEVS atomic model, using the
morphism described in the Chapter 2. The state of the DEVS model is composed
of a tuple of the values of local and global variables of both processes, and the
line of the next executed instruction. The initial state is for example

s0 = (tp = 1,
tg = 1,
lp = 8,
lg = 8,

px, py, opx, opy,

gx, gy, ogx, ogy,

end_game = false)

Then, line 9 of each process describes an internal transition after 0.1 unit of
time. This indicates that both internal events will occur at the date t = 0.1. Thus,
we can deduce that

ta(s0) = 0.1

and because PACMAN has priority over GHOST, we can define δint, s1 and λ such
that

λ(s0) = ε, δint(s0) = s1

s1 = (tp = 1,
tg = 1,
lp = 9,
lg = 8,

px, py, opx, opy,

gx, gy, ogx, ogy,

end_game = false)
And ta(s1) = min(∞, 0.1 − 0.1) = 0. Indeed, the date of the next event in

the process PACMAN is ∞ (the next executable instruction depends only on an
external event), and the date of the next event in the process GHOST is given by

151

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

Table 4.3: Comparison between Results of Veri�cation using Model Checking and
Simulation.

Formal Verification Simulation
Property 1 At least one path At least one scenario
Property 2 Impossible Possible
Property 3 Impossible Possible
Property 4 Always positive Positive
Property 5 Always progress Not in all cases

Property 6 No unreachable state
Unreachable states

can exist
Property 7 Always positive Positive

substracting the elapsed time from the duration given in line 8. Thus,

λ(s1) = ε, δint(s1) = s2

and
s2 = (tp = 1,

tg = 1,
lp = 9,
lg = 9,

px, py, opx, opy,

gx, gy, ogx, ogy,

end_game = false)
And ta(s2) = min(∞,∞) = ∞. Because the next event depends only on an

external event, we have:

δext(s2, PAC_LEFT) = s3
δext(s2, PAC_RIGHT) = s4
δext(s2, GHS_LEFT) = s5

δext(s2, GHS_RIGHT) = s6

Following the same reasoning, we build the DEVS atomic model corresponding
to the DEv-PROMELA model and we simulate it.

External events are injected into the model during the simulation to allow pac-
man and ghost to be moved. The lifespans are also changed to see the difference
between different instances of the model. Multiple simulations are done and
outputs are then verified to check if the properties are verified. The results are
different, as shown in Table 4.3.

The first property is true because we found at least one scenario for which the

152

... A Video Game Software : PACMAN

game finishes. The second and third properties are not verified. Indeed, the DEv-
PROMELA model, in simulation mode, takes into account the time elapsed in the
loop to describe the moves of the entity, while in model-checking mode, moves
can only evolve along integer values. Intuitively, the model-checking model acts
as if the labyrinth were a grid and entites can only move from a case to an
adjacent case, as shown in Figure 4.6.

Figure 4.6: Representation of the PROMELA model for Pacman.

Yet, in simulation mode, moves can evolve along real values, using any dis-
tribution. The condition that limits the position in l.12 and 22 is not enough.
Nevertheless, the designer must not necessarily conclude that the model is incor-
rect: in the case when the implementation uses integers to represent positions,
the property is satisfied. The same reasoning can be done about property 3. Re-
placing this condition by a comparison between the previous positions and the
new positions ensures the correctness of the model in all cases. In this previous
example, we see that verification using simulation partially invalidates the re-
sults of model checking and gives another interpretation of the model checking
results. Finally, generating the source code from the DEv-PROMELA model in-
creases the confidence we can put into the game about the correctness of these

153

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

three properties.
Properties 4 and 7 are a time-independent property, thus simulation confirms

the model-checking results.
Concerning properties 5 and 6, the simulation gives another interpretation.

Indeed, model-checking confirms there is no deadlock induced by the structure,
but if the external events GHS_* and PAC_* are never received, the system is
blocked. In this case, the possible deadlock can come from the absence of event.
In this example, this assumption is trivial and easy to understand, but in an
extended model involving a lot of communication, this kind of problem can be
tedious to understand. The other advantage of DEv-PROMELA is the capability
to model communication between processes without necessarily using channels
and explicit synchronization. At each step, each transition can emit or consume
a message. Thus, channels can be reserved to model specific communication
protocols.

4.2.7 Coding

At this step, the simulation model can be used as based for the final code of the
software. In this case, software verification can be done through formal proofs.
The code is completed with other modelled elements (figure 4.7), while the DEv-
PROMELA model can be refined by adding some computing aspects. A more
generic simulation model can be also built by integrating the DEv-PROMELA
model into a multiformalism model. A model can be extracted from the code and
verified/validated using a Combined Approach, and compared with the results
given by the existing DEv-PROMELA model (if this model have not been used for
generating the source code).

4.2.8 Validation using Simulation

Now we have the source code, validation is performed by both executing the
software, tests, simulation and model-checking. When going up along the right
side of the "V", tests results are compared with both execution and simulation. If
one test failed, designers can deduce that something was wrong.

4.2.9 What about V&V of simulation model ?

Indeed, readers can see that we have use a conceptual model to perform V&V
during all the workflow. However, building the conceptual model using the
methodology ensures its correctness. Then, if the simulator used was already
verified and validated, and if there is a proof that it is possible to construct a cor-
rect simulation model from the DEv-PROMELA specification, then it is possible
to use both formal verification/validation and simulation-based verification/val-
idation on the conceptual model to prove properties on the real software.

154

... A Manufacture Chain : ST Microelectronics’ Case Study

Figure 4.7: Example of Pacman UML Diagram - Red classes are real software
classes, while white classes are simulator classes.

Note that in this example we have used a top-down approach, meaning the
code could be automatically generated from the DEv-PROMELA model. If the
DEv-PROMELA simulator is implemented in an object-oriented manner, getting
the final game from the simulation model is relatively easy. However, this is
possible only because we have chosen an event-driven paradigm. A bottom-
up approach, meaning building the model from the source code, is also possible.
The verification and validation are thus performed by making successive abstrac-
tions.

4.3 ... A Manufacture Chain : ST Microelectronics’ Case Study

4.3.1 The Problem

Manufacture problems were classical and already intensively studied in the lit-
terature [DY00; LMN12; TER14]. This problem consists on a set of thousand
processes which are executed on several batches of products. At each stage of
the production, a controller performs some operations which take an amount of
time.

When an operation is finished, a signal is sent to the controller which leads
the batch to the next operation. Operations are just encoded with Bash-like

155

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

Figure 4.8: The Manufacture Chain. Each square represent a step or a process/-
operation.

instructions, like shown in Figure 4.9. In order to show the potentiel of our pro-
posed methodology, we model a chain with only two operations and one sensor,
successively using PROMELA, Real-Time PROMELA [TC96] and DEv-PROMELA.
Then, we check if there is any unreachable state and that, in any cases, the at-
tribute batch_attr1615 is equal to 0 at end of the manufacturing process when
attribute 1001 is equal to 0. While the PROMELA and RT-PROMELA models
are checked using model-checking, the DEv-PROMELA model is verified using
model-checking and discrete-event simulation.

Figure 4.9: Example of the operation 1180.

The translation from the Bash instruction to PROMELA is very easy. Each
operation is encoded using a PROMELA process.

Batches’ attributes are modelled using integers variables batch_*. The sen-
sor is modelled using a process that randomly changes the values of attributes.

156

... A Manufacture Chain : ST Microelectronics’ Case Study

ALGORITHM 12: PROMELA model of the operation 1180.
1: active proctype op1180 () {
2: event!PRPMARKLAS;
3: event?code; // Log Event PRPMARKLAS
4: if
5: :: batch_attr1001 == 0→ goto STEP8511;
6: :: else→ skip;
7: fi;
8: event!PRMCHECWID;
9: event?code; // Log Event PRMCHECWID

10: STEP8511: if
11: :: batch_attr1615 ! = 0→ goto STEP9000;
12: :: else→ skip;
13: fi;
14: event!PRMD0LAS01D;
15: event?code; // Log Event PRMD0LAS01D
16: event!MSLD0LAS01D;
17: event?code; // Log Event MSLD0LAS01D
18: STEP9000: batch_attr1615 = 0;
19: ...
20: }

Communications between sensors and processes are modelled using channels.
With PROMELA, quantitative delays are totally abstracted, because they cannot
be modelled, while RT-PROMELA allows modelling of time using clock, as shown
in Algorithm 14.

The DEv-PROMELA model (Algorithm 13) is slightly different. Because DEv-
PROMELA is based on DEVS, the event mechanism is directly expressed by the
transitions, and each event are well-dated. Moreover, even the sensor can be
also modelled using DEv-PROMELA, we decided to use a classic DEVS model to
represent it. Then, the model-checking is only applied of the model of opera-
tions. Then, by coupling the DEv-PROMELA model and the DEVS model of the
sensor, we check by simulation the potential deadlocks, while the safety property
concerning the attribute 1615 is always checked using model-checking. Results
are presented in Table 4.4.

Two subsequent models are generated from the DEv-PROMELA models. The
formal verification model is generated using Classic PROMELA by removing the
event descriptors, and using the mapping previously defined. The obtained un-
timed model represents all the possible event permutations, but does not include
the time. This level of abstraction is enough to verify structural properties or un-
timed properties like the one that we want to verify: "Is the attribute 1615 equal
to 0 at the end of the manufacturing process ?".

The second model is a DEVS abstract model independant of the target simula-

157

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

ALGORITHM 13: DEv-PROMELA model of the operation 1180.
1: active proctype op1180 () {
2: [clt : 0.28→ emit : PRPMARKLAS]
3: skip; // Log Event PRPMARKLAS
4: if
5: :: [evt : laser] batch_attr1001 == 0→ goto STEP8511;
6: :: [evt : laser] else→ skip;
7: fi;
8: [clt : 0.27→ emit : PRMCHECWID];
9: skip; // Log Event PRMCHECWID

10: STEP8511: if
11: ...
12: }

ALGORITHM 14: RT-PROMELA model of the operation 1180.
1: int batch_attr1615;
2: int batch_attr1001;
3: chan event = [1] of byte;
4: byte code;
5:
6: active proctype op1180 () {
7: when {y ≤ 28 } reset { y } event!PRPMARKLAS;
8: event?code; // Log Event PRPMARKLAS
9: if

10: :: batch_attr1001 == 0→ goto STEP8511;
11: :: else→ skip;
12: fi;
13: event!PRMCHECWID;
14: ...
15: }

tor. This model has the same semantics than those of the DEv-PROMELA model.
This DEVS abstract model is then implemented in a DEVS simulation model (in
this case, in the MS4 Me Environment [Seo+13]) and simulated to check timed
properties.

4.3.2 Results

As expected, clocks in RT-PROMELA generate a huge statespace compared with
PROMELA and DEv-PROMELA. Indeed, both model generated by PROMELA and
DEv-PROMELA for formal verification are untimed models. In the three cases,
model-checking was able to detect that the event PRMCHECWID is never generated
by the model. But, the main difference in this case is about the deadlock found

158

Conclusion

Table 4.4: Results of chain checking.

States Transitions Time Memory Results
PROMELA 315 558 0.2 128653 4 unreachable

states, no deadlock
RT-PROMELA 945 1697 0.5 256686 4 unreachable

states, no deadlock
DEv-PROMELA 128 353 0.09 100302 2 unreachable

states, no deadlock
found by model
checking, deadlocks
found in simulation

by the checkers. In the case of PROMELA and RT-PROMELA, no deadlock were
detected in the model, while DEv-PROMELA allows us to detect some deadlocks.
In fact, the problem comes from the model of the sensor. The level of abstraction
of time used in PROMELA and RT-PROMELA does not allow modelling cases in
which the sensor does not send the laser event. But, the discrete-event simula-
tion shows that there exists some cases in which this event is never generated.
In these cases, the model stays locked, and the operation cannot progress. It
is important to note that if simulation could detect the deadlock, it was mainly
because scenarios were well-chosen. Indeed, simulation-based verification de-
pends on the played scenarios.

The other important aspect of DEv-PROMELA is that we can combine dif-
ferent discrete-event simulation formalisms for the simulation-based verifica-
tion. Indeed, as we said previously, even we could model the sensor using DEv-
PROMELA, it is possible to use Petri Nets or any others discrete-event simulation
formalisms to model the sensor and combine it with the DEv-PROMELA model
(thanks to the DEVS Bus concept). However, in this case, model-checking is like
a supportive method to the simulation-based verification.

4.4 Conclusion

We have applied DEv-PROMELA in various application, going from the simple
mutual exclusion algorithm to a manufacture controller system. In all the cases,
formal verification was completed with simulation to detect errors that an un-
timed model-checking could not detect alone. In all cases, the cost of com-
bined verification and validation seems cheaper than a timed model-checking.
However, all the examples show that the results strongly depend on the played
scenarios and test cases, and also on requirements. Our V&V approach is thus
designed as a complementary technique which must be used only in addition of
the existing traditionnal V&V procedures.

159

CHAPTER 4 - APPLICATIONS : MODELLING, VERIFICATION AND VALIDATION
OF ...

The case of the Pacman Video Game shows also in which condition the use
of DEv-PROMELA is more natural. If the software is naturally an event-driven
program, the use of discrete-event models is easier. In other cases, the DEv-
PROMELA focuses only on behavioural aspects which depend on time.

160

Conclusion

As a conclusion, the work presented in this thesis tries to introduce a new ap-
proach for the modelling, verification and validation of discrete-event systems,
by combining model-checking and discrete-event simulation. Even these ap-
proaches seem to be in opposite, we see that model-checking and simulation
have some common points and objective. For example, even if model-checking is
a verification method, it is used as a validation technique, while some simulation-
based verification techniques were developed. Then, the objective is to improve
the confidence put in the results of untimed model-checking by completing ver-
ification with simulation. In that way, we can reduce the explosion problem
due to the introduction of time in verification models and allows verifying some
properties on models which normally cannot be verified. For that, we propose
to restrict formal verification on structural and time-invariant properties and use
simulation to verify behavioural properties. From that point, we propose to build
a new specification language from a verification language by:

1. Introducing discrete-event concepts into the verification formalism;

2. Defining syntactical changes to allow modelling these concepts;

3. Defining a new semantics based on the simulation formalism;

4. Defining morphisms between

• the new formalism and the verification formalism. The morphism must
preserve structural properties;

• the new formalism and simulation formalism. The morphism must
preserve behavioural properties.

Using a simulation pre-order relation, we prove that structural properties ver-
ified on the verification model will be true on the combined model, and be-
havioural properties verified on the simulation model will be true on the com-
bined model. The great benefit is that no more remodelling is needed because
the combined model becomes verifiable and simulable (in the discrete-event sim-
ulation sense).

161

As a result of this approach, we build a new specifications language called DEv-
PROMELA which is the crossing of PROMELA and Classic DEVS. DEv-PROMELA
then appears as a natural way to model discrete-event systems in a syntactic fash-
ion. This point is important because it makes easier and safer transformations
from the conceptual model to the simulation model. Moreover, DEv-PROMELA
gathers all the advantage of DEVS, including the multicomponent and multifor-
malism capabilities in simulation mode. Furthermore, a subclass of DEVS can be
expressed in DEv-PROMELA, meaning that a subclass of DEVS simulation models
can be verified using our combined methodology.

To going further, we also proposed a modified Software V&V Cycle in which
a DEv-PROMELA model (or any other combined models) is developed at each
step of the Software Development Life Cycle, in addition of the traditional V&V
techniques. The DEv-PROMELA model is then used in order to perform comple-
mentary verification and validation at each step, and the simulation model can
be used as base of the implementation. We find there the advantages of the re-
finement approach of formal specifications. We also show that there is a strong
relation between the conceptual model, the simulation and the software. In-
deed, because the software model and the simulation model are both built from
the same conceptual model, validation of properties on the one will validate the
same property on the other.

We have also shown how this approach allows integration of existing tools in
the same environment for the combined V&V. As there exists a morphism be-
tween the combined model, the verification model and the simulation model, a
transducer can be developped to transform the combined specifications into a
model usable by a formal method, or into a model usable by an existing simula-
tor.

Finally, we applied our approach on many examples, from the classic mutual
exclusion algorithm, to a video game. This has allowed showing the limits of
this approach: the empirical aspect of simulation. Indeed, all the methodology
relies on the capacity of the designer to predict test cases and scenarios. If ex-
isting techniques can help, there is no guarantee that the all entire statespace is
verified. Even, it is possible on a simulation model (i.e. the finite computerized
model, but it would take too much time), this is not possible on the symbolic
infinite representation.

Future works then must concern how improving and reducing this dependancy
to test cases or how using test coverage to generate scenario for simulations.
We must also study the real complexity of the generated simulation models.
Indeed, we have not perform any performance analysis in this work, but it will

162

be interested to know if it is possible to reduce the simulation models. More
works are also needed to allow modelling of other DEVS subclasses (like Parallel
DEVS), and to study a combining approach using theorem proving and discrete-
event simulation. Indeed, we do not provide in this work material for integration
theorem proving and syntax check between each translations. Using approaches
like Z-integration into simulation model are maybe promising to achieve these
verifications. Model-Driven Engineering also seems to be a promising way for
achieving more integration between all these V&V techniques and procedures.

163

Bibliography

[AL94] Martin Abadi and Leslie Lamport. “An Old-fashioned Recipe for Real
Time”. In: ACM Trans. Program. Lang. Syst. 16.5 (Sept. 1994), pp. 1543–
1571 (cit. on p. 137).

[Abd+14] Abbas Abdulhameed, Ahmed Hammad, Hassan Mountassir, et al.
“An Approach Combining Simulation and Verification for SysML us-
ing SystemC and Uppaal”. In: CAL 2014, 8ème conférence franco-
phone sur les architectures logicielles. 2014 (cit. on p. 70).

[Abr+04] Alain Abran, JW Moore, P Bourque, et al. “Software Engineering
Body of Knowledge”. In: IEEE Computer Society, Angela Burgess (2004)
(cit. on p. 45).

[Ack71] Russell L Ackoff. “Towards a system of systems concepts”. In: Man-
agement science 17.11 (1971), pp. 661–671 (cit. on p. 21).

[ABC82] W. Richards Adrion, Martha A. Branstad, and John C. Cherniavsky.
“Validation, Verification, and Testing of Computer Software”. In:
ACM Comput. Surv. 14.2 (1982), pp. 159–192. ISSN: 0360-0300 (cit.
on p. 48).

[AQH15] W. Ahmad, U. Qamar, and S. Hassan. “Analyzing different validation
and verification techniques for safety critical software systems”. In:
Software Engineering and Service Science (ICSESS), 2015 6th IEEE
International Conference on. Sept. 2015, pp. 367–370 (cit. on p. 47).

[AMT16] Hamzat Olanrewaju Aliyu, Oumar Maïga, and Mamadou Kaba Traoré.
“The high level language for system specification: A model-driven
approach to systems engineering”. In: International Journal of Mod-
eling, Simulation, and Scientific Computing 07.01 (2016) (cit. on
p. 71).

[AT16a] H.O. Aliyu and M.K. Traore. “Toward an integrated framework for
the simulation, formal analysis and enactment of discrete events sys-
tems models”. In: 2016, pp. 3090–3091 (cit. on p. 71).

164

[AT16b] H.O. Aliyu and M.K. Traoré. “Integrated framework for model-driven
systems engineering: A research roadmap”. In: 2016 (cit. on p. 71).

[Alu03] Rajeev Alur. “Formal Analysis of Hierarchical State Machines”. In:
Verification: Theory and Practice: Essays Dedicated to Zohar Manna
on the Occasion of His 64th Birthday. Ed. by Nachum Dershowitz.
Springer Berlin Heidelberg, 2003, pp. 42–66 (cit. on p. 93).

[Alu+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, et al. “The
algorithmic analysis of hybrid systems”. In: Theoretical computer sci-
ence 138.1 (1995), pp. 3–34 (cit. on p. 64).

[Alu+93] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, et al. “Hy-
brid Systems”. In: ed. by Robert L. Grossman, Anil Nerode, Anders
P. Ravn, et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.
Chap. Hybrid automata: An algorithmic approach to the specifica-
tion and verification of hybrid systems, pp. 209–229 (cit. on p. 121).

[AD94] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In:
Theoretical Computer Science 126 (1994), pp. 183–235 (cit. on pp. 62,
63, 118).

[AY98] Rajeev Alur and Mihalis Yannakakis. “Model Checking of Hierarchi-
cal State Machines”. In: Proceedings of the 6th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. SIGSOFT
’98/FSE-6. Lake Buena Vista, Florida, USA: ACM, 1998, pp. 175–
188. ISBN: 1-58113-108-9 (cit. on p. 93).

[And86] Stephen J. Andriole. Software Validation, Verification, Testing and
Documentation: A Source Book. Princeton, NJ, USA: Petrocelli Books,
Inc., 1986. ISBN: 0894332694 (cit. on p. 25).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008 (cit. on pp. 55, 56, 59–62, 66).

[Bal07] Osman Balci. “Verification, Validation, and Testing”. In: Handbook
of Simulation. John Wiley & Sons, Inc., 2007, pp. 335–393 (cit. on
p. 52).

[Ban98] Jerry Banks. Handbook of simulation: principles, methodology, ad-
vances, applications, and practice. John Wiley & Sons, 1998 (cit. on
p. 31).

[BC86] Jerry Banks and John S. Carson II. “Introduction to Discrete-event
Simulation”. In: Proceedings of the 18th Conference on Winter Sim-
ulation. WSC ’86. Washington, D.C., USA: ACM, 1986, pp. 17–23.
ISBN: 0-911801-11-1 (cit. on p. 31).

[Ban+10] Jerry Banks, John S. Carson, Barry L. Nelson, et al. Discrete-event
system simulation. 5th ed. Prentice Hall, 2010. ISBN: 0-13-606212-1
(cit. on p. 36).

165

[Bic+97] Juan Bicarregui, Jeremy Dick, Brian Matthews, et al. “Making the
most of formal specification through animation, testing and proof”.
In: Science of Computer Programming 29.1 (1997), pp. 53–78 (cit.
on p. 35).

[Bie+12] Pierre Bieber, F Boniol, MARC Boyer, et al. “New Challenges for
Future Avionic Architectures.” In: AerospaceLab 4 (2012), p–1 (cit.
on p. 21).

[Boe81] Barry W. Boehm. Software Engineering Economics. 1st. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1981 (cit. on p. 44).

[Boe91] Barry W. Boehm. “Software risk management: principles and prac-
tices”. In: IEEE Software 8.1 (Jan. 1991), pp. 32–41 (cit. on p. 44).

[Bör05] Egon Börger. “Abstract State Machines: a unifying view of models of
computation and of system design frameworks”. In: Annals of Pure
and Applied Logic 133.1 (2005), pp. 149–171 (cit. on p. 65).

[BD98a] Dragan Bosnacki and Dennis Dams. “Discrete-time Promela and Spin”.
English. In: Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems. Ed. by AndersP. Ravn and Hans Rischel. Vol. 1486. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1998, pp. 307–
310. ISBN: 978-3-540-65003-4. DOI: 10 . 1007 / BFb0055359. URL:
http://dx.doi.org/10.1007/BFb0055359 (cit. on p. 120).

[BD98b] Dragan Bosnacki and Dennis Dams. “Integrating Real Time Into Spin:
A Prototype Implementation”. English. In: Formal Description Tech-
niques and Protocol Specification, Testing and Verification. Ed. by Stan
Budkowski, Ana Cavalli, and Elie Najm. Vol. 6. The International
Federation for Information Processing. Springer US, 1998, pp. 423–
438. ISBN: 978-1-4757-5262-5. DOI: 10.1007/978-0-387-35394-
4_26. URL: http://dx.doi.org/10.1007/978-0-387-35394-4_26
(cit. on pp. 120, 121).

[BH95] Jonathan P. Bowen and Michael G. Hinchey. Applications of Formal
Methods. Prentice Hall PTR, 1995 (cit. on p. 55).

[BJ14] Zeigler B.P. and Nutaro J. “Combining DEVS and Model-Checking:
Using System Morphisms for Integrating Simulation and Analysis in
Model Engineering”. In: Proceedings of the 26th European Modeling
and Simulation Symposium. 2014, pp. 350–356 (cit. on p. 72).

[Brz03] Janusz A. Brzozowski. “Sequential Machine”. In: Encyclopedia of Com-
puter Science. John Wiley and Sons Ltd., 2003, pp. 1564–1569 (cit.
on p. 79).

166

http://dx.doi.org/10.1007/BFb0055359
http://dx.doi.org/10.1007/BFb0055359
http://dx.doi.org/10.1007/978-0-387-35394-4_26
http://dx.doi.org/10.1007/978-0-387-35394-4_26
http://dx.doi.org/10.1007/978-0-387-35394-4_26

[Büc66] J. Richard Büchi. “Symposium on Decision Problems: On a Decision
Method in Restricted Second Order Arithmetic”. In: Logic, Method-
ology and Philosophy of ScienceProceeding of the 1960 International
Congress. Ed. by Patrick Suppes Ernest Nagel and Alfred Tarski. Vol. 44.
Elsevier, 1966, pp. 1–11 (cit. on p. 57).

[But10] Henning Butz. “Open integrated modular avionic (ima): State of
the art and future development road map at airbus deutschland”.
In: Signal 10 (2010), p. 1000 (cit. on p. 21).

[Car04] John S. Carson II. “Introduction to Modeling and Simulation”. In:
Proceedings of the 36th Conference on Winter Simulation. WSC ’04.
Washington, D.C.: Winter Simulation Conference, 2004, pp. 9–16.
ISBN: 0-7803-8786-4 (cit. on p. 34).

[CKT03] Samarjit Chakraborty, Simon Kunzli, and Lothar Thiele. “A General
Framework for Analysing System Properties in Platform-Based Em-
bedded System Designs”. In: Proceedings of the Conference on Design,
Automation and Test in Europe - Volume 1. DATE ’03. IEEE Computer
Society, 2003 (cit. on p. 71).

[Cim+00] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, et al. “NUSMV:
a new symbolic model checker”. In: International Journal on Soft-
ware Tools for Technology Transfer 2.4 (2000), pp. 410–425 (cit. on
p. 68).

[Cla08] Edmund M. Clarke. “The Birth of Model Checking”. In: 25 Years of
Model Checking: History, Achievements, Perspectives. Springer Berlin
Heidelberg, 2008, pp. 1–26 (cit. on pp. 55, 59, 62).

[CE82] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic”.
In: Logic of Programs, Workshop. Springer-Verlag, 1982, pp. 52–71
(cit. on pp. 56, 59).

[Col88] James S. Collofello. Introduction to Software Verification and Valida-
tion. SEI Curriculum Module SEI-CM-13-1.1. University of Arizona,
1988 (cit. on p. 47).

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints”. In: Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages. POPL
’77. Los Angeles, California: ACM, 1977, pp. 238–252 (cit. on p. 28).

[CC10] Patrick Cousot and Radhia Cousot. “A gentle introduction to formal
verification of computer systems by abstract interpretation.” In: Log-
ics and Languages for Reliability and Security. IOS Press, 2010, pp. 1–
29 (cit. on p. 55).

167

[Cri07] Maximiliano Cristia. “A TLA+ encoding of DEVS models”. In: Pro-
ceedings of International Modeling and Simulation Multiconference
(Buenos Aires, Argentina. 2007, pp. 17–22 (cit. on p. 72).

[Dab+02] Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, et al. “Event-
driven Programming for Robust Software”. In: Proceedings of the
10th Workshop on ACM SIGOPS European Workshop. EW 10. Saint-
Emilion, France: ACM, 2002, pp. 186–189 (cit. on p. 128).

[DG05] H. Dacharry and N. Giambiasi. “Formal Verification with Timed Au-
tomata and DEVS Models: a case study”. In: Proceedings of Argen-
tine Symposium on Software Engineering. 2005, pp. 251–265 (cit. on
p. 72).

[DG07] Hernán P. Dacharry and Norbert Giambiasi. “A Formal Verification
Approach for DEVS”. In: Proceedings of the 2007 Summer Computer
Simulation Conference. SCSC ’07. San Diego, California: Society for
Computer Simulation International, 2007, pp. 312–319. ISBN: 1-
56555-316-0 (cit. on p. 72).

[DA12] Sandeep Desai and Srivastava Abhishek. Software Testing: A Practi-
cal Approach. India: Phi Learning Private Limited, 2012. ISBN: 8120345347,
9788120345348 (cit. on pp. 46, 48, 49, 51).

[DK12] Omprakash Deshmukh and Mandakini Kaushik. “An Overview of
Software Verification &Validation and Selection Proces”. In: Interna-
tional Journal of Computer Trends and Technology (IJCTT) 4.2 (2012),
pp. 177–182 (cit. on p. 47).

[DY00] Richard B Detty and Jon C Yingling. “Quantifying benefits of con-
version to lean manufacturing with discrete event simulation: a case
study”. In: International Journal of Production Research 38.2 (2000),
pp. 429–445 (cit. on p. 155).

[Dil98] D. L. Dill. “What’s between simulation and formal verification?”
In: Design Automation Conference, 1998. Proceedings. June 1998,
pp. 328–329 (cit. on p. 21).

[FKL04] Harry D Foster, Adam C Krolnik, and David J Lacey. Assertion-based
design. Springer Science & Business Media, 2004 (cit. on p. 72).

[Fra+10] Marc Frappier, Benoît Fraikin, Romain Chossart, et al. “Comparison
of Model Checking Tools for Information Systems”. In: Formal Meth-
ods and Software Engineering: 12th International Conference on For-
mal Engineering Methods, ICFEM 2010, Shanghai, China, November
17-19, 2010. Proceedings. Ed. by Jin Song Dong and Huibiao Zhu.
Springer Berlin Heidelberg, 2010, pp. 581–596 (cit. on p. 62).

168

[GP14] María-del-Mar Gallardo and Laura Panizo. “Extending model check-
ers for hybrid system verification: the case study of SPIN”. In: Soft-
ware Testing, Verification and Reliability 24.6 (2014), pp. 438–471.
ISSN: 1099-1689. DOI: 10.1002/stvr.1505. URL: http://dx.doi.
org/10.1002/stvr.1505 (cit. on p. 121).

[GSB13] Stephane Garredu, Jean François Santucci, and Paul-Antoine Bis-
gambiglia. “From State-Transition Models to DEVS Models - Im-
proving DEVS external interoperability using MetaDEVS: a MDE ap-
proach”. In: Simultech 2013. Reykjavik, Iceland, 2013, pp. 186–196.
URL: https://hal.archives-ouvertes.fr/hal-01293513 (cit. on
p. 82).

[Gau11] Marie-Claude Gaudel. “Checking Models, Proving Programs, and
Testing Systems”. In: Tests and Proofs: 5th International Conference,
TAP 2011, Zurich, Switzerland, June 30 – July 1, 2011. Proceedings.
Ed. by Martin Gogolla and Burkhart Wolff. Springer Berlin Heidel-
berg, 2011, pp. 1–13 (cit. on pp. 26–28, 50, 52, 67).

[Gia09] Norbert Giambiasi. “From Sequential Machines to DEVS Formal-
ism”. In: Proceedings of the 2009 Summer Computer Simulation Con-
ference. SCSC ’09. Istanbul, Turkey: Society for Modeling; Simula-
tion International, 2009, pp. 216–222 (cit. on pp. 40, 79, 113, 114).

[GC06] Norbert Giambiasi and Jean-Claude Carmona. “Generalized discrete
event abstraction of continuous systems: {GDEVS} formalism”. In:
Simulation Modelling Practice and Theory 14.1 (2006), pp. 47–70.
ISSN: 1569-190X (cit. on p. 40).

[GP06] Antoine Girard and George J. Pappas. “Verification Using Simula-
tion”. In: Hybrid Systems: Computation and Control: 9th Interna-
tional Workshop, HSCC 2006, Santa Barbara, CA, USA, March 29-
31, 2006. Proceedings. Ed. by Joao P. Hespanha and Ashish Tiwari.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 272–286
(cit. on p. 72).

[God13] Patrice Godefroid. Combining Model Checking and Testing. 2013. URL:
http://research.microsoft.com/apps/pubs/default.aspx?id=
200544 (cit. on p. 70).

[Gol08] Eugene Goldberg. “On Bridging Simulation and Formal Verification”.
In: Verification, Model Checking, and Abstract Interpretation: 9th In-
ternational Conference, VMCAI 2008, San Francisco, USA, January
7-9, 2008. Proceedings. Ed. by Francesco Logozzo, Doron A. Peled,
and Lenore D. Zuck. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 127–141 (cit. on p. 70).

169

http://dx.doi.org/10.1002/stvr.1505
http://dx.doi.org/10.1002/stvr.1505
http://dx.doi.org/10.1002/stvr.1505
https://hal.archives-ouvertes.fr/hal-01293513
http://research.microsoft.com/apps/pubs/default.aspx?id=200544
http://research.microsoft.com/apps/pubs/default.aspx?id=200544

[Gor15] Ross Gore. SpringSim 2015 - Conceptual Modeling with Alloy. 2015.
URL: https://github.com/rossgore/alloy- tutorial (cit. on
p. 143).

[Gre96] J. Mark Green. “Peer Reviewed: A Practical Guide to Analytical Method
Validation”. In: Analytical Chemistry 68.9 (1996), 305A–309A (cit.
on p. 45).

[Gru06] Orna Grumberg. “Abstraction and Refinement in Model Checking”.
In: Proceedings of the 4th International Conference on Formal Meth-
ods for Components and Objects. FMCO’05. Amsterdam, The Nether-
lands: Springer-Verlag, 2006, pp. 219–242 (cit. on pp. 66, 75, 78,
79).

[GS05] Anubhav Gupta and Ofer Strichman. “Abstraction Refinement for
Bounded Model Checking”. In: Computer Aided Verification: 17th In-
ternational Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-
10, 2005. Proceedings. Ed. by Kousha Etessami and Sriram K. Raja-
mani. Springer Berlin Heidelberg, 2005, pp. 112–124 (cit. on p. 66).

[Har87] David Harel. “Statecharts: A Visual Formalism for Complex Systems”.
In: Sci. Comput. Program. 8.3 (June 1987), pp. 231–274. ISSN: 0167-
6423 (cit. on p. 93).

[He01] Xudong He. “{PZ} nets — a formal method integrating Petri nets
with Z”. In: Information and Software Technology 43.1 (2001), pp. 1–
18 (cit. on p. 69).

[Hei+05] C. Heitmeyer, M. Archer, R. Bharadwaj, et al. “Tools for constructing
requirements specifications: The SCR toolset at the age of ten”. In:
International Journal of Computer Systems Science and Engineering
(2005) (cit. on p. 68).

[Hei98] Constance Heitmeyer. “On the need for practical formal methods”.
In: Proceedings of 5th International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems. Springer Berlin Heidelberg,
1998, pp. 18–26 (cit. on p. 55).

[Hen90] Matthew Hennessy. The Semantics of Programming Languages: An El-
ementary Introduction Using Structural Operational Semantics. New
York, NY, USA: John Wiley & Sons, Inc., 1990 (cit. on p. 77).

[Hen96] T. A. Henzinger. “The theory of hybrid automata”. In: Logic in Com-
puter Science, 1996. LICS ’96. Proceedings., Eleventh Annual IEEE
Symposium on. July 1996, pp. 278–292 (cit. on pp. 64, 121).

[HG05] A. Hernandez and N. Giambiasi. “State Reachability for DEVS mod-
els”. In: Proceedings of Argentine Symposium on Software Engineer-
ing. 2005, pp. 267–277 (cit. on pp. 56, 72).

170

https://github.com/rossgore/alloy-tutorial

[Hin+06] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, et al. “Tools
and Algorithms for the Construction and Analysis of Systems: 12th
International Conference, TACAS 2006, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2006, Vienna, Austria, March 25 - April 2, 2006. Proceedings”. In:
ed. by Holger Hermanns and Jens Palsberg. Springer Berlin Hei-
delberg, 2006. Chap. PRISM: A Tool for Automatic Verification of
Probabilistic Systems, pp. 441–444 (cit. on p. 65).

[Hol03] Gerard Holzmann. The SPIN Model Checker : Primer and Reference
Manual. Addison-Wesley Professional, 2003 (cit. on pp. 59, 66, 82,
84).

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, Inc., 1991 (cit. on p. 82).

[Hol97] Gerard J Holzmann. “The model checker SPIN”. In: IEEE Trans-
actions on software engineering 23.5 (1997), pp. 279–295 (cit. on
p. 82).

[HNS00] Gerard Holzmann, Eli Najm, and Ahmed Serhrouchni. “SPIN model
checking: an introduction”. In: International Journal on Software
Tools for Technology Transfer 2.4 (2000), pp. 321–327 (cit. on p. 82).

[HL98] Y.-W. Hsieh and S. P. Levitan. “Model Abstraction for Formal Ver-
ification”. In: Proceedings of the Conference on Design, Automation
and Test in Europe. DATE ’98. Le Palais des Congrés de Paris,
France: IEEE Computer Society, 1998, pp. 140–147. ISBN: 0-8186-
8359-7 (cit. on p. 66).

[HR05] M. Huth and M. Ryan. Logic in computer science: modelling and rea-
soning about systems. Cambridge University Press, 2005 (cit. on pp. 55,
59).

[HZ09] M. H. Hwang and B. P. Zeigler. “Reachability Graph of Finite and
Deterministic DEVS Networks”. In: IEEE Transactions on Automation
Science and Engineering 6.3 (2009), pp. 468–478 (cit. on p. 72).

[Hwa11] Moon Ho Hwang. “Taxonomy of DEVS Subclasses for Standardiza-
tion”. In: Proceedings of the 2011 Symposium on Theory of Modeling
& Simulation: DEVS Integrative M&S Symposium. TMS-DEVS ’11.
Boston, Massachusetts: Society for Computer Simulation Interna-
tional, 2011, pp. 152–159 (cit. on p. 40).

[Hwa14] Moon Ho Hwang. “Taxonomy of DEVS Variants”. In: Proceedings of
the Symposium on Theory of Modeling & Simulation - DEVS Integra-
tive. DEVS ’14. Tampa, Florida: Society for Computer Simulation
International, 2014, 22:1–22:6 (cit. on p. 40).

171

[HZ06] Moon Ho Hwang and Bernard P Zeigler. “A reachable graph of finite
and deterministic DEVS networks”. In: SIMULATION SERIES 38.1
(2006), p. 48 (cit. on p. 72).

[IEE90] IEEE. “IEEE Standard Glossary of Software Engineering Terminol-
ogy”. In: IEEE Std 610.12-1990 (Dec. 1990), pp. 1–84 (cit. on p. 45).

[IEE12] IEEE. “IEEE Standard for System and Software Verification and Val-
idation”. In: IEEE Std 1012-2012 (Revision of IEEE Std 1012-2004)
(May 2012), pp. 1–223 (cit. on p. 45).

[Ino+16] A Inostrosa-Psijas, Veronica Gil-Costa, Gabriel A. Wainer, et al. “For-
mal Verification of DEVS Simulation: Web Search Engine Model
Case Study”. In: Proceedings of 2016 Summer Computer Simulation
Conference (SCSC). SummerSim ’16. Society for Computer Simula-
tion International, July 2016 (cit. on p. 72).

[Ins04] Project Management Institute. A Guide To The Project Management
Body Of Knowledge (PMBOK Guides). Project Management Institute,
2004 (cit. on pp. 43, 44).

[Iti07] Jean-Bernard Itier. “A380 integrated modular avionics”. In: Proceed-
ings of the ARTIST2 meeting on integrated modular avionics. Vol. 1.
2. 2007, pp. 72–75 (cit. on p. 21).

[Kat10] Joost-Pieter Katoen. “Advances in probabilistic model checking”. In:
International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer. 2010, pp. 25–25 (cit. on p. 65).

[KRW06] Ekkart Kindler, Vladimir Rubin, and Robert Wagner. “Component
Tools: Integrating Petri Nets with Other Formal Methods”. In: Petri
Nets and Other Models of Concurrency - ICATPN 2006: 27th Interna-
tional Conference on Applications and Theory of Petri Nets and Other
Models of Concurrency, Turku, Finland, June 26-30, 2006. Proceed-
ings. Ed. by Susanna Donatelli and P. S. Thiagarajan. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, pp. 37–56 (cit. on p. 68).

[Kle95] Jack P.C. Kleijnen. “Verification and validation of simulation mod-
els”. In: European Journal of Operational Research 82.1 (1995), pp. 145–
162 (cit. on p. 50).

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The
Model Driven Architecture: Practice and Promise. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003 (cit. on p. 80).

[Kli85] George Klir. Architecture of systems problem solving. Springer Science
& Business Media, 1985 (cit. on p. 31).

[Kri63] Saul A. Kripke. “Semantical Analysis of Modal Logic I Normal Modal
Propositional Calculi”. In: Mathematical Logic Quarterly 9.5-6 (1963),
pp. 67–96 (cit. on p. 61).

172

[KCS03] D Richard Kuhn, Dan Craigen, and Mark Saaltink. “Practical appli-
cation of formal methods in modeling and simulation”. In: Summer
Computer Simulation Conference. 2003, pp. 726–731 (cit. on p. 54).

[KCB02] Richard D Kuhn, Ramaswamy Chandramouli, and Ricky W Butler.
“Cost effective use of formal methods in verification and validation”.
In: Foundations’02 Workshop on Verification and Validation (2002)
(cit. on p. 21).

[KW16] Matthias Kunze and Mathias Weske. Behavioural Models: From Mod-
elling Finite Automata to Analysing Business Processes. Springer In-
ternational Publishing, 2016 (cit. on p. 79).

[Kun+06] S. Kunzli, F. Poletti, L. Benini, et al. “Combining Simulation and
Formal Methods for System-Level Performance Analysis”. In: Pro-
ceedings of the Design Automation Test in Europe Conference. Vol. 1.
2006, pp. 1–6 (cit. on p. 71).

[KNP07] Marta Kwiatkowska, Gethin Norman, and David Parker. “Stochastic
model checking”. In: International School on Formal Methods for the
Design of Computer, Communication and Software Systems. Springer.
2007, pp. 220–270 (cit. on p. 65).

[KP12] Marta Kwiatkowska and David Parker. “Advances in Probabilistic
Model Checking”. In: Proc. 2011 Marktoberdorf Summer School: Tools
for Analysis and Verification of Software Safety and Security. Ed. by O.
Grumberg, T. Nipkow, and J. Esparza. IOS Press, 2012. URL: https:
//hal.inria.fr/hal-00664777 (cit. on p. 65).

[Lam77] Leslie Lamport. “Proving the correctness of multiprocess programs”.
In: IEEE transactions on software engineering 2 (1977), pp. 125–143
(cit. on p. 61).

[Lam00] Axel van Lamsweerde. “Formal Specification: A Roadmap”. In: Pro-
ceedings of the Conference on The Future of Software Engineering.
ICSE ’00. Limerick, Ireland: ACM, 2000, pp. 147–159. ISBN: 1-58113-
253-0 (cit. on p. 28).

[LWK10] Philip Langer, Manuel Wimmer, and Gerti Kappel. “Model-to-Model
Transformations By Demonstration”. In: Theory and Practice of Model
Transformations: Third International Conference, ICMT 2010, Malaga,
Spain, June 28-July 2, 2010. Proceedings. Ed. by Laurence Tratt and
Martin Gogolla. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 153–167 (cit. on p. 80).

173

https://hal.inria.fr/hal-00664777
https://hal.inria.fr/hal-00664777

[LDB10] Axel Legay, Benoît Delahaye, and Saddek Bensalem. “Runtime Veri-
fication: First International Conference, RV 2010, St. Julians, Malta,
November 1-4, 2010. Proceedings”. In: ed. by Howard Barringer,
Ylies Falcone, Bernd Finkbeiner, et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010. Chap. Statistical Model Checking: An Overview,
pp. 122–135 (cit. on p. 65).

[LST05] Lun Li, Stephen A Szygenda, and Mitchell A Thornton. “Combin-
ing simulation and formal verification for integrated circuit design
validation”. In: Proceedings of the 9th World Multi-Conference on Sys-
temics, Cybernetics and Informatics (WMSCI). 2005, pp. 92–97 (cit.
on p. 70).

[Liu+11] Junjie Liu, Yongli Yu, Liu Zhang, et al. “An Overview of Conceptual
Model for Simulation and Its Validation”. In: Procedia Engineering
24 (2011), pp. 152–158 (cit. on p. 34).

[Lon93] David E Long. “Model checking, abstraction, and compositional ver-
ification”. PhD thesis. Citeseer, 1993 (cit. on p. 66).

[LMN12] Francesco Longo, Marina Massei, and Letizia Nicoletti. “An Applica-
tion OF Modeling And Simulation to Support Industrial Plants De-
sign”. In: International Journal of Modeling, Simulation, and Scien-
tific Computing 03.01 (2012), p. 1240001 (cit. on p. 155).

[MBK12] Oumar Maiga, Ufuoma Bright Ighoroje, and Mamadou Kaba Traoré.
“INTEGRATION DES METHODES FORMELLES DANS LA SPECIFI-
CATION, LA VERIFICATION ET LA VALIDATION DE MODELES DE
SIMULATION A EVENEMENTS DISCRETS”. In: 9th International Con-
ference on Modeling, Optimization & SIMulation. Bordeaux, France,
June 2012 (cit. on p. 72).

[Mar97] Anu Maria. “Introduction to Modeling and Simulation”. In: Proceed-
ings of the 29th Conference on Winter Simulation. WSC ’97. Atlanta,
Georgia, USA: IEEE Computer Society, 1997, pp. 7–13 (cit. on p. 31).

[McM00] Ken McMillan. The SMV System. 2000. URL: www.kenmcmil.com/
tutorial.ps (cit. on p. 68).

[MC01] William E McUmber and Betty HC Cheng. “A general framework for
formalizing UML with formal languages”. In: Proceedings of the 23rd
international conference on Software engineering. IEEE Computer So-
ciety. 2001, pp. 433–442 (cit. on p. 81).

[MS10] Dominique Méry and Neeraj Kumar Singh. “Real-Time Animation
for Formal Specification”. In: Complex Systems Design & Manage-
ment: Proceedings of the First International Conference on Complex
System Design & Management CSDM 2010. Ed. by Marc Aiguier,

174

www.kenmcmil.com/tutorial.ps
www.kenmcmil.com/tutorial.ps

Francis Bretaudeau, and Daniel Krob. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 49–60 (cit. on p. 35).

[MLS97] Erich Mikk, Yassine Lakhnechi, and Michael Siegel. “Hierarchical au-
tomata as model for statecharts”. In: Advances in Computing Science
— ASIAN’97: Third Asian Computing Science Conference Kathmandu,
Nepal, December 9–11, 1997 Proceedings. Ed. by R. K. Shyamasundar
and K. Ueda. Springer Berlin Heidelberg, 1997, pp. 181–196 (cit. on
p. 93).

[Min65] Marvin Minsky. “Matter, mind and models”. In: (1965) (cit. on p. 27).

[NJJ08] Wojciech Nabialek, Agata Janowska, and Paweł Janowski. “Trans-
lation of Timed Promela to Timed Automata with Discrete Data”.
In: Fundam. Inf. 85.1-4 (Jan. 2008), pp. 409–424. ISSN: 0169-2968.
URL: http://dl.acm.org/citation.cfm?id=1516165.1516193
(cit. on pp. 121, 139).

[Nan81] Richard E. Nance. “The Time and State Relationships in Simulation
Modeling”. In: Commun. ACM 24.4 (Apr. 1981), pp. 173–179. ISSN:
0001-0782 (cit. on pp. 34, 36).

[NH97] V Natarajan and Gerard J Holzmann. “Outline for an operational
semantics of promela”. In: The SPIN Verification Systems. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science. AMS
32 (1997), pp. 133–152 (cit. on p. 84).

[NM13] Nicolas Navet and Stephan Merz. Modeling and verification of real-
time systems. John Wiley & Sons, 2013 (cit. on p. 63).

[Owe07] David R. Owen. “Combining Complementary Formal Verification Strate-
gies to Improve Performance and Accuracy”. AAI3298734. PhD the-
sis. Morgantown, WV, USA, 2007. ISBN: 978-0-549-44379-7 (cit. on
pp. 68, 69).

[PT96] F. De Paoli and F. Tisato. “On the complementary nature of event-
driven and time-driven models”. In: Control Engineering Practice 4.6
(1996), pp. 847–854 (cit. on p. 128).

[Par81] David Park. “Concurrency and automata on infinite sequences”. In:
Theoretical Computer Science: 5th GI-Conference Karlsruhe, March
23–25, 1981. Ed. by Peter Deussen. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1981, pp. 167–183 (cit. on p. 78).

[Pau+93] Mark C Paulk, Bill Curtis, Mary Beth Chrissis, et al. “Capability ma-
turity model, version 1.1”. In: IEEE software 10.4 (1993), pp. 18–27
(cit. on p. 45).

[Pet09] Mikel D Petty. “Verification and validation”. In: Principles of modeling
and simulation: A multidisciplinary approach (2009), pp. 121–149
(cit. on pp. 27, 28, 33).

175

http://dl.acm.org/citation.cfm?id=1516165.1516193

[Pet10] Mikel D. Petty. “Verification, Validation, and Accreditation”. In: John
Wiley & Sons, Inc., 2010, pp. 325–372 (cit. on pp. 27, 34, 35, 53,
54).

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics.
Technical report. Aarbus University, 1981 (cit. on p. 77).

[Plo04] Gordon D. Plotkin. “A structural approach to operational seman-
tics”. In: The Journal of Logic and Algebraic Programming 60 (2004),
pp. 17–139 (cit. on p. 77).

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: Proceedings of
the 18th Annual Symposium on Foundations of Computer Science.
SFCS ’77. Washington, DC, USA: IEEE Computer Society, 1977, pp. 46–
57 (cit. on pp. 59, 61).

[Poc+11] Marcel Pockrandt, Paula Herber, Holger Gross, et al. “Optimized
Transformation and Verification of SystemC Methods”. In: Pre-Proceedings
of the 12th International Workshop on Automated Verification of Crit-
ical Systems (AVoCS 2012). Vol. 2. 2011, pp. 15–61 (cit. on p. 70).

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and Verifica-
tion of Concurrent Systems in CESAR”. In: Proceedings of the 5th
Colloquium on International Symposium on Programming. Springer-
Verlag, 1982, pp. 337–351 (cit. on p. 56).

[Rei12] Wolfgang Reisig. “The expressive power of abstract-state machines”.
In: Computing and Informatics 22.3-4 (2012), pp. 209–219 (cit. on
p. 65).

[Rot89] J. Rothenberg. “Artificial Intelligence, Simulation &Amp; Modeling”.
In: ed. by Lawrence E. Widman, Kenneth A. Loparo, and Norman
R. Nielsen. New York, NY, USA: John Wiley & Sons, Inc., 1989.
Chap. The Nature of Modeling, pp. 75–92. ISBN: 0-471-60599-9 (cit.
on pp. 28, 30).

[RG99] Johannes Ryser and Martin Glinz. “A practical approach to validat-
ing and testing software systems using scenarios”. In: QWE’99, 3 rd
International Software Quality Week Europe. 1999 (cit. on p. 48).

[SW10] Hesham Saadawi and Gabriel Wainer. “Rational Time-advance DEVS
(RTA-DEVS)”. In: Proceedings of the 2010 Spring Simulation Mul-
ticonference. SpringSim ’10. Orlando, Florida: Society for Computer
Simulation International, 2010, 143:1–143:8. ISBN: 978-1-4503-0069-
8 (cit. on p. 40).

176

[Sar91] Robert G. Sargent. “Simulation Model Verification and Validation”.
In: Proceedings of the 23rd Conference on Winter Simulation. WSC
’91. Phoenix, Arizona, USA: IEEE Computer Society, 1991, pp. 37–
47. ISBN: 0-7803-0181-1. URL: http://dl.acm.org/citation.cfm?
id=304238.304253 (cit. on pp. 34, 51–53).

[Sar01] Robert G. Sargent. “Some approaches and paradigms for verifying
and validating simulation models”. In: Simulation Conference, 2001.
Proceedings of the Winter. Vol. 1. 2001, pp. 106–114 (cit. on p. 54).

[Sav16] Vitaly Savicks. “Integrating Formal Verification and Simulation of
Hybrid Systems”. PhD thesis. University of Southampton, 2016 (cit.
on p. 72).

[Sco77] Dana S. Scott. “Logic and Programming Languages”. In: Commun.
ACM 20.9 (Sept. 1977), pp. 634–641 (cit. on p. 77).

[SV13a] Stefano Sebastio and Andrea Vandin. “MultiVeStA: Statistical Model
Checking for Discrete Event Simulators”. In: Proceedings of the 7th
International Conference on Performance Evaluation Methodologies
and Tools. ValueTools ’13. Torino, Italy: ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering),
2013, pp. 310–315. ISBN: 978-1-936968-48-0 (cit. on p. 65).

[SK03] Shane Sendall and Wojtek Kozaczynski. “Model Transformation: The
Heart and Soul of Model-Driven Software Development”. In: IEEE
Softw. 20.5 (2003), pp. 42–45. ISSN: 0740-7459 (cit. on pp. 68, 80).

[Seo+13] Chungman Seo, Bernard P. Zeigler, Robert Coop, et al. “DEVS Mod-
eling and Simulation Methodology with MS4 Me Software Tool”.
In: Proceedings of the Symposium on Theory of Modeling & Simula-
tion - DEVS Integrative M&S Symposium. San Diego, California: So-
ciety for Computer Simulation International, 2013, 33:1–33:8 (cit.
on p. 158).

[Sha16] Unnati S. Shah. “An Excursion to Software Development Life Cycle
Models: An Old to Ever-growing Models”. In: SIGSOFT Softw. Eng.
Notes 41.1 (Feb. 2016), pp. 1–6 (cit. on pp. 21, 25).

[SB11] John A Sokolowski and Catherine M Banks. Principles of modeling
and simulation: a multidisciplinary approach. John Wiley & Sons,
2011 (cit. on p. 30).

[SCR06] Hosung Song, Kevin J. Compton, and William C. Rounds. “SPHIN: A
model checker for reconfigurable hybrid systems based on {SPIN}”.
In: Electronic Notes in Theoretical Computer Science 145 (2006). Pro-
ceedings of the 5th International Workshop on Automated Verifi-
cation of Critical Systems (AVoCS 2005)Automated Verification of
Critical Systems 2005, pp. 167–183 (cit. on p. 121).

177

http://dl.acm.org/citation.cfm?id=304238.304253
http://dl.acm.org/citation.cfm?id=304238.304253

[SBS01] Robert F. Stark, E. Borger, and Joachim Schmid. Java and the Java
Virtual Machine: Definition, Verification, Validation with Cdrom. Se-
caucus, NJ, USA: Springer-Verlag New York, Inc., 2001. ISBN: 3540420886
(cit. on p. 65).

[SAK06] Elisabeth A Strunk, M Anthony Aiello, and John C Knight. “A sur-
vey of tools for model checking and model-based development”. In:
University of Virginia (2006) (cit. on pp. 59, 62).

[Stu+01] Douglas A. Stuart, Monica Brockmeyer, Aloyius K. Mok, et al. “Simulation-
Verification: Biting at the State Explosion Problem”. In: IEEE Trans.
Softw. Eng. 27.7 (July 2001), pp. 599–617 (cit. on p. 70).

[SK97] Michael E Swartz and Ira S Krull. Analytical method development and
validation. CRC Press, 1997 (cit. on p. 44).

[SV08] Eugene Syriani and Hans Vangheluwe. “Programmed Graph Rewrit-
ing with Time for Simulation-Based Design”. In: Proceedings of the
1st International Conference on Theory and Practice of Model Trans-
formations. Springer Berlin Heidelberg, 2008, pp. 91–106 (cit. on
p. 143).

[SV13b] Eugene Syriani and Hans Vangheluwe. “A modular timed graph
transformation language for simulation-based design”. In: Software
& Systems Modeling 12.2 (2013), pp. 387–414 (cit. on p. 143).

[TER14] R. Tajini, S.L. Elhaq, and A. Rachid. “Modelling methodology for the
simulation of the manufacturing systems”. In: International Journal
of Simulation and Process Modelling 9.4 (2014), pp. 285–305. DOI:
10.1504/IJSPM.2014.066372 (cit. on p. 155).

[Ten76] R. D. Tennent. “The Denotational Semantics of Programming Lan-
guages”. In: Commun. ACM 19.8 (Aug. 1976), pp. 437–453 (cit. on
p. 77).

[Tra99] Eushiuan Tran. Verification/Validation/Certification. Carnegie Mel-
lon University, 1999 (cit. on pp. 43, 46, 48, 50, 54).

[TC96] Stavros Tripakis and Costas Courcoubetis. “Extending Promela and
Spin for Real Time”. In: Proceedings of the Second International Work-
shop on Tools and Algorithms for Construction and Analysis of Sys-
tems. TACAs ’96. Springer-Verlag, 1996, pp. 329–348 (cit. on pp. 118,
156).

[TFH09] Mohamed Wassim Trojet, Claudia Frydman, and Maâmar El-Amine
Hamri. “Practical application of lightweight Z in DEVS framework”.
In: Proceedings of the 2009 Spring Simulation Multiconference. So-
ciety for Computer Simulation International. 2009, p. 154 (cit. on
p. 72).

178

http://dx.doi.org/10.1504/IJSPM.2014.066372

[Tro10] M.W. Trojet. “Approche de vérification formelle des modèles DEVS à
base du langage Z”. PhD thesis. 2010. URL: http://books.google.
fr/books?id=M9AbtwAACAAJ (cit. on p. 72).

[Wai09] Gabriel A. Wainer. Discrete Event Simulation and Modeling: Theory
and Applications - Model-Based Design. 1st. Boca Raton, FL, USA:
CRC Press, Inc., 2009. ISBN: 1420072331, 9781420072334 (cit. on
p. 40).

[WF89] Dolores R. Wallace and Roger U. Fujii. “Software Verification and
Validation: An Overview”. In: IEEE Softw. 6.3 (1989), pp. 10–17 (cit.
on pp. 47, 48).

[Wan06] Bow-Yaw Wang. “Automatic Verification of a Model Checker by Re-
flection”. In: Practical Aspects of Declarative Languages: 8th Interna-
tional Symposium, PADL 2006, Charleston, SC, USA, January 9-10,
2006. Proceedings. Ed. by Pascal Van Hentenryck. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 45–59 (cit. on p. 134).

[WL07] Zhongshi Wang and Axel Lehmann. “A Framework for Verification
and Validation of Simulation Models and Applications”. In: AsiaSim
2007: Asia Simulation Conference 2007, Seoul, Korea, October 10-12,
2007. Proceedings. Ed. by Jin-Woo Park, Tag- Gon Kim, and Yun-Bae
Kim. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 237–
246 (cit. on p. 72).

[WWZ10] Zizhen Wang, Hanpin Wang, and Naijun Zhan. “Refinement of Mod-
els of Software Components”. In: Proceedings of the 2010 ACM Sym-
posium on Applied Computing. SAC ’10. Sierre, Switzerland: ACM,
2010, pp. 2311–2318. ISBN: 978-1-60558-639-7 (cit. on p. 29).

[YHF14a] A. Yacoub, M. Hamri, and C. Frydman. “A method for improving the
verification and validation of systems by the combined use of sim-
ulation and formal methods”. In: Proceedings - IEEE International
Symposium on Distributed Simulation and Real-Time Applications,
DS-RT. 2014, pp. 155–162 (cit. on p. 70).

[Yac+15] A. Yacoub, M. Hamri, C. Frydman, et al. “Towards an extension of
Promela for the modeling, simulation and verification of discrete-
event systems”. In: 27th European Modeling and Simulation Sympo-
sium, EMSS 2015 (2015), pp. 340–348 (cit. on pp. 82, 141).

[YHF16a] Aznam Yacoub, Maamar el-amine Hamri, and Claudia Frydman. “For-
mal Methods and Discrete-Event Simulation”. In: JDF 2016 - Les
Journées DEVS Francophones - Theorie et Applications. Cepadues,
2016 (cit. on p. 77).

179

http://books.google.fr/books?id=M9AbtwAACAAJ
http://books.google.fr/books?id=M9AbtwAACAAJ

[YHF16b] Aznam Yacoub, Maamar el-amine Hamri, and Claudia Frydman. “Us-
ing DEv-PROMELA for Modelling and Verification of Software”. In:
Proceedings of the 2016 Annual ACM Conference on SIGSIM Principles
of Advanced Discrete Simulation. SIGSIM-PADS ’16. Banff, Alberta,
Canada: ACM, 2016, pp. 245–253. ISBN: 978-1-4503-3742-7 (cit.
on p. 143).

[YHF14b] Aznam Yacoub, Maamar El-Amine Hamri, and Claudia S. Frydman.
“Complementarity between simulation and formal verification trans-
formation of PROMELA models into FDDEVS models: Application
to a case study”. In: 4th International Conference On Simulation And
Modeling Methodologies, Technologies And Applications, SIMULTECH
2014, Vienna, Austria, August 28-30, 2014. 2014, pp. 421–426 (cit.
on p. 70).

[Zei76] Bernard P. Zeigler. Theory of Modeling and Simulation. John Wiley,
1976 (cit. on pp. 23, 30–35, 38, 39, 79).

[Zei84] Bernard P. Zeigler. Multifacetted Modelling and Discrete Event Simu-
lation. San Diego, CA, USA: Academic Press Professional, Inc., 1984
(cit. on pp. 40, 78).

[ZKP00] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of
Modeling and Simulation. 2nd. Academic Press, Inc., 2000 (cit. on
pp. 23, 26, 28–30, 33, 35, 40, 78, 79, 117, 123, 132).

[ZN15] Bernard P Zeigler and James J Nutaro. “Towards a framework for
more robust validation and verification of simulation models for
systems of systems”. In: The Journal of Defense Modeling and Simu-
lation: Applications, Methodology, Technology (2015) (cit. on p. 72).

[ZNS16] Bernard P. Zeigler, James Nutaro, and Chungman Seo. “Combining
DEVS and model-checking: Concepts and tools for integrating sim-
ulation and analysis”. In: To appear in Int. J. Process Modeling and
Simulation (2016) (cit. on p. 72).

[Zer+13] Fokion Zervoudakis, David S. Rosenblum, Sebastian Elbaum, et al.
“Cascading Verification: An Integrated Method for Domain-specific
Model Checking”. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering. ACM, 2013, pp. 400–410 (cit.
on p. 55).

180

	Titlepage
	Abstract
	Résumé
	Remerciements
	Summary
	List of Figures
	List of Tables
	Introduction
	State of the Art
	Introduction
	Definitions of Primal Concepts
	Theory of Modelling and Simulation
	M&S as activies: Why Modelling ? Why Simulate ?
	System Specification Hierarchy and Morphisms
	Entities
	Timed Models
	The DEVS Formalism
	Hierarchy of Simulation Formalisms

	Overview of Verification and Validation
	Verification and Validation in Project, Quality and Risk Management
	Verification and Validation in Software Engineering
	Verification and Validation of Simulation Models
	Model Accreditation and System Certification

	Formal Verification and Formal Methods
	Introduction to Formal Methods
	Model-Checking Theory
	Timed Automata
	Hybrid Automata and others methodologies
	Abstraction and The Great Debate

	Towards Integrating Formal Verification and Simulation for V&V
	Integration of Multiple Formal Verification Tools
	Combining Formal Verification and Simulation
	Formal Verification of Simulation Models

	Conclusion

	A Combined Formalism: DEv-PROMELA
	Introduction to Combined Methods
	General Approach
	Abstract Approach
	Proofs and discussion
	Approach using Model-Driven Engineering

	Introduction to DEv-PROMELA
	PROMELA Overview
	PROMELA in Details
	Building DEv-PROMELA: Syntax
	Meaning of DEv-PROMELA : Semantics

	Relations and Morphisms
	Relations between DEv-PROMELA and DEVS
	Relation between DEv-PROMELA and PROMELA

	DEv-PROMELA and Simulation Formalisms Hierarchy
	Verification, Simulation, Interoperability and Limits
	Model-checking and Static Verification
	Simulation and Dynamic Verification
	Interoperability
	Comparison with other PROMELA timed extensions and Limits

	Conclusion

	Modelling, Verification and Validation with DEv-PROMELA
	Introduction
	Framework Entities and Intuitive Relationships
	Modelling and Verification of Software
	Verification techniques
	Validation techniques

	Modelling and Verification of Simulation Models
	Integrated Verification and Validation Environment (IVVE)
	Conclusion

	Applications : Modelling, Verification and Validation of ...
	... Mutual Exclusion Protocols
	... A Video Game Software : PACMAN
	Requirement Phase
	Requirement Analysis
	High Level Design
	Low Level Design
	Verification using Model Checking
	Verification using Simulation
	Coding
	Validation using Simulation
	What about V&V of simulation model ?

	... A Manufacture Chain : ST Microelectronics' Case Study
	The Problem
	Results

	Conclusion

	Conclusion
	Bibliography

