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Abstract
The goal of the ScipySim project is to develop a hetero-
geneous system simulation capability for the SciPy scien-
tific computing platform, based on an executable version
of the Lee/Sangiovanni-Vincentelli tagged signal model that
was proposed by Caspi et al. Instead of using a central-
ized simulation engine, ScipySim simulations are composed
of autonomous actors that interact by passing tagged events
through first-in/first-out queues. The resulting simulation
system is completely decentralized, and well-suited to dis-
tributed execution. We describe the design and operation of
ScipySim, its current status, and prospects for the future.

1. INTRODUCTION
ScipySim is a tool for heterogeneous system simulation

developed using the Python programming language [1], and
intended to run on top of the SciPy [2] platform for scien-
tific computing. Python is freely available on many platforms.
SciPy is also freely available on a similar number of plat-
forms, and is becoming increasingly popular as a scientific
and engineering computing platform in both academia and in-
dustry. However, there is little support for system simulation
in Python or SciPy, and none of the simulators that we are
aware of support the simulation of heterogeneous systems,
i.e., systems composed of components that operate in a vari-
ety of domains or implement different models of computation
(e.g., discrete-time, continuous-time, or Petri nets). The two
primary motivations for the ScipySim project were:

• To develop a block-diagram-based heterogeneous sys-
tem simulation tool for the SciPy platform.

• To explore the implementation of simulators based on
the “actors without directors” generalized-Kahn ap-
proach proposed by Caspi et al. [3].

In this paper, we describe the design of ScipySim
(sec. 3.1.), which extends the ideas proposed by Caspi et al.
beyond a proof-of-concept into a working simulator. We also
describe the decentralized way in which ScipySim simula-
tions are executed (sec. 3.2.), discuss how ScipySim may be
developed into a distributed simulation system (sec. 3.3.2.),

and outline some of the remaining problems in supporting
general continuous-time models (sec. 3.3.3.). We begin with
a brief overview of the tagged signal model (sec. 2.), and close
with a review of related work (sec. 4.).

2. BACKGROUND
Lee and Sangiovanni-Vincentelli developed the “tagged

signal model” [4] as a denotational framework for describing
the behavior of heterogeneous systems. It encompasses ideas
from both signals & systems theory and computer science.

The starting point for the tagged signal model is a set of
values, V , and a partially-ordered set of tags, (T,≤). An event
is a tag-value pair e = (t,v) ∈ T ×V . A signal is a set of
events s ⊆ T ×V . A process, or actor, P, is a function from
a set of input signals, Si, to a set of output signals, So, i.e.,
P : Si−→ So. Different choices of tag and value sets (partial or
total order, finite or infinite) lead to different models of com-
putation. The resulting formalism is similar to the I/O relation
framework of Zeigler et al. [5], but addresses the behavior of
coupled systems without introducing states or transitions.

The tagged signal model is intended to allow the relation-
ships between models of computation to be understood and
defined. The tagged signal semantics is denotational rather
operational, meaning that it describes the behavior a system
will produce without describing how the system is executed.
Heterogeneous system simulators, such as Ptolemy II [6], can
be understood in terms of the tagged signal model, but their
execution is governed by different semantics. For example,
execution in Ptolemy II uses “directors” that regulate the ex-
ecution of a domain or model of computation.

In an effort to bring the denotational and operational se-
mantics of heterogeneous system simulation closer together,
Caspi et al. [3] proposed a generalization of Kahn Process
Networks [7] that builds upon tagged signals to provide an
executable model of heterogeneous systems. In their model,
systems are composed of autonomous actors that interact
by sending tag-value pairs through first-in-first-out (FIFO)
queues. The actors are similar to Kahn processes, in that they
block when one or more of their input queues is empty, and
each actor only knows the head of their input queues. Tag-
conversion actors manage interactions between different do-
mains. Caspi et al. claim that their approach does not re-
quire centralized execution control, naturally supports hetero-
geneous models, and is well-suited to distributed execution.
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3. SCIPYSIM
Caspi et al. [3] give several examples of executable actor

models based on the generalized Kahn theory. Further exam-
ples, and a small simulator prototype written in the Haskell
programming language, appear in a technical report by Ben-
veniste et al. [8]. However, the examples and simulator proto-
type are a fairly limited proof-of-concept, and do not explore
issues such as distributed execution. Our goal in developing
ScipySim is to move beyond a proof-of-concept implementa-
tion of the generalized Kahn approach.

3.1. Simulator Design
ScipySim is nominally built on top of SciPy, although it

currently uses only a handful of SciPy features. Most of
ScipySim is implemented in standard Python. Graphical out-
put, such as line graphs and stem plots, is produced using the
matplotlib plotting library [9].

ScipySim consists of a core set of classes that define
foundational simulation entities such as Actors, Events,
Channels, and Models, as well as a library of Actor sub-
classes that implement different kinds of simulation compo-
nents. The current library of actors includes:

• Signal source actors (constant, ramp, step, and sinusoid).

• Basic mathematical operation actors (summation, scal-
ing, and absolute values).

• Signal manipulation actors (delay, split, boolean filter,
interpolator, and decimator).

• Numerical integration actors (discrete-time and
continuous-time).

• Display actors that translate signals into matplotlib plots.

3.1.1. Events
In keeping with the tagged signal model, Event objects

contain a tag and a value. The Event class is designed to
make Event objects immutable, which prevents possible
simulation errors resulting from actors modifying a shared
Event. Thus

e = Event(1.0, 3.5)

will create a new event with fields e.tag and e.value re-
spectively equal to 1.0 and 3.5, but an attempt to assign a
new tag (e.g., e.tag = 2.0) will cause an exception to be
raised. The terminal event in a signal is marked by having its
last field set to True.

3.1.2. Actors
In keeping with the concurrent nature of the generalized

Kahn networks proposed by Caspi et al., every Actor is a

class Actor(threading.Thread):
def __init__(self, input_channel=None,

output_channel=None):
# Initialization of internal fields

def run(self):
while not self.stop:

self.process()

def process(self):
raise NoProcessFunctionDefined()

Figure 1. ScipySim Actor class

def process(self):
event = self.input_channel.get()
if event.last:

self.stop = True
self.output_channel.put(event)
return

out_event = # Some computation
self.output_channel.put(out_event)

Figure 2. Example process() method

Python thread. A slightly simplified version of the Actor
class appears in Fig. 1. The arguments to the Actor con-
structor are a list of input channels and a list of output
channels. The Actor class itself is essentially a thin wrap-
per around the Python Thread class that overrides the
Thread.run() method, which specifies the functionality
that should be executed in a separate thread of control, to con-
tinually call the process() method.

The Actor base class is abstract, and thus provides no
implementation of process(). Derived classes implement
their own process() methods to provide appropriate actor
behavior. The typical form of a process() method is to
block until an event is available on all input channels, com-
pute a new output once all input events are available, and
send the output through any output channels. For example,
a single-input/single-output actor would have a process()
method like that shown in Fig. 2. This pattern is captured in
our Siso class, which sets

out_event = self.siso_process(event)

and can be subclassed to define a single-input/single-output
actor by implementing the siso process() method. A
siso process() for a simple actor is shown in Fig. 3.

3.1.3. Channels
Actors communicate via Channels that carry Events.

The Channel class is an extension of Python’s thread-safe
Queue class, and follows the principles of Kahn Process Net-
works: the size of the queue is nominally infinite, so put()



def siso_process(self, event):
new_value = event.value * self.gain
return Event(event.tag, new_value)

Figure 3. A simple gain

class Model(Actor):
components = []

def __init__(self, *args, **kwargs):
super(Model, self).__init__(*args,

**kwargs)
def process(self):

pass

def run(self):
assert hasattr(self, ’components’)
[c.start() for c in self.components]
while True:

if not any([c.isAlive()
for c in self.components]):
break

else:
sleep(1)

Figure 4. The Model class (with KeyboardInterrupt-
handling removed for clarity)

operations should always be non-blocking, and a thread at-
tempting a get() operation when the queue is empty will
be blocked until an Event is available. The Channel class
also adds the ability to inspect the head of the queue without
removing it, which is useful for processing inputs from mul-
tiple channels in the appropriate tag order but does require
careful use if the continuity of the actor is to be preserved [3].

The events in a channel must have monotonically increas-
ing tags, so that actors receiving events from the channel can
rely on never receiving an input earlier than the one they
are currently processing. However, Channel objects do not
enforce this order. They provide a strict FIFO ordering on
events, and assume that the actors adding events to the queue
maintain the tag ordering. As a consequence, only a single ac-
tor should be responsible for adding events to a given channel.

3.1.4. Models
In ScipySim, a model is defined as collection of actors. A

Model object can be used to specify a set of actors that form
a model for simulation. It is also a fully-fledged actor in its
own right. Model objects can therefore be used to impose a
hierarchy on complex actor systems, and to create composite
subsystems made up of lower-level actors.

Although a Model is an Actor, it does not define a
process() method. Instead, as shown in Fig. 4, the behav-

ior of a Model is generated by overriding the run()method
to start execution of all of the components contained in the
Model. Specific models are usually created by subclassing
the Model base class, and populating the components list
with actors in the constructor of the derived class. An exam-
ple of creating a model using this technique appears in Fig. 5.

3.2. Simulator Operation
Unlike many simulators, ScipySim does not include a sepa-

rate simulation program that regulates the execution of a sim-
ulation model. Instead, the execution of the simulation is ef-
fectively self-regulating due to the nature of generalized Kahn
theory [3]. Actors will execute when they are able to, and
otherwise block awaiting input events. As a consequence, a
simulation model is both a definition of the Actors and con-
necting Channels that make up a the system to be simu-
lated, and a directly executable Python program that carries
out the system simulation.

Fig. 5 shows a simple example of a ScipySim model. Like
all ScipySim models, it is a subclass of the Model class. The
system to be simulated is defined within the constructor of the
model. In this case, the system consists of:

• A Ramp actor, which is a signal source producing a lin-
early increasing output

• A CTSinGenerator actor, which is a continuous-
time sinusoidal signal source

• A Summer actor, which takes inputs from the ramp and
sin sources, and outputs their sum

• A Plotter actor, which generates a matplotlib plot
from the events it receives

MakeChans() is a utility function used to create a collec-
tion of channels. Once the necessary number of channels have
been created, the connections between actors are defined by
passing the appropriate channels to each actor as it is created.
Finally, all of the actors are added to the components list of
the model. Execution of the simulation is triggered by calling
the run() method of the model, resulting in an output from
the Plotter like that shown in Fig. 6.

As described in sec. 3.1.4., calling the run() method of
a Model causes all of the actors contained within the model
to start executing. During execution the progress of the sim-
ulation is driven by the source actors, which autonomously
produce events in accordance with the kind of signal they
represent. Each actor runs until it receives a terminal event,
either from a signal source or from another actor, at which
point it attempts to terminate. The simulation run ends when
all actors have terminated.



# Various imports from the scipysim
# library appear here
class SinRampSum( Model ):

def __init__( self ):
chan1, chan2, chan3 = MakeChans( 3 )
src1 = Ramp( chan1 )
src2 = CTSinGenerator( chan2,

amplitude=1.0, freq=1.0 )
summer = Summer( [chan1, chan2],

chan3 )
dst = Plotter( chan3,

title="Sin/Ramp Sum" )
self.components = [src1, src2,

summer, dst]

if __name__ == ’__main__’:
SinRampSum().run()

Figure 5. An example of a simulation model

Figure 6. The output of the example simulation model

3.3. Current Status and Future Directions
We have fulfilled our goal of moving implementation

of a simulator based on generalized Kahn theory beyond
the proof-of-concept described by Benveniste et al. [8]. We
have implemented the core classes described in sec. 3.1.,
along with a small library of actors modeling various signal
sources and basic operations on signals. We have also cre-
ated a collection of simulation models to test and demon-
strate various aspects of ScipySim. These models include a
pulse-width modulated signal generator, a numerically in-
tegrated approximation of a ballistic trajectory, and a sim-
ple discrete-time infinite impulse response (IIR) filter. All
of these models can be found in the code repository at
http://code.google.com/p/scipy-sim/.

Although implemented beyond a proof-of-concept,
ScipySim is still very much a work in progress. It was origi-
nally envisaged as a graphical tool in which models would
be specified by drawing block diagrams. But our imple-
mentation efforts have focused on the underlying simulation
infrastructure, so ScipySim currently lacks a graphical user
interface. A great deal of work still remains to be done on the
simulation infrastructure as well, particularly in the areas of
event and channel type-checking, actor implementation and
execution, and modeling of continuous-time systems.

3.3.1. Events and Channels
At present Event objects are untyped, or rather they all

share the same type. The domain of an Event is implicit in
the kind of tag it carries, for example a floating-point number
for a continuous-time event, or an integer for a discrete-time
event. Channel objects do include a domain field, which is
a string identifying the kind of events the channel is expected
to carry. However, this field is largely unused at the moment,
and channels do not do any checking on the domain of the
events put into them. This lack of checking makes it possi-
ble for model-builders to construct nonsensical models, and
feed erroneous events to actors. One potential path for future
improvement is to include domain type-tags as part of each
Event object, and perform runtime checking on these types
to ensure that the simulation model is properly constructed.

3.3.2. Actor Implementation
Although we already have a library of actors in place, this

library must be expanded to cover more domains and more
complex models. In particular, we need to implement actors
for untimed domains such as Kahn Process Networks and
Petri nets, and tag conversion actors for connecting these do-
mains to existing domains. We also need to implement actors
such as continuous-time and discrete-time transfer functions.

More fundamentally, we need to reconsider how actors
should be implemented. Making each actor its own thread is
a heavyweight solution that adds overhead to simulations. On
the positive side, it helps to ensure that the none of the sim-
ulation components rely on global information, and are thus
ready for distributed execution. Ultimately, we will probably
move to a scheme that uses some form of green threads lay-
ered over a process pool. This approach would eliminate the
overheads of native threads, enable us to avoid the bottleneck
of the notorious Python “Global Interpreter Lock” [10], and
allow us to implement distributed simulations.

3.3.3. Continuous-Time
Benveniste et al. [8] discuss some preliminary ideas for

modeling continuous-time systems in their generalized Kahn
framework. They present a proof-of-concept numerical inte-
gration scheme that performs Euler integration with a simple
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step adaptation for closed-loop integrals (i.e., those in which
the derivative is a function of the integral). However, they do
not discuss open-loop integration. Furthermore, they note that
their approach leads to difficulties with detecting threshold-
crossing events since it requires a variable time-step numer-
ical integration scheme that is able to roll back integration
when a threshold is missed. Such integration schemes are not
Kahn-order preserving, and are difficult to implement in an
asynchronous simulation that lacks a global clock.

In the current implementation of ScipySim we provide a
first-order fixed-step numerical integration actor. This allows
simple continuous-time simulation in both open- and closed-
loop. We are also experimenting with discrete-event numeri-
cal integration schemes [11] derived from the DEVS formal-
ism, which seem to offer the ability to perform variable time-
step integration in an asynchronous context. Such schemes
could also resolve the difficulties faced by Benveniste et al.
in handling threshold-crossing events, since they naturally
progress from one threshold (or quantum) to another.

One potential drawback of a discrete-event integration
scheme is that it may not produce an output for every input,
which can result in deadlocks if the integration actor is part of
a feedback loop. One way to mitigate this problem is to force
an output after every input, which may result in repeated out-
put of the same quantized state value. This approach may not
strictly follow the standard DEVS [5] execution semantics, in
which outputs are only produced when an internal transition
to a new state occurs1. However, since we are incorporating
the discrete-event integrator into a continuous-time simula-
tion scheme that uses a discrete-time approximation, generat-
ing an output for every input seems reasonable. We are also
investigating the use of a conservative parallel discrete-event
simulation scheme in the style of Chandy and Misra [12],
are considering migrating to a continuous-time simulation
scheme based entirely on a discrete-event approach.

Neither approach to deadlock avoidance addresses the
problem of causality. Algebraic loops (feedback loops with
only zero-delay elements) in a continuous-time model can
result in situations where time does not advance. This is
true for both for the fixed-step and discrete-event integration
schemes. At present we leave it to the user to break algebraic
loops by manually inserting a delay into the loop.

4. RELATED WORK
The DEVS approach [5] appears quite similar to the

Lee/Sangiovanni-Vincentelli tagged signal model from the
perspective of denotational semantics. However, DEVS also
provides an operational description of system behavior that is
suitable for simulation. In that sense, DEVS is comparable to

1Although arguably the internal unquantized state of the integrator
changes simply with the passage of time that is marked by reception of a
new input

generalized Kahn theory. Of the two, DEVS is the more ma-
ture formalism, but the generalized Kahn approach appears
more directly suited to distributed execution. A possible con-
vergence of the two formalisms can be seen in conservative
parallel DEVS simulators such as that proposed by Jafer and
Wainer [13], and our efforts in incorporating ideas from the
DEVS community into ScipySim.

Other authors have investigated operational semantics for
heterogeneous systems. The Ptolemy Project uses an ap-
proach that associates a “director” with each domain to gov-
ern execution of that domain [14]. Basu et al. developed
a methodology based on specifying the behavior of com-
ponents, possible interactions, and the priorities of interac-
tions [15]. Their BIP framework supports multithreaded exe-
cution, but relies on a central execution engine. The Rosetta
Project uses a coalgebra to define the semantics of heteoge-
neous systems [16], which is similar to the generalized Kahn
approach. However, the focus Rosetta appears to be on devel-
oping a specification language rather than simulation tools.

Although the semantics of heterogeneous system simula-
tion is still an active area of research, simulation tools for het-
erogeneous systems are already available. The MathWorks’
Simulink R© tool [17] is probably the most widely used of
these tools. Other notable heterogeneous simulation tools are
Scicos [18] and Ptolemy II [6]. These tools are generally
based on an underlying discrete-time approach with a global
clock, or some other form of centralized control.

There are few simulation tools for Python, and none that
we are aware of support heterogeneous system simulation.
SciPy provides simulation of linear time-invariant systems
via scipy.signal.lsim [2]. SimPy is a sophisticated
discrete-event simulation tool for Python [19]. PyDSTool is
a simulation and analysis environment for modeling dynam-
ical systems [20], focusing on ordinary differential equations
and differential-algebraic equations.

5. CONCLUSIONS
The goal of the ScipySim project is to develop a het-

erogeneous system simulation capability for the SciPy sci-
entific computing platform, based on the generalized Kahn
theory developed by Caspi et al. [3]. The development of
ScipySim has extended implementation of a simulator based
on the generalized Kahn theory beyond the simple proof-of-
concept developed by Benveniste et al. [8]. The core of the
ScipySim architecture, based on autonomous actors running
in their own threads and interacting through FIFO queues, is
now in place. A range of example simulation models have
been developed, demonstrating various features of the simu-
lation system. However, ScipySim is still very much a work in
progress, with more work needed on verifying correct model
construction, efficiently implementing actor execution, and
accurately modeling continuous-time systems.



ScipySim is an open source project licensed under the
GNU General Public License. Complete source code and
packaged releases are available from the project website, at
http://code.google.com/p/scipy-sim/.
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