
Observations on Real-time Simulation Design and Experimentation
Author 1 Author 2

Keywords: ALRT-DEVS, Experimentation, Real-time
Modeling, Real-time Simulation

Abstract
Modeling and simulation provides a convenient way for eval-
uating operability of designed systems (e.g., Network-on-
Chip) in their desired target environments. Where applicable,
real-time modeling with real-time simulation extends logical-
time M&S capabilities by evaluating the degree to which sys-
tem requirements can be satisfied in actual operational sce-
narios. Simulations can be directly observed and evaluated in
realistic settings. This brings about a well-known challenge –
simulation experimentations are never without computational
cost. This leads to real-time simulation (adversely) affecting
simulation results, sometimes drastically, if not carefully de-
signed for. In this paper, in view of finite computational re-
sources for executing simulations in real-time, new observa-
tions on data collection and evaluations are described for the
Action-Level Real-Time DEVS simulator. Simple and com-
plex example real-time models are developed in select sim-
ulators, experiments with varying degrees of data collection
volume are conducted, and results are discussed.

1. INTRODUCTION
With the growing size and complexity of systems, more

practical design and analysis methods are required. Logical-
time modeling and simulation offers both design (via model-
ing) and analysis (simulation of models) for predicting sys-
tem behavior before implementation. Simulation modeling
cannot provide complete assurance for system performance,
it is more capable than analytical approaches for systems with
large state spaces.

Logical-time simulation modeling does not prove very ef-
fective when the system to be simulated is part of a larger
system with complex and often partially understood depen-
dencies. The resulting model can be very large and inaccurate
to be effectively simulated. To handle this difficulty, the sys-
tem can be partitioned to two parts. One part is simulated in
real-time. The other part is the actual (physical) system. For
this reason, real-time simulation is an attractive alternative to
logical-time simulation as it can afford its use in actual envi-
ronments. For example, designing a Network-on-Chip (NoC)
system needs to account for constrained resources. Rather
than modeling an environment (e.g., sensors and actuators)
which together with an NoC form a mobile device, it is ad-
vantageous to consider real-time simulation of an NoC alone.
The mobile device has two parts: one is NoC and the other is

the collection of the sensors and actuators. This allows mod-
eling and simulating NoC in ‘isolation’ and thus can signif-
icantly reduce scale and complexity of simulating NoC with
its environment as a whole.

The host computer for the simulator can also be considered
its ‘environment’. Hardware, OS, and other applications that
run alongside the simulator can perturb the simulation in a
myriad of unpredictable ways. The hardware and network re-
lated processing have no effect on the logical-time simulated
behaviors (the model dynamics is independent of the com-
puter executing the simulator due to its use of abstract, ideal-
ized clock). In other words, logical-time simulation requires
the execution environment (i.e., host computer) to have no
side effect on the simulated model behavior. The same can-
not be said about real-time simulation.

Real-time simulation poses several limitations. It has to
complete its execution cycles within real-time deadlines in or-
der to remain synchronized with physical time (and thus the
environment in which it is being used). Simulation’s real-time
clock, as compared with logical time clock, is not absolute.
Physical clock is imperfect and thus real-time clock is not the
same as abstract logical clock. Lack of perfect physical clock
in real-time simulation fundamentally changes the nature of
simulation. A prescribed time period defined for an operation
to be executed multiple times during simulation at different
time instances can change. Real-time simulation cannot guar-
antee perfect behavior due to inability to equate logical- and
real-time clocks.

As real-time simulation execution is subject to time con-
straints, operations (except model execution) which consume
physical time should be reduced. Operations can include data
collection and analysis at run-time. Execution of these op-
erations in logical-time simulations, if handled in a modular
fashion as in Experimental Frame concept [9], do not intro-
duce any inaccuracy or wrong model behaviors. This is be-
cause time can be stopped or elongated. The only one side
effect is on the length of physical time it takes to simulate the
model. However, physical time is an irreplaceable resource
and all operations should be carefully designed and tested for
time feasibility before they are used in real-time simulation.
For example, if a control signal to the mobile device actua-
tor is transmitted but reaches its destination late (e.g., due to
long execution time), the simulation becomes unreliable as
compared with the behavior of its real system counterpart.

In the remainder of this paper, related works on real-time
M&S, various methods for data collection, analysis, and ex-
perimentation are described. The focus is on real-time data



collection, in relation to its logical-time counterpart, using
the Action-Level Real-Time DEVS simulator. This approach
is compared with select simulators of the same genre. The re-
sults demonstrates how ineffective real-time simulators and
their support for data collection can be and in particular
the benefits of ALRT1-DEVS for real-time modeling and
real-time execution offers from experimentation perspective
given real-time modeling at the level of actions defined for
external and internal transition functions.

The structure of this paper is as follows. We present back-
ground on real-time modeling, simulation and experimenta-
tion in Section 2. Related works are described in Section 3.
Challenges for real-time experimentation with emphasis on
ALRT-DEVS and Ptolemy II are discussed in Section 4. Ex-
amples including data from NoC simulation and their results
are detailed in Section 5. Conclusion and further work is pre-
sented in Section 6.

2. BACKGROUND
In this section we review some of the basic concepts used

in this paper. First of all, the approach for real-time modeling
(ALRT-DEVS) and simulation (Real-time DEVS-Suite) is in-
troduced. This will provide an insight for the reader on how
real-time modeling and simulation can be developed. In addi-
tion, we focus on logical-time experimentation and how it is
done in select modeling and simulation tools. Then, we dis-
cuss basic shortcomings of logical-time methods for experi-
mentation and propose techniques that can support real-time
simulation.

2.1. ALRT-DEVS models
Action-level Real-time model is an atomic Discrete EVent

System Specification (DEVS) [8] that can handle concrete
real-time modeling of systems. Real-time modeling is aimed
at capturing accurate timing information of the target sys-
tem and reflect it in the model. Furthermore, this model
can be later used for real-time simulation. ALRT-DEVS
uses abstract time interval, actions, and activity mapping
function definitions provided in the atomic RT-DEVS =
〈X ,S,Y,δext ,δint ,λ, ti,ψ,A〉 real which is an extension of
classic atomic DEVS model [8]. An activity mapping func-
tion (ψ : S → A) is introduced for assigning actions (A) to
states. Time advance function is defined to have lower and
upper bounds (ti : A→ R+

0,∞×R+
0,∞).

In ALRT-DEVS we introduced concrete syntax and opera-
tional semantics at the level of actions for external and inter-
nal transition functions. This is because abstract functions for
time windows and actions are insufficient for real-time mod-
eling with direct support for real-time simulation.

1It is pronounced alert.

G1 = [outgoingDataBuffer 6=∅]

G2 = [incomingFlitQueue 6=∅]

G′2 = EventExternal[G2]

G3 = [incomingFlitQueue =∅∧outgoingDataBuffer =∅]

Figure 1. Real-time Statechart for depacketizer component

Specifically, the ‘state’ of a model has to be rich enough to
lend itself for specifying actions individually and collectively
for both external and internal transition functions. Dynamic
decision making for actions given limited time periods is
specified using the concepts of locations, transitions, and ac-
tions provided in Statecharts [5]. In this approach we assumed
a model to have different locations within a state based on re-
maining time. Also, actions are mapped to each location with
a predefined sequence of execution. Finally, guarded transi-
tions between these locations provide a dynamic method of
decision making for the model. Guards on transitions are cho-
sen from secondary state variables which can be any variable
in the specification other than state and time. This could be
the length of the incoming queue in server, the height of wa-
ter level in a water tank, or the temperature in a nuclear power
plant.

Figure 1 depicts a simple statechart model for depacke-
tizer component. Three phases are assumed for depacketizer:
Depacketize in which flits are converted to streams of data,
Transmission in which depacketized data is sent to the pro-
cessing element, and Idle for other stages of this compo-
nent in which the input/output queues are empty. If any of
the guards specified in the diagram are satisfied, the system
changes its phase to the one conforming to the current evalu-
ation of the secondary state variables.

2.2. Real-time DEVS-Suite
Real-time models can be potentially used for real-time exe-

cution. Time in a real-time simulation engine is in synchrony
with real-time. A model simulated in a real-time simulator
can be connected to its operating environment and communi-



cate via sensors and actuators in order to react to stimulations
from outside and provide performance data.

Real-time DEVS-Suite provides real-time simulation by
guaranteeing the execution of each action within its speci-
fied time window. Each action which violates its firm deadline
would be discarded and the model may modify the line of exe-
cution using its dynamic decision making system. In addition
to executing action within their respective time window, Real-
time DEVS-Suite incorporates Java’s threading capability to
introduce parallel execution to atomic model execution. Be-
fore this, models were executed sequentially and this was not
useful for real-time execution. Aside from these, basic fea-
tures of ALRT-DEVS such as locations, transitions, actions,
and time windows are also added to the DEVS-Suite [1] to
support real-time modeling in addition to real-time simula-
tion.

2.3. Logical-time Experimentation
In logical time simulation, experimentation is usually han-

dled by recording interesting events in a file or a transducer
in an experimental frame (EF). The experimental frame is re-
sponsible for generating events, injecting them into the simu-
lation model, and recording the simulation outcomes using
transducers. DEVS modeling insists on modularity. There-
fore, data collection is to be carried out using ports from
atomic and coupled models. Hierarchical modeling enforces
each level to communicate with its immediate higher/lower
level models. This also applies to outside simulation interac-
tion in which communication should occur through an inter-
face and not individually by each atomic model.

In the DEVS preferred data collection and analysis scheme,
EF is a coupled model consisting of a transducer and a gen-
erator. These atomic models are executed along with other
atomic/coupled models of the system by the central simula-
tor engine. To record events, one should connect every port
which transmits interesting events to the experimental frame
(transducer in specific). The transducer organizes and records
the events for analysis. Other simulation engines use various
methods for data collection. As for Ptolemy, data analysis is
done in specific actors (such as plotters) which is similar to
the concept of EF. In order to show the similarity in the func-
tion of DEVS-Suite and Ptolemy, a simple ramp example is
incorporated and executed in logical-time. The model con-
tains a CurrentTime actor which outputs the current time of
the whole model, a Ramp actor, and a X-Y Plotter to sketch
the outcome. This model works under a Continuous director.
In DEVS-Suite the model consists of a generator which trig-
gers the ramp model to generate data. The output of both are
lines with steady slope which was expected. The same test
is done in real-time in Section 4. to show the difference in
real-time simulation. Various methods of data collection and
analysis are used in different simulators, however, many of

them would be problematic when used for real-time simula-
tion. This is discussed in Section 4. as well.

3. RELATED WORK
Ptolemy II [2] is an integrated Java-based modeling and

simulation environment designed at Berkeley. This tool is ca-
pable of modeling heterogeneous systems and simulate them
under various models of computation [6]. Real-time execu-
tion is supported in this tool which is compared with that
of DEVS-Suite. eCD++ [7] is a DEVS-based simulator for
embedded system simulation. It provides graphical modeling
(similar to Ptolemy II) and supports best effort real-time ex-
ecution. Also, real-time testing in MathWorks by xPC Target
[3] is designed to enable HIL (Hardware-in-the-Loop) and
RCP (Rapid Control Prototyping) on general purpose com-
puters or on xPC Target Turnkey (real-time target machine
for xPC Target). For the purpose of this paper, ALRT-DEVS
and Ptolemy II are considered.

4. REAL-TIME EXPERIMENTATION
ALRT-DEVS supports defining parallel atomic models that

use default confluent function. Every action is defined to re-
quire positive, non-zero duration to be executed in physical
time. Output events are to be generated prior to handling in-
put events. The role of real-time data collection, however, is
not accounted for in ALRT-DEVS. Coupled parallel models
for this kind of parallel atomic model can be supported.

Simulations were carried out without adhering completely
to the Experimental Frame (EF) concept where outputs for all
atomic models are collected directly from them. We noted the
impact of data collection on real-time execution time, but we
did not formulate the role of real-time for action-level oper-
ations given physical time needed to collect (observe) simu-
lation data (output events). Transient states (requiring zero-
time actions) which are needed for confluent function is not
defined for ALRT-DEVS. Calling an output function prior to
external transition causes the model to undergo transient op-
erations. All simulation operations including generating out-
puts take time to execute and can cause accuracy degrada-
tion if execution of actions cannot be guaranteed to complete
fast enough (within each simulation cycle addition time is re-
served for data collection). That is, use of transient states has
to be accounted for when simulation data collection and anal-
ysis is to occur in real-time. Furthermore, if a piece of data is
ready but not captured at the time it was created because of
time constraints, then the result of the experiment is inaccu-
rate from timing perspective.

We can divide physical time it takes for a complete atomic
model simulation cycle to be executed to two parts. One part
is for model execution (simulation, ∆tsim). The other part is
for data collection (observation, ∆tobs). The model execution
part can be further divided into two parts. One is the time



duration specified for actions in internal and external transi-
tion functions (∆text,int > 0). The other part is the time for
executing output, time advance, and all other tasks such as
state-based data aggregation and disaggregation. The time al-
located for this part (∆trest > 0) is needed for having a com-
plete atomic model simulation cycle. The total time for an
atomic cycle ∆tac > 0 is equal to ∆text,int +∆trest +∆tobs. Note
that 0 < ∆tobs < ∞ accounts for processing time that is needed
for collecting data (e.g., writing data to a file or to a display)
which is distinct from processing time needed for generating
output events.

Aside from atomic model, real-time execution processing
time for coupled models also has to be accounted for. This
is because logical-time coupled models assume instantaneous
communication (i.e., outputs generated from an atomic model
can be delivered as input to another atomic model without
simulator consuming time). In real-time simulation of cou-
pled models, it takes some non-zero, positive time period
(∆tI/O > 0) for the coupled model to route and deliver out-
put messages as input messages between any two (atomic
or coupled) DEVS models. The ∆tI/O > 0 accounts for mes-
sages that are communicated across external input, internal,
and external output couplings. Therefore, the flat coupled cy-
cle time for a coupled model with one atomic model can be
defined as ∆t f cc = ∆tac +∆tI/O where time allocated for com-
munication is for communications that may occur across ex-
ternal input and external output couplings. More generally,
for a flat coupled model with n atomic models, time for a
flat coupled cycle is defined as ∆t f cc = ∑

n
i=1 ∆tac,i + ∆tI/O.

For a hierarchical coupled model with n atomic models, p
flat coupled models, and q hierarchial coupled models, its
execution time for one complete cycle can be defined as
∆thcc = ∑

n
i=1 ∆tac,i +∑

p
j=1 ∆t f cc, j +∑

q
k=1 ∆thcc,k +∆tI/O.

The above formulation affords defining lower bound on
physical time that is needed for real-time data observation in
real-time simulation given some finite computing resources.
The lower bound can be defined given ∆tobs for the atomic
and coupled models that are to be observed. The observation
time can be controlled as a function of the number ports that
are observed. It should be noted that observations for events
(data or messages) in coupled models should be avoided be-
cause they can only contain data from their respective atomic
models. Data that is observed on output ports of any coupled
model are intrinsically the same as those generated by atomic
models, but delayed in time.

4.1. Challenges
In logical-time simulation, execution of models and the

communication among them are all handled sequentially.
Therefore, data collection is not an issue. Naturally, data col-
lection requires time. Usually an experimental frame is in-
volved in the process of data collection which gathers all in-

teresting events within the model via ports. Handling all these
events in each instance of time can be time consuming. How-
ever, since time advance is controlled by the simulation en-
gine, it could be shortened or elongated whenever required.
However, this is a major issue in real-time simulation where
time cannot be stopped or slowed down. This poses serious
limitations on the number of probes an experimental frame
can observe, the frequency of occurrence of that event, and
the amount of processing that can be done on the gathered
data. An experimental frame is itself one model among the
other simulation model which consumes memory and compu-
tation time. For every single event, the EF model goes through
an external transition cycle and analysis. Therefore, the fre-
quency of the EF event processing is the sum of the output
generation frequency of all components connected to it! This
can be an important source of time loss for the rest of the
model. In addition, processing of events can be also problem-
atic if not taken into account. In logical time experimentation,
the analysis can be done in the time of the simulation and it
does not interfere with the validity of the outcome. However,
for real-time simulation, the amount of processing per event
can make a substantial difference in the result of the simula-
tion and deadline losses. In cases which the continuation of
the simulation is dependent on the analysis of gathered data,
the designer must deal with the trade-off of accuracy and va-
lidity: if analysis takes so much of the computation time, the
results generated by the simulation will be inaccurate because
of the frequent deadline losses (contradicts with accuracy)
and on the other hand if analysis is done partially or with
lower precision, the simulation can go the wrong way since
the controller cannot make the right decision based on the
feedback from the environment (contradicts with validity).

We faced the differences between experimentations in real
and logical-time simulators when working with an NoC
model. In Section 5., an experiment on NoC data collection
demonstrates this difference. For example, NoC data collec-
tion can be done with the usual transducer component. The
implications of using this method of data collection was dis-
cussed above. One other way is to use the flit itself as the data
collector. In this approach, the flit (which is a non-simulatable
object) collects timing data while moving in the network from
one node to the other. This can include very detailed in-
formation such as operations done inside a switch (moving
from incoming queue to crossbar or from there to the out-
put buffer) which are not sensed outside the switch. The flit
is then archived when it sinked at its destination and used
for analysis after the simulation is over. Data can also be col-
lected in each component and reported periodically to a trans-
ducer component. This is more efficient that event-by-event
reporting and the data is centralized in case they were needed
for making central decisions. Of course the method of data
collection is tied with the type of the system under simula-



Figure 2. Ramp model: (a) ALRT-DEVS and (b) Ptolemy II

tion. For example, in some of them a moving object (such
as flit in NoC) does not exist. System specific characteristics,
may eliminate some methods of data collection and analysis.
These are discussed in Section 4.2.

In order to see the effect of data observation on the pure
model behavior, one does not need to consider complicated
models. Here, we used a simple ramp model to show the se-
riousness of the situation. This quick experiment is done with
ALRT-DEVS and Ptolemy II on a Windows 7 64-bit machine
with 2 GB memory and Intel dual core, 1.83 GHz proces-
sor. The real-time ramp models designed in DEVS-Suite and
Ptolemy II are depicted in Figure 2. In order to build the real-
time ramp in Ptolemy, we used a Pulse to start the process
and a Sleep component (from Ptolemy’s real-time package)
to trigger the Ramp component every 8 ms. The output is re-
trieved using a Display. Also, the physical time is captured
by the WallClockTime component and the director we used
was PN (Synchronous Data Flow). The ALRT-DEVS model
is consist of three components: a ramp model, a generator for
triggering the ramp, and a collector component which records
the outputs and their respective timestamps.

What we expect from the output is a clean ramp line. In
Figure 3-a, the output of Ptolemy along with ALRT-DEVS
and the real-time deadline of the ramp are depicted to show
the difference between them. The real-time deadline is the ex-
pected time which we expect the output to be generated from
the ramp. In the top left of the plot, the first 10 steps are mag-
nified which clearly show the difference between the outputs
retrieved from Ptolemy II and ALRT-DEVS. This difference
is caused by a slow initialization phase in Ptolemy II which
causes the whole plot to have a displacement when compared
to the real-time deadline and ALRT-DEVS outputs. There-
fore, the output of Ptolemy is not conforming to the deadline
and since this is real-time, we cannot expect similar results
from two different executions. Other runs of the same exper-

Figure 3. Ramp model behaviors in (a) ALRT-DEVS vs.
Ptolemy II and (b) Soft real-time DEVS vs. ALRT-DEVS
against real-time deadline

iment resulted in quite different plots.
This simple example shows how unreliable the results of

a sophisticated system would be if real-time experimentation
problems are not addressed. In this paper, we are trying to
emphasize on the importance of this issue and suggesting
several guidelines for alleviating this problem. The difference
in curves resulted from Ptolemy and Real-time DEVS-Suite
has its origins in different modeling formulations and sim-
ulation protocols. In our ALRT-DEVS modeling approach,
as introduced in Section 2., we increased operation granular-
ity of a component to actions and mapped time windows to
each of them. This way, time constraints are enforced in each
model and for every action. However, including timing infor-
mation in the model is one thing and using them in the execu-
tion platform is another. This is why, Real-time DEVS-Suite
adopts a novel real-time execution protocol which is different
from the logical-time DEVS-Suite simulation protocol. This
protocol insures executing models based on the timing con-
straints specified in the models. As for Ptolemy, execution in
real-time is not guaranteed in the simulation protocol. Also,
real-time actors (such as execution time or real-time Plotter)
do not impose time constraints, therefore, real-time execution
happens at the level of best-effort instead of absolute guaran-
tee.



In order to show the impact of using Real-time model-
ing and simulation technique (such as the one we developed
in ALRT-DEVS and Real-time DEVS-Suite) we compared
the output of ALRT-DEVS with the output of soft real-time
DEVS-Suite for the ramp model. However, this time the em-
phasis is on time. Soft real-time DEVS provides best effort
(soft) real-time execution. Here we intend to show how much
our hard real-time extension affects the timeliness of the out-
put. The hardware configuration of this experiment is the
same as above. Figure 3-b contains three lines. The green line
is the output of the soft real-time DEVS-Suite and the blue
line is the output of the ALRT-DEVS ramp model. The red
line shows the deadline of the output as if this was a real
system. The result clearly demonstrates the perfect timeli-
ness (the red line is on the blue line) which Real-time DEVS-
Suite provides when compared to the soft real-time output of
logical-time DEVS-Suite. Also, it is important to notice that
the soft real-time output is diverging from deadline over time
based on a monotonically increasing function which results in
a two second divergence after 30 seconds into the simulation.

4.2. Addressing RT-Exp. Issues
In general, there are three requirements in order to reach

reliable real-time experimentation: 1) real-time modeling, 2)
real-time simulation protocol, and 3) real-time data collec-
tion. Each of these requirements are further illustrated below.

4.2.1. Real-time Modeling
The aim of real-time modeling (which was partially dis-

cussed above) is adding time information to the model of the
system. These timing information specify upper-bounds and
lower-bounds for actions to finish their execution inside them.
The resulting model is capable of being executed in real-time
since all time constraints are stated in the model. We encour-
age the reader to refer to [4].

4.2.2. Real-time Simulation Protocol
The simulation protocol, should take advantage of the real-

time model and apply those constraints in the execution of the
model. As described in the case of Real-time DEVS-Suite,
the simulation protocol must guarantee the execution of each
action within its time window. The simulation engine must
cuts off the execution of one action which is going beyond its
specified time window in order to prevent time inconsistency
to escalate in the system and affect the results which are to
follow.

4.2.3. Real-time Data Collection & Analysis
Real-time M&S provides us with an executable model of

the system which operates in real-time and is capable of com-
municating with the environment. However, experimentation

is the primary reason of putting this amount of effort in mod-
eling and simulation. The issue however is the impact of data
observation and analysis on the simulation which we call ob-
servation impact phenomenon. Based on this, observation al-
ways impact the phenomenon which is under observation.
However, this does not hold for logical-time simulation since
it is isolated from the real world (even from the point of view
of time advance). On the other hand, real-time simulation
is part of the real world and is partially under the influence
of this phenomenon. The problem is that every simulator re-
lated operation takes its resources from the simulation model.
This results in deadline miss and time inconsistency if not ad-
dressed properly. Therefore, data collection should be done
carefully or it might cause the simulation to diverge from the
physical/virtual system it represents. Below are four points
that are important in implementing methods of data collec-
tion and analysis.

The system which is represented by the model should al-
ways be considered when implementing data collection and
analysis methods. For logical-time simulation, a general data
collection method (such as EF) is always sufficient. However,
in real-time simulation of a system one method may be more
efficient than the others. In NoC simulation, the number of
components (flit-level modeling) may exceed several hundred
for a chip with 32 cores. Handling of all events emitted from
these components by one transducer is very time consuming.
However, flit-based data collection (discussed above) may al-
leviate this situation. The benefit of this method is that no ex-
tra event for the purpose of data collection is needed. To con-
clude, by designing a domain specific data collection method,
higher level of efficiency might be reached which is always
welcomed for real-time simulation.

Online data analysis means when analysis on data is done
simultaneously with the simulation instead of postponing it
to the end. Online analysis is useful when the result of the
analysis at every instance is used as an input to the simulation
(feedback), the user needs intermediate results to be shown,
or the analysis determines when the simulation should end.
If online analysis is needed for any of these reasons, data
collection method is also affected because centralized data
is needed. If data is gathered in distributed fashion (like flit-
based data collection), a reporting mechanism must periodi-
cally submit the collected data to a centralized transducer for
online analysis.

Analysis data loss can happen in real-time simulation. We
use this term when a performance data which is to be col-
lected for analysis is not collected because there is no time
to complete that task (due to firm deadlines). We should look
at data collection as part of the real-time simulation which
may sometimes miss deadlines and lose data. So, based on
the amount of resources dedicated to the simulation, there is
a tradeoff between the accuracy of the simulation and the ac-



curacy of data analysis.
The amount of resources given to the simulation engine is

effective on the result. In other words, there is a direct rela-
tionship between the amount of resource and the accuracy
of results. Therefore, one should always consider this fac-
tor when analyzing the performance data resulted from the
simulation. Logical-time simulation is executed on infinite re-
sources (time is also labeled as a resource). Therefore, accu-
racy of results and granularity of the model are the only fac-
tors to consider when analyzing data from a logical-time sim-
ulation. As for real-time simulation, the impact of resources
on the final results brings in the amount of resources into con-
sideration as well. In order to illustrate this point, two of the
experiments above are done using an Intel 2.93 GHz Dual
Core processor with 4 GB of memory. We repeated the exper-
iment done in Figure 3-b on the new configuration. Results
showed that the hard real-time still strictly conforms to the
deadlines but the soft real-time execution experienced only 1
(instead of two) second divergence after 30 seconds.

5. EXPERIMENTS AND RESULTS
One of the ways of reducing the impact of data collection

on the results is periodic reporting instead of event-by-event
reporting. We call it: Periodic Data Collection. In this ap-
proach, the data is gathered on periodic cycles which reduces
the number of events to be processed by the transducer. This
reduction means less time to be spent on data collection and
analysis. In order to illustrate this, three experiments are de-
signed: two of them use the ramp model and the other uses
NoC which is relatively more complex. All experiments are
carried out on a computer with a Windows 7 32-bit machine,
Intel 2.93 GHz Dual Core processor with 4 GB memory.

5.1. Experiment I
In this experiment, the ramp model (used above) is changed

in a way to report its output value in a periodic fashion. We
have used four different values: 1, 5, 10, and 50 which repre-
sent the number of cycles the ramp waits to produce an out-
put. In Period = 1, every step is reported to the data collec-
tor but in Period = 50, the report is made at every 50 cy-
cles. The ramp model in this experiment produces an out-
put every 0.005 seconds. Figure 4 shows the difference be-
tween the results extracted from different reporting periods.
For Period = 1, data is approximately gathered 10.5 ms be-
fore the deadline. Occasionally, this values changes due to
the computation load on the system. Comparing these results
with other periods of data collection results in two conclu-
sions: 1) data collection takes less time in longer periods and
2) the number of occasional variations are more when data
is collected more frequently which reduces simulation pre-
dictability.

Figure 4. Periodic data collection effect for ALRT-DEVS
ramp model

Figure 5. Impact of data collection frequency on Ptolemy II

This simple experiment shows that the effect of data collec-
tion is more than generally assumed. The ramp model is rela-
tively simple but still shows drastic changes when the period
is changed. This effect can be substantial for more complex
systems (as done in experiment III) . Also, there is a limit to
the periodic data collection effect. After a certain point, the
impact on the results becomes trivial (∆tobs→ 0). The rest of
the difference with the actual model relates to the model for-
mulation and simulation protocol (represented by ∆thcc, ∆trest ,
and ∆text,int ).

5.2. Experiment II
We changed the Ptolemy II model in order to see the peri-

odic data collection effect. For this purpose, a Modal Model
was used and a simple five-state filter which passes one piece
of data out of every five. When tested the model on 125 (steps
per second) data generation rate and the results were as de-
picted in Figure 5 with a 5-cycle data filtering (individual dots
marked with Freq = 5). Improvements are evident when this
is compared with Ptolemy’s ramp output with no data filtering
in the blue line.



5.3. Experiment III
This experiments tests periodic data collection in NoC. The

NoC in this experiment is a 3× 3 network with mesh topol-
ogy. The parameters watched in this experiment are average
flit latency from source to destination and average waiting
time at every switch. Here, in order to demonstrate the impact
of data collection on final results, we reduced the number of
components being observed. In one scenario, the transducer
is connected to all 9 processing elements and in another it is
connected to (two nodes that are farthest apart). Furthermore,
the effectiveness of the injection rate on this phenomenon is
analyzed by increasing it from 2.22 (flits/sec) to 4 (flits/sec).
The results shown in Table 1 are average points of 5 runs
for each configuration. For small injection rates (no network
congestion exists and flits are delivered on time), the differ-
ence between results are trivial. However, as we move toward
higher injection rates (such as 4 flits per second) the differ-
ence becomes more substantial.

For this experiment, it is important to notice that the differ-
ence in the number of elements under observation is only 7
but the difference observed in the results cannot be neglected.
This experiment is a clear demonstration of how –even for
this small differences– data observation can significantly af-
fect the output. This is more evident when the system be-
comes more complex (such as NoC as compared with Ramp)
or the simulation is at its Saturation point. At the saturation
point, the hardware reaches its limits in executing simulation
tasks and a sudden increase in deadline losses and time in-
consistency is observed. This case is seen when the injection
rate is increased in the NoC experiment.

Table 1. 2-node vs. 9-node observation effect on avg. flit la-
tency (Avg. FL) and avg. switch waiting time (Avg. SW) with
various injection rates

Avg. Injection Rate (per sec)
2.22 2.86 3.03 4.00

Avg. FL 9 2.95 3.72 3.97 18.98
2 2.92 3.52 3.86 17.73

Avg. SW 9 0.74 0.93 0.99 4.75
2 0.73 0.88 0.96 4.43

6. CONCLUSION AND FUTURE WORK
In this paper, we demonstrated how data collection and ex-

perimenting can affect results in a real-time simulation. Also,
we used DEVS-Suite and Ptolemy II as examples to show the
Observation Impact Phenomenon. Finally, we suggested sev-
eral methods for limiting the impact of data collection on sim-
ulation execution and demonstrated the difference resulted
from these methods using a simple ramp model and a 9-node
Network-on-Chip model. It is important to notice that unlike
logical-time simulation, in real-time simulation, the impact

of data collection and analysis (i.e., experimentation) should
be accounted for as illustrated with the ALRT-DEVS NoC
simulation. In summary, this paper has illustrated that careful
attention is required for designing experiments for real-time
simulation models and results must be carefully evaluated in
order to be valuable.

REFERENCES
[1] DEVS-Suite simulator, version 2.1.0. http://devs-

suitesim.sourceforge.net/, 2009.

[2] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt.
Ptolemy: A framework for simulating and prototyping
heterogeneous systems. Journal of Systems Architecture,
4:155–182, 1994.

[3] J. Burck, M.J. Zeher, R. Armiger, and J.D. Beaty. De-
veloping the world’s most advanced prosthetic arm us-
ing model-based design. The MathWorks News & Notes,
2009.

[4] S. Gholami and H.S. Sarjoughian. Real-time network-
on-chip simulation modeling. In SIMUTools, Desenzano,
Italy, pages 103–112. ICST, 2012.

[5] H. Giese and S. Burmester. Real-time statechart seman-
tics. TR-RI-03-239, University of Paderborn, 2003.

[6] E.A. Lee and S. Neuendorffer. Tutorial: Building
ptolemy II models graphically. EECS Department, Uni-
versity of California, Berkeley, Tech. Rep. UCB/EECS-
2007-129, 2007.

[7] Y.H. Yu and G. Wainer. eCD++: an engine for executing
DEVS models in embedded platforms. In Proceedings of
the 2007 summer computer simulation conference, pages
323–330. ACM Digital Library, 2007.

[8] B.P. Zeigler, T.G. Kim, and H. Praehofer. Theory of Mod-
eling and Simulation. Academic Press, Inc., Orlando, FL,
USA, 2nd edition, 2000.

[9] B.P. Zeigler and H.S. Sarjoughian. Introduction to
DEVS modeling & simulation with JAVA: Developing
component-based simulation models. Arizona Center for
Integrativ Modeling & Simulation, 2003.


