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Automated driving may lead to much higher road capacities, combined 
with increased road safety, increased driver comfort, and lower costs. 
Although this vision may hold ground in the long run, first a transi
tional period will take place in which increasing percentages of vehicles 
with many levels of automation will drive on the world’s road networks. 
This transition poses a fundamental scientific challenge. The models 
used today to simulate and predict vehicular traffic are not valid to 
predict emergent properties of traffic flows under increasing amounts 
of vehicle automation. For example, there is no idea of how drivers of 
nonautomated vehicles will respond to other drivers reading their morn
ing papers behind the steering wheel or the consequences of such inter
actions on traffic safety and capacity. In this paper, the authors do not 
propose a new behavioral theory with which the effects of increasing 
vehicle automation can be predicted. What the authors propose is an 
advanced opensource simulation framework, OpenTrafficSim, which 
makes it possible to extend microscopic models incrementally with 
explanatory mental models, such that new behavioral theories can be 
tested and shared within the community. Given the societal importance 
of predicting the effects on safety and efficiency of vehicle automation, 
the authors sincerely hope this paper will fuel the discussion on how both 
opensource and closedsource simulation software can be adapted and 
made ready for the next generation of traffic simulation models that are 
needed in the coming decades.

The appeal of automated driving for many politicians, leaders of 
industry, and scientists is the potential of much higher road capacities, 
combined with increased road safety and decreased vehicle emissions.

Indeed, higher capacities are possible by taking human drivers out 
of the loop. In countries with well-trained drivers, high-quality cars, 
and high-quality road facilities, the average minimum time headway 
is slightly above 1.5 s (which implies maximum flows of 2,400 vehi-
cles per hour). This headway is close to average human reaction time. 

Clearly, technology can do the job at a fraction of the time and much 
safer, as demonstrated in many field trials over the past 3 decades 
(1, 2). There are also additional behavioral inefficiencies that can be 
resolved with technology, for example, more effective anticipation 
of downstream conditions and more efficient use of traffic lanes.

However, vehicle automation will not take place overnight. A tran-
sitional period of at least 15 to 20 years will take place, during which 
vehicle automation will gradually become commonplace in new vehi-
cles. Many scientists and practitioners foresee a transition through 
five (or six) levels of automation—from none—via partial automa-
tion (with the driver as a permanent supervisor) to full automation 
(SAE J3016). During this transition, (a) increasing percentages of 
drivers with (b) cars equipped with different levels of automation 
will drive alongside drivers with nonequipped cars on road networks 
that (c) are potentially not designed optimally to facilitate safe and 
efficient traffic operations for these mixed traffic flows.

The central challenge for the traffic flow theory and simulation 
community is that there is no unified theory of driving (or even a 
set of candidate theories) yet that enables researchers to quantita-
tively predict the effects of increasing percentages of heterogeneous 
vehicle automation capabilities on capacity or safety during this 
transitional period. How will, for example, drivers of nonequipped 
vehicles respond to other drivers passing at high speeds in tight pla-
toons while reading their morning papers behind the steering wheel? 
It is unclear whether the effective minimum time headway would 
actually decrease under those circumstances. Research shows, for 
example, how reaction time may double in case an accident causes a 
queue to build up (3, 4); perhaps the unfamiliar experience of being 
overtaken by such a platoon may have the same effect.

The obvious reason that existing mathematical models cannot be 
used for car following (5–11) and lane changing (12–16) to predict 
the consequences of vehicle automation is that existing models are 
mostly descriptive of driving behavior. That is, they do not endo-
genously compute behavioral responses of drivers to different traf-
fic conditions or road layouts, for example. Instead, these models 
contain parameters (e.g., reaction time, degree of politeness, risk 
averseness) that are set exogenously and that are calibrated with data 
collected under current traffic conditions. Clearly, researchers do 
not have evidence yet for how nonequipped drivers respond to traf-
fic conditions with, for example, 40% Level 5 automated vehicles 
or for the resulting dynamics. In fact, every change in the driving 
environment (in-vehicle assistance, road layout, traffic regulations, 
environmental conditions, etc.) that may cause structural changes 
in driving behavior (vehicle automation is an extreme example) 
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requires, in the best case, circumstance-specific parameter calibra-
tion and validation of existing microscopic models and in the worst 
case, the identification and estimation of completely new models.

For predicting safety consequences, the situation is even more 
problematic. Most car-following and lane-changing models used 
today are by design collision-free, which means that deriving sur-
rogate safety measures [e.g., time to collision (TTC)] as a proxy for 
safety from simulations is fundamentally flawed. To assess whether 
safety is at risk, explanatory psychological constructs are needed 
that can endogenously predict under which circumstances drivers 
will take risks or make mistakes that may lead to unsafe situations 
and ultimately accidents. However, a small but increasing number 
of papers incorporate behavioral theories into traffic flow models. 
For example, Hamdar et al. proposed a car-following model based 
on prospect theory, in which drivers weigh faster travel time against 
the risk of rear-end crashes (17), and Hoogendoorn et al. combined 
a task–capability interface model with the intelligent driver model 
to predict reaction time dynamics (18).

Treiber et al. concluded that the most probable reason why the 
traffic flow community has stuck to simple descriptive models for 
so long is “the destabilizing effects of reaction times and estimation 
errors can be compensated for by spatial and temporal anticipations: 
one obtains essentially the same longitudinal dynamics, which 
explains the good performance of the underlying simple models” 
(19, p. 71). In hindsight, explanatory psychological constructs were 
not needed to describe and predict most phenomena observed. With 
the transition to partial or full vehicle automation at hand, this is a 
luxury that can no longer be afforded.

There are many phenomena in current traffic that researchers do 
not fully understand, such as the capacity drop and most phenomena 
related to lateral movement. Incorporation of psychological concepts 
in simulation can help in explaining such variations in driver behavior.

The authors of this paper do not propose a new behavioral theory 
with which the effects of increasing vehicle automation can be 
predicted. What the authors propose is an open-source simulation 
framework, OpenTrafficSim (OTS), that makes it possible to extend 
microscopic models incrementally with explanatory mental models, 
so that new behavioral theories can be tested and shared. This frame-
work builds on the design of microsimulation model MOTUS (20) 
with which a number of ex ante evaluations of advanced driver assis-
tance systems have been performed (21, 22). The OTS Framework is 
also designed to facilitate macroscopic and even reservoir simulation 
(23); this paper discusses microsimulation only.

The paper is organized as follows. The next section briefly dis-
cusses some of the research challenges relevant to the transition 
toward vehicle automation. Basic requirements for the design of a 
generic simulation framework that can support this research are then 
derived. The section thereafter discusses the resulting agent-based 
design of OTS, in particular the generic traffic unit (GTU) concept. 
Next, a small experiment with a first prototype is presented. The 
paper finishes with a discussion of results and outlook toward the 
further implementation of the presented framework.

GeTTiNG HumaN FacTOrS  
iN SimulaTiON mODelS

challenges for Driving Behavioral research

In the past decade, many research groups have worked on the behav-
ioral response to in-vehicle information (21, 24) and automation 
systems (25–28), and there are many open research challenges.

Simulating drivers with Level 1 or Level 2 automation systems 
requires an understanding of how and under which conditions these 
systems are used. For example, it is largely unknown whether drivers  
are prepared to give up the steering wheel under conditions in which 
improved efficiency really matters (18). These conditions include 
dense high-speed traffic, under which the task load of drivers is 
already high, but during which the potential gain in capacity from 
vehicle automation is highest. Field trials of connected adaptive 
cruise control systems show that the opposite is true: drivers are 
more likely to turn off such systems under those conditions (29). 
Moreover, many such advanced cruise control systems allow drivers 
to configure the system to their own preferences, including the mini-
mal time headway. There is evidence that under high percentages of 
vehicles equipped with cooperative cruise control, drivers are will-
ing to reduce their headway well below 1 s (30), but the distribution 
of those settings is wide.

When drivers do give up the steering wheel (either voluntarily 
or automatically as in Level 3 automation systems) and substitute 
their role as driver for one as supervisor, additional problems occur. 
In recent studies, researchers concluded that drivers of automated 
vehicles may be vulnerable to fatigue when normal vehicle control 
is restored (25–27). It takes time for a driver to reengage with the 
driving task (especially in the lateral control of the vehicle) after 
a longer period of automatic driving (25). The editors of a special 
issue of Human Factors on automation in vehicles tentatively con-
cluded that one “should not assume that automation can substitute 
seamlessly for a human driver” or “assume that the driver can safely 
accommodate the limitations of automation” (31).

A related challenge is that whereas some in-car innovations will 
make the driving task simpler (lane keeping and adaptive cruise con-
trol), other systems (advisory and information systems) may well do 
the opposite. The reason is that these innovations may provide many 
opportunities for distraction that would likely increase the complexity  
of the driving task (27).

There are also research challenges that to the authors’ knowl-
edge have received little or no attention at all but that are funda-
mental in making predictions (through simulation) of partially 
automated traffic flows. In the view of the authors, the most impor-
tant one concerns the response and driving behavior of unequipped 
(or Level 1 or 2) drivers under increasingly heterogeneous traffic 
conditions with a mix of Level 3 to 5 automation. The complex-
ity of this challenge was pointed out by Zheng in his recent review 
of lane-changing models: in heavy traffic, “a typical lane changing 
decision-making process closely involves at least two players—the 
lane changer and the follower in the target lane. This is because 
the follower is often also required to make decisions as a result of 
someone else’s lane-changing decision. Thus, at least two decision-
making players and processes are involved in the lane-changing 
process in heavy traffic” (32, p. 28). In other words, lane chang-
ing, much more than car following, is an interactive process rather 
than an individual decision-making process, and a similar argument 
goes for gap acceptance, crossing intersections, and so forth. These 
interactions that are already poorly understood may fundamentally 
change if one of the players is an automated or partially automated 
vehicle. To unravel this interaction, experimental methodologies 
other than single driver simulator (or instrumented vehicle) methods 
are needed. Moreover, new mathematical formalisms (e.g., game 
theory) need to be used to quantify these interactions in simulation. 
Much can be learned from pedestrian research [see, for example, 
work by Duives et al. (33)].
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Clearly, these challenges require a huge amount of research in 
the coming years. The paper now focuses on what these challenges 
imply for next generation simulation models.

requirements for OTS

From the human factors literature, the relevant (or at least most pop-
ular) mental constructs and capacities used to explain the driving 
process can be listed:

•	 Workload is a construct that expresses the total amount of 
mental effort [i.e., the amount of information-processing resources 
used per time unit to meet the level of performance required (34)]. 
Workload can be considered a driver state variable [WL(t)] that 
dynamically evolves.
•	 Task capability is a construct that describes the driver’s capa-

bilities to perform driving tasks. TC(t) can be considered a driver 
state variable that is determined by his or her baseline driving skills, 
experience, and so forth, and that may evolve as a result of circum-
stances. The relationship between task demands and capacities has 
been modeled by Fuller (35) and used by Hoogendoorn (18) as the 
task–capability interface model of the driving process.
•	 Situational awareness is a construct that was operational-

ized for air traffic simulation and control by Endsley and defines 
the degree to which a driver is aware of the environment, specifi-
cally elements that are relevant to the driving task (36). Situational 
awareness can also be considered a state variable [SA(t)] that may 
dynamically evolve as a function of workload, task capability, and 
other factors. Different SA(t) variables could exist for different 
stimuli or threats. Awareness closely relates to the next construct.
•	 Subjective perception translates the physical driving environ-

ment into what the driver subjectively makes of it.
•	 Subjective task complexity is a construct that is often used but 

is not clearly defined. Teh et al. interpreted complexity as a measure 
for traffic conditions (denser traffic is more complex) (34), whereas 
Edquist et al. considered it a measure that rates the clarity of visual 
information (37). Subjective task complexity or simply complexity 
can be understood as a state variable [STC(t)] that rates the difficulty 
of the driving environment.

In the view of the authors, the key to incorporating these constructs 
in a modular and generic way is by formulating them as dynamic 
(explanatory) models for the parameters common to most micro-
scopic traffic simulation models, such as reaction time and sensitivity 
to stimuli (e.g., distance gaps, speed differences). For example, in their 
literature review, Hoogendoorn et al. concluded that the changed 
role of the driver from automation Level 1 upward may have a sub-
stantial influence on driver workload and situational awareness and 
result in an increase in reaction time (38). The delineation in work by 
Treiber et al. was used to identify a potential list of key parameters 
and their possible explanatory constructs (19):

•	 Reaction time can probably be expressed as a function of most 
constructs (workload, task capability, and situational awareness) 
and a range of driver and vehicular characteristics.
•	 Estimation capabilities of stimuli such as speed differences, 

headways, and so forth (inputs to car following and lane changing) are 
typically subject to subjective perception and situational awareness.
•	 Both temporal and spatial anticipation are manifestations of 

the predictive capabilities (with different degrees of accuracy) 

of humans. These capabilities may be modeled via subjective 
perception or through a dedicated predictive mental component.

There are, of course, many additional variables relevant for car 
following and lane changing, such as those that govern decision 
making (affected by all constructs), inertia (related to situational 
awareness and subjective perception), and aggressiveness (related 
to personal characteristics and probably also workload).

mODular aGeNT-BaSeD DeSiGN  
FOr micrOScOpic TraFFic SimulaTiON

Overall Structure of the OTS Simulation process

To facilitate simulation of these mental processes (with implemen-
tations of the appropriate psychological models), the authors pro-
pose the simulation process schematically outlined in Figure 1. In 
this scheme, GTU is a person or vehicle. On-GTU units (OGUs) 
represent technologies that either enhance the vehicle (e.g., vehicle 
automation) or assist the driver (e.g., route navigation and information 
systems).

Following is a simplified algorithm for a single simulation step:

Step 1. The simulation environment provides each driver with 
the prevailing system state (infrastructure, controllers, positions, 
speeds of drivers in the vicinity, etc.).

Step 2. If perception is activated, the state may be altered as a 
result of limited visual capacities, for example. However, a driver 
assistance system (OGU) may enhance perception.

Step 3. Mental constructs, if instantiated, are updated. This step 
may further degrade or enhance subjective perception and likewise 
affect some or all driving parameters (reaction time, sensitivity, etc.).

Step 4. The fundamental difference of OTS with other simulation 
environments is in the update (reevaluation) scheduling of driving 
behaviors (car following, lane changing, gap acceptance, etc.). This 
scheduling is not the product of the (arbitrary) choice for a numeri-
cal time step, but a process that is explicitly modeled. For example, 
Hoogendoorn et al. showed that action points have a wide distri-
bution and are themselves a function of the traffic circumstances 
and possibly many other factors (39). On the basis of a plan (route 
and destination) and the driver’s experience (if instantiated), the 
driver computes a continuous (possibly two-dimensional or three-
dimensional) path over the infrastructure for the next n time units 
by using the models that are implemented for car following, lane 
changing, and gap acceptance. The schedule interval n can be as short 
(e.g., one time step) or as long (20 s) as needed and can be modeled 
as a function of circumstances. To compute such a path, the driver 
needs to make assumptions (predictions) about nearby drivers. 
In the example in the second part of the paper, this point is further 
explained. With computing this path come intentions (flashing lights, 
next time instant the driver wants to reevaluate, etc.). A driver assis-
tance system (OGU) may change or override this path. Reevaluation 
of this path will occur either at the intended reevaluation interval or 
as soon as circumstances dictate.

Step 5. If physical models for the driving task have been instanti-
ated, the models execute the driving intentions, resulting in activities 
of the driver’s body and the vehicle’s clutch, pedals, transmission, 
and engine that result in actual physical movement.

Step 6. During the interval n, the Distributed Simulation Object 
Library (DSOL) simulation environment executes the movement 
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resulting from the computed path, unless circumstances require 
reevaluation before the simulation of the path is finished.

GTu and Other OTS classes

The core objects in OTS simulations are GTUs. The GTU class hier-
archy has two major branches: person and vehicle. In many aspects, 
these classes are mirrors of one another. A person has perceptive 
capabilities, and so does a vehicle (with sensors). A person has men-
tal capabilities, and a vehicle has computing capabilities. Figure 2 
schematizes the GTU in relation to some of the other main classes.

The key message is that with this GTU design (Figure 2) and the 
simulation process organized as in Figure 1, OTS offers maximum 
flexibility for microsimulation:

•	 In the simplest scenario, perception simply copies the system 
state (list of vehicles, network, etc.); both mental and experience 
are dummy objects; and vehicle contains only parameters (length, 
maximum acceleration, etc.). The result is a normal microsimulation.
•	 Every person can drive any type of vehicle according to any 

combination of models for both planning and driving, either very 
simple or highly complex.
•	 All vehicle automation or person information systems are 

modeled through OGUs that may affect all person or vehicle objects, 
parameters, and methods.

Finally, this design and the underlying DSOL simulation engine also 
allow for true multimodal simulation, that is, a simulation in which 
multiple modes plan and move in the same (virtual) environment.

•	 The mover class of a person can also be used to model pedes- 
trians, cyclists, motor drivers, barge or plane pilots, and, conversely, 
the vehicle class can represent any type of car, tram, train, vessel, 
and so forth.
•	 The DSOL engine, briefly introduced below, makes it pos-

sible for objects to run on different clocks (i.e., it can be updated 
with their own time steps).

OTS Software Design

The OTS framework has been built on top of the open-source simu-
lation package DSOL (40, 41). The DSOL package is a Java-based, 
object-oriented, multiparadigm simulation environment that prepares 
for distributed and parallel execution of the simulation model. The 
DSOL package adheres to the best practices in the simulation field, 
such as strict separation between simulator and model (42), strict 
notions of time and state (43), state-of-the-art random number gen-
erators (44, 45), probability distribution functions (46), and a clear 
structure for experiments and run control conditions (47). That DSOL 
is object oriented makes it easy to extend the available simulation 
objects in the library such as simulators, experiments, and statistics, 

FIGURE 1  Schematic representation of the microscopic driving process in OTS (CF 5 car following; LC 5 lane 
changing; GA 5 gap acceptance).
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into traffic-specific building blocks for OTS, while still being able 
to use all other simulation objects that have not been specialized for 
use in a traffic environment (48). The use of Java has several key 
advantages over other programming languages: the availability of a 
very large ecosystem of open-source libraries, the ability to compile 
into stand-alone programs that can run on any computer with a Java 
Runtime Environment installed, and platform independence (e.g., 
Windows, Mac, and Linux).

The DSOL package is a multiparadigm simulation platform that 
runs event scheduling simulations [DEVS (Discrete Event Systems 
Specification)], time stepped models [DTSS (Discrete Time Sys-
tems Specification)], or differential equations [DESS (Differential 
Equation Systems Specification)]; for more information, see work 
by Zeigler et al. (42) and Wainer (49). Combinations are also pos-
sible, and extensions such as cell-based models and agents have 
been built as well (50).

illuSTraTive experimeNT

In this section, a small experiment is presented. The authors do not 
propose or implement a new mental model; they adjust parameters 
of driving behavior (reaction time and desired speed) to demonstrate 
why integration of human factors into simulation is crucially impor-
tant for predicting emerging effects on both traffic efficiency and 
safety caused by changes in the driving environment.

Test case Description

The authors investigate the phenomenon of viewers jam. Such traf-
fic jams arise at the location of an incident on the other direction of 
the freeway. While drivers pay attention to the incident, their driver 
behavior deteriorates as speeds drop and reaction times increase (51). 
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The authors simulate this finding on a 5-km single-lane road stretch 
with an incident at 3 km. The authors assume that driver distraction 
grows linearly from zero to a maximum value over 600 m up to  
300 m upstream of the incident and stays at its maximum over  
300 m upstream of the incident (see Figure 3a). In the initial state 
are 300 vehicles at their desired speeds and desired headways, with 
the first vehicle at x = 0. Simulations are of 1,000 s with a numerical 
time step Δt = 0.25 s.

Car-following behavior is simulated with the intelligent driver 
model+ (52); the discrete equation for acceleration of a single 
vehicle is given in Equation 1. The following parameters are used:  

b0 = 0.75 m/s2, and the default desired speed v0 is set at 120 km/h. 
Other values are taken from work by Schakel et al. (53): maximum 
acceleration amax = 1.25 m/s2, maximum comfortable decelera-
tion b = 2.09 m/s2, stopping distance s0 = 3 m, and desired headway  
T = 1.2 s. Vehicle length l = 4 m is used. Finally, s is the net headway, 
and Δv is the approaching rate to the leading vehicle.

Reaction time Tr is incorporated in a similar way as in the human 
driver model (19). The input to Equation 1 is delayed, but drivers 
do anticipate each time step Δt in the period [t − Tr, t) to compensate 
for Tr by assuming constant acceleration of both the ego vehicle 
and the leader.
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FIGURE 3  Illustrative experiment: (a) layout, (b) influence of Dv0 on downstream flow, (c) influence of DTr on number of collisions,  
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The change in desired speed is given in Equation 3 (driver and 
time step index omitted for clarity), where v0

def is the default desired 
speed of 120 km/h and Δv0 is the maximum change for a fully dis-
tracted and most affected (d0 = 1) driver. The change Δv0 ≤ 0 is 
changed between scenarios.

iv v d v= + ∆ (3)0 0
def

0

The change in reaction time Tr is done in a similar way, accord-
ing to Equation 4. Here, T r

def is the default reaction time of 0.5 s, 
whereas ΔTr is the maximum change for a fully distracted and 
most affected driver. The change ΔTr ≥ 0 is changed between  
scenarios.

iT T d Tr r r= + ∆ (4)def

Test Scenarios and performance indicators

Twelve scenarios were defined to assess the effects of Δv0 and ΔTr 
on the resulting traffic operations. For six, Δv0 = {0, −10, −20, 
−30, −40, −50} km/h with ΔTr = 1 s, and for the remaining six, 
Δv0 = −50 km/h with ΔTr = {0, 0.25, 0.5, 0.75, 1.25, 1.5} s. The 
change ΔTr = 1 s is missing in this array because it is part of the 
first six scenarios. For each scenario, 30 runs were used as d 0 is a  
random value.

A number of indicators were derived to assess traffic efficiency 
and safety. The overall efficiency was measured by the average out-
flow (the production) expressed in Equation 5, where t1 is the time 
when the first vehicle crosses the downstream end and t300 is the 
time when the last vehicle crosses the downstream end.

q
t t

299
(5)

300 1

=
−

For large values of Tr, collisions may occur. A collision occurs in 
case a specific vehicle has a negative net headway for a consecutive 
number of time steps (headways < 0 are truncated to 0 in Equation 1 

to prevent simulation artifacts). Because collisions were allowed, 
the TTC value was computed:
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results

The influence of Δv0 and ΔTr on downstream flow is shown in Fig-
ure 3, b and c. For Δv0 = 0 km/h, there were no disturbances at all 
and temporal anticipation was completely able to compensate for 
reaction times as high as 1.5 s. For Δv0 = 10 km/h, there was a strong 
drop because disturbances occurred. Together with Tr

def = 0.5 s and 
ΔTr = 1 s, mild disturbances produced a strongly deteriorated traffic 
efficiency. For larger values of Δv0, efficiency dropped slowly as 
disturbances are slightly larger. Even for Δv0 = −50 km/h, values 
of ΔTr up to 0.75 s seem to have little influence on efficiency, with 
downstream flow being about 2,250 vehicles per hour. Apparently, 
temporal anticipation is relatively accurate for reaction times up to 
1.25 s. For large values of ΔTr, seriously deteriorated traffic flow 
efficiency occurred.

Figure 3, d and e, shows the influence of ΔTr on the number of 
collisions and TTC between 0 s and 4 s (i.e., critical values). Both 
indicators show a similar effect: larger reaction times deteriorate 
safety. For ΔTr = 1.25 s, 1.1 collisions occurred on average, whereas 
ΔTr = 1.5 s produced five collisions on average. TTC values between 
0 s and 4 s are also frequent for these values of ΔTr. For ΔTr = 0.75 s 
and ΔTr = 1 s, TTC values between 0 s and 4 s also occurred, but 
not often.

The influence of Δv0 on the number of collisions was not present 
because with ΔTr = 1 s being used within these scenarios, no col-
lisions are produced. The influence of Δv0 on TTC is present, with 
smaller values of Δv0 reducing the infrequent number of low TTC 
values at ΔTr = 1 s even further, namely from 143.57 at −50 km/h 
to 26.43 at −40 km/h. The strength of the disturbances thus affects 
safety.

Figure 3f shows the spatial distribution of small values of TTC 
up to 8 s for one scenario, with Δv0 = −50 km/h and ΔTr = 1.25 s. 
From the distribution, it can be seen that because of the temporal 
anticipation, traffic remained relatively safe away from the incident. 
Near the incident, very critical TTC values occurred, and for this 
scenario, 1.1 collisions occurred on average. In the range of 1,000 m 
to 2,500 m, TTC values between 2 s and 8 s occurred. This result 
is because of jams that move upstream. These moving jams show 
strong decelerations because the large reaction times at the incident 
create very strong decelerations.

Discussion of results

What this experiment illustrates is that by simulating the findings 
of Hoogendoorn et al. (a speed reduction and reaction time increase 
caused by an incident on the other direction of the roadway) (51) 
with a regular car-following model, counterintuitive results may 
occur. The results indicate that increased reaction time does not nec-
essarily create unsafe traffic, at least not if the assumption of Treiber 
et al. holds that temporal anticipation of drivers is usually able to 
compensate the reaction time sufficiently (19). Put simply, drivers 
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have quite effective predictive abilities, and Treiber et al. provide 
fairly convincing arguments for it (19). The question is under which 
conditions this case remains and which determinants govern these 
predictive abilities.

However, if larger distractions are introduced, the results indicate 
that both efficiency and safety deteriorate. In that case, collisions 
occur in the simulation for particular values of ΔTr. In reality, sec-
ondary collisions certainly do take place (also in opposite driving 
directions). Nonetheless, the question again is which critical factors  
will govern the probability of accidents under a variety of condi-
tions. Clearly, if researchers would be able to compute reaction time 
endogenously and sensitivity to stimuli with validated mental models, 
it would open up the possibility of actually predicting both safety 
and efficiency effects through simulation under conditions for which 
current models are not yet valid. These evaluations would further 
improve if researchers were better able to understand how drivers are 
able to make predictions and under which conditions these predictions 
may deteriorate.

cONcluSiON aND OuTlOOk

In this paper, the authors discussed why it is imperative for the 
traffic flow simulation and theory community to start serious col-
laborations with peers in the fields of human factors and social 
psychology:

•	 Most of the microscopic models used today are not predictively 
valid to evaluate ex ante the effects of vehicle automation, because 
they lack explanatory models for the dynamics of critical parameters 
of human drivers, such as reaction time and sensitivity to stimuli.
•	 It is possible to simulate traffic by using findings from human 

factors studies and do what-if analyses, but one must be modest in 
drawing conclusions because of the many assumptions involved 
(in this case, the idea that drivers have pretty strong anticipatory 
abilities) and the limited knowledge of the circumstances under 
which these assumptions are still valid.

The authors also presented a modular agent-based design for the 
open-source simulation suite OTS that provides the objects and 
classes to integrate human factors gradually (as research efforts 
progress) into regular microsimulation modeling. The OTS frame-
work is built on state-of-the-art open-source simulation libraries 
and offers much additional functionality related to visualization 
and network handling. Clearly, the work has just started, and in the 
past year and a half it has been a process of two steps forward, one 
step back. But with support from industry, progress is accelerating.

Given the societal importance of predicting the effects on safety 
and efficiency of vehicle automation, the authors sincerely hope that 
this paper will fuel the discussion on how both open- and closed-
source simulation software can be adapted and made ready for the 
next generation of traffic simulation models that are needed for the 
coming decades.
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