
Vibbi - An Interactive Garment Modeling Tool
What to consider when making a interactive garment modeling tool

Master’s Thesis in Interaction Design & Technologies

ANTON FREUDENTHALER, MALIN THELIN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s Thesis 2018

Vibbi - An Interactive Garment Modeling Tool

What to consider when making a interactive garment modeling tool

ANTON FREUDENTHALER, MALIN THELIN

Department of Computer Science and Engineering
Division of Interaction Design

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2018

Vibbi - An Interactive Garment Modeling Tool
What to consider when making a interactive garment modeling tool
ANTON FREUDENTHALER, MALIN THELIN

© ANTON FREUDENTHALER, MALIN THELIN, 2018.

Supervisor: Marco Fratarcangeli, Computer Science and Engineering
Examiner: Staffan Björk, Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Division of Interaction Design
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Two screenshots of Vibbi, an interactive modeling tool, in action. To the
left are the pattern designs which sewn together becomes the garment simulated
on the right.

Typeset in LATEX
Gothenburg, Sweden 2018

iii

Vibbi - An Interactive Garment Modeling Tool
What to consider when making a interactive garment modeling tool
ANTON FREUDENTHALER, MALIN THELIN
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract

Designing garments is an iterative process which includes pattern creation, drap-
ing, and tailoring, which are difficult skills to master. Garments have a 3D shape
but are created from patterns which are 2D; this introduces a gap in the design
process between prototypes and the finished result. It is believed that this can be
shortened in part by visualizing both patterns and the corresponding garment in
virtual space.

For over 30 years there has been research about digital cloth design [1]. Still, there
are few tools in which the user can both model patterns and simulate the corre-
sponding garment in an interactive way. To address this issue we: conducted a
literature study in the area of CAD tools for garment design, explored related and
available tools on the market, and created Vibbi, an interactive garment modeling
tool. With Vibbi, a user can model differently shaped patterns, choose how these
patterns should be sewn together, visualize the patterns together in a 3D environ-
ment, and finally simulate the patterns as sewn garments.

Although Vibbi is not a completely finished product the development of this high
fidelity prototype has provided knowledge. Thus, our findings include consider-
ations to take when creating an interactive modeling tool for designing virtual
clothes. These considerations can be summarized as: what external tools to use,
how to work, how to model patterns, how to sew patterns together, how to dress
the avatar, and how to simulate the clothes. While these considerations are not
the only ones needed to be taken when creating this type of tool, as they are heav-
ily based on the specific development of Vibbi, we consider them a good start and
guide for anyone who is considering creating this type of tool.

Keywords: Cloth Modeling and Simulation, Computer Aided Design, Interactive
design.

iv

Acknowledgements

We would like to thank our supervisor Marco Fratarcangeli for his help and advice
during the course of the project, as well as for involving us in his research. We
would also like to thank Pontus Pall for his support with the Deform Plugin.

Malin Thelin, Anton Freudenthaler, Gothenburg, June 2018

vi

Contents

1 Introduction 1
1.1 Background . 2
1.2 Purpose & aim . 2
1.3 Outline . 3

2 Technical background 4
2.1 Designing clothes . 4
2.2 Computer aided garment design . 5

2.2.1 Tangible modeling . 6
2.2.2 Sketch-based modeling . 7
2.2.3 Interactive modeling . 7

2.3 A simulation pipeline of cloth & garments 8
2.3.1 Physical cloth model . 9
2.3.2 Triangulation . 9
2.3.3 Particle system in a cloth mesh 10
2.3.4 Position based dynamics . 11
2.3.5 Mass spring model . 11
2.3.6 Basic iterative methods for solving linear systems 12

2.4 Vivace: A Practical Gauss-Seidel Method for Stable Soft Body Dy-
namics . 12

2.5 Unity . 12
2.5.1 GameObjects & Components 12
2.5.2 Game loop . 13

2.6 Deform Plugin . 13

3 Methodology 15
3.1 Agile software development . 15
3.2 Scrum . 16
3.3 Feature driven development . 17
3.4 Rapid application development . 18
3.5 Pair programming . 19
3.6 Version control systems . 19
3.7 Kanban . 19

4 Process 20

viii

Contents

4.1 Literature study . 20
4.2 Tool exploration . 20

4.2.1 Exploring related work . 21
4.2.2 Unity . 21
4.2.3 Vivace & Deform Plugin . 21

4.3 Planning . 21
4.4 Implementation . 22

5 Implementation 24
5.1 Phase 1: Simulation of a Generic Piece of Cloth 24

5.1.1 Define a polygon shape . 24
5.1.2 Triangulate a shape . 25
5.1.3 Create a mesh . 27
5.1.4 Give the mesh to Vivace . 28

5.2 Phase 2: A 2D interface for modeling cloth 28
5.2.1 Cloth model . 29
5.2.2 User interface . 30
5.2.3 Interaction states . 30
5.2.4 Move a point . 31
5.2.5 Move a line . 31
5.2.6 Add & remove a point . 32
5.2.7 Unfolding the model . 33
5.2.8 Darts . 33
5.2.9 Duplicating the model . 33
5.2.10 Undo & redo . 34
5.2.11 Seams & sewing . 34

5.3 Phase 3: A 3D environment for garments 34
5.3.1 Loading the cloth model . 35
5.3.2 Avatar . 35
5.3.3 Placement of cloth pieces . 36
5.3.4 Camera orientation . 38
5.3.5 Seams . 38
5.3.6 Simulation . 39
5.3.7 Interaction . 40

5.4 Phase 4: Simulation while modeling 41

6 Results 43
6.1 The Vibbi design process . 44

6.1.1 Create pattern pieces . 44
6.1.2 Sew pieces together . 45
6.1.3 Put the pieces in the 3D view 45
6.1.4 Simulate . 46
6.1.5 Make edits . 46

6.2 What should be considered when making an interactive modeling
tool for designing virtual clothes? . 46
6.2.1 What external tools to use . 47
6.2.2 How to work . 48

ix

Contents

6.2.3 How to model patterns . 48
6.2.4 How to sew patterns together 48
6.2.5 How to dress the avatar . 49
6.2.6 How to simulate the clothes 49

7 Discussion 50
7.1 Vibbi . 50

7.1.1 Starting with a polygon shape 51
7.1.2 Modeling patterns . 51
7.1.3 Unfolding . 51
7.1.4 Avatar . 51
7.1.5 Sewing . 52
7.1.6 Placing cloth pieces in 3D . 52
7.1.7 Future directions . 53
7.1.8 What Vibbi produces . 53
7.1.9 How Vibbi can be used . 54

7.2 Process . 54
7.2.1 Literature study . 55
7.2.2 Tool exploration . 55
7.2.3 Implementation plan . 55
7.2.4 Implementation . 56

7.3 Tools . 57
7.3.1 Vivace . 57
7.3.2 Unity . 59

7.4 Considerations . 59
7.5 Computer aided design tool for garments 60

7.5.1 Possibilities . 60
7.5.2 Requirements . 61

7.6 Ethical . 63
7.7 Future work . 63

7.7.1 Interactive, bidirectional editing 64
7.7.2 Intuitive virtual draping . 64
7.7.3 Simulation while modeling . 64
7.7.4 User evaluation of existing tools 65
7.7.5 Simulation of garments on a moving avatar 65

8 Conclusion 66

Appendix A Implementation plan I
A.1 The problem . I
A.2 Phase 1: Simulation of a Generic Cloth II
A.3 Phase 2: A 2D interface for modeling cloth II

A.3.1 Additional features in 2D interface IV
A.4 Phase 3: A 3D environment for garments V
A.5 Phase 4: Simulation while modeling V
A.6 Phase 5: Editing of 3D garments . V
A.7 Phase 6: Additional implementations VII

x

Contents

A.8 Time Plan . VIII

xi

1
Introduction

Making garments is a profession almost as old as mankind itself [2]. Today, compa-
nies in the fashion industry make a significant profit from being good at designing
clothes, taking user needs and requirements into consideration [3, 4]. In addition,
there are also companies outside of the fashion industry interested in designing
clothes. Namely companies that design clothes for virtual characters in video games,
movies, and other media.

The skills required to create a garment, such as tailoring and pattern making, can
take years to master. In essence, designing clothes means that one has to: under-
stand how a sketch of a 3D object can be turned into 2D panels, and finally how
these panels will act when sewn into the previously sketched 3D shape, see Figure
1.1. A daunting task that produces unintentional results, even by professionals;
which leads to the process of designing clothes being quite iterative, and looking at
Figure 1.1 most of these iterations occur between B and D, but also between B and
F.

Figure 1.1: Illustration of the design process of clothes. A) Fashion designer cre-
ates sketch. B) Pattern maker creates pattern. C) Pieces are cut out. D) Pieces
are put on a mannequin and altered. E) Sew final pattern pieces together. F)
Garment can be worn.

Naturally, performing certain steps in this process - e.g., cutting out cloth and
sewing it together - requires a lot of time and material, especially if one is forced
to do it several times in order to reach a fulfilling outcome. Thus, the gap between
the prototype and the finished result of a garment needs to be bridged. One pos-
sible solution to this problem is to use the aid of computers to design patterns in
combination with physically correct simulation of the resulting garment.

1

1. Introduction

1.1 Background

The computer has provided invaluable aid for countless different industries such as
the automotive, construction, and fashion industry. Today, in the fashion industry,
computer aided design (CAD) software is used. Mainly to create the 2D patterns
in an exact, savable, printable, and replicable manner; more seldomly, the CAD
software can show the result of the design on a character.

Using CAD improves the garment design process by for example being able to opti-
mize the amount of fabric needed to cut out all the pieces of cloth. When it comes
to showing the result on a character, the whole process of cutting the fabric and
sewing it together can potentially be skipped, something that saves a lot of time in
the concept development.

In addition to existing CAD software, research into new and different tools to aid in
the garment design process have been going on for the last 30 years [1], and is still
highly relevant. Recent approaches such as Sensitive Couture [5] and DressUp [6]
have each provided different insights into how the process can be improved with the
help of software; exploring the possibilities of simulation at interactive rates, bidi-
rectionality, as well as utilizing our real physical space in order to design garments.

With recent breakthroughs in fast simulation of soft bodies [7], such as cloth, to-
gether with an ever growing interest in tools that can improve the process of design-
ing clothes, there exists many possibilities to further explore this area.

1.2 Purpose & aim

Designing garments today is done in a mostly analogue way, with some aid from
computers, which introduces a gap between the prototypes and the finished result. It
is believed that modeling patterns, using CAD, while simulating garments at inter-
active rates can narrow this gap. The reason being that simulation while modeling
is bringing prototypes and the result into the same medium which will shorten the
amount of iterations needed in the design process. It is also believed that simulation
while modeling can help designers gain intuition about the design space [5]. Also
worth mentioning is that for the virtual garments to be seen as actual results it is
important that the simulation is reliable and physically correct.

Thus, the aim of the project is to create and design Vibbi: an interactive modeling
tool for designing virtual clothes; in order to explore:

What should be considered when making an interactive modeling tool for designing
virtual clothes?

The purpose of Vibbi is primarily to provide practical feedback of the difficulties

2

1. Introduction

of creating a CAD tool for garments but potentially it can also be used to explore
what interactive, bidirectional modeling of clothes teach designers about the trans-
formation between patterns and real garments.

1.3 Outline

Chapter 2: Technical Background delves deeper into the following topics: the design
process of garments, the research area and previous work on CAD tools for garments,
simulation of garments, and the tools that were used during the project: Unity and
Vivace.

Chapter 3: Methodology elaborates on agile software development methods which
ties in with how the work were conducted during the project. Topics include: Scrum,
Feature Driven Development, Rapid Application Development, Pair Programming,
Version Control Systems, and Kanban.

Chapter 4 Process explains what the process looked like during the project from
start to finish. The steps include: doing a Literature Study, Tool Exploration,
Implementation Planning, and finally Implementation.

Chapter 5: Implementation goes through each phase from the Implementation Plan
(which can be found in Appendix A) and explain how and what has been imple-
mented in each phase. To be noted is that while the Implementation Plan consists
of six phases, the Implementation chapter goes through four phases.

Chapter 6: Results presents different garments created using Vibbi in order to show-
case its ease of use, flexibility, and correctness in simulation. The chapter also
explains step by step how the design process in Vibbi works.

Chapter 7: Discussion discusses Vibbi, the process, the tools used, the possibilities
and requirements of CAD tools for garments, and lastly future work. Finally, chapter
8: Conclusion concludes this thesis.

3

2
Technical background

In this section the technical concepts behind the project will be explained. First off:
the design process behind creating a piece of garment in a more general sense without
the involvement of computers. Then different approaches using computer aided
design, including available tools and different digital garment modeling concepts
such as Tangible Modeling, Sketch-Based Editing and Interactive Editing will be
more thoroughly explained. After that, a pipeline for interactive simulation of cloth
and garments is explained step by step. Finally, tools that was used during the
project like Vivace and Unity are shortly presented.

2.1 Designing clothes

What will be described here is one typical process of designing and creating a piece
of garment (see Figure 1.1) out of many. Designing a piece of garment can be done
individually or by a group of people with or without the aid of a computer. In order
to both:

1. Provide the reader with the necessary insight into the analogue garment design
process.

2. Later draw comparisons to, and proper conclusions about computer aided
design in garment design.

This text will explain the garment design process as performed by a group of people
unaided by computers.

The people involved in creating a piece of garment are a fashion designer, a pattern
maker, and a tailor. While these different roles can be, and often are, overlapping -
e.g., one person can have two or all three roles - in a professional setting the roles
are typically divided since each role requires a significant amount of expertise to
perform.

Typically, the first step in creating a piece of garment is for the fashion designer to
create sketches of the finished product. The fashion designer usually sketches a rough
model of a human body and then draws the garment on top. Often incorporating

4

2. Technical background

some kind of pose or motion that showcases the garment in a lively manner.

The sketch is then given to and interpreted by the pattern maker. Their task
is to translate this sketch of a 3D object into flat, 2D panels, patterns. These
are consequently used as blueprints for cutting out the fabric which is then sewn
together, by the tailor, to create the garment.

However, the step from sketch to patterns tend to not provide the most favourable
of results. In actuality, the fashion designer and pattern maker will need to work
iteratively together to reach a pattern shape that will truthfully turn into the initial,
sketched design when sewn together. This iterative process is usually carried out
by draping, a process where one cuts out the fabric pieces and put them up, with
needles, on a mannequin to try to achieve the desirable result [8].

Here the fashion designer and tailor will together try to change the garment into
what is desired and then the pattern maker can create new patterns based on these
changes. Naturally, it is not unusual for the fashion designer to also update the initial
sketched design based on insights earned from working with real fabrics. Eventually,
this process will lead to satisfactory patterns which are sewn together into a finished
garment.

2.2 Computer aided garment design

Fashion being a huge field, computer-aided garment design has grown into an in-
dustry of its own [5]; something that is evidenced by the myriad of CAD-tools avail-
able such as VStitcher, Marvelous Designer, GRAFIS, OptiTex (see Figure 2.1),
StyleCAD, GeminiCAD, and PadPattern.

Figure 2.1: Four different CAD programs for designing garments. (a) Marvelous
Designer. (b) VStitcher. (c) GRAFIS. (d) OptiTex.

VStitcher and Marvelous Designer are well established tools on the market for creat-

5

2. Technical background

ing garments for virtual characters. These tools provide the user with both a 2D and
3D user interface, which allows the designer to bidirectionally, i.e., both in 2D and
3D, edit the clothes and then observe the result represented in the other dimension.
This approach makes it possible for a designer to directly see the impacts of their
edits, cutting down on the time between iterations. These tools are primarily made
to provide the designer with the opportunity to explore, try, and design without
having to care as much about time and material cost. A shortcoming with these
tools is that the simulation they provide is not interactive, i.e., takes several sec-
onds to compute, which interrupts the flow of the user. They can also be considered
inaccessible for small business and individuals due to their cost and business models.

The other tools mentioned StyleCAD, GeminiCAD, GRAFIS, OptiTex, and Pad-
Pattern are more focused on creating patterns for the purpose of ultimately sewing
the clothes in reality. Thus, some are purely for pattern drawing and grading (i.e.,
making different sizes for the same kind of garment), lacking the possibility of sim-
ulating the result on a 3D avatar - with a few exceptions. Ultimately providing the
professional pattern maker with a comprehensible tool that proves more useful than
drawing by hand, but at the same time not taking full advantage of the computer.
Which, understandably, is due to both earlier and current lack in both computer-
and software-capabilities to simulate cloth in 3D; a very computationally heavy task.

Beyond these different tools on the market, there is also a lot of research surrounding
different approaches to further develop and improve the process of designing clothes.
These different approaches have been dealt into three broader categories: Tangible
Modeling, Sketch-based Modeling, and Interactive Modeling.

2.2.1 Tangible modeling

Tangible modeling offers a computerized, physical model in order to offer the user a
more comprehensible way of designing clothes. In regards to iteratively improving
the design and doing the creative work, one of the more important steps in the
physical process of designing clothes is draping. Together with a digitalized, tangible
model it is possible to offer the designer the prospect of using their creativity in
draping together with the versatility of a computer.

One such approach is Dress-Up, which uses a physical mannequin as a 3D interface
to design clothes [6]. To interact with the mannequin the users are supplied two
tools - in the form of computer mice - one for drawing surfaces of cloth, and one for
cutting the cloth. Thus, they interact with the tools on the physical mannequin and
can at the same time see their results on the computer screen. On the computer,
the GUI offers tools such as making seams, undo, and help with symmetry.

6

2. Technical background

2.2.2 Sketch-based modeling

Sketch-based modeling can be conducted in many different ways. Typically, the
goal is to generate virtual 3D models given 2D sketches. The process of sketch-
based modeling can be broken down into three steps, namely, sketch acquisition,
filtering and interpretation [9].

Sketch acquisition is the step of acquiring the sketch from the designer, be it that
they sketched something on paper, a tablet, or with a mouse on a computer screen.
If the sketch is drawn on paper for example, sketch acquisition would be the act of
scanning the paper to bring the sketch in to the computer.

The second step includes noise reduction, which is meant to ease the process of
the third and last step: interpretation. The interpretation is done by mapping the
filtered sketch to a sequence of 3D modeling operations such as drawing points and
lines at appropriate positions. The most difficult interpretation to accomplish is to
figure out at which depth the points are.

One approach for a sketch-based interface for clothing virtual characters lets the user
sketch clothes on the front and back side of a character separately, in order to later
be able to generate 3D clothes by measuring the distances between the character
and the sketch as well as the curvature of the sketched lines [10].

While the Sketch-based editing provides a designer with the opportunity to make
their hand-drawn sketches into an immediate reality it provides little accuracy as
the software has to approximate the sketches into something it can actually render
on the screen. Additionally, hand-drawn illustrations tend to be, especially when
compared to digitally created drawings, not symmetrical. As symmetry is essential
in the world of designing garments, this is an issue.

2.2.3 Interactive modeling

Interactive modeling implies that the user is provided with immediate feedback
of the actual result while the model is being edited. Compare it with document
printing previews. Before printing the document, it is possible to see how the printed
result will look like and thereby necessary changes can be made before valuable time
and paper is consumed. Desirably, but not always necessary, the feedback should
be provided as the product is being created, since it will save resources in each
individual step. The reasoning becomes more apparent if the modeling is conducted
in a different medium from which the actual result is going to end up in, such as in
the case of pattern and garment making.

Patterns are drawn on paper or cloth, which is 2D, and garments are sewn and fitted
for humans, which are 3D. Sensitive Couture is an interactive garment modeling and
editing tool which simulates garments while they are being modeled and edited [5].

7

2. Technical background

Plushie is another interactive design system which simulates the result, which in
this case is a stuffed plush toy, as it is being designed [11].

To achieve interactive editing is to provide the user with a simulation that can
update itself at interactive rates. Interactive rates is set at a minimum of 30 frames
per second (FPS) and maximum of 60 FPS which gives the simulation ∼33ms and
16ms per frame respectively to do all of its calculations. Achieving this type of rapid
simulation of cloth is a challenge addressed with several different techniques, some
of which are described in the following section.

2.3 A simulation pipeline of cloth & garments

Simulation of cloth and garments can be done in different ways. In this section a
simulation pipeline for achieving interactive simulation is described in order to pro-
vide the reader with necessary insights of the novel technology used in this project.
This particular pipeline was chosen due to its ability to achieve interactive cloth sim-
ulation. Other pipelines exists but were not considered. Comparison of simulation
methods is outside the scope of this thesis.

Simulation is a way to test things out without using the real world. This comes with
some different, obvious advantages such as cost, time, safety, and ethics [12]. For
example, in the real world, one cannot try out every possible configuration of how
a house should be built - it would be too expensive. But with a simulation there is
an opportunity to try out many more options, for figuratively no cost.

According to professor David. M Gaba:

“Simulation is a technique... to replace or amplify real experiences...
that evoke or replicate substantial aspects of the real world in a fully
interactive manner [13].”

Simulation is used in many different areas such as health care [13], entertainment,
education, manufacturing, communication, space technology, and economics. Con-
sidering the iterative nature of garment design, using simulation here is applicable
as well.

To simulate a piece of garment, one first has to simulate a piece of cloth. The
simulation of cloth is highly complex due to the properties and behaviour of fabric
[14, 15], such as wrinkles, bending and shearing [16]. The next step of simulating a
garment is to model the behaviour of cloth sewn together with other pieces of cloth.

There are three types of cloth-modeling techniques, geometrical, physical, and hy-
brid [14]. Geometrical techniques do not consider the physical properties of cloth.
This gives them the advantage of being very fast, but inaccurate. The earliest vi-
sualization of cloth in computer graphics was done using geometrical approaches,

8

2. Technical background

such as the method presented by Weil in 1986 where they modeled clothes using
Catenary curves [1]. Other geometrical based modeling methods include cylindrical
folding [17], 3D panels [18] and mapped sinusoidal functions [19].

In contrast, physical techniques try to model the way cloth behaves in reality, some-
thing which can be done in many different ways, typically depending on whether
there is a need for speed or accuracy. The first application for physical cloth simu-
lation appeared in 1987 with the work of Terzopoulos et al., while the first garment
simulations first appeared in the 1990s [15]. Physically based modeling methods in-
clude finite element [20, 21, 22], finite volume [23], elasticity [24, 25], particle system
[26, 27, 28] and mass spring model [29, 30, 31, 32, 33, 34, 35].

Generally, in computer graphics and animation, appearance and visual realism is
more important than physical accuracy [14]. However, with the purpose of simulat-
ing the behaviour of garments when put on a model, e.g., to visualize how the cloth
drapes and folds, physical techniques have to be utilized. Thus, in this project a
physical model is considered.

2.3.1 Physical cloth model

There are several physically based techniques to create cloth models. A relatively
easy and pragmatic way is to use particle systems, position based dynamics, and
to utilize mass-spring models [15]. These concepts will be further explained in the
following sections.

A piece of cloth is usually constructed on computers as a 2D or 3D surface. Such a
surface can be modeled as a geometric shape using Bezier curves or B-splines [36],
which can more generally be interpreted as a polygon mesh [37]. Polygon meshes
are built up by a set of vertices and edges in 3D space. A triangle is the most simple
example of a polygon mesh, where the corners are the vertices and the lines between
them are the edges. Thus, a more complex polygon can be constructed using a set
of triangles (see Figure 2.2) and the process of doing so is called triangulation [38].

2.3.2 Triangulation

Triangulation is considered a trivial problem and several different algorithms for it
has been described [38, 39, 40]. Instead, focus in research has been on creating fast
algorithms and it has been proven that the lower bound on the time required to
triangulate n points in two dimensions or higher is O(n log n) [41]. More triangles
means better looking cloth and more realistic simulations but it also comes with
higher computational cost.

Sometimes in computer graphics it is also desired to have control over the size of
the triangles being created in order to increase or decrease granularity [42]. De-

9

2. Technical background

Figure 2.2: Triangulated mesh of a polygon, shaped like a tank top.

launay Triangulation is a constrained and robust triangulation that, in particular,
avoid narrow triangles that can form when using naive triangulation algorithms
[43]. There exist algorithms which constructs Delaunay Triangulation which also
are asymptotically optimal [44].

2.3.3 Particle system in a cloth mesh

In a triangulated cloth mesh the vertices become the particles of the particle system
(see Figure 2.3). Each of these particles are then considered as point masses, which
are interacting with the neighboring particles using forces computed from their rel-
ative positions. Particle systems are among the simplest and most efficient ways
to define rough models of cloth with relatively small computation times, while still
providing visual realism [15].

Figure 2.3: Particle system modelling a dress [15].

10

2. Technical background

2.3.4 Position based dynamics

An approach presented by Müller et al. position based dynamics is a framework
for modelling a constrained particle system [45]. Before position based dynamics
was presented in 2007, one approach to solve the simulation of dynamic systems
in computer graphics was to compute forces according to Newton’s second law of
motion (see Equation 2.1). Then applying these forces to the particles computing
their velocity, and ultimately their new positions (see Equation 2.2).

F = ma (2.1)

v = v0 + a∆t

x = x0 + v∆t
(2.2)

In position based dynamics however, the approach is to omit calculation of the
velocities, instead working directly on the positions of the particles. The main
advantages of this approach is its controllability, easier collision handling, as well as
providing a simple way to resolve penetration. According to Volino et al. collision
detection is a bottleneck in the speed of cloth simulation [15].

2.3.5 Mass spring model

The Mass Spring Model is a physically based model which is proven to be useful
for real time simulation of cloth [16]. It models cloth as a network of elastic springs
which hold points of mass together. To determine how the points move the accel-
eration a is determined according to Newton’s Second Law of motion (see Equation
2.1).

The mass m is given and the force F is calculated as the sum of internal and external
forces that acts on the point. Internally, the points are pulled and pushed by the
connected springs, which want to be in a state of rest. It is common that the internal
forces are linearly approximated by using so called Hookean springs [16]. Hook’s law
states that the force F applied by a spring is directly proportional to the stiffness
k and the displacement of the spring (see Equation 2.3). Externally, the points are
pulled and pushed by different environmental conditions and actors, such as gravity
and wind.

F = −k(L− L0) (2.3)

The Mass Spring Model is considered to have more accuracy than known geometrical
models and also to be faster than other physical models [16].

11

2. Technical background

2.3.6 Basic iterative methods for solving linear systems

Basically, clothes can approximately be physically simulated as systems of linear
constraints. There exist plenty of ways to solve linear systems, among them some
iterative methods which are frequently used in computer graphics since they tend
to require less memory usage than direct methods. Two basic iterative methods for
solving linear systems are Jacobi and Gauss-Seidel [46].

2.4 Vivace: A Practical Gauss-Seidel Method for
Stable Soft Body Dynamics

Vivace is a recently presented solver for sparse systems of linear constraints, which
employs a practical Gauss-Seidel method for stable soft body dynamics [7]. Vivace
enables the animation of 3D soft objects discretized as large and irregular, triangular
or tetrahedral meshes and has been demonstrated to be beneficial for parallel im-
plementation of Projective Dynamics [47] and Position Based Dynamics [48], which
are two methods that can be formulated as linear systems.

2.5 Unity

Unity is a game engine and a development platform with great support for creating
2D and 3D games. This includes a real time framework in the form of a game loop.
One of Unity’s strengths is that it allows for deployment to plenty of different plat-
forms. Unity provides its user with easy to use, drag and drop design possibilities,
as well as scripting using C#. It has a complete framework for rendering, applying
physical conditions, and collision handling.

Unity also has its own asset store where extensions made by the public can be shared,
which allows developers to reuse implementations done by others. More importantly,
Unity models surfaces and 3D objects as triangulated meshes and includes plenty of
functionality and documentation for creating a 2D or 3D modeling tool.

2.5.1 GameObjects & Components

Unity uses an architectural, programming pattern known as Entity-component sys-
tem (ECS). The gist of this pattern is that all objects present in a scene are sim-
ply empty containers for different components. These components provide different
types of functionality to an object, such as rendering, physics, collision detection etc.
Consequently, ECS provides great flexibility when adding or removing functionality
from objects.

12

2. Technical background

In Unity the objects are called GameObjects and the components are simply known
as Components. For example, a Component that every GameObject has is ’Transform’
which describes the object’s position, rotation, and scale - see Figure 2.4.

Figure 2.4: A GameObject known as ’Player’ which only contains the Compo-
nent ’Transform’ which states that the GameObject is positioned ten steps in the
Z-direction, rotated 180 degrees around the Y-axis, as well as scaled five times its
original size in every direction.

Adding or removing Components from aGameObject, as well as changing the vari-
ables can be done both in the Unity editor as well as with C# scripts.

2.5.2 Game loop

Every GameObject has three main functions, Awake(), Start(), and Update().
Awake() and Start() is only run once in the lifetime of a GameObject - as soon as it
is activated - while Update() is continuously called by the Unity game loop. Awakes
are called before Starts, usually Awake() is not needed unless for example another
GameObject’s Start() function needs a variable initialized.

2.6 Deform Plugin

Vivace can be accessed in Unity through the DeformPlugin. The DeformPlugin
provides the Vivace engine by exposing the API of the underlying technology. While
there are eleven different classes provided with the plugin - see Figure 2.5 - only five
of them are of interest: DeformManager.cs, DeformBody.cs, DeformObject.cs,
DeformCloth.cs, DeformCollider.cs, and MeshUtils.cs.

The DeformManager is responsible for managing the simulation between Vivace and
Unity. It manages this by keeping track of the gravity and wind of the simulation
as well as all of the DeformBodies - i.e., objects created in Unity that have either
DeformCloth or DeformObject as a Component -, and the DeformColliders. A

13

2. Technical background

Figure 2.5: Class diagram of Deform Plugin, which exposes the functionality of
the Vivace engine.

representation of the DeformBody and DeformCollider objects, i.e., their meshes,
positions, rotation and scale is sent to Vivace. In turn, Vivace applies the set
gravity and wind to all of the DeformBodies, solves the linear relationship between
all the vertices in the scene, and then continuously sends back information to the
DeformManager of their updated state.

The difference between a DeformCloth and DeformObject is the mesh. DeformCloth
gets its mesh from MeshUtils.CreateClothMesh() which returns a rectangular
’patch’ of a user defined size and resolution. In contrast, the DeformObject can
have any type of mesh which can either be entered directly in the Unity editor or
by using scripts.

A DeformCollider can be in the shape of either a box, sphere, capsule, or a plane.
It is also possible to set the position, size, and rotation of the collider. As the name
implies, a GameObject with the DeformCollider component will act as a collision
object for any DeformBodies in the scene. The position, shape, and size is sent to
Vivace at initialization, but as the colliders are static, rigid objects they are never
updated after that.

14

3
Methodology

Being a software development project, the method used in the project is a combina-
tion of several different agile software development methodologies. Therefore, agile
software development as well as the relevant methodologies using the same concepts
therein will be described in this chapter.

3.1 Agile software development

Agile Software Development (ASD) is a category of software development methods
that includes several different approaches, which have some common denominators
that define them as agile. The most prominent of these denominators is that the
developers work in iterations, usually short iterations that generally lasts one to four
weeks. These iterations tend to include all the different steps needed to produce a
full-scale piece of software such as planning, requirements analysis, design, coding,
testing, and documentation [49]. Other denominators include: face-to-face commu-
nication, have the developers in the same location, and emphasize working software
as the primary measure of progress.

Working in iterations provide several advantages to having one long software devel-
opment life-cycle, such as in the counterpart to agile software development methods
known as ’Waterfall’ methods: see Figure 3.1. For example, it allows the developers
to continually during the process get feedback from their customers, thus increas-
ing the chance of ultimately creating a piece of software that the customer actually
wants. Other advantages is the increased quality and polish that comes from con-
tinually planning and testing the product. Since the developers are provided with
a much clearer focus due to short iterations they are more probable to produce
more focused work as well. In conclusion, using ASD methods reduces the risk of
producing poorly made software.

15

3. Methodology

Figure 3.1: Illustrating the difference between a waterfall and agile working pro-
cess.

3.2 Scrum

Scrum is a framework used to achieve ASD. Using Scrum consist of having a team,
conducting certain events and managing certain artifacts [50]. The team consist of
developers, who do the work of delivering a product, and a product owner, who is
responsible for maximizing the value of the product delivered by the developers. To
assist the organization, the developers, and the product owner, there should also
be a Scrum Master who is responsible for supporting and promoting Scrum as it is
described in the Scrum Guide.

The events conducted by the team are called Sprints, Sprint Plannings, Sprint Re-
views, Sprint Retrospectives and Daily Scrums. Sprints are short time periods in
which a usable increment of the product is delivered. During Sprint Planning it
is decided what should be delivered in the upcoming Sprint. Sprint Reviews are
conducted after Sprints to manage what is done and what potentially has to be con-
tinued in the next Sprint. During the Sprint Retrospective the team can evaluate
their previous work process and decide upon improvements for the future. Daily
Scrum is a short meeting where the work of the day is brought up.

During the process, a Product Backlog, which contains descriptions of what is to
be delivered, and a Sprint Backlog, which contains detailed descriptions of what is
to be delivered during the current Sprint, is managed to provide an overview. A
Sprint Backlog is created during Sprint Planning by selecting a set of tasks from the
Product Backlog.

16

3. Methodology

3.3 Feature driven development

Feature driven development (FDD) is a feature-centric, ASD model with focus on
design and construction of quality software [51]. Like other agile models, FDD is
describing an iterative process where the final product is being built incrementally.
As the name implies, the product is delivered feature by feature. A feature is a piece
of functionality that brings value to the client, has an estimated cost, which also can
be scheduled and prioritized [52]. Features are typically derived from requirements,
user stories and use cases but also from emerging issues such as bugs or dependency
changes.

The motivation behind FDD is to ease the effort of planning, managing and moni-
toring an ASD project. This is done by unifying the requirements and the planning
with a feature-centric approach. User needs and requirements are defined as piece
wise features which serves as work packages and tasks during development. The
process is divided into fixed time periods ”timeboxes” in which a set of features are
developed.

Figure 3.2: Overall structure of an FDD project [52]. Illustrating how features
are revised, implemented and tested in iterations.

17

3. Methodology

FDD consists of five phases:

1. Develop an Overall Model

2. Build a Features List

3. Plan by Feature

4. Design by Feature

5. Build by Feature

During the first three phases it is estimated how many time boxes is necessary to
complete the project. This is made possible by determining the content, time needed
and order of each time box. This includes figuring out a scope and context for the
software project as a whole, as well as deriving specific features and grouping them.
A set of features with similar priority will be the content of a specific time box.
When the project reaches the designated start of a time box, the included features
are designed according to their complexity and dependencies to later be built by
coding and code inspection.

3.4 Rapid application development

Rapid application development (RAD) is an ASD approach to develop software, and
just like ASD it puts less emphasis on planning and more on an adaptive process
[49]. More specifically, RAD proposes that products can be developed faster and of
higher quality by:

• Continuously producing prototypes of the intended software.

• Re-using software components.

• Following a schedule that defers design improvements to the next iteration.

• Keeping communication between team members informal [49].

Typically, when using RAD the developers will use a Rapid Development Language
(RDL). These are programming languages that offers speedier implementation than
do traditional third-generation languages such as C and C++ [49]. RDLs usually
offer the developers built-in tools and libraries that speed up certain parts of software
development, the drawback being that they tend to reduce the flexibility of what
can be developed using the language.

18

3. Methodology

3.5 Pair programming

Pair programming is a software development technique where programmers code in
pairs rather than individually [53]. Typically, one person is coding while the other
one is actively reviewing and suggesting different courses of action. This practice is
believed to improve both software quality and learning [54].

3.6 Version control systems

Version control systems (VCS) allow software developers to collaboratively write
code and handle revisions. It is an important aspect during any software develop-
ment process, and especially when using agile methods. The primary tool used by
most software developers for revision control is Git [55]. Other tools include SVN,
Mercurial, and Perforce.

3.7 Kanban

Kanban is a way of organizing the work during a project, and synergizes well with
ASD methods [56]. In essence, Kanban is a ’to-do’ list that works well for larger
projects with many subtasks. The progress and process of the project is visualized,
usually in the form of Post-its fastened on a Kanban board. Each Post-it has a
simple description of some task that needs to be done for the project. The tasks can
be organized according to their feature and importance, giving the team members
a strong visual representation of the project.

New tasks are added to the board according to the agile method used in the project,
and tasks are assigned by the members picking a Post-it that they want.

19

4
Process

This chapter describes our process to explore CAD tools for garment design in
order to find out how the design process of garments can be improved through
digital tools. The project was performed for twenty weeks during which there was
a literature study of related work and technology, an exploration of relevant tools,
a plan made for the implementation of a high-fidelity prototype of a CAD tool for
garment design: Vibbi, and finally the implementation of Vibbi.

4.1 Literature study

During the first four weeks of the project a literature study was performed. Per-
forming the literature study meant reading about the fundamentals of computer
techniques for fashion textile modeling as well as exploring earlier work done in sim-
ulating user designed clothes such as Sensitive Couture [5] and DressUp [6]. It also
included getting an understanding for the process of designing clothes, as well as
getting the bigger picture of how a physics engine doing soft body animation, more
specifically cloth simulation, works.

The research area as well as most of these technological concepts have been explored
earlier in chapter 2: Technical Background.

4.2 Tool exploration

Simultaneously while doing the literature study there was an exploration of available
tools. Both tools that exhibited some parts of our potential end result - i.e., tools
to design clothes - as well as tools to be used during the course of the project, such
as Unity and Vivace.

20

4. Process

4.2.1 Exploring related work

A couple of existing design tools were explored in order to gain knowledge about
the state of art. As explained in section 2.2: Computer Aided Garment Design
there are plenty of tools which specifically aid the process of designing the patterns
for clothes, as well as a few that also try to simulate the sewn garments. Most of
the tools were explored by reading corresponding papers and watching tutorials on
YouTube, while for example Marvelous Designer was downloaded and used.

Using Marvelous Designer inspired the planned end result of Vibbi. As proven by
the numerous case studies of its use in designing clothes for different games, the
interface and user experience of Marvelous Designer is well designed [57]. As the
nature of the project did not allow for a full development of the more user centric
parts of Vibbi, taking inspiration from an already well established tool proved useful.

4.2.2 Unity

Unity provide their new users with several tutorials of different difficulty levels to-
gether with the software itself. They also keep an extensive library of various video
tutorials on their website [58]. Thus, during the beginning of the project several
of the built-in tutorials were completed in order to get a feel for how Unity works.
During the course of the project the online video tutorials were regularly consulted.

4.2.3 Vivace & Deform Plugin

Provided with the Deform Plugin were a couple of test scenes. These test scenes
showcased the capabilities of Vivace, such as the DeformManager, DeformBodies,
and DeformColliders, see Figure 4.1. Exploring these test scenes provided insight
into the details of how the Deform Plugin works and possibilities of transforming
the functionality of the plugin into Vibbi.

As Vivace - and therefore also the Deform Plugin - was continuously updated during
the course of the project, new test scenes and functionality was opened up. For
example sewing capabilities and control over the friction between DeformBodies
and DeformColliders did not exist until week 10 of the project.

4.3 Planning

A plan was made describing the things to accomplish during the twenty weeks of
the project, see Appendix A. In accordance with FDD the time was planned into six
different phases, see Table A.1. Each phase had their own topic to address and tasks

21

4. Process

Figure 4.1: Test scenes provided with the Deform Plugin.
A) Shows the simple interaction between a piece of cloth (DeformCloth) and a
DeformCollider in the shape of a cube.
B) Shows a DeformCloth attached to vertices of a DeformCollider on the charac-
ter’s back.
C) Shows a character that is dancing with a DeformObject-skirt attached to its
hips.
D) Shows two pieces of DeformCloth sewn together.

that needed to be accomplished. At the same time it was naturally accounted for
that some phases would run either longer or shorter than planned, and that much
of the work of different phases can be done asynchronously.

Each phase consisted of a group of features which all had similar dependencies and
functionality. The features were derived from the previous studies of literature and
related work. Each phase was planned with the presumption that new knowledge
about the technology would be gained from its execution which might result in
having to change future plans accordingly, as in accordance with RAD. For the very
same reason, features were further elaborated only when their particular phase was
reached, as described in FDD. No particular roles were stated for the project.

4.4 Implementation

A major part of this project was the implementation of Vibbi. Vibbi was built
incrementally and features were discussed and prioritized on a weekly basis. Features

22

4. Process

Phase Description

1 The simulation of a generic virtual cloth with any shape using Vivace.

2 A 2D user interface in which the user can create pieces of cloth.

3 A 3D view with an avatar to which the pieces of cloth can be added.

4 It shall be possible to do edits whilst the simulation is running.

5 Edits shall be possible directly on the simulated 3D garments.

6 Additional: Scaling or moving avatar or multilayered garments.

Table 4.1: The six different planned phases of the implementation.

were mostly worked upon individually but in some cases in pair. The Unity editor
was used to build the user interface and to manage all the resources needed for the
project. The ECS was used to create the different models and interactions in the tool.
Particular behaviours were scripted using C#, making use of Unity’s framework. The
Deform Plugin was used to simulate the models as if they were pieces of cloth. The
plan was used as a requirement specification, deciding what should be implemented
and when it ought to be completed. The whole implementation process was managed
using Kanban and the code and resources files were managed with Git as a VCS.

23

5
Implementation

In this section it is described how features were implemented in the order of which
phase they belonged to. To be kept in mind is that while the phases were approached
in the order that they were planned, some features from certain phases were done
earlier, and some features were done later. The implementation was conducted using
Unity, Deform Plugin for Vivace and C#.

5.1 Phase 1: Simulation of a Generic Piece of
Cloth

The first step in the process was to create a shape and then simulate it with Vivace.
To achieve this there were four features that had to be developed in Vibbi:

1. Define a polygon shape that represents the boundary of the generic piece of
cloth to be simulated.

2. Triangulate the shape in order to be able to simulate the generic piece of cloth,
as explained in section 2.3: A simulation pipeline of cloth & garments.

3. Create a mesh in order to render the cloth piece in Unity

4. Give the mesh to Vivace in order to initiate the simulation.

5.1.1 Define a polygon shape

In the Unity Editor it is possible to create and edit a polygon shape using the
component PolygonCollider2D which is provided by Unity. The polygon collider
is instantiated as a pentagon and is defined by a list of coordinates in 2D space,
which also serves as corners of the shape. With a provided editor mode it is also
possible to create more complex polygons by adding and moving the corners of the
shape. With this functionality it was possible to try out triangulation and simulation

24

5. Implementation

before implementing a way for the users of Vibbi to model their own shapes during
run time.

Meanwhile, an editable polygon model for Vibbi, simply known as EditableModel,
consisting of boundary points and lines had started to take shape; more about that
in subsection 5.2.1: Cloth model.

5.1.2 Triangulate a shape

The boundary points of the polygon model also served as boundary points for the
triangulation. In the beginning, a naive triangulation algorithm was used but it was
eventually replaced with Triangle, a constrained Delaunay triangulation algorithm
[59], referred to as CDT in the following text. Both algorithms takes a polygon,
(list of 2D points), as input and gives vertices and indices as output. Triangle also
conveniently handles holes in the polygon.

Simulation of cloth looks better the more triangles there are in the mesh. Also,
more triangles means more vertices, which in turn means better looking collisions.
However, using CDT to finely triangulate a larger polygon shape takes a lot of time,
in the order of seconds, see Figure 5.1. Therefore there was an attempt at making
a faster triangulation algorithm.

Figure 5.1: Comparison between bending stiffness and different granularity of
triangulation of a piece of cloth 3x3 in size.
A) Triangulation granularity 0.01, number of triangles = 1218. Time to triangu-
late is 0.2 seconds. Subsequent result of simulation on the right.
B) Triangulation granularity 0.001, number of triangles = 11688. Time to trian-
gulate is 17.4 seconds (87 times slower). Subsequent result of simulation on the
right.

Both attempted solutions at a faster algorithm involved the function CreatePatch
supplied by the plugin and reached through MeshUtils.cs. CreatePatch can create

25

5. Implementation

a rectangular mesh with uniform triangulation, and a high resolution really fast.

Figure 5.2: Illustrating the two different algorithms using the CreatePatch func-
tion to triangulate a polygon.
A) Shows a solution where the first step is to find the largest inner rectangle of
the polygon. Then the second step is to triangulate the remaining pieces of the
polygon.
B) Shows a solution where the first step is to create a patch as large as the
bounding box of the polygon. The second step is then to find all the vertices of
the bounding box that are also inside the polygon, virtually ’cutting off’ the other
vertices.

See Figure 5.2 for a visualization of these two proposed algorithms. The first of these
proposed algorithms - algorithm A in the Figure - involved the following steps:

1. Find the largest patch possible in the polygon.

2. Then triangulate the remaining pieces using CDT.

3. Combine into one mesh.

This solution proved difficult to solve due to the fact that the problem of finding the
largest inner rectangle of any polygon is an algorithm in itself that requires O(mn)
time [60] (where m is the number of rows of vertices and n is the number of columns),
i.e., worse than for CDT. Secondly, the foundation of the CDT algorithm would have
to be reworked as it had to consider the already existing vertices on the boundary
of the patch. These vertices would also have to be defined as being on the boundary
at some point. In conclusion, the solution required advanced adjustments which

26

5. Implementation

were predicted to result in the same time, or even worse, needed for triangulation
compared to CDT.

The second algorithm - algorithm B in Figure 5.2 - was basically the opposite and
involved the following steps:

1. Create patch as large as the bounding box of the polygon.

2. Find the subset V of vertices that are in the patch and also inside the polygon.

3. Find the subset T of triangles that involve the vertices of V.

4. Use V and T to create a mesh.

Finding the subset of vertices and then also the corresponding subset of triangles
that represent the polygon meant having to go through the list of triangles and
comparing vertices with the polygon subset, an operation that takes O(n2) time.
Thus, this approach also proved to be insufficient.

5.1.3 Create a mesh

A mesh is defined by two things: a list of vertices and a list of triangles that connects
these vertices, after triangulation a mesh will have these two things. A Mesh in Unity
is mainly handled by two components, the MeshFilter and the MeshRenderer. The
MeshFilter stores information about the mesh to be rendered, while the MeshRen-
derer stores the information concerning the rendering of the mesh, such as lighting
and material, as well as being responsible for the rendering during runtime.

Figure 5.3: The process of creating a mesh. Coordinates representing the poly-
gon shape, and the initially empty mesh is sent to Triangulatable, which calls
Triangulator, which calls ConditionedTriangulator. ConditionedTriangulator
then sends back a list of vertices and a list of triangles calculated from the coordi-
nates. These lists are put in the mesh which lastly, is sent back to the MeshFilter.

In Vibbi, a polygon that has been triangulated according to CDT will then update

27

5. Implementation

[DllImport (" deform_plugin ")] private static extern int
CreateDeformableObject (Vector3 [] vertices , Vector2 [] uvs ,
uint numVertices , int [] indices , uint numIndices , Vector3
location , Vector4 rotation , Vector3 scale , float
distanceStiffness , float bendingStiffness);

Listing 5.1: CreateDeformableObject: the function used to pass data to Vivace.

the Mesh in MeshFilter with the outputted vertices and triangles, see Figure 5.3.

5.1.4 Give the mesh to Vivace

The Deform Plugin is used to give the mesh to Vivace. A new GameObject is created
with the DeformObject component attached. The DeformObject is initialized with
the mesh stored in EditableModel which in turn initialize three boolean arrays:
fixedVertices, attachedVertices and friction. These values determines which vertices
should be immobile, attached to a body or affected by friction during the simulation.
As the simulation is started the information stored in each initialized DeformObject
is passed to Vivace with a function called CreateDeformableObject, see Listing
5.1.

5.2 Phase 2: A 2D interface for modeling cloth

The second step in the process was to create a standalone 2D interface which allowed
for modeling cloth. This required a few different things, such as:

1. A cloth model in order to make the computer able to aid the designer. A
model which the computer can interpret allows for more advanced edits such
as unfolding.

2. A user interface which allow the user to utilize the novel technology that Vi-
vace offers and to understand how to use Vibbi, see Figure 5.4

3. Operations for changing the cloth model to allow the user to create different
types of patterns.

4. A seam model that defines for Vibbi what a seam is, in order to let the user
define seams.

5. Operations for sewing cloth models together so that the user can define how
the patterns form a garment.

28

5. Implementation

Figure 5.4: Vibbi’s user interface with a 2D modeling view to the left and a 3D
simulation view to the right.

5.2.1 Cloth model

Vibbi models cloth as a polygon shape. A polygon shape is defined by its boundary
and hence a model for creating and editing a closed boundary was made by design-
ing a few different GameObjects in Unity. The idea was to have boundary points
which the user can move freely in two dimensions and boundary lines which visually
connects the points. In Vibbi, EditableModel is the GameObject which represents
the cloth model, and it consists of a list of BoundaryLines and BoundaryPoints,
see Figure 5.5.

Figure 5.5: The EditableModel in Vibbi, highlighted is a BoundaryPoint and a
BoundaryLine.

When adding a cloth model to Vibbi, it always start out as a simple square consisting
of four points and four lines. By adding additional points to the existing lines, and

29

5. Implementation

then moving them, the user is able to create more complex polygons.

5.2.2 User interface

Vibbi required a space in which the modeling could take place, a typical canvas.
Unity’s documentation describes a UI system which allows for creating user inter-
faces fast and intuitively [61]. This UI system came in handy when creating the UI
for Vibbi.

Vibbi’s UI can be divided into three parts: screen overlay, model view and simulation
view, see Figure 5.4. The screen overlay is the UI which will always stay the same,
regardless of screen size, and which contains the toolbar. The toolbar, which is
illustrated in Figure 5.6, allows the user to: add new cloth models to the screen,
change material of a cloth model, and to switch between the different interaction
states. Initially, the tools in Vibbi could only be accessed through keyboard shortcuts
which are still left in the software allowing for faster interaction.

The model view is the UI in which the modeling of patterns is conducted. Unity
provides different tools for this type of view and interaction. With Orthographic
Projection it is possible to look at a 3D world without perspective so that it appears
2D, and together with ray tracing as well as other mouse to world position translation
techniques it is possible to track what the user is doing with the mouse.

Simulation view is where the garments are displayed and simulated. In this view a
camera with Perspective Projection is used. The two cameras are initiated to take
up 3/5 and 2/5 of the width of the screen respectively, which creates the division in
the UI.

Figure 5.6: Vibbi’s toolbar from the left: Add cloth model, Change material,
Select, Add points, Remove points, Add darts, Add seams, Unfold and Duplicate.

An avatar silhouette was added in the 2D view which later was size correlated with
the avatar in the 3D view.

5.2.3 Interaction states

Vibbi uses interaction states to let the user do different actions with the same kind
of interaction. E.g., the interaction state determines what should happen when a
user performs certain interactions, such as clicking on a BoundaryLine. The user
has seven different tools available to them: Select, Add Point, Remove Point, Dart,

30

5. Implementation

Sew, Unfold, and Duplicate, see Figure 5.6. These tools are toggled so that only
one of them can be active at a time, thus moving between the different interaction
states. For example, the difference between being in the interaction state ’Select’
and ’Add Point’ is that when the user clicks on a line during the former, the line
will be selected, and during the latter, a point will be added on the line.

5.2.4 Move a point

The BoundaryPoints of an EditableModel make use of Unity’s predefined Sphere.
Sphere is a GameObject which simply has a sphere mesh in its MeshFilter compo-
nent. By also adding a SphereCollider it is possible to track if the mouse pointer
is currently pointing at the object and if it is being dragged or not. By dragging a
point the user can move it with two degrees of freedom, see Figure 5.7.

This is implemented by adding yet another Component to the points, called Movable.
Movable is a script which makes use of the above mentioned functionality and trans-
lates how the mouse is moving over the screen into how the point should move
through the world. The same Component can be used to move another GameOb-
ject similarly as long as it has a Collider, e.g., the whole EditableModel itself.

Figure 5.7: Illustrating how the user moves a boundary point.

5.2.5 Move a line

The BoundaryLines of an EditableModel is composed similarly to the Boundary-
Points. A big difference is that the lines can change their size depending on where the
points are moved. This behaviour is scripted in a Component called SimpleLineBehaviour.
SimpleLineBehaviour holds a reference to two points and by utilizing Unity’s game
loop framework, the line can continuously track the points and update its position
and orientation according to theirs.

By dragging a line the user can move it with one degree of freedom, see Figure 5.8.
This is implemented with a Component named MovableLine which translates the
distance the mouse has moved over the screen into how far the line should be moved
in the direction of its normal vector. This is done by actually moving the two points
that the line is continuously tracking the positions of.

31

5. Implementation

Figure 5.8: Illustrating how the user moves a boundary line.

5.2.6 Add & remove a point

The EditableModel has a component called BoundaryPointsHandler which keeps
track of the model’s boundaries. To add a new point the user simply has to click
somewhere on one of the boundary lines, see Figure 5.9. When a point is added, the
existing line is shortened and a new line is created so that the model always stays
connected.

Similarly, it is possible to remove a point by clicking on it while in the correct
interaction state (i.e., ’Remove Point’), see Figure 5.10. This action will also remove
the line which were connected to the point being removed and connect the two
neighbouring points with the line that is left.

Figure 5.9: Illustrating how the user adds a new boundary point to the cloth
model.

Figure 5.10: Illustrating how the user removes a boundary point from the cloth
model.

32

5. Implementation

5.2.7 Unfolding the model

Unfolding is done by choosing a line that the whole model should be unfolded
through. Each point, except the ones connected to the line, is copied and their
positions are mirrored through the line, see Figure 5.11. To keep the same connec-
tivity as well as the polygon shape, lines are added and updated to be part of the
new boundary. This is all scripted in BoundaryPointsHandler.

Figure 5.11: Illustrating how the user unfolds a cloth model.

5.2.8 Darts

Darts are created by dragging the mouse across an editable model while using the
’dart tool’, see Figure 5.12. The initial shape of the dart is a diamond consisting
of four boundary points and lines. The dart serves as a hole in the mesh which is
created by giving the boundary positions of the dart to the triangulation. The seam
of the dart has not been implemented, but can be added manually with the ’sewing
tool’.

5.2.9 Duplicating the model

It is possible to duplicate an existing EditableModel. This is mainly done with
Unity’s built-in functionality for copying GameObjects. By adding the boundary
objects as children to the EditableModel certain functionality was gained inherently.
Among other things, child objects tracks the parent and stays relatively positioned
in the case the parent is moved. Also if the parent object is copied, all children are
copied as well. Vibbi used this to its advantage but for it to work properly it was
necessary to reinitialize referenced variables in the new BoundaryPointsHandler so
that there would not be a connection between the new model and the old boundaries.

33

5. Implementation

Figure 5.12: Illustrating how the user creates a dart on top of a cloth model.

5.2.10 Undo & redo

A undo and redo framework was added to Vibbi, and some of the initially imple-
mented operations such as adding, removing and moving a point was added to it.
To be able to undo and redo operations, inverse operations were implemented and
Vibbi had to track the history of operations.

5.2.11 Seams & sewing

The user can select two boundary lines, either from the same cloth model or two
different ones, to sew them together, see Figure 5.13. A seam is hence defined by
two lines and for convenience also the EditableModels that the lines belong to are
involved.

To avoid the seam stitches from crossing it was important that the user could define
where the seam starts and ends on both of the lines. To solve this, Vibbi tracks where
on the BoundaryLines the user clicks as the sewing is being conducted and uses the
closest edge as the start position. This is visualized with small notches which is
placed closer to the start of both lines. A seam is further visualized by coloring the
lines with matching color as well as connecting the start and end positions of the
lines with two smaller lines.

5.3 Phase 3: A 3D environment for garments

The third phase in the implementation was to create a 3D environment in which the
patterns and seams could be modeled as garments. To achieve this there were five
features that had to be implemented:

34

5. Implementation

Figure 5.13: Illustrating how the user can sew two cloth models together.

1. Loading the cloth model to 3D in order to put the garment in a space where
it can eventually be simulated.

2. A 3D avatar to hang the garment upon, in order to allow the user to gain an
understanding for how the garment looks on a body.

3. Operations for dressing the avatar so that the user can freely choose how the
avatar should be dressed in their designed garment.

4. A 3D seam model to bring the information from the 2D seam into the 3D
environment.

5. Make the simulation work between Vibbi and the Deform Plugin.

5.3.1 Loading the cloth model

When loading an EditableModel to the 3D view, the EditableModel works as a
template for creating a copy in the 3D window. This copy is a new GameObject
called ClothPiece. The ID, mesh, and material of EditableModel is copied over to
the ClothPiece. The shared ID allows for bidirectional editing, so that edits made
on the EditableModel will immediately be seen on the ClothPiece as well.

When the ClothPiece has been created, the EditableModel that is currently being
loaded will also try to load any seams that are connected to it. Thus, as long as
both ClothPieces that have the same ID as the relevant EditableModels are loaded
to the 3D view, the seam will be loaded as well.

5.3.2 Avatar

There are plenty of meshes that can be found online which models differently shaped
human characters. First, Vibbi used a robot-like avatar from Mixamo [62]. The
reason for this was mainly how simple it was to import it to Unity but also the

35

5. Implementation

potential to later be able to animate the avatar with clothes on, something which is
possible with Vivace but not yet implemented in Vibbi.

Figure 5.14: Illustrating how the avatar is surrounded by two groups of cylin-
ders: white for collision detection and green for adding attachment points.

At the moment Vibbi uses a human-like avatar. This was done mainly to emphasize
that the tool can be used for creating patterns for real garments and not just virtual
ones.

Vivace can, as of yet, not handle collision with a complex mesh such as a human
body in real time. Hence, a set of cleverly placed cylindrical CapsuleColliders are
used to model the surface of the avatar, see Figure 5.14.

5.3.3 Placement of cloth pieces

Vibbi uses a set of attachment points to let the user place cloth pieces on top of the
body of the avatar in the 3D environment. In addition to a few standard, previously
placed attachment points it is possible for the user to add more to the environment
by clicking on the avatar. Currently the attachment points align themselves to a
set of conveniently placed CapsuleColliders and not to the avatar itself, see Figure
5.14.

To place and load a cloth piece to the environment the user simply selects the cloth
and clicks on a desired attachment point. The cloth piece and in particular its mesh
will align to the attachment point’s position and orientation, which is automatically
directed away from the colliders. This way the cloth pieces are always front faced
regardless of which side of the avatar it is placed, see Figure 5.15. The orientation

36

5. Implementation

Figure 5.15: Illustrating how a cloth piece is oriented according to a selected
attachment point which is facing away from the avatar.

matters, especially to avoid seam stitches from crossing. If a cloth piece is rotated
differently from how the user thinks, the seam is likely to be rotated differently as
well.

Figure 5.16: Illustrating two possible ways of preparing a sleeve for simulation
using either two pieces or one piece of cloth.

The flat pieces of cloth and the way seams constrain these together during simulation
introduces an issue: it is not possible to make a one piece sleeve. In reality, a sleeve
usually only requires one pattern piece, which sewn together with itself creates a
cylindrical shape. Hence, a bending algorithm was created to circumvent this issue.
Loading a piece of cloth to an attachment point positioned on top of one of the arms
will automatically bend the piece 180 degrees around the direction axis of the arm,
see Figure 5.16.

37

5. Implementation

5.3.4 Camera orientation

The 3D environment uses a Camera which the user can move around due to a compo-
nent called Orbit. All the movement is done by manipulating the camera’s position
and rotation. It is possible to pan the camera both horizontally and vertically. It is
also possible to move the camera forward and backwards which creates a zooming
effect. Furthermore, it is possible to rotate the camera around a fixed point which
is a certain distance in front of the camera. The fixed point is set to be the avatar’s
position in the 3D environment, which make it seem as if the user is orbiting the
avatar as the mouse is dragged around the screen.

5.3.5 Seams

Similarly to how an EditableModel is converted into a ClothPiece, a seam in 2D
is converted into a seam in 3D, which is a GameObject called GarmentSeam. A
GarmentSeam is defined by the ClothPieces it belongs to as well as a list of vertices.
This list of vertices contains each pair of vertices which are to be constrained during
the simulation, see Figure 5.17.

Figure 5.17: Representation of a typical GarmentSeam. Illustrating how the ver-
tices are ordered in pairs in one list that is later sent to Vivace.

In order to define a seam one first has to find every vertex present on the Boundary-
Lines that are to be sewn. This was done by first defining a linear function between
the two BoundaryPoints on the edges of a BoundaryLine, and then going through
the vertices in the mesh to find which vertices fit in the function. When all the
vertices of both lines have been found they can be paired up.

Since two BoundaryLines are not required to be of equal length, and more impor-
tantly to not contain equally many vertices, a strategy was used in order to achieve

38

5. Implementation

evenly distributed vertex pairs. The vertices present on the start and end positions
of the BoundaryLine are always paired up first, i.e., start with start and end with
end (therefore, in order to not get crossed seams it is important to correctly define
where the start position is). Next, the remaining vertices are paired up using a
divide and conquer algorithm, see Figure 5.18.

The divide and conquer algorithm initially takes the two separate lists of line-vertices
and connects the vertices in the middle of the lists. Then it divides each list into
two new lists, e.g., four lists in total, connects the middle vertices of these lists, and
so on. This continues until there are only two elements or less left in one of the lists.

Figure 5.18: How the vertices of a seam are paired up. 1) Start and end vertices
are paired. 2) Divide and conquer algorithm connects the middle vertex in each
list. 3) Only one element left each in the lists on the right. They get paired up
with the middle vertices on the right.

Vibbi visualizes loaded seams as a bunch of lines between two loaded ClothPieces,
see Figure 5.19. This is done with the LineRenderer component, which draws a
line between a list of positions. These lines are drawn between the actual vertex
positions that are going to be constrained during the simulation.

5.3.6 Simulation

The simulation view offers a toolbar to the user with the options to Unload all
ClothPieces, Start simulation, Stop simulation, and Fix the camera, see Figure
5.20.

Starting the simulation sets the following chain of events in motion. First, the
DeformObject component is attached to all of the ClothPieces in the 3D window.
Next, the DeformManager is reset, meaning it will shutdown the Vivace engine, and
then find all of the DeformBodies - i.e., all the ClothPieces with the DeformObject
component attached. All the DeformBodies are sent to Vivace, and then all the
lists of seam vertices in Vibbi are fetched and sent to Vivace as well. After that the
DeformManager tells Vivace to start the simulation.

Stopping the simulation does not involve shutting down Vivace because that will
make the engine crash. Instead, DeformManager simply stops requesting updates

39

5. Implementation

Figure 5.19: What a seam looks like in Vibbi (3D window).

Figure 5.20: The simulation view toolbar. From left to right: Unload all Cloth-
Pieces, Start simulation, Stop simulation, and Fix camera.

from Vivace. After that all of the original positions and rotations of every Cloth-
Piece are saved before all of the ClothPieces and GarmentSeams are unloaded (i.e.,
deleted) from the 3D window. Next, new copies of the previously deleted ClothPieces
are created using their original positions and rotations. The new GarmentSeams are
automatically loaded together with the ClothPieces.

Fixing the camera simply positions the camera at a user defined position and rota-
tion. Allowing for viewing the designed garments in a consistent manner.

5.3.7 Interaction

It is possible to pinch the cloth and drag it, in order to move it around. This
interaction is done by right-clicking on a piece of fabric, the vertex that is hit with
the mouse will then follow it around, see Figure 5.21. This interaction is handled
by the DeformManager and Vivace.

40

5. Implementation

Figure 5.21: The simulated dress is undesirably positioned due to friction and
stiffness. The user can tug the garment to position the garment differently.

5.4 Phase 4: Simulation while modeling

The fourth phase of the project was to implement functionality for simulation while
modeling. To do this Vibbi had to gain access to each timestep of the simulation
loop of Vivace, in order to be able to update the mesh. While this functionality
partly exists, as one can interact with the simulated garments (see Section 5.3.7),
the full functionality needed to update a mesh did not.

However, a cloth model that has been copied and loaded to the 3D environment can
still be edited. Changes made to the mesh and material will happen in both 2D
and 3D but not during simulation. This is because EditableModel and ClothPiece
shares the same instance of Mesh. It is possible to iterate the design by stopping the
simulation, making a few changes, and starting it once more. Seams are updated
each time a triangulation is made, hence the loaded seams are also updated when
changes are made to the model.

Some strategies were discussed, but not implemented, to be able change the mesh
while the simulation was running. It was decided that changing the length of cloth
should not trigger a complete triangulation of the new shape - since that takes a lot
of time - but rather stretch the mesh by moving the vertices along the boundary
being moved, see Figure 5.22. This stretch can potentially be progressively refined
for better results.

41

5. Implementation

Figure 5.22: Illustrating how a mesh can be stretched by simply moving the po-
sitions of the boundary line vertices.

42

6
Results

Figure 6.1: Six different garments designed by using Vibbi. In the figure the gar-
ments are simulated in the 3D view of Vibbi.

Figure 6.1 illustrates how one can, with seamless effort, design different types of vir-
tual garments using Vibbi. In steps, the user can model differently shaped patterns,
choose how these patterns should be sewn together, visualize the patterns together
in a 3D environment, and finally simulate the patterns as sewn garments.

Vibbi enables the user to see the result in 3D even though the modeling is being done
in 2D. The garments are also simulated using physical parameters such as gravity,
friction, and stiffness which allow for a more real world accurate representation of
the result. Taking this complexity into consideration, the simulation computes in
the order of milliseconds which allows for immediate interaction.

43

6. Results

6.1 The Vibbi design process

In order to design a garment in Vibbi one typically goes through five steps, and
these are:

1. Create pattern pieces.

2. Sew pieces together.

3. Put the pieces in the 3D view.

4. Simulate.

5. Make edits as you wish.

In order to gain a full understanding for this process, each step will be thoroughly
explained.

6.1.1 Create pattern pieces

Every piece of cloth that is to be part of the garment needs to be created in the
model view of Vibbi, see Figure 6.2. A new polygon is created either by pressing
the square polygon icon in the toolbar (furthest to the left) or by pressing ’C’ on
the keyboard.

When a new polygon has been created they are edited into the desired shape by
adding points and moving points and lines around.

Figure 6.2: On the left, four different pattern pieces have been created in the
model view of Vibbi. On the right, seams have been added to make it into a dress.

44

6. Results

6.1.2 Sew pieces together

When the desired pattern pieces have been created the user can sew the pattern
pieces together, see Figure 6.2. To take into consideration is the future orientation
of the pieces in the 3D view, as well as how the start points of the seam will affect
the outcome. Seams can be done after the pieces have been loaded into the 3D view
as well.

6.1.3 Put the pieces in the 3D view

After the previous steps the pieces are put in the 3D view, see Figure 6.3. As
mentioned before, the sewing can take place either before or after this step. As it is
now possible to inspect the seams to see if anything is amiss, it is possible to redo
a seam if it is not as desired.

The user adds their pieces to the 3D window by selecting an attachment point and
a piece of cloth (in any order), and then pressing ’L’. If the user does not chose
an attachment point the piece of cloth will simply be loaded above the character
instead. After the piece has been loaded to the 3D view the user can move the piece
around with two degrees of freedom in order to ensure that the avatar, seams and
cloth pieces are not crossing each other.

Figure 6.3: On the left, the four cloth pieces have been loaded to the 3D view
where the seams are visualized. To the right, the simulation is running with the
same pieces.

45

6. Results

6.1.4 Simulate

When the user is satisfied with the orientation of the pattern pieces and the seams
in the 3D view it is time to simulate, see Figure 6.3. The simulation is started either
by pressing the ’Play’ button above the simulation view or by pressing the space
bar. During simulation the user can right click and drag to move the cloth around,
so it is possible to adjust the garment on the character.

6.1.5 Make edits

Since the simulation of the garment provides new insights for a more desired look,
the user can retroactively make edits to the pattern pieces, see Figure 6.4. While the
simulation is running it is possible to change the material of the fabric. However,
to change the mesh of the cloth pieces it is required that the user first stops the
simulation. This does not require pieces of cloth to be reloaded to the simulation
view, it is handled automatically by Vibbi.

6.2 What should be considered when making an
interactive modeling tool for designing virtual
clothes?

A CAD tool for designing virtual garments can be done in several different ways
depending on the target user and where in the design process of clothes one feels a
need to simplify it. In chapter 2: Technical Background several different approaches
are presented such as Tangible Modeling, Sketch-based Modeling, and Interactive
Modeling - as well as different CAD tools already present on the market. These
different approaches all come with various types of problems that needs to be solved.
However, only considering an interactive modeling tool the problems become more
distinct.

More specifically, by creating Vibbi - an interactive garment modeling tool - the
following points had to be considered:

• What external tools to use

• How to work

• How to model patterns

• How to sew patterns together

46

6. Results

Figure 6.4: Making edits to the previous dress.
In A) the simulation is stopped and thus the new mesh of the front piece can be
loaded to the simulation view.
B) Shows the edited dress while it is being simulated.

• How to dress the avatar

• How to simulate the clothes

6.2.1 What external tools to use

The first point to consider when creating an interactive garment modeling tool is
what other external tools to use. This depends heavily on two things, namely: how
much time there is for development and where the focus of the work is. There is
always a need for a physics engine capable of simulating cloth at interactive rates,

47

6. Results

which is a rare commodity.

If, as with Vibbi, time is short and focus lies on exploring new interactive techniques
such as simulation while modeling and bidirectional editing one should consider using
a third party software or RDL to aid the implementation. For example, there are
tons of different free to use game development libraries and platforms, like Unity,
available [63]. These tools provide a lot of things for free, such as collision handling
and rendering - there is no need to reinvent the wheel.

6.2.2 How to work

Using ASD is good for basically any type of software development project [49].
Working feature by feature, rapidly creating prototypes to try out the software is
a good way to ensure that something of value is being created. How to work when
considering an ASD method is very dependent on the size of the team and length
of the project.

6.2.3 How to model patterns

Modeling patterns can be done in various different ways, for example freehand draw-
ing or shape-editing. Depending on the target users, to be considered is what types
of interactions are necessary for them. Also to be considered is if the users should
be able to create actual, real clothes or if the software should be used as a way to
quickly prototype new designs. As making real garments typically requires a high
level of accuracy for every measurement and to ensure symmetry.

6.2.4 How to sew patterns together

For the patterns to become a garment they need to be sewn together. What one
needs to consider foremost is the actual interaction to define the seam, to somehow
let the user select two different lines, either lines defined as edges of a pattern or
lines defined in the middle of a pattern.

The next thing to consider is how to visually state to the user both how, and that
the seam is defined. With multiple seams present, how the user can differentiate
between them, and at the same time know which lines are sewn to which. Color
is a convenient way of doing this, but has the drawback of not being applicable for
colorblind users. Using color there is also a need to put work into building up a
’color bank’ of strong colors that are not too similar to each other.

The third thing to consider is how the user selects the starting point of the seam on
each line, as well as how this is visually represented.

48

6. Results

6.2.5 How to dress the avatar

One needs to consider how the patterns goes from the 2D modeling view into a state
where they are placed as a garment on an avatar. Dressing the avatar on the com-
puter comes with both possibilities as well as drawbacks. There are opportunities
here to be explored such as changing the size of the avatar to see how the clothes
will fit differently. Most drawbacks comes from the fact that the user is doing 3D
interactions on a 2D screen, thus losing their sense of depth.

One can provide the user with the possibility of moving each pattern piece freely in
the 3D world, in order to provide maximum freedom. While considering that this
can provide a lot of problems for them as well. One can also assume that since the
patterns are to become garments, they should be placed on the avatar, and thus
provide a way for the user to place their garments on top of it, e.g., the attachment
points found in Vibbi. In reality when creating patterns one defines each piece as
to where they belong, for example ’Front’ or ’Back’. This requires either some sort
of classification system which can become confusing and restricting for the user -
especially if creating a program that can handle multiple layers of cloth - or some
sort of natural language interpreter which is technically complex to make it work
flawlessly.

6.2.6 How to simulate the clothes

Representing the actual result digitally can be done in different ways, e.g., with 3D
garment models or simulation. In reality, the result can be tried out on a person
who can effortlessly walk around and give visual and subjective feedback. Interac-
tive simulation is required in order to achieve equal amount of feedback digitally.
Simulating clothes in a realistic manner is a complex task which constrains what
models can be used for both patterns, seams, and garments. Inherently it can also
limit the amount of interactions possible for the designer. E.g., the models decides
whether or not bidirectional editing is possible. Hence, it is important to carefully
consider which type of simulation to use.

49

7
Discussion

In this section the work is discussed in several parts. First off: Vibbi is discussed
as a tool for designing garments. After that, the process, tools used as well as the
considerations are discussed and evaluated. Then, creating a computer aided design
tool for garments using novel technology as well as its possibilities and requirements
are discussed. Finally, potential ethical issues and future work is mentioned.

7.1 Vibbi

In this section, Vibbi is discussed as a tool for designing garments. This is divided
into discussing some of its features, what it can produce, and what it can be used
for.

Vibbi is intended to showcase and explore the potential of integrating quick sim-
ulation in the process of designing garments. The tool allows the user to model
differently shaped patterns, choose how these patterns should be sewn together, vi-
sualize the patterns together in a 3D environment, and finally simulate the patterns
as sewn garments. This variety of features is rare on the market and what exist
is sometimes considered inaccessible or insufficient. For example, to gain access
to VStitcher one has to contact one of its distributors and Marvelous Designer is
available as a $ 50.00 monthly subscription.

The decisions made for Vibbi’s features are based on observations of related work as
well as literature studies of the design process of garments. A decisive factor for every
decision was whether or not a feature was required in order to showcase simulation
while modeling. These opinions are our own, a user evaluation of Vibbi has not
been conducted but would definitely be a great way of continuing the work. It was
deemed unnecessary to user evaluate Vibbi in its current and earlier states mainly
because usability was not the focus. Testing Vibbi when some level of interactive,
bidirectional modeling is achieved is highly considered. User tests could answer
what type of interactions are desired by the designer in the 3D view and how are
they implemented in an intuitive way.

50

7. Discussion

7.1.1 Starting with a polygon shape

Starting the design process with a polygon only marginally increases the speed in
which new patterns can be created. This solution is merely beneficial for imple-
mentation, since it has less complexity than for example free drawing. Most desired
would be a mix of using pre-made pattern templates and being able to draw freely
line by line. Creating and saving template patterns for later use should also be con-
sidered, especially since pattern creation is typically initiated by editing an already
existing ’base’ pattern.

7.1.2 Modeling patterns

Creating different simple patterns works well but Vibbi is missing functionality for
making detailed, more advanced patterns. The greatest reason for this is its inability
of freely drawing curved boundaries. Drawing curves is an important functionality
when designing patterns but it was given low priority since simple patterns were
enough for demonstrating interactive modeling.

7.1.3 Unfolding

Unfolding works fine for the typical use case in which the user unfold a pattern once
to create symmetry but it has currently no restrictions which can put the user in a
hassle. No further work was conducted in order to prevent this or to figure out how
unfolding should work more in detail. We endorse freedom while designing with the
possibility to regret one’s choices. Having that said, implementation of a framework
for undoing and redoing actions was instantiated but rather quickly realized to be
a too time consuming task to complete.

7.1.4 Avatar

Having an avatar silhouette proved to be a intuitive way of figuring out general size
for patterns but sometimes exact measurements are believed to be required, e.g.,
to make sure that two patterns have the same metric length or to match it with
standardized measurements.

Furthermore, it would be interesting to change the avatar to whichever one chooses.
It is relatively simple to change the avatar manually using Unity, and it can be
implemented in Vibbi relatively simply as well, it was just not prioritized for the
project. Changing the avatar would let the user both explore how garments change
for different types of bodies - expanding their intuition of the design space - as well
as being able to have their own body with exact measurements to try clothes on.

51

7. Discussion

7.1.5 Sewing

Selecting the sewing machine and then selecting the cloth edges to be sewn together
is an interaction which simply works, it is closely related to the mental model of
sewing. Not as intuitive, is having to indicate where the seam should begin. This
becomes an issue since automatically sewing selected edges correctly together is a
nontrivial problem to solve. The interaction is not intuitive but luckily not compli-
cated, it becomes simple after it has been taught.

Even harder than having to select where to start sewing is sewing while taking into
consideration how the cloth is going to orientate in 3D. The solution we found was
to orientate the cloth pieces consistently, namely that the front of the cloth (the side
seen while modeling) should always point out from the avatar. Something which
potentially can be more intuitive and hence worth consideration, is the interaction
to sew directly in 3D once the cloth has already been oriented.

Visualization of seams in 2D and 3D proved to be very useful since sewing tend to be
complicated to get right at the first attempt. It increases the speed in which the user
understands how it works. It also proved useful during implementation, especially by
showing which vertices are paired. This particular technicality is something which
we are uncertain whether it should be shown to the user or not. It is good in the way
that it explains why and how certain edges get folded. Best would be to have seams
which are not as restricted to the technical model, potentially connecting vertices
along one edge with points picked freely along the other.

7.1.6 Placing cloth pieces in 3D

Attachment points proved to be a nice and quick way to initiate patterns in 3D. It
is intuitive and allows the user to skip plenty of excise in translating and rotating
the cloth.

The interactions which Vibbi allows for in 3D are still limited though. To be able to
move the pieces with two degrees of freedom was much better than being completely
bound by the attachment points. Since it is hard to predict how a user would want
to place pieces we emphasize freedom. Aids and shortcuts, such as the attachment
points, should be provided where possible but it should still be possible to rotate
and translate the pieces with three degrees of freedom.

Another attempt in creating freedom was the algorithm for bending the mesh ini-
tially in the 3D environment. It is convenient that the bending is made automatically
but it is also a restriction. Knowing how much the user want to bend the mesh is
impossible to know for each specific case. The approach has potential but intuitive
interactions for letting the user bend the mesh, either in relation to the avatar or
freely, are required.

52

7. Discussion

7.1.7 Future directions

No edits made to the 2D patterns while the simulation is running will be transferred
to the 3D garments. The Deform Plugin does not allow for making changes to the
meshes during the simulation. Even if it did, a strategy for translating potential
new vertices from 2D to an already ’curved’ 3D mesh is required.

No edits can be made directly on the garments in 3D. Since simulation while mod-
eling was not reached, no work was put into interactions that would alternate the
garments directly. The plan was to allow the user to tug the hemlines of sleeves, an
interaction not so different from moving a line, except that it is in 3D and typically
includes moving more than one line. This would also require a model for what a
hemline actually is. Potentially the user can define it similarly to how a seam is
defined but preferably Vibbi should figure it out with the existing information. On
typical clothing, all the lines which are not sewn are part of a hemline but it is a bit
harder to define which lines are part of the same hemline.

With this said we would like to point out that it is not impossible to add interactions
that edits the cloth pieces in the 3D environment before they are simulated. This
can be enough to achieve a bit of bidirectionally to the design process.

7.1.8 What Vibbi produces

Vibbi produces patterns, garments and intuition about the design space in a rather
flexible, fast, and easy manner. Since a curved line can be modeled as a number
of finite lines there is almost no limitation to what can be modeled with Vibbi.
The issue is how tediously long time it would take to design certain patterns in
comparison to analogue pattern making or other available digital tools. Similarly
to other tools on the market, Vibbi needs to exploit the flexibility of computers
to become faster, more flexible, and easy to use. This includes providing plenty of
shortcuts and good design decisions for the pattern making process, such as the ones
mentioned previously in this chapter.

Vibbi allows its user to design a variety of clothes, as can be seen in chapter 6:
Results. All of these clothes can be considered simple clothing which uniformly
consists of one type of soft fabric. They are all designed in a couple of minutes by
non experts. The only step in which the user has to wait for the software is during
triangulation. Triangulating several large pieces with proper resolution can take up
about a minute. If all the patterns for a garment, such as the ones shown in chapter
6, would be triangulated at the same time, it would take about 20 to 30 seconds.
Triangulating the patterns one by one as they are being created feels more instant
but even then it takes a few seconds.

The simulation is instant and interactive and only needs a few seconds of time to
find a state of rest for the garments. It quickly provides useful information about

53

7. Discussion

the length and volume of the garment being made. The simulated garment gives a
clear picture of how the patterns can be changed in order to gain a different and
potentially more desired result. This lets inexperienced designers try their way to
proper results, something which we believe is useful for experienced designers as
well.

The users of Vibbi can not change which fabric is being used and in particular not
change the amount of friction or how much the clothes are stretching. This render
the user unable to make for example a belt, which result in it being hard, almost
impossible, to design a pair of pants which actually stays on during simulation. Not
having proper hips to collide with can potentially also be an contributing factor to
this issue.

7.1.9 How Vibbi can be used

Vibbi is missing some key features to be properly used in the process of designing
virtual or real clothes. For one, it is not possible to import or export patterns and
even if it would there is no metric system implemented into the tool.

Still, Vibbi can be used to try out pattern designs and quickly see the result under
physical conditions such as gravity and friction. This can be used to understand con-
cepts such as stretching, wrinkling and folding of cloth as it is worn by a character.
It is also a great tool for learning how changes affect the final result.

7.2 Process

As explained in chapter 4: Process the process included a literature study, a tool
exploration, implementation planning, and finally the implementation itself. Doing
the project in this manner worked quite naturally, as it is rather advantageous to
gather information about a subject before you start working with it.

It was decided to make a basically fully implemented prototype in order to be
able to point out requirements of novel technology which is still in an early phase
of development. Among other things, the background research clarified that the
functionality that Vibbi provides is desired by practitioners, which gave us the reason
to make a high fidelity prototype. This is in contrast to focusing on for example
just one aspect of CAD tools for garment design, such as simulation while modeling
or the user experience. In those cases the work can be carried out differently by for
example using several low fidelity prototypes and design methods like ’Wizard of
Oz’ to create the desired effect during a user evaluation.

It was assumed that interactive modeling was desired by the industry and practi-
tioners. With low fidelity prototypes and user tests one can make sure that this is

54

7. Discussion

the case. Interactive modeling for garment design is not provided by any tools found
on the market and it was assumed the reason for that was limitations in the technol-
ogy. Hence, limitations in the technology was explored and not whether interactive
modeling was desired or not.

7.2.1 Literature study

The literature study gave us important knowledge of the design process of clothes as
well as what kind of digital tools there are which improves it already. Most promi-
nently though, was learning about current limitations and the techniques being tried
to circumvent them. It made us able to focus on one particular limitation instead
of addressing several of them. We went with exploring interactive and bidirectional
editing since it involved using novel technology for simulation, and because it is more
about interaction than new technically complicated implementations compared with
for example sketch-based modeling.

7.2.2 Tool exploration

Exploring already existing tools proved very useful. We tried exploring as many
as possible, finding most tools by reading scientific articles that mentioned them.
However, many are only available for the industry, being highly specialized and
expensive. Some tools were simply a bit outdated, or not interesting enough to try
out. Therefore most of the exploration had to be done through watching YouTube
videos, following along with tutorials in how the software was used. With the
exception of Marvelous Designer.

We were inspired by Marvelous Designer since it is the most available, commercial
tool, and also basically the standard tool for creating virtual clothes. What we
struggled with when using Marvelous Designer was how our own software should be
different, in order to have a scientific contribution. What we eventually landed in
was both the fact that Vibbi uses such novel technology that Vivace is, combined
with the knowledge gained about the research area around CAD tools for garment
design would suffice as the scientific contribution.

7.2.3 Implementation plan

It was decided that Scrum, since it is meant for big organizations with several teams
of developers and not for a single two man team, would hinder the implementation
more than it would aid it. Still, inspiration was drawn from the Scrum guide and
different ASD methods were explored in order to ensure a structured implementation
process. FDD, was particularly considered, but it still had to be adapted to the
extent of this thesis.

55

7. Discussion

The implementation process was divided into phases for a couple of different reasons.
First of all, it is in accordance with ASD, and more specifically FDD. And in line
with this, there are inevitably features that depend on other features to be completed
before it is even possible to know how they should be defined and implemented.
With some anticipation, a great extent of these dependencies can be dealt with in
a structured manner. Furthermore, phases makes it easier to focus on the task at
hand. Having too many tasks on the agenda at the same time would prove to be
less productive; breaking down a huge project into smaller tasks is productivity 101.
By defining phases it was possible to also make sure that the work would have some
value even if there was not enough time to complete every phase. This is emphasized
with ASD, which is good at dealing with unforeseen complications.

The background study may also be the reason why our plan proved really useful.
The plan was to the point and the chronology of it made sense throughout the whole
project. We believe the work we did the first few weeks of this project put us on a
path towards good results, where each step on the way provided some new insights
of the complications and requirements of CAD tools for garments.

We found a good balance between keeping the plan specific enough that we knew
where we were headed but loose enough to allow for Vibbi to grow and develop as
organically as possible. This saved us a lot of time by us not focusing on complex
guesswork for each feature since it would have been impossible to know how to
implement certain features in advance. Instead, it was good to stay agile; discussing
and prioritizing each new feature as they came into attention.

7.2.4 Implementation

The implementation was conducted feature by feature. The features were derived
from previous studies of literature and related work and not by human centered
methods. It was decided that implementing features similar to how they have been
implemented before was good enough for Vibbi. It was not inside the scope to
question established interactions for designing patterns. Instead human centered
methods was believed to be more useful for the potential new interactions made
possible by interactive simulation, but to explore and evaluate such interactions
required a certain level of interactive simulation to begin with.

Pair programming helped us in understanding how certain features were imple-
mented without having made them ourselves. It also gave helpful perspective on
technically hard implementations. Kanban helped us to break down and keep track
of the phases. It particularly helped us in the process of moving from one feature to
another since it gave a nice overview of features and their value. Sadly we still ran
into some issues during implementation. Solutions that did not work and features
that should not have gained as much attention as they did.

An issue we had throughout the project was the ability to realize when a feature,

56

7. Discussion

one was currently working on, no longer was worth the time put into implementing
it. It was easy to get offtrack and implement something that was missing but not
really planned for. At several occasions, at least once a week, we discussed what
was most important to get closer to our goal.

Undo/Redo was a typical example of where we spent too much time. While Un-
do/Redo is something that will be really important for the end result of any design
tool, in the end it was not so important for this particular project. While imple-
menting the developer is so consumed by the task at hand that it can be really hard
to put the work into perspective. Asking important questions, such as if a feature
is really necessary, is the job of a product owner, a role that were missing. The
developer want to solve the problems not keep track of the full picture.

7.3 Tools

A big part of this project was to use and integrate Unity and Vivace. Following are
some advantages and disadvantages in using the two tools to create Vibbi.

7.3.1 Vivace

The Deform Plugin serves its purpose of exposing Vivace’s functionality within the
Unity framework, it was of great help when implementing Vibbi. The provided
scenes and scripts are extra useful since they not only show what can be done with
Vivace but also how to do it.

The plugin is written to let the user try out Vivace’s functionality by utilizing the
Unity editor. It makes it simple to turn a GameObject into a DeformableObject
in the editor and then watch it continuously being simulated when the application
is running. That is probably the most typical use case of how the Deform Plugin
will be used considering that Unity is made for creating games. However, making
a modeling tool, is not the typical use case for Unity, hence there were some issues
using the Deform Plugin as well.

Some early confusions arose due to the fact that DeformBody, DeformObject, and
DeformCloth are written as if they are GameObjects even though they are Com-
ponents in Unity’s framework. It is not only because of the names but also the
extensive usage of hiding functionality and variables from the Unity editor. One
Component can require other Components but hiding them in the editor was a bit
disorienting at first.

Adding a DeformBody Component to a GameObject in the Unity editor is very
intuitive but adding it during run time: not as much. It took a lot of time to figure
out what happens when in the DeformManager and DeformBody. For example,

57

7. Discussion

Unity has a method called OnValidate() which runs automatically whenever the
user changes a value using the Unity editor. This method is responsible for setting
the mesh of the DeformBody, but it is not triggered properly when manipulating
the DeformBody in the code.

The Collider Component made by Unity is extensively used when creating any
type of application in Unity. Preferably, DeformCollider can extend Collider, since
colliders are used any way. It also adds flexibility to what objects can be used as
colliders. Alternatively, DeformManager can potentially handle Unity’s Colliders as
well as DeformColliders.

Once meshes are loaded to Vivace, translations and rotations done in Vibbi misalign
the view from the model. It is a bit confusing to know what is allowed and when,
which makes it easy to make changes which creates a gap between the model, and
the view. It is possible to for example translate, rotate and scale objects with a
DeformObject Component in the Unity editor without it affecting the object being
simulated.

Vivace was experienced as a bit unstable at times. Trying to shutdown the plugin
without any loaded models, simply using mac OS, or making edits in the code while
Unity was running are all examples of what frequently made Unity crash without
any type of feedback.

Since it is too demanding for the simulation to be able to update itself with new
meshes it would make sense for Vivace to handle triangulation internally - at least
for cloth simulation. Vibbi can provide the ID and desired boundaries of the cloth
models and then Vivace updates or creates the mesh according to what will be
technically feasible within an interactive time frame. This aligns with how the
designer work mostly with the boundaries of the mesh and not the internal structure.

To make intuitive interactions easier to achieve for developers, quick algorithms for
finding and moving vertices along the boundaries of the models would be useful. The
possibility to add and remove information about the seams and cloth pieces during
run time are also desired of the technology. This includes, we believe, changing the
resting state of the meshes while the simulation is running. Even better is to be
able to add new vertices to the existing meshes.

Furthermore, the seam model has to be more closely related to seams in reality.
Pairing vertices are a bit restricted and only intuitive for the one making the tech-
nology, a more intuitive model for sewing boundaries together, e.g., pairing arbitrary
points along the boundaries, would be an improvement. Potentially, it can also be
possible to visualize the tension in the cloth model, currently it can be hard to see
if the garment is inhumanly tight.

58

7. Discussion

7.3.2 Unity

Overall, Unity is intuitive to use and provides great documentation of all its features.
There are more advantages than disadvantages in using Unity as a development
platform.

Making GameObjects and Prefabs proved to be a nice way of defining the pieces
of the different models without having to write much code at all. Using Unity’s
Mesh class was also easy and provided plenty of code which would have had to be
implemented anyway.

Setting up the 3D environment in Unity was simple except for achieving the desired
lighting. The environment tended to be too bright or too dark regardless of the
amount, type and direction of light sources. Unity provides plenty of functionality
for lighting 3D scenes which proved to be a bit too complicated for novice users who
want to make a simple dressing room.

Making different looking materials and adding them to objects is also really easy
in Unity. It is also impressive how simple it is to include functionality, images,
materials, and meshes found elsewhere.

The Game Loop and 3D space was not required or particularly suited for making
2D modeling of patterns. Scripting objects to follow the mouse as it moves over
the screen can be easier when the user has decided to make an application without
depth.

There were some issues with version control and the scene files created by Unity.
The scene files includes a lot of references to objects which are hard to interpret,
i.e., they are basically large files with a lot of incomprehensible letters and numbers.
The issue was avoided by copying scenes and working independently with different
features on separate copies. This required scenes to be manually merged together,
which usually left bugs which were hard to trace.

7.4 Considerations

Creating a hi-fidelity prototype of an interactive modeling tool for designing virtual
clothes includes considering a number of different things. What should be considered
has been brought up in chapter 6: Results and can be summarized as: what external
tools to use, how to work, how to model patterns, how to sew patterns together,
how to dress the avatar, and how to simulate the clothes. These considerations were
gained from studying literature regarding CAD tools and simulation of cloth as well
as the practical work of planning and implementing Vibbi.

However, as no user evaluations have been performed on Vibbi the reliability of
these findings can be argued. At the same time, the considerations are just that,

59

7. Discussion

they are not requirements. These are simply issues that we had to overcome when
developing Vibbi, and they are issues that we believe will persist when developing
any interactive, garment modeling tool. There can also be a lot more things to
consider, especially when getting to a point where users are more involved in the
development process. We believe these considerations are a good starting guide for
anyone who is planning to develop a tool like Vibbi.

7.5 Computer aided design tool for garments

Today, garment design are mainly done in an analogue way even though there exist
computer aided design tools as digital alternatives. Still, there is great potential
for future computer aided design tools since the required underlying technology
is improving. In this section, some possibilities to improving the design process of
garments through digital means are mentioned and their requirements are discussed.

7.5.1 Possibilities

In order to know what is required of a digital tool to improve the design process
of garments, one first has to answer the question: what is an improvement of the
design process? As brought up in chapter 2 Technical Background, there are many
ways in which computer aided design tools already improves the process of design-
ing garments. From our literature study and during the process of making Vibbi,
we gathered some other potential areas of improvement which currently are being
explored to different extent.

To improve the design process of garments, a computer aided design tool can:

1. Allow the draping process to be done in virtual space.

2. Allow for trying out patterns as garments on virtual bodies.

3. Provide the user with exploratory options.

4. Aid the user in gaining intuition about the design space.

Allowing the draping process to be fully conducted in virtual space is good in a
couple of ways. First of all, draping a virtual body has no material requirement, the
designer can do it over and over again without having to use extra fabric. Also, a
virtual body has the potential of changing size after desire in almost no time, which
means that a designer can try out different patterns and measurements for different
body sizes without involving a single real body.

60

7. Discussion

Garment design is complicated and will most certainly require a couple of iterations
along the way. Trying out patterns on virtual mannequins and bodies would lessen
the time consumed by shortening the length of required iteration steps.

A fashion designer typically explores different fabrics, patterns, and garment col-
lections to gain inspiration for new creative designs. A CAD tool for garments has
to take this in consideration and provide the user with exploratory options. Be-
ing a digital tool, these options can be available in a more accessible manner when
compared to the analogue design process, and thereby improve the creative process.

Designing garments on the computer demands no requirement for material, physical
tools, or physical space which makes the design process more accessible for all kinds
of users. Even if the tool used does not produce actual garments it still aids designers
in gaining intuition about the design space which has great pedagogical value.

7.5.2 Requirements

Achieving the above mentioned improvements of the design process comes with re-
quirements, both for the design of the CAD tool as well as the underlying technology.
Thus, we present four requirements of a digital garment design tool which we believe
can improve the design process of clothes:

1. Intuitive interactions for manipulating cloth and garments in 3D space.

2. Reliable simulation of cloth and garments.

3. Compatibility with other digital and non digital tools.

4. Flexibility to aid and not hinder the designer’s imagination.

Intuitive interactions
To allow the draping process to be done in virtual space the tool requires intuitive
interactions, more specifically interactions such as: placing, pinning, rotating, and
folding pieces of cloth in 3D on a suitable avatar. The user should not have to know
how the pieces of cloth, the seams, or the folds are modeled, these objects should
behave as similarly as possible to how they behave in reality. Thus giving the user
the incentive to use the tool. On this topic, we will state and discuss whether and
how Tangible Modeling, Sketch-Based Modeling, and Interactive Modeling (from
section 2.2: Computer aided garment design) is involved.

What Interactive Modeling lack is the ability to translate the draping process of
reality to the computer. Intuitive interactions of handling objects in a 3D space
when using a mouse on a 2D computer screen are tricky to accomplish, see Figure
7.1. Particularly the sense of depth is lost during these interactions, which gives the
user a loss of control.

61

7. Discussion

Figure 7.1: Illustrating the difficulties of placing objects in 3D when working in
2D.

With these circumstances it is reasonable to provide the user both the freedom
of being able to move their cloth pieces with three degrees of freedom, as well as
providing constrained options such as the attachment points in Vibbi. Especially
useful is giving the user the freedom to add their own attachment points since this
ensures that the piece of cloth will appear close to the avatar. Still, there is a gap
between the intuitive interactions of the real world and the digital.

This issue is addressed with Tangible Modeling tools, and there is also great potential
in using Virtual Reality. These two approaches to digital garment design have
greater potential of offering the user with intuitive interactions, allowing them to
stay and design in the 3D space. However, in order for these modeling tools to be
beneficial in the long run they need to be exact and follow the movements of the
user without fail. In conjunction with this statement, the question is if these tools
are suitable for drawing the actual patterns, in Dress-Up for example they draw the
conclusion that their method is not 100% accurate and is more suitable for initial
prototyping [6]. Rather, these tools are more suitable for dressing an avatar with
already finished pattern pieces.

In Sketch-based modeling this issue is ”addressed” by simply removing the interac-
tion completely. Instead opting for an approach where the computer translates the
user’s sketch directly into a 3D garment. Something which, if it works well, saves a
lot of time. With that said, since this approach omits the draping process from the
user, it omits a process which traditionally is where much of the creative work of a
garment occurs.

Reliable simulation
In order to shorten the length of the iteration step of trying out patterns on an
avatar, the tool is required to have fast and reliable simulation. Preferably, the
user should be able to continuously make updates to the simulated garment, and
be able to directly manipulate it. The immediate feedback that a physically correct
simulation will provide the user with is essential to gaining a better intuition of the
design space.

This requires models of cloth, seams, and garments which can be changed frequently
by the user at the same time as equilibrium states can be found at interactive rates.

62

7. Discussion

Compatibility
Providing the user with exploratory options such as different fabrics, patterns and
garments requires compatibility. The design process of clothes will inevitable include
several different digital and non-digital tools. If a designer has found an interesting
fabric it should be possible to add it to the digital tool. The same goes for patterns
that has been drawn with pen and paper.

It should also be easy to export and import patterns, textures, garments, avatars,
etc., from one digital tool to another. Maybe the designer uses one tool for pattern
making and another for draping, this should be possible and also designed for.
Pattern making and draping can be seen as two different professions conducted by
two different persons, potentially it would be better to make tools which address their
needs separately instead of making one tool which can handle the whole process.

Flexibility
Aiding designers in gaining intuition about the design space requires the tool to be
flexible. The design process looks different for different types of garments. In the
real world, the imagination of the designer is figuratively the only limit to what
can be designed, and therefore the tool has to at least provide an equal amount
of freedom. The tool cannot remove anything that is possible to do in reality, but
instead both provide the same utilities and offer digital tools that will improve the
design process, such as undo/redo, copy/paste, and bidirectional editing. In virtual
space, sleeves can become longer with a swipe of the mouse and fabrics can become
stiffer with a simple click.

7.6 Ethical

Making it easier, more accessible and mainstream to create nicely designed clothes
can reshape the clothing industry as it is today. With a tool that can correctly
visualize the result in 3D, given a 2D pattern, a potential reduction of time on
iterating the design is to be expected. It would also reduce the time for which it
takes to get the experience required for designing desirable clothes. Even though
it is made in order to improve the process of designing clothes, it can potentially
have a negative impact on established clothing industries and experienced fashion
designers, which have put a lot of time and effort into becoming professionals. In
a similar manner to how recent platforms that provide content online has had an
impact on the traditional publishing industry.

7.7 Future work

There are plenty of ways in which one can continue to explore what is required of a
computer aided design tool in order to improve the process of designing garments.

63

7. Discussion

We suggest five areas for future work:

1. Interactive, bidirectional editing

2. Intuitive virtual draping

3. Simulation while modeling

4. User evaluation of existing tools

5. Simulation of garments on a moving avatar

7.7.1 Interactive, bidirectional editing

In Vibbi, as well as other tools, it would be interesting to test 3D interactions such
as: tugging hemlines, sewing, changing volumetric size of garments, moving darts
along edges, cutting, etc. There are much to be explored in order to make this type
of interaction even more intuitive, flexible and usable but it has potential of making
users learn more about the design space. At least if they not only affect the garments
directly but the patterns as well. It is complicated to simply look at patterns and
understand how they would look like when draped on a body, but watching them
change while editing the garments would eventually refine the ability to do so.

7.7.2 Intuitive virtual draping

Three dimensional interactions has worth even if there is no simulation involved. It is
complicated to drape a body in virtual 3D space. Intuitive ways of placing, rotating,
bending and pinning pieces of clothes freely on a virtual body would prove useful
for CAD tools for creating garments. A virtual body has the potential of changing
detailed size by desire which would require complicated mechanical inventions or
several human models to achieve in reality.

7.7.3 Simulation while modeling

Having simulation while modeling would improve the learning outcome of Vibbi
substantially. During simulation, the user has to drag the clothes in place in order
to get a good representation of the actual result, something which has to be done
all over again if the simulation restarts. A designer would like to add, remove and
change stuff as the garment is being simulated. How to make such interactions both
intuitive and technically feasible is a complex task. Hence, we still believe more
work should be conducted towards the goal of achieving simulation while modeling.

64

7. Discussion

7.7.4 User evaluation of existing tools

Very few user evaluation studies of existing tools were found during the background
study. This made it complicated to motivate interactions which are complicated to
implement. Collecting data regarding which tools are used, for what they were used
and what their limitations are according to users would be useful. Data regarding
the parts of the design process which are not done on the computer and the designers
reasons for this would probably prove even more useful.

7.7.5 Simulation of garments on a moving avatar

Seeing designed garments in action on a moving avatar before making them in real
would catch certain aesthetics which would be impossible to foresee with a static
one. This can potentially result in more accessible knowledge about different fabrics
as well as wrinkles and folds. Knowledge which are gained from years of practice
and trials.

65

8
Conclusion

Designing garments is a skill that is hard to master. It is an iterative process
which includes pattern creation, draping and tailoring. There is a gap between
prototypes and the finished result which is believed can be shortened by visualizing
both patterns and the corresponding garments in virtual space.

Simulating the garments as the patterns are iterated will potentially increase the
designers intuition about the design space which will result in designing garments
being easier to master. Quick, interactive editing of garments on a computer can
also potentially shorten the time between prototype and the finished result.

With the purpose of answering the research question ”What should be considered
when making an interactive modeling tool for designing virtual clothes?” an in-
teractive modeling tool, named Vibbi, was made. With Vibbi, a user can model
differently shaped patterns, choose how these patterns should be sewn together, vi-
sualize the patterns together in a 3D environment, and finally simulate the patterns
as sewn garments.

Vibbi was made using agile software development, more precisely a version of feature
driven development in conjunction with structural tools such as Kanban and VCS,
and software development techniques such as pair programming. Before beginning
work on the implementation of Vibbi a literature study on the subject of CAD tools
for garment design was performed, and an exploration of related tools was done.

From this work several considerations answering the initial research question were
found, where the most apparent subjects can be summarized as: what external tools
to use, how to work, how to model patterns, how to sew patterns together, how to
dress the avatar, and how to simulate the clothes. While these considerations are
not the only ones needed to be taken when creating this type of tool, as they are
heavily based on the specific development of Vibbi, we consider them a good start
and guide for anyone who is considering creating this type of tool.

Future work on Vibbi can be done to achieve interactive simulation of garments with
bidirectional editing of patterns, which includes intuitive ways of editing garments
in 3D space. Another approach will be to conduct user evaluation of existing tools,
since it will steer research in the direction of making garment design more accessible.

66

8. Conclusion

Overall the user experience and interface of Vibbi can see improvement, and above
all benefit from rigorous user evaluations.

67

Bibliography

[1] Jerry Weil. “The synthesis of cloth objects”. In: ACM Siggraph Computer
Graphics 20.4 (1986), pp. 49–54.

[2] Melissa A Toups et al. “Origin of clothing lice indicates early clothing use by
anatomically modern humans in Africa”. In: Molecular biology and evolution
28.1 (2010), pp. 29–32.

[3] Market Watch. Annual Financials for H&M Hennes & Mauritz AB Series B.
url: https://www.marketwatch.com/investing/stock/hmb/financials?
countrycode=se (visited on 02/07/2018).

[4] Charlene Heezen. Top 5 Richest Fashion Designers. url: http://amayzine.
com/en/2015/top-5-richest-fashion-designer (visited on 02/07/2018).

[5] Nobuyuki Umetani et al. “Sensitive Couture for Interactive Garment Modeling
and Editing”. In: ACM Trans. Graph. 30.4 (July 2011), 90:1–90:12. issn: 0730-
0301. doi: 10.1145/2010324.1964985. url: http://doi.acm.org/10.1145/
2010324.1964985.

[6] AmyWibowo et al. “DressUp: a 3D interface for clothing design with a physical
mannequin”. In: Proceedings of the Sixth International Conference on Tangi-
ble, Embedded and Embodied Interaction. ACM. 2012, pp. 99–102.

[7] Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. “Vivace: A prac-
tical gauss-seidel method for stable soft body dynamics”. In: ACM Transac-
tions on Graphics (TOG) 35.6 (2016), p. 214.

[8] University of Fashion.Draping: What is Draping? url: https://www.universityoffashion.
com/disciplines/draping/ (visited on 02/01/2018).

[9] Luke Olsen et al. “Sketch-based modeling: A survey”. In: Computers & Graph-
ics 33.1 (2009), pp. 85–103.

[10] Emmanuel Turquin et al. “A sketch-based interface for clothing virtual char-
acters”. In: IEEE Computer graphics and applications 27.1 (2007).

[11] Yuki Mori and Takeo Igarashi. “Plushie: an interactive design system for plush
toys”. In: ACM Transactions on Graphics (TOG). Vol. 26. 3. ACM. 2007, p. 45.

[12] Gabriel A Wainer. Discrete-event modeling and simulation: a practitioner’s
approach. CRC press, 2017.

[13] David M Gaba. “The future vision of simulation in health care”. In: BMJ
Quality & Safety 13.suppl 1 (2004), pp. i2–i10.

[14] Hing N Ng and Richard L Grimsdale. “Computer graphics techniques for
modeling cloth”. In: IEEE Computer Graphics and Applications 16.5 (1996),
pp. 28–41.

68

https://www.marketwatch.com/investing/stock/hmb/financials?countrycode=se
https://www.marketwatch.com/investing/stock/hmb/financials?countrycode=se
http://amayzine.com/en/2015/top-5-richest-fashion-designer
http://amayzine.com/en/2015/top-5-richest-fashion-designer
https://doi.org/10.1145/2010324.1964985
http://doi.acm.org/10.1145/2010324.1964985
http://doi.acm.org/10.1145/2010324.1964985
https://www.universityoffashion.com/disciplines/draping/
https://www.universityoffashion.com/disciplines/draping/

Bibliography

[15] Pascal Volino, Frederic Cordier, and Nadia Magnenat-Thalmann. “From early
virtual garment simulation to interactive fashion design”. In: Computer-aided
design 37.6 (2005), pp. 593–608.

[16] Vajiha Mozafary and Pedram Payvandy. “Study and comparison techniques
in fabric simulation using mass spring model”. In: International Journal of
Clothing Science and Technology 28.5 (2016), pp. 634–689.

[17] T Agui, Y Nagao, and M Nakajma. “An expression method of cylindrical
cloth objects-an expression of folds of a sleeve using computer graphics”. In:
Trans. of Soc. Of Electronics, Information and Communication, Col. J73-D-II
7 (1990), pp. 1095–1097.

[18] BK Hinds and J McCartney. “Interactive garment design”. In: The Visual
Computer 6.2 (1990), pp. 53–61.

[19] J McCartney and BK Hinds. “Computer aided design of garments using dig-
itized three-dimensional surfaces”. In: Proceedings of the Institution of Me-
chanical Engineers, Part B: Journal of Engineering Manufacture 206.3 (1992),
pp. 199–206.

[20] J Ascough, HE Bez, and AM Bricis. “A simple beam element, large displace-
ment model for the finite element simulation of cloth drape”. In: Journal of
the Textile Institute 87.1 (1996), pp. 152–165.

[21] L Gan, NG Ly, and GP Steven. “A study of fabric deformation using nonlinear
finite elements”. In: Textile Research Journal 65.11 (1995), pp. 660–668.

[22] O. Etzmuss, M. Keckeisen, and W. Strasser. “A fast finite element solution
for cloth modelling”. In: 11th Pacific Conference onComputer Graphics and
Applications, 2003. Proceedings. Oct. 2003, pp. 244–251. doi: 10.1109/PCCGA.
2003.1238266.

[23] Jinlian Hu, Shui-Fu Chen, and JG Teng. “Numerical drape behavior of circular
fabric sheets over circular pedestals”. In: Textile Research Journal 70.7 (2000),
pp. 593–603.

[24] Demetri Terzopoulos et al. “Elastically deformable models”. In: ACM Siggraph
Computer Graphics 21.4 (1987), pp. 205–214.

[25] Carl Richard Feynman. “Modeling the appearance of cloth”. PhD thesis. Mas-
sachusetts Institute of Technology, 1986.

[26] Xiaoqun Dai, YI Li, and Xin Zhang. “Simulating anisotropic woven fabric
deformation with a new particle model”. In: Textile research journal 73.12
(2003), pp. 1091–1099.

[27] Z Yueqi and W Shanyuan. “Cloth modeling based on particle system”. In:
Journal - Dong Hua University - English Edition 18.2 (2001), pp. 41–44.

[28] Bernhard Eberhardt, Andreas Weber, and Wolfgang Strasser. “A fast, flexible,
particle-system model for cloth draping”. In: IEEE Computer Graphics and
Applications 16.5 (1996), pp. 52–59.

[29] Jian Dong Yang and Shu Yuan Shang. “Cloth modeling simulation based on
mass spring model”. In: Applied Mechanics and Materials. Vol. 310. Trans
Tech Publ. 2013, pp. 676–683.

[30] Liu Zhengdong and Shang Shuyuan. “Notice of Violation of IEEE Publication
Principles A mass-spring model for real time cloth deformation”. In: 2011

69

https://doi.org/10.1109/PCCGA.2003.1238266
https://doi.org/10.1109/PCCGA.2003.1238266

Bibliography

International Conference on Multimedia Technology. July 2011, pp. 2845–2848.
doi: 10.1109/ICMT.2011.6001862.

[31] Feng Ji, Ruqin Li, and Yiping Qiu. “Three-dimensional garment simulation
based on a mass-spring system”. In: Textile Research Journal 76.1 (2006),
pp. 12–17.

[32] Jing Hu et al. “Cloth Simulation with a Modified Implicit Method Based on a
Simplified Mass-Spring Model”. In: Applied Mechanics and Materials. Vol. 373.
Trans Tech Publ. 2013, pp. 1920–1926.

[33] Wenqing Huang et al. “Cloth Simulation Based on Simplified Mass-Spring
Model”. In: Indonesian Journal of Electrical Engineering and Computer Sci-
ence 12.5 (2014), pp. 3811–3817.

[34] Corey O’Connor and Keith Stevens. “Modeling cloth using mass spring sys-
tems”. In: Appl. Soft. Comput 12 (2003), pp. 266–273.

[35] Serkan Bayraktar. “Simulating cloth behavior by using mass-spring networks”.
PhD thesis. bilKent university, 2002.

[36] Gerald Farin. Curves and surfaces for computer-aided geometric design: a
practical guide. Elsevier, 2014.

[37] Mario Botsch et al. Polygon mesh processing. CRC press, 2010.
[38] Atul Narkhede and Dinesh Manocha. “Fast polygon triangulation based on

seidel’s algorithm”. In: Graphics Gems V (1995), pp. 394–397.
[39] Raimund Seidel. “A simple and fast incremental randomized algorithm for

computing trapezoidal decompositions and for triangulating polygons”. In:
Computational Geometry 1.1 (1991), pp. 51–64.

[40] Matthew T Dickerson et al. “Fast greedy triangulation algorithms”. In: Com-
putational Geometry 8.2 (1997), pp. 67–86.

[41] M. I. Shamos and D. Hoey. “Closest-point problems”. In: 16th Annual Sym-
posium on Foundations of Computer Science (sfcs 1975). Oct. 1975, pp. 151–
162. doi: 10.1109/SFCS.1975.8.

[42] Daniel Cohen-Or and Yishay Levanoni. “Temporal continuity of levels of de-
tail in delaunay triangulated terrain”. In: Visualization’96. Proceedings. IEEE.
1996, pp. 37–42.

[43] Boris Delaunay. “Sur la sphere vide”. In: Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk 7.793-800 (1934), pp. 1–2.

[44] Der-Tsai Lee and Bruce J Schachter. “Two algorithms for constructing a De-
launay triangulation”. In: International Journal of Computer & Information
Sciences 9.3 (1980), pp. 219–242.

[45] Matthias Müller et al. “Position based dynamics”. In: Journal of Visual Com-
munication and Image Representation 18.2 (2007), pp. 109–118.

[46] Yousef Saad. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.
[47] Sofien Bouaziz et al. “Projective dynamics: fusing constraint projections for

fast simulation”. In:ACM Transactions on Graphics (TOG) 33.4 (2014), p. 154.
[48] Jan Bender et al. “A Survey on Position-Based Simulation Methods in Com-

puter Graphics”. In: Comput. Graph. Forum 33.6 (Sept. 2014), pp. 228–251.
issn: 0167-7055. doi: 10.1111/cgf.12346. url: https://doi.org/10.
1111/cgf.12346.

70

https://doi.org/10.1109/ICMT.2011.6001862
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1111/cgf.12346
https://doi.org/10.1111/cgf.12346
https://doi.org/10.1111/cgf.12346

Bibliography

[49] Association of Modern Technologies Professionals. Software Development Method-
ologies. Visited on 2018-03-14. url: http://www.itinfo.am/eng/software-
development-methodologies/.

[50] Ken Schwaber and Jeff Sutherland. The Scrum Guide. Visited on 2018-03-14.
url: http://www.scrumguides.org/scrum-guide.html.

[51] Zahid Nawaz, Shabib Aftab, and Faiza Anwer. “Simplified FDD Process Model”.
In: International Journal of Modern Education and Computer Science 9.9
(2017), p. 53.

[52] John Hunt. “Feature-driven development”. In: Agile Software Construction
(2006), pp. 161–182.

[53] L. Williams. “Integrating pair programming into a software development pro-
cess”. In: Software Engineering Education and Training, 2001. Proceedings.
14th Conference on. 2001, pp. 27–36. doi: 10.1109/CSEE.2001.913816.

[54] Laurie Williams et al. “Strengthening the case for pair programming”. In:
IEEE software 17.4 (2000), pp. 19–25.

[55] Rhode Code. Version Control Systems Popularity in 2016. Visited on 2018-03-
27. url: https://rhodecode.com/insights/version-control-systems-
2016.

[56] Kanban. Visited on 2018-05-17. url: https://www.atlassian.com/agile/
kanban.

[57] Case Studies. Visited on 2018-04-23. url: https://www.marvelousdesigner.
com/cases/.

[58] Unity Tutorials. Visited on 2018-04-23. url: https://unity3d.com/learn/
tutorials.

[59] Jonathan Richard Shewchuk. “Triangle: Engineering a 2D Quality Mesh Gen-
erator and Delaunay Triangulator”. In: Applied Computational Geometry: To-
wards Geometric Engineering. Ed. by Ming C. Lin and Dinesh Manocha.
Vol. 1148. Lecture Notes in Computer Science. From the First ACM Workshop
on Applied Computational Geometry. Springer-Verlag, May 1996, pp. 203–222.

[60] David Vandevoorde. The Maximal Rectangle Problem. Visited on 2018-04-24.
1998. url: http://www.drdobbs.com/database/the-maximal-rectangle-
problem/184410529.

[61] Unity UISystem. Visited on 2018-05-04. url: https://docs.unity3d.com/
Manual/UISystem.html.

[62] Mixamo. Visited on 2018-05-04. url: https://www.mixamo.com/#/.
[63] What is the best alternative to Unity? Visited on 2018-06-06. url: https:

//www.slant.co/options/1047/alternatives/~unity-alternatives.
[64] Michael Keckeisen, Matthias Feurer, and Markus Wacker. “Tailor Tools for

Interactive Design of Clothing in Virtual Environments”. In: Proceedings of
the ACM Symposium on Virtual Reality Software and Technology. VRST ’04.
Hong Kong: ACM, 2004, pp. 182–185. isbn: 1-58113-907-1. doi: 10.1145/
1077534.1077572. url: http://doi.acm.org/10.1145/1077534.1077572.

[65] Hugues Hoppe. “Progressive Meshes”. In: Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Techniques. SIGGRAPH ’96.
New York, NY, USA: ACM, 1996, pp. 99–108. isbn: 0-89791-746-4. doi: 10.
1145/237170.237216. url: http://doi.acm.org/10.1145/237170.237216.

71

http://www.itinfo.am/eng/software-development-methodologies/
http://www.itinfo.am/eng/software-development-methodologies/
http://www.scrumguides.org/scrum-guide.html
https://doi.org/10.1109/CSEE.2001.913816
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://www.marvelousdesigner.com/cases/
https://www.marvelousdesigner.com/cases/
https://unity3d.com/learn/tutorials
https://unity3d.com/learn/tutorials
http://www.drdobbs.com/database/the-maximal-rectangle-problem/184410529
http://www.drdobbs.com/database/the-maximal-rectangle-problem/184410529
https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/UISystem.html
https://www.mixamo.com/#/
https://www.slant.co/options/1047/alternatives/~unity-alternatives
https://www.slant.co/options/1047/alternatives/~unity-alternatives
https://doi.org/10.1145/1077534.1077572
https://doi.org/10.1145/1077534.1077572
http://doi.acm.org/10.1145/1077534.1077572
https://doi.org/10.1145/237170.237216
https://doi.org/10.1145/237170.237216
http://doi.acm.org/10.1145/237170.237216

A
Implementation plan

This section describes our planned method to create and design Vibbi, an interac-
tive, bidirectional modeling tool for designing virtual clothes. By designing Vibbi
we intend to create a conceptual rich artifact in order to explore simulation while
modeling.

A.1 The problem

There are several tasks and subtasks that has to be completed in order to create
a modeling tool for virtual garments. We have decided to perform these in the
following five phases, described shortly in Table A.1 below, with an additional sixth
phase containing additional implementations if time proves superfluous.

An in depth explanation of each phase is in the following sections.

Phase Description

1 The simulation of a generic virtual cloth with any shape using Vivace.

2 A 2D user interface in which the user can create pieces of cloth.

3 A 3D view with an avatar to which the pieces of cloth can be added.

4 It shall be possible to do edits whilst the simulation is running.

5 Edits shall be possible directly on the simulated 3D garments.

6 Additional: Scaling or moving avatar or multilayered garments.

Table A.1: Phases of the project.

I

A. Implementation plan

A.2 Phase 1: Simulation of a Generic Cloth

The first implementation will be the simulation of a generic virtual cloth. For Vibbi
to ultimately be able to simulate garments (e.g shirts or pants), it first of all has to
be able to simulate differently shaped pieces of cloth. This requires a cloth model
which can be represented in 3D and simulated using a physics engine - e.g., Vivace.

First of all, a cloth model is necessary, and it was chosen to use triangle meshes.
The main reason was that Vivace takes indices and vertices as input for soft body
simulation - just like many other physics engines. Another reason for choosing
triangulated meshes is that it also can model 2D virtual patterns, which is preferred
for real world manufacturing.

In order to create triangulated meshes, the plan is to use Unity and write a script
for performing naive triangulation on polygon shapes created with the Unity editor.
When this step is reached the script should be modified to support Delaunay tri-
angulation as well. The next step is then to integrate the Vivace engine into Unity
and then properly send the vertex data for the triangulated mesh to the engine so
that it can simulate the initial 2D shape as a piece of cloth.

A.3 Phase 2: A 2D interface for modeling cloth

Secondly, someone using Vibbi should be provided with an interface for creating and
editing 2D polygon shapes. These shapes will serve as patterns for the garment that
is being made. This requires a few different computer-aided modeling operations.
It also requires a seam model which allows for virtually sewing the pieces of cloth
together.

As for how to make the model editable in an intuitive way, the user will be provided
with a canvas where they can edit a shape. We chose primarily to let the user
have control over the boundaries of a predefined polygon shape. This polygon shape
is defined by boundary lines and boundary points connecting the lines. The user
should then be able to edit the shape in a couple of different ways:

1. Click and move a point, see Figure A.1a
2. Click and move a line, see Figure A.1b
3. Add or remove a point, see Figure A.2

Moving a point can be done with two degrees of freedom. Moving a line is done in
the perpendicular direction of the line. Adding a point is done through some kind
of interaction with an existing boundary line, for example right clicking or double
clicking. Removing a point is done by selecting a point and then pressing delete, the
user cannot remove points so that the shape is not closed - i.e., there should be at
least three points left. An avatar, which later will size-correlate with the 3D avatar,

II

A. Implementation plan

Figure A.1: Dragging points and lines to change the shape. Figure (a) shows the
user moving a point downwards. In (b) the user moves a boundary line

Figure A.2: Adding and removing points. Figure (a) shows the user right-
clicking on a line in order to add a point. Figure (b) shows the user selecting a
point and removing it

will be displayed on the canvas, making it easier for the user to make correctly sized
shapes, see figure A.3.

By providing the user with a button to add a new polygon shape, i.e., a piece of
cloth, the user can edit two shapes at once. The user should be able to move cloth
with two degrees of freedom, in order to organize the work space. The user should
be able to select and copy/paste a piece of cloth. This can be done by a so called
unfolding where the cloth is mirrored symmetrically through a line.

Boundary lines of these pieces of cloth can be selected to be sewn together. These
boundaries can belong to the same cloth or two different pieces of cloth, but the
boundaries should not overlap. Two boundaries are sewn together by connecting
and merging pairs of vertices [64]. A vertex can be subject to more than one seam
at once. Boundaries that are of different lengths will be mapped together so that the
longer boundary folds into a shorter one of equal length with the other boundary.

III

A. Implementation plan

Figure A.3: A silhouette of the 3D avatar will be placed on the canvas to aid the
designer in making correctly sized pieces of cloth.

This will create so called pleating, and will require some manual modification of
vertices in the model to achieve nice folds.

Darts will be implemented as it is described for Sensitive Couture [5]. Darts are
triangular folds that provide shape to a garment. They are a quick way of cutting
and sewing at the same time and will be made by drawing a line over a piece of
cloth. They will start off with a symmetric shape but should be editable similarly to
the other boundaries. Furthermore, if the dart intersects a boundary line, it should
be possible to move the dart along the line.

A.3.1 Additional features in 2D interface

The amount of tools and aid that can be provided to the user is tremendous, but
implementing those are not in the scope of this project. There are some things that
are more prominent to implement though, such as an aid in dragging straight when
moving points and lines around. Usually in editing tools the user is provided with
this aid by holding the SHIFT-key while dragging. Another thing is the ability to let
the user draw their own closed shapes with a line-tool and providing the possibility
to create curves. We have decided to mainly focus on straight lines as a proof of
concept, but curves are ultimately an integral part of creating garments.

IV

A. Implementation plan

A.4 Phase 3: A 3D environment for garments

Thirdly, as the patterns and seams are created, Vibbi will generate garments as a
result. These garments have to be visualized to the user, preferably while being
simulated. This requires a virtual 3D environment containing an avatar, which will
be wearing the garments. It also implies that the user can define how the garments
are meant to be worn, since this is complicated for a computer to guess.

The user should be able to view the made garments in a 3D view. Depending on the
complexity of implementation, the user should be able to view it with three degrees
of freedom, see Figure A.4. Initially, a top down view at an angle will be sufficient.
The user should be able to place the designed pieces of cloth on the body of a 3D
avatar. To simplify this process, Front Top, Back Top, Front Bottom, Back Bottom,
Left Arm, and Right Arm are potential attachment points. The user should be able
to start, stop, and restart the simulation of clothes. Restarting implies that the
clothes should start at their initial determined positions. The seams between pieces
should be visualized.

A.5 Phase 4: Simulation while modeling

Fourthly, Vibbi shall be able to handle the edits from the 2D interface that are
being made whilst the simulation is running. As the avatar is dressed, the user
can choose to continually edit the patterns to alternate the result. This requires
the implementation of a real time system which is able to quickly interpret the
operations as well as recalculate the model and continue the simulation without
seamless effort.

Using Unity to implement the system provides the real time element through its
inbuilt game loop that continually updates and renders every object on the screen.
In order to reach interactive rates while modeling it is most likely necessary to use
strategies such as progressive refinement [65] and sensitive interaction [5]. Basically
doing rough calculations while the user is editing and doing the finer calculations
when they are not.

A.6 Phase 5: Editing of 3D garments

Fifthly, it will be more intuitive to make certain changes directly on the simulated
garment. Instead of editing the 2D pattern, the user shall be able to make modifi-
cations of the 3D garment and when doing so the result shall be visualized in 2D as
well.

V

A. Implementation plan

Figure A.4: Vibbi will have a 3D environment with an Avatar on which the pat-
terns will be draped and later simulated as garments.

Vibbi is planned to have a representation of the design in both 2D and 3D and allow
the designer to interact with both of them, see Figure A.5. The bidirectionality
implies that affecting the design in 2D will change the representation in 3D and the
other way around.

The interactive tools provided for the 2D interface shall, as much as possible, be
usable directly on the 3D garment. In particular, the user shall be able to adjust
for example sleeve length and waist width directly by dragging the corresponding
hemlines of the garment. Another interesting operation is to change the volumetric
of for example sleeves and chest pieces. Even so, since real world manufacturing is
of interest, all 3D edits done on garments has to be translatable into 2D edits made
on patterns. It shall also be clarified to the user, both in 2D and 3D, what edits are
about to happen.

VI

A. Implementation plan

Figure A.5: Illustration of simulation while modeling. The user constantly see
both the 2D pattern and the simulated result in 3D. When manipulating the 2D
pattern, the 3D result will be changed accordingly and vice versa.

A.7 Phase 6: Additional implementations

Lastly, it would be interesting to let the user change the properties of the cloth as
well as the avatar and visualize the result accordingly. Even more interesting would
be an avatar in motion or multilayered garments.

Vivace already supports simulating pieces of cloth with different properties, such as
stiffness and weight, which makes it possible to simulate different types of fabric such
as silk and leather. Adding the possibility to interactively change these parameters
during simulation can be of interest for the designer, especially if different pieces
can represent different fabric.

Changing the properties of the avatar can be interesting since it can visualize how
the garment looks like with different body measurements such as waist and chest size
or arm and leg length. Of possible interest is the scaling of the garments according
to the new measurements since it will allow for reuse of designs. The desire to design
similar types of clothes for different sized bodies, or completely different characters,
is rather common and should be possible to do by simply changing the character for
which the clothes were designed originally.

An avatar in motion dressed in garments can visualize the effects of using a certain
design or fabric. Simply moving the arms can be of interest since a typical issue
in prototyping is to get the sleeve lengths correct. There is a lot of stretching and
compression involved when raising and lowering an arm.

Designing garments with multiple layers is common but simulating them is con-
sidered nontrivial. Exploring how one would want to model cloth on top of cloth,
directly in 3D, can be of interest. A typical use case is to sew a pocket onto an
existing garment.

VII

A. Implementation plan

A.8 Time Plan

Figure A.6: Gantt chart of the time plan. The numbers representing the weeks.

VIII

	Introduction
	Background
	Purpose & aim
	Outline

	Technical background
	Designing clothes
	Computer aided garment design
	Tangible modeling
	Sketch-based modeling
	Interactive modeling

	A simulation pipeline of cloth & garments
	Physical cloth model
	Triangulation
	Particle system in a cloth mesh
	Position based dynamics
	Mass spring model
	Basic iterative methods for solving linear systems

	Vivace: A Practical Gauss-Seidel Method for Stable Soft Body Dynamics
	Unity
	GameObjects & Components
	Game loop

	Deform Plugin

	Methodology
	Agile software development
	Scrum
	Feature driven development
	Rapid application development
	Pair programming
	Version control systems
	Kanban

	Process
	Literature study
	Tool exploration
	Exploring related work
	Unity
	Vivace & Deform Plugin

	Planning
	Implementation

	Implementation
	Phase 1: Simulation of a Generic Piece of Cloth
	Define a polygon shape
	Triangulate a shape
	Create a mesh
	Give the mesh to Vivace

	Phase 2: A 2D interface for modeling cloth
	Cloth model
	User interface
	Interaction states
	Move a point
	Move a line
	Add & remove a point
	Unfolding the model
	Darts
	Duplicating the model
	Undo & redo
	Seams & sewing

	Phase 3: A 3D environment for garments
	Loading the cloth model
	Avatar
	Placement of cloth pieces
	Camera orientation
	Seams
	Simulation
	Interaction

	Phase 4: Simulation while modeling

	Results
	The Vibbi design process
	Create pattern pieces
	Sew pieces together
	Put the pieces in the 3D view
	Simulate
	Make edits

	What should be considered when making an interactive modeling tool for designing virtual clothes?
	What external tools to use
	How to work
	How to model patterns
	How to sew patterns together
	How to dress the avatar
	How to simulate the clothes

	Discussion
	Vibbi
	Starting with a polygon shape
	Modeling patterns
	Unfolding
	Avatar
	Sewing
	Placing cloth pieces in 3D
	Future directions
	What Vibbi produces
	How Vibbi can be used

	Process
	Literature study
	Tool exploration
	Implementation plan
	Implementation

	Tools
	Vivace
	Unity

	Considerations
	Computer aided design tool for garments
	Possibilities
	Requirements

	Ethical
	Future work
	Interactive, bidirectional editing
	Intuitive virtual draping
	Simulation while modeling
	User evaluation of existing tools
	Simulation of garments on a moving avatar

	Conclusion
	Appendix Implementation plan
	The problem
	Phase 1: Simulation of a Generic Cloth
	Phase 2: A 2D interface for modeling cloth
	Additional features in 2D interface

	Phase 3: A 3D environment for garments
	Phase 4: Simulation while modeling
	Phase 5: Editing of 3D garments
	Phase 6: Additional implementations
	Time Plan

