
Reconsidering Performance of DEVS Modeling and Simulation1

Environments Using the DEVStone Benchmark2

José L. Risco-Martı́na,∗, Saurabh Mittalb, Juan Carlos Fabero Jiméneza, Marina Zapatera, Román Hermida3

Correaa
4

aDepartment of Computer Architecture and Automation, Complutense University of Madrid, C/Prof. José Garcı́a Santesmases 9,5

28040 Madrid, Spain6
bDunip Technologies, LLC, Littleton, Colorado, USA7

Abstract8

The Discrete Event System Specification formalism (DEVS), which supports hierarchical and modular

model composition, has been widely used to understand, analyze and develop a variety of systems. DEVS

has been implemented in various languages and platforms over the years. The DEVStone benchmark was

conceived to generate a set of models with varied structure and behavior, and to automate the evaluation of

the performance of DEVS-based simulators. However, DEVStone is still in a preliminar phase and more

model analysis is required. In this paper, we revisit DEVStone introducing new equations to compute the

number of events triggered. We also introduce a new benchmark, called HOmem, designed as an alternative

version of HOmod, with similar CPU and memory requirements, but with an easier implementation and

analytically more manageable. Finally, we compare both the performance and memory footprint of five

different DEVS simulators in two different hardware platforms.

Keywords: DEVS, DEVStone, Synthetic Benchmarks, Performance, Memory Usage9

1. Introduction10

In the last four decades, various Modeling and Simulation (M&S) methodologies have provided excellent11

approaches to solve problems. Among them, one of the M&S techniques that has gained popularity is the12

Discrete Event System Specification (DEVS): a sound, formal definition, based on generic dynamic systems13

theoretical concepts, which supports efficient event based simulation, verification and validation [1] [2].14

DEVS divides the system into basic models, called atomic models, and composite models called coupled15

models. Atomic models define the behavior of the system, whereas coupled models specify the structure.16

We can distinguish between classic DEVS and Parallel DEVS (PDEVS) [2]. In classic DEVS, when two or17

more models are scheduled for state transitions at the same time, one of the models is chosen according to18

∗Corresponding author
Email addresses: jlrisco@ucm.es (José L. Risco-Martı́n), smittal@duniptech.com (Saurabh Mittal), jcfabero@ucm.es

(Juan Carlos Fabero Jiménez), marina.zapater@ucm.es (Marina Zapater), rhermida@ucm.es (Román Hermida Correa)

Preprint submitted to Elsevier December 28, 2016



a select function provided in the coupled model specification. PDEVS is an extension of classic DEVS to19

allow all imminent components to be activated and to send their output to other components. Removing the20

select function and adding a new confluent transition function, PDEVS introduces the possibility to manage21

simultaneous events in a natural manner.22

DEVS has been successfully used for modeling a wide range of application domains. For example, it23

has been used in urban traffic analysis [3], logistics and supply chain [4], computer architecture [5], [6],24

embedded system designs [7], unmanned aerial vehicles [8], decision support systems [9], etc. Because of25

the ease of model definition, model composition, reuse, and hierarchical coupling, DEVS has always been26

successfully applied in such a variety of applications.27

In contrast to time-stepped discrete time simulation, DEVS advances time through the concept of min-28

imum time to next event, thereby advancing time asynchronously and achieving significant speedup over29

the former method [2]. As a result, the DEVS formalism has been implemented in major object-oriented30

programming languages, like Lisp, Scheme, C++, Java, Python, SmallTalk, leading to many DEVS sim-31

ulation engines across the globe, like DEVSJAVA [10], DEVS-Suite [11], COSMOS [12], CD++ [13],32

PyPDEVS [14], aDEVS [15], JAMES-II [16], DEVSim++ [17], xDEVS [18], to name but a few.33

This variety of simulation engines has generated an extensive study in DEVS performance, commonly34

focused on particular application domains. However, after several years of research, a final version of a35

discrete event simulation benchmark was published, named DEVStone [19], [20], [21]. DEVStone can be36

used to automatically generate a vast variety of models with different shapes and sizes. These models can37

then be simulated to test different features with respect to the corresponding simulator.38

These benchmarks incorporate several benefits but some of them suffer from shortcomings in their math-39

ematical descriptions, like the formal computation of the total number of events triggered. In this paper, we40

reconsider these benchmarks. Firstly, we include the computation of the total number of events triggered41

inside each benchmark. Secondly, we fix some equations that in [21] did not give the exact number of42

transitions, concretely equations (2), (3) and (4) in [21]. It is worthwhile to mention that these errors have43

not affected the reliability of previous paper results, since these models have been always used to compare44

wall-clock execution times. Finally, we define an additional benchmark, called HOmem, that demands the45

same computational effort than HOmod, the more complex model in DEVStone, but is analytically more46

manageable, as is demonstrated in the research work.47

The remainder of this paper is organized as follows: we show a brief description of the DEVS formalism48

and introduce several DEVS simulation engines in Section 2. The DEVStone benchmark is revisited in49

2



Section 3, including all the contributions to the benchmark performed in this work. In Section 4 we describe50

our experimental infrastructure and methodology. In Section 5 we present experimental results, including a51

comparison of up to five simulators and more than 1400 DEVStone models. Finally, we present conclusions52

in Section 6.53

2. DEVS: Formalism and Simulation Engines54

2.1. The Discrete Event System Specification55

DEVS is a general formalism for discrete event system modeling based on set theory [2]. The DEVS56

formalism provides the framework for information modeling which gives several advantages to analyze57

and design complex systems: completeness, verifiability, extensibility, and maintainability. Once a system58

is described in terms of the DEVS theory, it can be easily implemented using an existing computational59

library. As stated in Section 1, the parallel DEVS (PDEVS) approach was introduced, after 15 years, as a60

revision of Classic DEVS. Currently, PDEVS is the prevalent DEVS, implemented in many libraries. In the61

following, unless it is explicitly noted, the use of DEVS implies PDEVS.62

DEVS enables the representation of a system by three sets and five functions: input set (X), output set63

(Y), state set (S ), external transition function (δext), internal transition function (δint), confluent function64

(δcon), output function (λ), and time advance function (ta).65

DEVS models are of two types: atomic and coupled. Atomic models are directly expressed in the66

DEVS formalism specified above. Atomic DEVS processes input events based on their model’s current state67

and condition, generates output events and transition to the next state. The coupled model is the aggrega-68

tion/composition of two or more atomic and coupled models connected by explicit couplings. Particularly,69

an atomic model is defined by the following equation:70

A = 〈X,Y, S , δext, δint, δcon, λ, ta〉 (1)

where:71

• X is the set of inputs described in terms of pairs port-value:
{
p ∈ IPorts, v ∈ Xp

}
.72

• Y is the set of outputs, also described in terms of pairs port-value:
{
p ∈ OPorts, v ∈ Yp

}
.73

• S is the set of sequential states.74

3



• δext : Q × Xb → S is the external transition function. It is automatically executed when an external75

event arrives to one of the input ports, changing the current state if needed.76

– Q = (s, e)s ∈ S , 0 ≤ e ≤ ta(s) is the total state set, where e is the time elapsed since the last77

transition.78

– Xb is the set of bags over elements in X.79

• δint : S → S is the internal transition function. It is executed right after the output (λ) function and is80

used to change the state S .81

• δcon : Q × Xb → S is the confluent function, subject to δcon(s, ta(s), ∅) = δint(s). This transition82

decides the next state in cases of collision between external and internal events, i.e., an external event83

is received and elapsed time equals time-advance. Typically, δcon(s, ta(s), x) = δext(δint(s), 0, x).84

• λ : S → Yb is the output function. Yb is the set of bags over elements in Y . When the time elapsed85

since the last output function is equal to ta(s), then λ is automatically executed.86

• ta(s) : S →<+
0 ∪∞ is the time advance function.87

The formal definition of a coupled model is described as:

M = 〈X,Y,C, EIC, EOC, IC〉 (2)

where:88

• X is the set of inputs described in terms of pairs port-value:
{
p ∈ IPorts, v ∈ Xp

}
.89

• Y is the set of outputs, also described in terms of pairs port-value:
{
p ∈ OPorts, v ∈ Yp

}
.90

• C is a set of DEVS component models (atomic or coupled). Note that C makes this definition recursive.91

• EIC is the external input coupling relation, from external inputs of M to component inputs of C.92

• EOC is the external output coupling relation, from component outputs of C to external outputs of M.93

• IC is the internal coupling relation, from component outputs of ci ∈ C to component outputs of c j ∈ C,94

provided that i , j.95

Given the recursive definition of M, a coupled model can itself be a part of a component in a larger coupled96

model system giving rise to a hierarchical DEVS model construction.97

4



2.2. DEVS Simulation Engines98

In the last decade, many DEVS M&S engines have come into existence. All of them offer a programmer-99

friendly Application Programming Interface (API) to define new models using a high level language. How-100

ever, only a few of them provide a user-friendly Graphical User Interface (GUI) for model specification. In101

the following, we describe some of the most referenced DEVS M&S simulation frameworks:102

2.2.1. DEVSJAVA103

DEVSJAVA has been developed by Bernard P. Zeigler (University of Arizona, U.S.A.) and Hessam104

Sarjoughian (Arizona State University, U.S.A.) [10]. It is written in Java and supports virtual time, real105

time, and sequential and parallel execution. The definition of new models is performed through an API.106

Several M&S tools have been defined around DEVSJAVA (GUIs for results visualization, GUIs for models107

definition, etc.), as DEVSJAVA is one of the primary DEVS M&S reference simulators in the community.108

2.2.2. DEVS-Suite and COSMOS109

DEVS-Suite is a simulator built based on the Parallel DEVS formalism. This software provides a library110

of examples proving some experimental concepts. It also incorporates simulation visualization techniques111

consisting of displaying static structure of models, animation of models, and run-time viewing of time-based112

trajectories [11]. CoSMoS (Component-Based System Modeling and Simulation) is a framework aimed at113

integrated visual model development, model configuration and automatic data collection simulation [12].114

The CoSMoS environment supports component-based modeling with direct support for DEVS formalism115

and XML Schema. DEVS-Suite’s core is largely DEVSJAVA. It is bundled within the CoSMoS distribution116

and thus enables both modeling and simulation of Parallel DEVS models.117

2.2.3. CD++118

CD++ has been developed by Gabriel Wainer and his students (Carleton University, Canada; Universidad119

de Buenos Aires, Argentina). Written in C++, it allows the definition of DEVS and Cell-DEVS models120

graphically. These models are also defined using an API. CD++ supports virtual and real time, as well as121

sequential, parallel and distributed simulations [13].122

2.2.4. PyPDEVS123

PythonPDEVS (a.k.a. PyPDEVS) implements both Classic and Parallel DEVS in the Python language,124

with a matching simulator [14]. Models are defined through the provided API, allowing the execution of125

5



virtual time or real time simulations. The latest release of PyPDEVS is focused on improving the perfor-126

mance, mainly because Python is an interpreted language. To this end, several schedulers have been defined,127

obtaining good performance metrics.128

2.2.5. aDEVS129

ADEVS (A Discrete EVent System simulator) is a C++ library for constructing discrete event simu-130

lations based on the Parallel DEVS and Dynamic DEVS (dynDEVS) formalisms [15]. Developed by Jim131

Nutaro, it allows the implementation of both sequential and parallel simulations using the provided C++132

API. This tool has usually displayed the best performance.133

2.2.6. JAMES-II134

Developed at the University of Rostock, the Java-based Multipurpose Environment for Simulation II135

(JAMES II) provides support for many different formalisms, including various variants of DEVS. Besides136

an API to define models, this framework also provides a GUI to configure experiments and check simulation137

results. This simulation engine supports sequential and parallel execution [16].138

2.2.7. DEVSim++139

Developed by Tag Gon Kim and his group at Korea Advanced Institute of Technology (KAIST) [17],140

this is a C++ based engine and used extensively for large simulations focusing on wargaming and simulation141

interoperability.142

2.2.8. xDEVS143

xDEVS engine is Java-based and is released under the GNU Public License (GPL). This facilitates the144

rapid development of new components and extensions, and wide adoption of the core engine. xDEVS145

provides the user with a set of base classes that can be used to develop new DEVS models, or to develop146

new DEVS simulation engines. It is based on the fundamental separation of model and the underlying147

corresponding simulator [2] and rightly so, provides, the modeling Application Program Interface (API) and148

the simulation API [18]. It is made available as a standalone executable jar and as an Eclipse plugin.149

2.2.9. Others150

In addition to the above DEVS implementations used widely, there are others with selective adoption151

such as GALATEA [22] for Multi-Agent Systems (MAS), SimStudio [23], PowerDEVS [24] for hybrid152

systems, MS4Me based on DEVSJAVA [25] and last but not the least, Virtual Laboratory Environment153

(VLE) [26], that based on C++, is a multiparadigm environment based on several DEVS extensions.154

6



We have selected five well-known DEVS simulation frameworks distributed among three implemen-155

tation languages and compared their performance against a revisited DEVStone benchmark. The current156

diversity on the programming languages used is concentrated on C++, JAVA and Python. As a conse-157

quence, we have selected two JAVA-based simulators (DEVSJAVA and xDEVS), two C++-based simulators158

(aDEVS and CD++) and PyPDEVS as the Python-based simulation engine. In the following, we describe159

the revisited DEVStone benchmark.160

3. DEVStone161

DEVStone is a synthetic benchmark [21] that has been used in recent years to evaluate the performance162

of different DEVS simulators [21] [27] [28]. DEVStone can be used to automatically generate a vast variety163

of models with different shapes and sizes. These models can then be simulated to test different features with164

respect to the corresponding simulator. A DEVStone benchmark is defined with five parameters:165

Type: Different structure and interconnection schemes between the components in the model.166

Width This parameter is based the number of components in each intermediate coupled model.167

Depth The number of levels in the model hierarchy.168

Internal transition time: The execution time spent by each internal transition function.169

External transition time: The execution time spent by each external transition function.170

According to the DEVStone specifications, both the internal and external transition function times are171

spent executing Dhrystones [29] to keep the CPU busy.172

In [21], four different DEVStone benchmarks were presented (named LI, HI, HO and HOmod), deriving173

different equations to compute the number of external and internal transition functions.174

In the following a formal definition of the DEVStone atomic model is introduced. Next, all the five175

benchmarks considered in this work (LI, HI, HO, HOmod and the newly introduced HOmem) are presented.176

To simplify the computation of the total number of events triggered, it is assumed that: (1) the execution time177

spent by the external or internal transition function is equal to 0 seconds, i.e. the transition is instantaneous178

in a computational sense, and (2) all the events injected to the DEVStone benchmarks are separated in time179

by more than 0 seconds.180

7



Algorithm 1 DEVStone atomic model
Require: NUM DELT INTS, NUM DELT EXTS and NUM OF EVENTS are global variables, and store the total

number of internal transition functions, external transition functions and events triggered inside the whole
model. ∆int and ∆ext are the delays introduced in the internal and external transition functions, respectively.

function [list,phase,σ] = init()
list = [] {list is part of the state, and stores all the events received by this atomic model}
σ = ∞

function [list,phase,σ] = δint(list,phase,σ)
NUM DELT INTS = NUM DELT INTS + 1
Dhrystone(∆int)
list = []
σ = ∞

function [list,phase,σ] = δext(list,phase,σ,e,Xb)
NUM DELT EXTS = NUM DELT EXTS + 1
Dhrystone(∆ext)
values = Xb(in) {Xb(in) is a list containing all the events waiting in the “in” input port}
NUM OF EVENTS = NUM OF EVENTS + values.size()
list = [list;values] {Concatenate both lists}
phase = “active”
σ = 0

function [list,phase,σ] = δcon(list,phase,σ,ta(s),Xb)
δext(δint(list,phase,σ),0,Xb)

function λ()
send(“out”, list) {sends the whole list by the “out” output port}

function σ = ta(list,phase,σ)
σ = σ

3.1. DEVStone atomic model181

The atomic model of DEVStone can be defined as shown in Algorithm 1.182

3.2. LI (Low level of Interconnections) models183

Figure 1 shows the general structure of an LI model. With d layers (depth), the first d − 1 (with d ≥ 1)184

layers have the structure of Figure 1(a). All these layers have one coupled model and w − 1 (with w ≥ 2)185

atomic models (where w is the width). On the other hand, the d-th layer has the structure given in Figure186

1(b), just with one atomic model. The arrows in the Figure represent the connection between the input and187

output ports in the whole model.188

As stated above, two metrics are measured: execution time and memory footprint (also known as mem-189

ory high-water mark). Obviously, these two metrics depend on the number of atomic models, number of190

8



Atomic #1

Atomic #2

Coupled Component #1

Atomic #(w−1)

Coupled Component #0

in in

in

in

out out

in out

out

out

(a) DEVStone LI regular coupled component

Atomic #1
in out

Coupled Component #(d−1)

outin

(b) DEVStone LI deepest coupled component

Figure 1: DEVStone LI components

internal transitions, number of external transitions, and the total number of events internally generated. Ad-191

ditionally, memory footprint depends on the concurrency of the model, that is, the number of pending events192

simultaneously waiting at the input ports.193

Since the model structure is known, and the simplification ∆int = ∆ext = 0 is made, the theoretical194

execution time and the total number of events generated can be easily computed.195

Firstly, considering the model’s d − 1 levels with w − 1 atomic models and 1 level with 1 atomic model,196

the total number of atomic models is:197

#Atomic = (w − 1) · (d − 1) + 1 (3)

Secondly, LI models produce one external transition, output event and internal transition for each atomic198

model and external events injected. Thus, in LI models, the number of transitions and events generated is199

equal to the number of atomic models multiplied by the total number of external events injected N:200

9



#δint = N · ((w − 1) · (d − 1) + 1) (4)

#δext = N · ((w − 1) · (d − 1) + 1) (5)

#Events = N · ((w − 1) · (d − 1) + 1) (6)

In the following DEVStone benchmarks, we derive the equations for the number of transition functions201

and events internally generated given a single external event injected, i.e., for this benchmark:202

#δint = (w − 1) · (d − 1) + 1 (7)

#δext = (w − 1) · (d − 1) + 1 (8)

#Events = (w − 1) · (d − 1) + 1 (9)

3.3. HI (High Input couplings) models203

Figure 2 shows the general structure of a HI model. It is equal to the LI model, but where the output204

port of an atomic component i is connected to the input port of the next atomic component i + 1, as seen in205

Figure 2(a).206

Therefore, the number of atomic models is equal to the LI model. However, the number of transition207

functions and events generated are quite different, because for each external input, the set of w − 1 atomic208

models acts as a shift register, generating one additional event for each external event. As a result, the209

number of atomic models, transition functions and events generated is computed as follows:210

#Atomic = (w − 1) · (d − 1) + 1 (10)

#δint =

(w − 1) +

w−2∑
i=1

i

 · (d − 1) + 1 =

(
w2 − w

2

)
· (d − 1) + 1 (11)

#δext =

(w − 1) +

w−2∑
i=1

i

 · (d − 1) + 1 =

(
w2 − w

2

)
· (d − 1) + 1 (12)

#Events =

(w − 1) +

w−2∑
i=1

i

 · (d − 1) + 1 =

(
w2 − w

2

)
· (d − 1) + 1 (13)

3.4. HO (Hi model with numerous Outputs) models211

Figure 3 shows the general structure of a HO model. HO has a more complex interconnection map with212

the same number of atomic and coupled components. For example, HO coupled components have two input213

10



Atomic #1

Atomic #2

Coupled Component #1

Atomic #(w−1)

Coupled Component #0

in in

in

in

out out

out

out

outin

(a) DEVStone HI regular coupled component

Atomic #1
in out

Coupled Component #(d−1)

outin

(b) DEVStone HI deepest coupled component

Figure 2: DEVStone HI components

and two output ports in each level. The main differences with HI are that the second input port of each214

coupled model is connected to the input of each atomic model. Additionally, the output of each atomic215

model is connected to the second output of its parent coupled model.216

It is worthwhile to mention that the number of atomic models, transition functions and events generated217

in HO models are exactly the same as in the HI model. However, the main difference is in both the execution218

time and memory footprint, which are higher due to the additional external input connections. Thus,219

#Atomic = (w − 1) · (d − 1) + 1 (14)

#δint =

(w − 1) +

w−2∑
i=1

i

 · (d − 1) + 1 (15)

#δext =

(w − 1) +

w−2∑
i=1

i

 · (d − 1) + 1 (16)

#Events =

(w − 1) +

w−2∑
i=1

i

 · (d − 1) + 1 (17)

11



Atomic #1

Atomic #2

Coupled Component #1

Atomic #(w−1)

Coupled Component #0

in

in

in1in1 out1 out1

in2 in2 out2 out2

out

out

outin

(a) DEVStone HO regular coupled component

Atomic #1

Coupled Component #(d−1)

in1

in2

out1

out2
outin

(b) DEVStone HO deepest coupled component

Figure 3: DEVStone HO components

3.5. HOmod models220

Figure 4 depicts the structure of a HOmod DEVStone model. As usual, the deepest coupled model is221

formed by one single atomic model. The remaining coupled models are constituted by 1 coupled model,222

a chain of w − 1 atomic models, and a set of k = 1 . . .w − 1 chains formed by
∑k

i=1 i atomic models. The223

second external input port is connected to the whole first row and only to the first atomic component in the224

remaining rows. Additionally, all the atomic models in the second row are connected to the first row, which225

in turn send the whole output directly to the coupled component. Finally, each remaining atomic component226

is connected to its upper component.227

The computation of the number of atomic modes is quite straightforward.228

#Atomic =

(w − 1) +

w−1∑
i=1

i

 · (d − 1) + 1 (18)

However, the calculation of the number of transition functions is hard. After an exhaustive mathematical229

analysis we have determined that:230

12



Coupled Component #1

Atomic #[2,1]

in

out

Atomic #[2,2]

in

out

Atomic #[2,w−1]

in

out

Atomic #[3,2]

in

out

Atomic #[3,w−1]

in

out

Atomic #[w−1,w−1]

in

out

Atomic #[1,2]

in

out

Atomic #[1,w−1]

in

out

Atomic #[1,1]

in

out

in2

Coupled Component #0

in1in1

in2

out out

(a) DEVStone HOmod regular coupled component

Atomic #1

Coupled Component #(d−1)

in1

in2
outin

out

(b) DEVStone HOmod deepest coupled compo-
nent

Figure 4: DEVStone HOmod components

#Atomic =

(w − 1) +

w−1∑
i=1

i

 · (d − 1) + 1 (19)

#δint = (d − 1) · (w − 1)2 +

(d − 1) + (w − 1) ·
d−2∑
i=1

i

 ×
(w − 1) +

w−1∑
i=1

i

 + 1 (20)

#δext = (d − 1) · (w − 1)2 +

(d − 1) + (w − 1) ·
d−2∑
i=1

i

 ×
(w − 1) +

w−1∑
i=1

i

 + 1 (21)

Similarly, the computation of the number of events follows a recursive equation, defined below:231

#Events =

d−1∑
l=1

Kl+w−1∑
c=1

W1 ×

w∑
i=1

Pc−i+1
l +

w∑
i=1

(
Wi · Pc−i+1

l

)
 + 1 (22)

where:232

Wi =

 w − i if w − i ≥ 0

0 otherwise
(23)

13



Kl =

 1 if l = 1

Kl−1 + W1 if l > 1
(24)

and233

P1
1 = 1 (25)

P j
l = 0 if 1 > j > Kl (26)

P j
l = (w − 1) ×

w∑
i=1

P j−i+1
l−1 (27)

As can be seen, the complexity of the equations describing the metrics of HOmod is high. The inclusion234

of these equations in a simulator is hard, and the theoretical analysis becomes prohibitive. For these reasons,235

we have defined a new DEVStone benchmark named HOmem that, providing the same computational effort236

than HOmod into the different simulation frameworks, shows a straightforward mathematical formulation.237

3.6. HOmem models238

As stated above, we propose the inclusion of a new model in the DEVStone benchmark called HOmem.239

HOmem is basically proposed as a mechanism to increment the traffic of events with respect to HO, equiva-240

lently to HOmod, but with a simpler structure and mathematical description.241

Figure 5 shows the structure of the HOmem DEVStone benchmark. As can be seen, the deepest coupled242

model is identical to HOmod. As for the remaining coupled models, each one is formed by 1 coupled model243

and 2 · (w− 1) atomic models. The second w− 1 chain receives the input through external input connections,244

and propagates these inputs to the first chain of w − 1 atomic models. These, in turn, send all the inputs245

received to the coupled model.246

The number of transition functions are easy to compute, since it is equal to the number of atomic models.247

However, to calculate the number of events it must be taken into account that each single event is sent w − 1248

times to the whole second chain of atomic models. This grows exponentially with the depth of the model, in249

the following form:250

14



Atomic’ #2

Atomic’ #1

Atomic #2Atomic #1

Atomic’ #(w−1)

Atomic #(w−1)

Coupled Component #1

in1

in2

inin

out out

in

in

in

out

out

out

in

out

in1

in2

Coupled Component #0

out out

(a) DEVStone HOmem regular coupled component

Atomic #1

Coupled Component #(d−1)

in1

in2
outin

out

(b) DEVStone HOmem deepest coupled compo-
nent

Figure 5: DEVStone HOmem components

#Atomic = 2 · (w − 1) · (d − 1) + 1 (28)

#δint = 2 · (w − 1) · (d − 1) + 1 (29)

#δext = 2 · (w − 1) · (d − 1) + 1 (30)

#Events =

d−1∑
l=1

(
(w − 1)2·l + (w − 1)2·l−1

)
+ 1 (31)

Experimental results show that this straightforward specification leads to similar execution time and251

memory footprint, when compared to HOmod.252

4. Experimental Methodology253

Once the DEVStone equations have been analytically derived, we compare CPU execution time and254

memory footprint over a total of five well known simulation engines using all the benchmarks presented255

above. Our aim is to show an exhaustive comparison and a standard procedure to evaluate the performance256

of any new discrete event simulator.257

We first provide a detailed description of the experimental set-up used in this research.258

All the benchmarks presented above (LI, HI, HO, HOmod and HOmem) were executed using five sim-259

ulation engines: aDEVS 2.8.1, CD++ 2.45 (a CD++ branch with support for PDEVS), DEVSJAVA 3.1,260

15



xDEVS 1.20151013 and PyPDEVS 2.2.4. Table 1 shows the programming language and the main data261

structures used in each simulation engine. As stated above, CD++ and aDEVS are C++ implementations,262

DEVSJAVA and xDEVS have been implemented using Java, whereas PyPDEVS is a Python simulation263

engine. As Table 1 shows, aDEVS and xDEVS use generic classes, whereas PyPDEVS uses duck typing.264

To store events, aDEVS and CD++ use standard C++ arrays. On the contrary, DEVSJAVA, xDEVS and265

PyPDEVS use dynamic data structures, like linked lists or dictionaries. Finally, to store components and266

implement the simulation scheduler, all the frameworks use dynamic data structures such as sets or linked267

lists.268

aDEVS CD++ DEVSJAVA xDEVS PyPDEVS
Programming Language C++ C++ Java Java Python
Generics Yes No No Yes Duck typing
Events container array/port array/port Hashtable LinkedList/port dictionary
Components container std::set std::list HashSet LinkedList list

Table 1: Main data structures used in the simulation engines

We tested all these simulation engines in two different machines: a 48 GB AMD Opteron 6272 @ 2.1269

GHz (abbreviated as AMD) and a 64 GB Intel Xeon 2670 @ 2.6GHz “Sandy Bridge” (abbreviated as Intel),270

in both cases under a GNU/Linux Debian 8 Operating System. aDEVS and CD++ were compiled using the271

gcc -O3 optimization level.272

In all the test cases, only one external event was injected, generating the total number of transition273

functions and the total number of events given in the previous equations. As demonstrated in [21] [27] [28],274

the previous metric just scaled linearly with the number of external events.275

Each benchmark type was generated for different values of width and depth. These values were defined276

for running different trials with all the five simulators. We looked for a good trade-off between wall-clock277

simulation time and memory footprint, since these are the metrics measured in all the simulations. Table 2278

shows these intervals, where each row represent a DEVStone benchmark type, in relation with the width279

and depth, each described by the minimum value, the step size, and the maximum value used to generate a280

full range for these parameters. For example, the smallest LI model is a 2 × 1 model, where width = 2 and281

depth = 1. The biggest model, on the other hand, is a 1502 × 1501 model.282

Finally, each simulation is repeated 10 times for each simulator, benchmark, size, and hardware plat-283

forms. Simulation wall-clock time and memory footprint are averaged over these 10 trials. Although no284

significant deviations were appreciated, we kept this number of trials to avoid spurious deviations. Table 2285

16



shows in the last column the total number of simulations performed.286

Width Depth
Benchmark Min. Step Max. Min. Step Max. # Simulations
LI 2 100 1502 1 100 1501 25600
HI 2 100 1102 1 100 1101 14400
HO 2 100 1102 1 100 1101 14400
HOmod 2 1 10 1 1 10 9000
HOmem 2 1 10 1 1 10 9000

Table 2: Parameters configuration

5. Results287

5.1. CPU comparison288

LI HI HO
Simulator AMD Intel AMD Intel AMD Intel

aDEVS 2.5 × 100 2.1 × 100 1.0 × 103 1.0 × 103 1.2 × 103 1.2 × 103

1.19 1.19 1.11 1.11 1.11 1.11

CD++
∞ ∞ 6.3 × 103 5.1 × 103 7.0 × 103 4.5 × 103

∞ ∞ 3.46 3.46 3.69 3.69

DEVSJAVA ∞ ∞ 6.6 × 104 4.0 × 104 ∞ ∞

∞ ∞ 4.23 4.21 ∞ ∞

xDEVS 3.8 × 100 2.6 × 100 9.3 × 102 4.6 × 102 1.0 × 103 5.0 × 102

1.95 2.07 1.88 1.84 1.94 1.84

PyPDEVS ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

Table 3: Execution time (seconds) and memory footprint (GiB) of the larger models executed by the five simulation engines and in both
AMD and Intel servers

Table 3 shows a comparison in execution time (in seconds, measured inside the simulator to avoid the289

loading time of the model) and memory footprint (in GiB, measured using the general GNU time command)290

for the five simulation engines and the largest models of the DEVStone models tested in this work, i.e., LI291

1502×1501, HI 1102×1101, and HO 1102×1101. HOmod 10×10 and HOmem 10×10 are not included292

because no simulator was able to finish them, at least during the 48 hours we run these tests. The same293

happended in all those cases in Table 3 marked with ∞. As can be seen, only aDEVS and xDEVS were294

able to finish all the models in Table 3, followed by CD++, which was not able to load the largest LI295

model. Regarding memory footprint, there is not much difference between both servers. However, in terms296

of execution time, the best server in almost all cases was the 64 GB Intel Xeon 2670 @ 2.6GHz “Sandy297

17



Bridge”, since between both servers, this one has the fastest processor and memory. Thus, simulation results298

are coherent with the server used, i.e., the faster the processor and the greater the memory size, the faster the299

simulation. Memory footprint is independent of the server, since it only depends on the internal structure of300

the DEVStone model.301

As can be seen in Table 3, some simulators were not able to execute the model because the system was302

unable to handle the memory requirements. To tackle these issues in the remaining analysis, the wall clock303

execution time is limited to 1200 seconds and the memory footprint to 4 GiB, enough to perform our more304

than 70000 simulations in a reasonable amount of time, also obtaining significant values to compare. Thus,305

in the following, every experiment with time or memory greater than the aforementioned values is truncated306

to 1200 seconds or 4 GiB, respectively.307

5.2. Execution time308

Figure 6 shows the contour maps of the different execution times needed by all the five simulators in309

both LI and HI models. Blue regions mean low execution time, whereas red regions mean high execution310

time.311

CD++, DEVSJAVA and PyPDEVS saturated the execution time of 1200 seconds multiple times in both312

models. aDEVS and xDEVS, on the contrary, reached the best results.313

Regarding the LI model, the ordered list of simulators, from best to worst contour maps is: aDEVS,314

xDEVS, CD++, DEVSJAVA and PyPDEVS.315

With respect to the HI model, the list is: xDEVS, aDEVS, CD++, DEVSJAVA and PyPDEVS.316

Continuing with this analysis, Figure 7 shows the same contour maps, this time in HO and HOmem317

models.318

Regarding the HO model, xDEVS obtained best execution times, specially as width and depth were319

increased. For low values of width and depth, aDEVS was better than xDEVS. Once again, CD++, DEVA-320

JAVA and PyPDEVS saturated the execution time limit of 1200 seconds.321

With respect to HOmod and HOmem, all the simulators reached the maximum execution time quite322

soon, with relatively small models. Moreover, in the case of HOmod, only two simulators, aDEVS and323

xDEVS, were able to load all the models in memory, before the execution of the simulation. In fact, this324

is due to the intrinsic complexity of the HOmod benchmark, which includes many more atomic models325

than HOmem. HOmem is simpler in structure than HOmod, and all the simulation engines are able to load326

it. Once the simulation starts, HOmod and HOmem offer similar execution time and memory footprint, as327

shown in Section 5.4.328

18



We do not show a comparison between all the simulators in HOmod because only aDEVS and xDEVS329

were able to run a significant number of HOmod instances. These experiments are shown in the comparison330

between aDEVS and xDEVS.331

5.3. Memory footprint332

As mentioned before, memory footprint is the memory high-water mark of a process. The comparison333

of all the five simulators were performed constraining the execution time to 1200 seconds and the memory334

footprint to 4 GiB. The set of five simulators compared in this paper have been developed using different335

programming languages: aDEVS and CD++ in C++, DEVSJAVA and xDEVS in JAVA, and PyPDEVS in336

Python. Since JAVA and Python use their own virtual machines, it is expected that these simulators have a337

higher memory footprint. However, our experimental results showed some exceptions in this regard.338

Figure 8 shows the memory footprint reached by the five simulators in LI and HI models. As can be seen,339

DEVSJAVA and specially PyPDEVS reached the memory limit quite soon. aDEVS had by far the lowest340

memory usage. However, between CD++ and xDEVS, the latter obtained less memory footprint even when341

the Java Virtual Machine must be loaded into memory. This is because CD++ uses a complex structure to342

store the model, as is evident when CD++ is completely saturated once width and depth is greater than 1200.343

Now, Figure 9 shows the memory footprint reached by the five simulators in HO and HOmem models.344

Regarding HO, the situation is almost identical to the HI model. aDEVS and xDEVS are still the two345

best simulators.346

With respect to HOmem, all the five simulators reached the memory limit quite soon. As in the exe-347

cution time analysis, DEVSJAVA was the first to leave the model, for width greater than six. Surprisingly,348

PyPDEVS offered comparable results to aDEVS, CD++ and xDEVS in HOmem and HOmod, the more349

complex models.350

As in the previous section, we do not show a comparison between all the simulators in HOmod because351

only aDEVS and xDEVS were able to run a significant number of HOmod instances.352

As a conclusion, we may say that, regarding memory footprint, aDEVS is by far the best DEVS simulator353

between those analyzed in this paper. In the case of execution time, xDEVS is better as the complexity of354

the model increases, until the cases of HOmod and HOmem, where the complexity of both models cannot355

determine a classification with clarity. In the following, we investigate the performance of aDEVS and356

xDEVS simulators in finer details, as well as the similarities between HOmod and HOmem.357

19



5.4. Comparison between aDEVS and xDEVS358

Firstly, we show the difference in execution time and memory footprint obtained by both simulators in359

LI, HI, HO, HOmod and HOmem models.360

Figure 10 depicts five contour maps. Each one represent the difference, in execution time, of xDEVS361

minus aDEVS.362

In the case of models with lower complexity, like the LI model in Figure 10(a), the difference is small363

(2.5 seconds vs 2.1 seconds according to Table 3) and in favor of aDEVS. With respect to HOmod and364

HOmem, the difference fundamentally varies from -10 seconds to 10 seconds, with more cases in favor of365

aDEVS. However, these two models remain indecisive since they show sparse maps.366

The analysis of Figures 10(b) and 10(c) is much clearer. As the model complexity is increased, the367

difference is higher, in favor of xDEVS (up to 700 seconds faster in the case of HO).368

We now compare both simulator in the HOmod and HOmem DEVStone model. aDEVS and xDEVS369

were the only two simulators that were able to simulate a significant number of HOmod models.370

Figure 11 depicts both the execution time and memory footprint reached by aDEVS and xDEVS in371

HOmod and HOmem models. In both cases, contour maps are practically Yes/No maps, where, after a372

given width and depth both simulators immediately reach the limit in execution time and memory footprint.373

These “saturation” values in HOmod are reached “sooner” (in terms of w and d) than the corresponding374

values in the HOmem model. We prove here that HOmem offers the same results than HOmod with a375

more straightforward mathematical formulation, after a comparison of equations (28)-(31) against equations376

(18)-(27).377

6. Conclusions378

The Discrete Event System Specification formalism (DEVS) has been widely used to conceive, design,379

model and develop a great variety of systems. DEVS has been implemented in various languages and380

platforms over the years. The DEVStone benchmark defines a set of models with varied structure and381

behavior, and was designed to evaluate the performance of DEVS-based simulators.382

The key contributions of this work are the following. We have added a new model to the benchmark,383

called HOmem, which shows identical qualitative behavior than HOmod but with a more manageable math-384

ematical formulation. As HOmod, HOmem is also intensive on both execution time and memory usage.385

We have added the study of memory footprint in DEVStone, deriving the equations needed to compute the386

20



number of events triggered inside the model and per each single injected external event. We have also re-387

calculated the number of transition functions triggered in all the DEVStone benchmarks. Finally, we have388

compared five simulation engines in two different hardware platforms, analyzing both the execution time and389

memory footprint. To perform a fair comparison between simulation engines that allow and do not allow390

model flattening, we did not flattened the benchmark in any case.391

These five DEVStone models are executed against five different DEVS simulators, implemented in dif-392

ferent programming languages such as C++, JAVA and Python.393

Results show that all the simulators were able to run the HOmem model at least for a significant range394

of width and depth values. Between all the five simulators, aDEVS, which is based on C++, had the lowest395

memory footprint at least in LI, HI, and HO models. With respect to execution time, xDEVS was the fastest396

one, specially in the set of HI and HO more complex models.397

As future work, we propose the extension of this complete analysis to study the performance of DEVS-398

tone parallel and distributed simulations.399

Acknowledgment400

The authors would like to thank Dr. Gabriel Wainer and Dr. Sixuan Wang for their assistance in the401

compilation of CD++ under GNU/Linux.402

This work is supported by the Spanish Ministry of Economy and Competitivity under research grants403

TIN2014-54806-R and TIN2013-40968-P.404

[1] B. P. Zeigler, Theory of Modelling and Simulation, John Wiley, 1976.405

[2] B. P. Zeigler, H. Praehofer, T. G. Kim, Theory of Modeling and Simulation. Integrating Discrete Event406

and Continuous Complex Dynamic Systems, 2nd Edition, Academic Press, 2000.407

[3] G. A. Wainer, Developing a software tool for urban traffic modeling, Software, Practice and Experience408

37 (13) (2007) 1377–1404.409

[4] E. Byon, E. Pérez, Y. Ding, L. Ntaimo, Simulation of wind farm operations and maintenance us-410

ing discrete event system specification, SIMULATION Transactions of The Society for Modeling and411

Simulation International 87 (12) (2011) 1093–1117.412

21



[5] G. A. Wainer, S. Daicz, A. Troccoli, Experiences in modeling and simulation of computer architectures413

using DEVS, Transactions of the Society for Modeling and Simulation International 18 (4) (2001) 179–414

202.415

[6] A. Moreno, J. L. Risco-Martı́n, E. Besada-Portas, L. de la Torre, J. Aranda, Formal Languages for416

Computer Simulation: Transdisciplinary Models and Applications, IGI Global, 2013, Ch. Thermal417

Analysis of the MIPS Processor Formulated within DEVS Conventions, pp. 103–144.418

[7] M. Moallemi, G. Wainer, I-DEVS: imprecise real-time and embedded DEVS modeling, in: TMS-419

DEVS ’11 Proceedings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS Integra-420

tive M&S Symposium, Society for Computer Simulation International, 2011, pp. 95–102.421

URL http://dl.acm.org/citation.cfm?id=2048476.2048488422

[8] A. Moreno, J. L. Risco-Martı́n, E. Besada, S. Mittal, J. Aranda, DEVS/SOA: Towards DEVS In-423

teroperability in Distributed M&S, in: 13th IEEE/ACM International Symposium on Distributed424

Simulation and Real Time Applications, IEEE, IEEE Computer Society, 2009, pp. 144–153. doi:425

10.1109/DS-RT.2009.18.426

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5361772427

[9] E. Perez, L. Ntaimo, C. Bailey, P. McCormack, Modeling and Simulation of Nuclear Medicine428

Patient Service Management in DEVS, SIMULATION 86 (8-9) (2010) 481–501. doi:10.1177/429

0037549709358294.430

URL http://dl.acm.org/citation.cfm?id=1841379.1841381431

[10] DEVSJAVA (2015).432

URL http://acims.asu.edu/software/devsjava433

[11] DEVS-Suite,434

http://devs-suitesim.sourceforge.net (2015).435

URL http://devs-suitesim.sourceforge.net436

[12] CoSMoS (2015).437

URL http://acims.asu.edu/software/cosmos438

[13] CD++ (2015).439

URL http://cell-devs.sce.carleton.ca440

22

http://dl.acm.org/citation.cfm?id=2048476.2048488
http://dl.acm.org/citation.cfm?id=2048476.2048488
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5361772
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5361772
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5361772
http://dx.doi.org/10.1109/DS-RT.2009.18
http://dx.doi.org/10.1109/DS-RT.2009.18
http://dx.doi.org/10.1109/DS-RT.2009.18
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5361772
http://dl.acm.org/citation.cfm?id=1841379.1841381
http://dl.acm.org/citation.cfm?id=1841379.1841381
http://dl.acm.org/citation.cfm?id=1841379.1841381
http://dx.doi.org/10.1177/0037549709358294
http://dx.doi.org/10.1177/0037549709358294
http://dx.doi.org/10.1177/0037549709358294
http://dl.acm.org/citation.cfm?id=1841379.1841381
http://acims.asu.edu/software/devsjava
http://acims.asu.edu/software/devsjava
http://devs-suitesim.sourceforge.net
http://devs-suitesim.sourceforge.net
http://acims.asu.edu/software/cosmos
http://acims.asu.edu/software/cosmos
http://cell-devs.sce.carleton.ca
http://cell-devs.sce.carleton.ca


[14] Y. V. Tendeloo, H. Vangheluwe, The modular architecture of the python(P)DEVS simulation kernel,441

in: Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium, 2014,442

pp. 1–6.443

[15] aDEVS (2015).444

URL http://web.ornl.gov/˜1qn/adevs/445

[16] JAMES II (2015).446

URL http://wwwmosi.informatik.uni-rostock.de447

[17] T. G. Kim, C. H. Sung, S.-Y. Hong, J. H. Hong, C. B. Choi, J. H. Kim, DEVSim++ Toolset for448

Defense Modeling and Simulation and Interoperation, The Journal of Defense Modeling & Simulation449

8 (3) (2011) 129–142. doi:10.1177/1548512910389203.450

[18] DUNIP Technologies (2015).451

URL http://www.duniptechnologies.com452

[19] E. Glinsky, G. Wainer, DEVStone: a Benchmarking Technique for Studying Performance of DEVS453

Modeling and Simulation Environments, in: Ninth IEEE International Symposium on Distributed Sim-454

ulation and Real-Time Applications, IEEE, 2005, pp. 265–272. doi:10.1109/DISTRA.2005.18.455

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1530678456

[20] M. Gutierrez-Alcaraz, G. A. Wainer, Experiences with the DEVStone benchmark, in: Proceedings of457

the 2008 Spring Simulation Multiconference, 2008, pp. 447–455.458

[21] G. Wainer, E. Glinsky, M. Gutierrez-Alcaraz, Studying performance of DEVS modeling and simulation459

environments using the DEVStone benchmark, SIMULATION: Transactions of SCS 87 (7) (2011)460

555–580.461

[22] J. Davila, M. Y. Uzcategui, GALATEA: A multi-agent, simulation platform, in: International Confer-462

ence on Modeling, Simulation and Neural Networks (MSNN 2000), 2000, pp. 52–67.463

[23] M. K. Traoré, SimStudio: a Next Generation Modeling and Simulation Framework, in: International464

ICST Conference on Simulation Tools and Techniques for Communications, Networks and Systems,465

2010.466

23

http://web.ornl.gov/~1qn/adevs/
http://web.ornl.gov/~1qn/adevs/
http://wwwmosi.informatik.uni-rostock.de
http://wwwmosi.informatik.uni-rostock.de
http://dx.doi.org/10.1177/1548512910389203
http://www.duniptechnologies.com
http://www.duniptechnologies.com
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1530678
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1530678
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1530678
http://dx.doi.org/10.1109/DISTRA.2005.18
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1530678


[24] PowerDEVS (2015).467

URL http://powerdevs.sourceforge.net468

[25] MS4Me (2015).469

URL http://www.ms4systems.com/pages/main.php470

[26] VLE: The Virtual Laboratory Environment (2015).471

URL http://www.vle-project.org/wiki472

[27] Y. Van Tendeloo, H. Vangheluwe, The Modular Architecture of the Python(P)DEVS Simulation Ker-473

nel: Work In Progress paper, in: Proceedings of the Symposium on Theory of Modeling & Simulation474

- DEVS Integrative, Society for Computer Simulation International, 2014, pp. 1–6.475

URL http://dl.acm.org/citation.cfm?id=2665008.2665022476

[28] D. Vicino, D. Niyonkuru, G. Wainer, O. Dalle, Sequential PDEVS architecture, in: Symposium On477

Theory of Modeling and Simulation (TMS’15), 2015.478

[29] R. P. Weicker, Dhrystone: a synthetic systems programming benchmark, Communications of the ACM479

27 (10) (1984) 1013–1030. doi:10.1145/358274.358283.480

URL http://dl.acm.org/citation.cfm?id=358274.358283481

24

http://powerdevs.sourceforge.net
http://powerdevs.sourceforge.net
http://www.ms4systems.com/pages/main.php
http://www.ms4systems.com/pages/main.php
http://www.vle-project.org/wiki
http://www.vle-project.org/wiki
http://dl.acm.org/citation.cfm?id=2665008.2665022
http://dl.acm.org/citation.cfm?id=2665008.2665022
http://dl.acm.org/citation.cfm?id=2665008.2665022
http://dl.acm.org/citation.cfm?id=2665008.2665022
http://dl.acm.org/citation.cfm?id=358274.358283
http://dx.doi.org/10.1145/358274.358283
http://dl.acm.org/citation.cfm?id=358274.358283


(a) aDEVS - LI (b) aDEVS - HI

(c) CD++ - LI (d) CD++ - HI

(e) DEVSJAVA - LI (f) DEVSJAVA - HI

(g) xDEVS - LI (h) xDEVS - HI

(i) PyPDEVS - LI (j) PyPDEVS - HI

Figure 6: Execution time of LI and HI models

25



(a) aDEVS - HO (b) aDEVS - HOmem

(c) CD++ - HO (d) CD++ - HOmem

(e) DEVSJAVA - HO (f) DEVSJAVA - HOmem

(g) xDEVS - HO (h) xDEVS - HOmem

(i) PyPDEVS - HO (j) PyPDEVS - HOmem

Figure 7: Execution time of HO and HOmem models

26



(a) aDEVS - LI (b) aDEVS - HI

(c) CD++ - LI (d) CD++ - HI

(e) DEVSJAVA - LI (f) DEVSJAVA - HI

(g) xDEVS - LI (h) xDEVS - HI

(i) PyPDEVS - LI (j) PyPDEVS - HI

Figure 8: Memory footprint of LI and HI models

27



(a) aDEVS - HO (b) aDEVS - HOmem

(c) CD++ - HO (d) CD++ - HOmem

(e) DEVSJAVA - HO (f) DEVSJAVA - HOmem

(g) xDEVS - HO (h) xDevs - HOmem

(i) PyPDEVS - HO (j) PyPDEVS - HOmem

Figure 9: Memory footprint of HO and HOmem models

28



(a) LI: xDEVS - aDEVS (b) HI: xDEVS - aDEVS

(c) HO: xDEVS - aDEVS (d) HOmod: xDEVS - aDEVS

(e) HOmem: xDEVS - aDEVS

Figure 10: Execution time comparison of LI, HI, HO, HOmod and HOmem models computed as Time(xDEVS) - Time(aDEVS)

29



(a) aDEVS - HOmod (Time) (b) aDEVS - HOmod (Memory)

(c) xDEVS - HOmod (Time) (d) xDEVS - HOmod (Memory)

(e) aDEVS - HOmem (Time) (f) aDEVS - HOmem (Memory)

(g) xDEVS - HOmem (Time) (h) xDEVS - HOmem (Memory)

Figure 11: Execution time and memory footprint of HOmod and HOmem models given by aDEVS and xDEVS

30


