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ABSTRACT
Data assimilation is an analysis technique which aims to
incorporate measured observations into a dynamic system
model in order to produce accurate estimates of the current
state variables of the system. Although data assimilation
is conventionally applied in continuous system models, it is
also a desired ability for its discrete event counterpart. How-
ever, data assimilation has not been well studied in discrete
event simulations yet. This paper researches data assimila-
tion problems in discrete event simulations, and proposes a
novel and efficient data assimilation algorithm – the rollback
based Sequential Monte Carlo (SMC) method. The proposed
algorithm employs only one simulation to generate particles
by exploiting the rollback technique, therefore, it consumes
much less memory compared with the standard SMC meth-
ods. To evaluate the accuracy of the rollback based SMC
method, an identical-twin experiment in a discrete event traf-
fic case is carried out and the results are presented and ana-
lyzed.

Author Keywords
Data Assimilation, Discrete event simulations, Sequential
Monte Carlo methods, Rollback.

1. INTRODUCTION
Computer simulations have long been used for studying and
predicting the behavior of complex systems [14]. However,
accurate analysis and prediction of the behavior of complex
systems are difficult, because even complex models are still
lacking the ability to accurately describe such systems [7],
therefore, even elaborate complex models of systems produce
simulations that diverge from or fail to predict the real behav-
ior of those systems. This situation is accentuated in cases
where real-time dynamic conditions exist [7].

The availability of real-time observations from real systems
has increased along with the advances in sensor technology.
The increased availability of data allows for a new simulation
paradigm – dynamic data driven simulation, where a simula-
tion is continually influenced by the real time data streams for
better analysis and prediction of a system under study [14].
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The core technique in dynamic data driven simulation is data
assimilation, in which observations are incorporated into a
dynamic system model to produce accurate estimates of cur-
rent states of the system [21].

Data assimilation has been applied with success in many ap-
plications, such as weather forecasting [15], chemical data
assimilation [6], ocean data assimilation [4], etc. But in these
applications, systems are continuous and are conventionally
modeled as (partial) differential equations, and these differ-
ential equations are again computed using numerical meth-
ods, and thus approximated by difference equations [24]. Be-
sides continuous systems and models, a large number of dis-
crete event systems and models exist in practice, such as man-
ufacturing systems, queuing networks, etc. In discrete event
systems, entities are usually represented with discrete state
variables which evolve at discrete moments over continuous
time, and change their values due to the occurrence of partic-
ular events, and the system’s evolution depends on the inter-
actions of such events and their arrival times [13, 24]. Data
assimilation is also a desired ability in discrete event simula-
tions, especially in real-time applications of simulation mod-
els, where the model provides predictions based on the last
known state of the system it represents. We take a traffic sig-
nal control example to explain the necessities of assimilating
data in discrete event simulations. In [5, 17, 19], the authors
have presented how traffic signal control systems can be mod-
eled and simulated using discrete event methods; and in real-
ity, we often see the phenomenon that vehicles accumulate at
crossings in one direction, while in the orthogonal direction,
roads are almost empty with green lights on. Observations
of such a situation are very easy to collect by sensors (e.g.,
inductive loops). If we could assimilate these observations
into the discrete event traffic signal control model and dy-
namically adjust durations of phases of traffic lights, a better
performance (e.g., traffic flow) would be achieved.

However, data assimilation in discrete event simulations is
not well researched yet, and due to the highly nonlinear,
non-Gaussian properties, most data assimilation algorithms
cannot be applied in discrete event simulations. Sequential
Monte Carlo methods seem to be a set of promising meth-
ods which might be applicable in discrete event simulations,
since they are able to approximate arbitrary probability den-
sities and have little or no assumption about the properties of
the system model [2]. The work in [14, 25] has proven the



effectiveness of the SMC methods in discrete event simula-
tions.

A major difficulty of applying the SMC methods is the high
computation costs due to the large number of particles, where
each particle is represented by a full-scale simulation to the
next observation time [2]. To improve the performance of the
SMC methods, distributed/parallel SMC methods were devel-
oped, such as [2, 23]. In this paper, we propose a novel, effi-
cient SMC method – the rollback based SMC method, which
is based on the concept of rollback [10]. In the proposed
method, a particle is a copy (or partial copy) of the model
state. When there is no data, only one simulation is kept
running; while when data is available, the simulation is re-
cursively rolled back to particles generated in the last data
assimilation, and then run to the current observation time to
generate new particles. After resampling, the particle with
the highest probability is assigned to the model, while other
particles are kept for the next assimilation. The simulation
assigned with the most probable particle is run again until the
next observation arrives.

Based on the analysis in section 3.2, the rollback based SMC
method consumes much less memory, and is still as fast as
its standard counterparts. Due to the space limitations, the
performance evaluation is not included in current paper, but
will be extended in future. An identical-twin experiment in
a traffic case which is implemented in a discrete event traffic
simulation software is carried out to evaluate the accuracy of
the proposed algorithm. The results show that the simulation
with the rollback based SMC method can accurately estimate
the position of a slow vehicle and the traffic density on the
road.

The remainder of the paper is organized as follows. Section 2
reviews the existing data assimilation methods, and clarifies
the research gaps. Section 3 presents the rollback based SMC
method, and provides a theoretical analysis of its performance
in terms of the memory consumption and speed. Experiments
and results are given in section 4. Conclusions are drawn in
section 5.

2. RELATED WORK

2.1 Traditional Data Assimilation Algorithms
Traditional data assimilation is conducted based on two mod-
els [1]: one is the system model which describes the evolution
of the state with time, and the other is the measurement model
which relates the noisy observations to the state. The two
models are conventionally expressed as difference equations
[16]:

xtk =Mk(x
t
k−1) + νk−1

yok = Hk(x
t
k) + εk

(1)

where x and M are the model’s state vector and its corre-
sponding dynamics operator, respectively; y is the observa-
tion vector, and H is a mapping between the state space and
the observation space. νk−1 and εk respectively model errors
in the system model and in the measurement model. Super-
script (·)t denotes the true state, while (·)o denotes the obser-
vation. It is commonly assumed that νk−1 has a zero mean

and a covariance matrix Qk−1, and observations are unbiased
and have a covariance matrix Rk [18].

Information, whether in the form of observations or models,
has errors, and data assimilation is a class of algorithms which
make objective compromises between these sources of uncer-
tain information based on principles which aim to maximize
(or minimize) a quantity (e.g., a penalty function) [18].

There are two distinct classes of data assimilation algorithms:
one is the class of variational techniques, and the other is
the class of sequential methods. 3-Dimensional Variational
Analysis (3D-VAR) and 4-Dimensional Variational Analysis
(4D-VAR) are two typical variational techniques in use. 3D-
VAR minimizes the cost function J shown in equation (2)
which measures the misfit between the model state x and the
background state xb (commonly derived from a short-range
forecast), and also between x and the observation yo. The
minimization of J is done with respect to x, and the resultant
x is termed the analysis, xa.

J(x) =
1

2
(x− xb)TQ−1(x− xb)

+
1

2
(yo −H(x))TR−1(yo −H(x))

(2)

In 3D-VAR, all observations in the time-window are treated
as if they occurred at the same time [20]. This introduces
some errors because real systems are changing and develop-
ing. 4D-VAR addresses this problem by introducing the time
dimension into assimilation [18]. In 4D-VAR, the observation
operators are generalized to include a forecast model that will
allow a comparison between the model states and the obser-
vations distributed on a time window [3].

Sequential methods assimilate data sequentially in time and
their main objective is to correct the estimated variables at
every time an observation becomes available [22]. Sequential
methods usually consist of a forecast step

xfk =Mk(x
a
k−1) (3)

, followed by an update step

xak = xfk +Kk(y
o
k −Hk(x

f
k)) (4)

where superscript (·)f means forecast, and Kk =
Qk−1H

T
k (HkQk−1Hk + Rk)

−1 is a gain matrix which is
chosen to minimize the analysis error covariance matrix
Pa

k = (xtk − xak)(xtk − xak)T , and Hk is the tangent linear
function of Hk at xfk . If Mk and Hk are linear, and νk−1 and
εk are stationary zero-mean white noise [1], the forecast er-
ror covariance matrix Pf

k = (xfk − xtk)(x
f
k − xtk)T and the

analysis error covariance matrix Pa
k can be accurately calcu-

lated. This yields to the optimal filter – Kalman Filter (KF).
However, In many situations of interest, the linear and Gaus-
sian assumption does not hold. Non-linear and non-Gaussian
conditions have no influence on calculation of the forecast
and analysis in equation (3) and (4), but poses great difficul-
ties on computation of error covariance matrices Pf

k and Pa
k.

Many approximation methods are proposed to tackle these
difficulties. The Extended Kalman Filter (EKF) linearizes the



non-linear models locally around xfk to ease the computation
of Pf

k and Pa
k [12]. Although EKF is effective in many prac-

tical cases, the method fails to account for the fully nonlinear
dynamics in propagating the error covariance, which, in turn,
fails to represent the error probability density [12]. Another
approach which tackles nonlinearity and non-Gaussian cir-
cumstances very well is the Ensemble Kalman Filter (EnKF)
[9]. EnKF belongs to a broader category of filters known
as Particle Filters (a detailed introduction of particle filters
is presented in section 2.2). In EnKF, the error covariance
matrices are approximated by using an ensemble of model
states. Theoretically, full error statistics can be exactly rep-
resented by an infinite ensemble of model states [9]. EnKF
does not involve an approximation of the nonlinearity of Mk

andHk, the computational burden of evaluating the Jacobians
is hence absent [12]. Optimal Interpolation (OI) Analysis is
another suboptimal filter within the general framework of se-
quential methods. In OI Analysis, Pf

k is replaced by an ap-
proximation, Sf

k [16], which is computed as a product of a
time-independent correlation matrix C and a diagonal vari-
ance matrix Df

k . Df
k is incremented over model time steps

by an empirically determined approximation of mean fore-
cast error growth [11]. OI Analysis is particularly efficient
when only a few observations are important for each variable
in determining the gain in the update step [3].

2.2 Sequential Monte Carlo (SMC) Methods
SMC methods, also called particle filters, is a technique for
implementing a recursive Bayesian filter by Monte Carlo
(MC) simulations [1]. The key idea is to represent the re-
quired posterior distribution by a set of random samples (also
called particles) with associated weights and to compute es-
timates based on these samples and weights. As the num-
ber of samples becomes very large, this MC characterization
becomes an equivalent representation to the usual functional
description of the posterior distribution [1, 8].

We are interested in obtaining the posterior distribution
p(x0:k|z1:k), where x0:k = {xi, i = 0, . . . , k} is the set of
all states up to time k, and z1:k = {zi, i = 1, . . . , k} is the set
of all available observations up to the same time. The SMC
methods approximate p(x0:k|z1:k) by a random measure

χk = {xi0:k, wi
k}Ni=1 (5)

where {xi0:k, i = 1, . . . , N} is a set of support points with
associated weights {wi

k, i = 1, . . . , N}. The weights are nor-
malized such that

∑N
i=1 w

i
k = 1. Then we have

p(x0:k|z1:k) ≈
N∑
i=1

wi
kδ(x0:k − xi0:k) (6)

where δ(·) is the Dirac delta function. Usually, direct sam-
pling from p(x0:k|z1:k) is intractable, therefore the sequential
importance sampling (SIS) algorithm is developed, in which
samples are drawn from an easily sampled distribution which
is called importance density, and weights are updated using

wi
k ∝

p(zk|xik)p(xik|xik−1)
π(xik|xi0:k−1, z1:k)

wi
k−1 (7)

where π(xik|xi0:k−1, z1:k) is the importance density. Readers
can refer to [1] and [8] for more details on the derivation of
the SIS algorithm. The SIS algorithm can be implemented by
performing the following two steps for every k:

1. draw particles xik ∼ π(xk|xi0:k−1, z1:k), i = 1, . . . , N , and
append them to xi0:k−1 to form xi0:k;

2. compute the weightswi
k according to equation (7), and nor-

malize the weights.

The importance density plays a very important role in the per-
formance of the SMC methods. In general, the closer the
importance density to that distribution, the better the approxi-
mation [8]. If π(xk|xi0:k−1, z1:k) = π(xk|xik−1, zk), then the
importance density becomes only dependent on xk−1 and zk.
This is particularly useful in the common case when only a
filtered estimate of p(xk|z1:k) is required at each time step.
In such scenarios, only xik need be stored, therefore, one can
discard the path xi0:k−1 and history of observations z1:k−1.
The prior importance density which is given by p(xk|xik−1)
[8] is a such density, and it implies particle weight updates by

wi
k ∝ p(zk|xik)wi

k−1 (8)

The simplified SIS algorithm is shown in Algorithm 1.

Algorithm 1: The SIS algorithm
Input: random measure at k − 1:

χk−1 = {xik−1, wi
k−1}Ni=1, new observation zk

Output: random measure at k: χk = {xik, wi
k}Ni=1

for i = 1 : N do
draw particles xik ∼ p(xk|xik−1, zk);
assign the particle a weight, wi

k, according to (8);
end

A major problem with the SIS algorithm is that the discrete
random measure degenerates quickly [1, 8]. In other words,
all the particles except for a very few are assigned negligible
weights. Degeneracy can be reduced by resampling, in which
particles are replicated in proportion to their weights [8]. A
complete implementation of the SMC methods based on the
SIS algorithm and resampling is presented in Algorithm 2.

2.3 Data Assimilation in Discrete Event Simulations
In discrete event simulations, the model state and its evolu-
tion have very different properties from those in continuous
systems and models where traditional data assimilation algo-
rithms are developed and applied:

1. The behavior of discrete event simulations is highly non-
linear, non-Gaussian. The functions to describe state
evolution in discrete event simulations are usually rule-
based. These functions are essentially step functions and
can therefore not be linearized, because state changes hap-
pen instantaneously at the event. The high nonlinearity of
state transition functions in discrete event simulations ham-
pers the application of data assimilation algorithms which
are based on linear assumption (KF) or local linearization
(EKF).



Algorithm 2: The SMC methods
Input: random measure at k − 1:

χk−1 = {xik−1, wi
k−1}Ni=1, new observation zk

Output: random measure at k: χk = {xik, wi
k}Ni=1

% the sampling step
for i = 1 : N do

draw particles x
′i
k ∼ p(xk|xik−1, zk);

assign x
′i
k a weight: w

′i
k = p(zk|x

′i
k )w

i
k−1;

end

normalize the weights: w
′′i
k =

w
′i
k∑N

j=1 w
′j
k

% the resampling step
c0 = 0;
for i = 1 : N do

ci = ci−1 + w
′′i
k

end
for i = 1 : N do

generate a random number r ∼ U [0, 1];
if cj−1 < r ≤ cj then

xik = x
′j
k ;

wi
k = 1

N ;
end

end

2. The model state in discrete event simulations can hardly be
represented as a meaningful vector. In continuous systems
and models, the system state is represented as a column
vector x [3], and elements of the state vector usually have
same meaning and similar referents, for example, a two-
dimension state vector x = [xT xM ]T represents tempera-
tures in Toronto and Montreal, respectively. The state tra-
jectory is continuously changing with the state taking value
in Rn [13]. In discrete event simulations, however, the state
trajectory is piecewise constant and event driven [13], and
state elements of an atomic model are rather diverse, for
example, (s, e) is the total state of a barber model, where
s is a boolean type which indicates whether the barber is
busy or not, and e is a double type which tells how long the
barber has been in the current state. For a coupled model
with hierarchical structure, the model state is usually de-
fined as a collection of states of all its atomic components.
Therefore, in discrete event simulations, it is almost impos-
sible to represent the model state as a meaningful vector,
thus error covariance matrices, such as Q and R, are not
available anymore. These matrices are essential to almost
all algorithms introduced in section 2.1, because they are
used to compute the gain matrix K, forecast error covari-
ance matrix Pf , and analysis error covariance matrix Pa,
etc.

Therefore, the algorithms introduced in section 2.1 can hardly
be applied in discrete event simulations.

Sequential Monte Carlo methods seem to be a set of promis-
ing methods which are applicable in discrete event simula-
tions, since they are able to approximate arbitrary probability
densities and have little or no assumption about the properties

of the system model [2]. The work in [14, 25] has proven the
effectiveness of the SMC methods in discrete event simula-
tions.

A major difficulty of applying the SMC methods is the high
computation costs due to the large number of particles, where
each particle is represented by a full-scale simulation to the
next observation time [2]. To improve the performance of
the SMC methods, distributed/parallel SMC methods have
been developed, such as [2, 7, 23]. In this paper, we pro-
pose a novel, efficient SMC method – the rollback based SMC
method, which is based on the concept of rollback [10]. In the
proposed algorithm, a particle is a copy (or partial copy) of
the model state. When there is no data, only one simulation
is kept running; while when data is available, the simulation
is first rolled back to a particle in the last data assimilation,
and then run to the current observation time. At this mo-
ment, a particle is generated by retrieving the model state.
This procedure is repeated until the specified number of par-
ticles are generated. After resampling, the particle with the
highest probability is assigned to the model, while other par-
ticles are kept for the next assimilation. The simulation as-
signed with the most probable particle is run again until the
next observation arrives. Therefore, the proposed algorithm
consumes much less memory, and we will prove that it is still
as fast as its standard counterparts. Due to the space limita-
tions, this paper mainly focuses on the description of the roll-
back based SMC method, and its effectiveness proof through
a traffic case, which are presented in section 3.1 and section 4,
respectively, while the memory consumption and speed com-
parison are only analyzed briefly in section 3.2, and related
experiment will be extended in future.

3. ROLLBACK BASED SMC METHOD

3.1 Algorithm Description
The main idea of the rollback based SMC method is shown in
Figure 1. In our proposed method, N particles are also em-
ployed, but different with the standard SMC methods where
each particle is evolved by an independent, full-scale simu-
lation to the next observation time, a particle in our method
is a copy (or partial copy) of the model state, and only one
simulation is kept for generating particles.
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Figure 1. The rollback based SMC method

In a set of particles {sit, i = 1, . . . , N}, we always assume
that the first particle s1t has the highest probability. Assume
the initial state is distributed as p(s0). In the initialization,
N particles {si0, i = 1, . . . , N} are drawn from p(s0), but



only s10 is assigned to the model and the simulation starts to
run, i.e., only one simulation with the most probable state is
running.

Assume at time t, observation ot is collected, and the parti-
cles at the last data assimilation time t − 1 are {sit−1, i =

1, . . . , N}. The sampling step generates N particles {s′it , i =
1, . . . , N} as follows:

1. the first particle s
′1
t is already embedded in the simulation,

therefore, it can be generated by retrieving the current state
of the model;

2. the otherN −1 particles {s′it , i = 2, . . . , N} are generated
recursively as follows:

(a) roll back the current simulation to sit−1;

(b) run the simulation to time t, and s
′i
t is generated by

retrieving the model state.

The resampling step in the proposed algorithm is the same
with that in the standard SMC methods, therefore, it will not
be repeated here. After resampling, the particle with the high-
est probability is assigned to the model, while other particles
are kept for the next assimilation. The simulation assigned
with the most probable particle is run again until the next ob-
servation arrives.

In section 4, a discrete event traffic case is studied to prove the
effectiveness of the proposed algorithm. The traffic model is
built in OpenTrafficSim1, which is a Java based, open source,
discrete event simulation software to support research and de-
velopment of multi scale and multi modal traffic models. In
order to do rollback in OpenTrafficSim, the vehicle class is
extended to enable the discrete event model to save and re-
store its state; the discrete event simulator is revised to be
capable of setting its time backward. Besides, after the model
state and simulator time are rolled back, the model resched-
ules events on its simulator to reconstruct the future event list.

3.2 Memory Consumption & Speed
In this section, we briefly analyze the memory consumption
and speed of the rollback based SMC method compared with
the standard SMC methods. The analysis shows that the roll-
back based SMC method consumes much less memory, but is
almost as fast as the standard SMC methods.

Memory Consumption
Assume the memory consumption of a discrete event model
is Mm, while the proportion of the memory consumption of
the state in the whole memory consumption of the model is
p(0 < p ≤ 1). The memory consumption of a discrete event
simulator with an empty event list is Ms. During the simula-
tion, we assume there are Ne events on average stored in the
event list, and the average memory consumption of an event
is Me. In the standard SMC methods with N particles, the
memory consumption at time t is

MCstandard = N(Mm +Ms +NeMe)

1More information about OpenTrafficSim can be found in http:
//www.opentrafficsim.org/.

, while in the rollback based SMC method with the same
number of particles, the memory consumption is

MCrollback =Mm +Ms +NeMe + (N − 1)Mmp

Obviously, MCrollback � MCstandard, i.e., the rollback
based SMC method consumes much less memory compared
with the standard SMC methods.

Speed
In order to accelerate the execution of the SMC methods,
parallel/distributed SMC methods are commonly applied. If
there is only one processing unit (PU) available, N particles
in the standard SMC methods can only be executed sequen-
tially, therefore, in the single-PU case, the rollback based
SMC method is almost as fast as the standard SMC methods.

If there are multiple PUs available (assume the number of
PUs is Np, usually we have Np < N ), the rollback based
SMC method can be parallelized or distributed as follows:
deploy one simulation and ni particles on the processing unit
PUi(i = 1, . . . , Np), such that

∑Np

i=1 ni = N ; on PUi, par-
ticles will evolve as described in section 3.1; when all parti-
cles are generated, resampling will be done in a centralized
way. Therefore, in the multiple-PU case, there is no obvious
speed drop in the rollback SMC method compared with the
standard one if proper parallelizing/distributing schemes are
employed.

4. EXPERIMENTS AND RESULTS

4.1 Experiment Setup
The identical-twin experiment is adopted in this paper to eval-
uate the effectiveness of the proposed rollback based SMC
method. In the experiment, we first model a two-lane circular
road shown in Figure 2 in OpenTrafficSim. The total length
of the road is 2000 meters, on which 80 vehicles are driv-
ing in counterclockwise direction. Along the road, 8 sensors
are evenly installed, and each sensor has 100-meter detection
range on each lane. Each sensor can report two types of in-
formation every 10 seconds: 1) the number of vehicles in its
detection range; 2) the average speed of all vehicles in the de-
tection range (if there is no vehicle in the range, the speed is
defined as the maximum allowed speed of the road). The ex-
periment consists of three traffic simulations which have the
same run length of 1000 seconds:

1. ‘real’ traffic: the traffic simulation from which the real
data is obtained. Among 80 vehicles on the road, we as-
sume there is one slower vehicle (vmax = 25km/h, which
is 1/4 of the normal vehicles’ maximum speed). Besides
the sensor readings which are collected every 10 seconds,
two other types of information are recorded for later com-
parison: 1) slow vehicle position; 2) number of vehicles
on each segment (each lane is evenly divided into 20 seg-
ments).

2. simulated traffic: the traffic simulation which has no in-
formation about the real traffic, therefore, we randomly
choose one vehicle as the slow vehicle.

http://www.opentrafficsim.org/
http://www.opentrafficsim.org/


driving direction

Figure 2. The two-lane circular road, sensors are evenly installed at positions
marked in red

3. filtered traffic: the traffic simulation which has the same
configuration with the simulated traffic, except that the sen-
sor readings are assimilated by the rollback based SMC
method.

In the filtered traffic, we use N = 60 particles. A particle
is a collection of vehicle information, including position, ve-
locity, acceleration, and maximum speed (used for recogniz-
ing the slow vehicle). The simulation is initialized with the
same configuration with the simulated traffic, and the other
N−1 particles are generated by randomly selecting a vehicle
in each particle and setting its maximum speed as 25km/h.
When generating particles, we add random noise to the sim-
ulation just before we retrieve its state when the simulation
runs to the observation time. The random noise is to select a
normal vehicle with a probability of 0.1 around the slow vehi-
cle (50 meters before and after) and exchange their maximum
speed.

Weight computation is a very important step in SMC methods
since it provides the measure to keep the optimal particles for
future steps. In this paper, the weight of the i-th particle is
computed by taking three types of information into consider-
ation:

1. number of vehicles in each sensor’s detection range. We
define di = max( max

j=1,...,8
|nlj − n

′l
j |, max

j=1,...,8
|nrj − n

′r
j |),

where nlj , nrj are the numbers of vehicles on the left and
right lane respectively within the detection range of j-th
sensor in the real traffic, while n

′l
j and n

′r
j are the corre-

sponding numbers in the particle. The contribution of this
information to the weight is defined as

pi1 =
1√
2π
e−

d2i
2

2. average speed of vehicles in each sensor’s detection range.
Similar to the way in dealing with the number of vehicles,
we assume vi as the maximum average speed difference
between the real traffic and the particle, and define its con-
tribution as

pi2 =
1√
2π
e−

v2
i
2
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Figure 3. Estimating the slow vehicle position by average speed increases
between two consecutive sensors

3. the difference of slow vehicle positions between the real
traffic and the particle. Because we have no information
about the slow vehicle position in the real traffic, we need
to estimate the area the slow vehicle is probably in. A slow
vehicle can block vehicles behind it, hence, there will be
a sharp increase of average speed around the slow vehicle.
We calculate the speed increase between two consecutive
sensors by

I lj =

{
vlj+1 − vlj j = 1, . . . , 7

vl1 − vl8 j = 8

where vlj is the average speed of vehicles on the left lane
within the detection range of the j-th sensor. Assume j∗l
is the index of sensor which satisfies I lj∗l = max

j=1,...,8
I lj ,

therefore, the slow vehicle should be in the area j∗l shown
in Figure 3. But in order to be more robust, we extend the
area by adding two adjacent areas: area j∗lb and area j∗lf ,
which is behind and in the front of area j∗l, respectively.
Suppose in the particle, the slow vehicle is in area k, we
define

pl =

{
0.9 k = j∗l

0.05 k = j∗lb or j∗lf
The same method applies to the data of the right lane, then
we can get j∗r, j∗rb , j∗rf and pr. The contribution to the
weight is therefore defined by

pi3 = (pl + pr)/2

The three contributions are linearly combined as pi = αpi1 +
βpi2 + γpi3, such that α + β + γ = 1. In our experiment,
we choose α = β = 0.25, γ = 0.5. Then the weight of the
i-th particle is accordingly updated by w

′i
t = wi

t−1p
i, and is

finally normalized by wi
t = w

′i
t /
∑N

j=1 w
′j
t .

4.2 Experiment Results
The filtered traffic provides estimations of the slow vehicle
position and the traffic density on an arbitrarily chosen road
segment by assimilating sensor readings from the real traffic
using the rollback based SMC method. The results show that



Figure 4. Estimation of the slow vehicle position (t = 1000); the slow
vehicle positions in the real traffic, the simulated traffic and the filtered traffic
are marked in red, green and blue, respectively

the filtered traffic provides accurate estimations of the slow
vehicle position and the traffic density on the road. The ex-
periment proves that the rollback based SMC method is an
effective data assimilation algorithm.

Locate the slow vehicle
The slow vehicle in real traffic at time 1000 is shown in red in
Figure 4, while the estimations given by the simulated traffic
and the filtered traffic at the same time are shown in green
and blue, respectively. The distance between the true position
and the estimation given by the simulated traffic is 622.93m,
while it decreases to 30.24m when real data is fed into the
simulation by the rollback based SMC method.

Estimate the traffic density
We arbitrarily choose one segment (length of 100m) of a lane
(the inside lane of the circular road), and estimate the traffic
density over time. The result presented in Figure 5(a) shows
that the simulated traffic can only estimate accurately in the
beginning (t ≤ 170), but fails to generate accurate estimation
as the time evolves; while as shown in Figure 5(b), although
the estimation is not accurate all the time, the filtered traffic
can accurately capture the trend of the density evolving, i.e.,
when the segment is busy and when it becomes idle, and can
also roughly give an acceptable estimation of how busy it is.

We define E1 = 1
NT

∑NT

i=1 |Nr
i − Ni| as the estimation er-

ror of the simulated traffic, where NT is the number of data
points (in our experiment, NT = 1000/10 = 100); Nr

i and
Ni are numbers of vehicles on the chosen segment in the real
traffic and the simulated traffic at time ti, respectively. Simi-
larly, we can define the estimation error of the filtered traffic
as E′1 = 1

NT

∑NT

i=1 |Nr
i −N ′i |, where N ′i is the number of ve-

hicles on the chosen segment in the filtered traffic. The exper-
iment reveals that the estimation error of the simulated traffic
isE1 = 2.3168, but it shows a 55.2046% drop (E′1 = 1.0378)
when the real data is assimilated by the rollback based SMC
method.

Figure 6 shows the traffic densities of different road segments
(the circular road is evenly divided into 20 segments) at time
1000. The result shows that the simulated traffic fails to es-
timate the traffic densities on different road segments, while
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Figure 5. Number of vehicles on one segment (100m) of one lane. The red
line shows the number of vehicles in the real traffic, while the blue line in (a)
shows the number of vehicles in the simulated traffic, and the blue line in (b)
shows the number of vehicles in the filtered traffic
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Figure 6. Number of vehicles on different segments on the road (t = 1000)

the filtered traffic can roughly reconstruct the traffic situation
on the road. If we define the estimation error of the simulated
traffic as E2 = 1

Ns

∑Ns

i=1 |Nr
i − Ni|, where Ns is the num-

ber of road segments, Nr
i and Ni are numbers of vehicles on

the i-th road segment in the real traffic and the simulated traf-
fic, respectively. Similarly, we can define the estimation error
of the filtered traffic as E′2 = 1

Ns

∑Ns

i=1 |Nr
i − N ′i |, where

N ′i is the number of vehicles on the i-th road segment in the
filtered traffic. The experiment shows that the estimation er-
ror of the filtered traffic is E′2 = 2.2217, while it goes up to
E2 = 4.3 (increased by 48.3333%) if no data is assimilated
into the simulation.

5. CONCLUSION
This paper presents a novel and efficient data assimilation al-
gorithm – the rollback based SMC method. Different from its
standard counterparts where each particle is evolved by an in-
dependent, full-scale simulation to the next observation time,
a particle in our method is a copy (or partial copy) of the
model state, and only one simulation is kept for generating
the particles by exploiting the rollback technique. A theo-
retical analysis shows that the proposed algorithm consumes



much less memory, but is almost as fast as the standard SMC
methods. Due to space limitations, the experiment on the per-
formance evaluation is not included in this paper, but will be
extended in future. An identical-twin experiment in a dis-
crete event traffic case is carried out to evaluate the accuracy
of the proposed algorithm. The results show that the simu-
lation with the rollback based SMC method can accurately
estimate the slow vehicle position and the traffic density on
the road.
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