
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 1, Number 2, pages 191–210, July 2011

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

Christian Schäck, Rolf Hoffmann, Wolfgang Heenes

Technische Universität Darmstadt
FB Informatik, FG Rechnerarchitektur

Hochschulstraße 10, 64289 Darmstadt, Germany
{schaeck,hoffmann,heenes}@ra.informatik.tu-darmstadt.de

Received: January 30, 2011

Revised: May 20, 2011

Accepted: June 20, 2011

Communicated by Yasuaki Ito

Abstract

Two new multiprocessor architectures to accelerate the simulation of multi-agent systems
based on the massively parallel GCA (Global Cellular Automata) model are presented. The
GCA model is suited to describe and simulate different multi-agent systems. The designed and
implemented architectures mainly consist of a set of processors (NIOS II) and a network. The
multiprocessor systems allow the implementation in a flexible way through programming, thus
simulating different behaviors on the same architecture. Two architectures, one with up to 16
processors, were implemented on an FPGA. The first architecture uses hardware hash functions
in order to reduce the overall simulation time, but lacks scalability. The second architecture uses
an agent memory and a cell field memory. This improves the scalability and further increases
the performance.

Keywords: simulation of multi-agent systems, global cellular automata, hardware hash function,
FPGA, NIOS II, multiprocessor, multicore

1 Introduction and Related Work

Multi-agent modeling can be applied to a variety of disciplines, e.g. traffic simulation [13], simulation
of biologic systems [21, 18] or ecosystems [5]. In previous work [15, 17] we have shown how multi-
agent systems (MAS) can be described and simulated using the GCA (Global Cellular Automata)
model [9, 10]. Other investigations have incorporated the characteristics of CAs (Cellular Automata)
to simulate HIV-Immune Interaction Dynamics [24]. For this application the model of cellular
automaton has been a good way to study the adaptation and self-regulation properties. Multi-agent
simulations have also been realized on GPUs (Graphics Processing Unit) using the CUDA (Compute
Unified Device Architecture) framework [19, 20]. The authors of [6] present a new technique to
simulate agent-based models on GPUs. They used sugarscape as a test application. With this
test application a high simulation performance was reached. But the authors criticized the bad
programmability and denote it as counterintuitive.

The realization of cellular automata on GPUs can be efficient if a small neighborhood is needed.
This way the local properties of the GPUs architecture can be used efficiently. Multiple cells can be

191

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

processed at a time allowing fast accesses to neighbor cells as these are loaded in a bunch. Larger
neighborhoods can not be realized as efficient as local neighborhoods [23, 22].

In this paper we will present new architectures for fast simulation of multi-agent systems. Using
the GCA model the programmability can be kept intuitive. New applications can then be devel-
oped with low effort. The new architectures are FPGA (Field Programmable Gate Array) based.
Therefore the absolute performance will not be able to keep up with the highly advanced GPUs.
Developing new architectures allows us to investigate specially designed commonly used agent func-
tions. Simulating a MAS of size 45× 45 on a former multiprocessor architecture (MPA) [15] lasted
0.44ms per generation for four processors (p = 4). Simulation of the same MAS, but without any
agents (empty world), lasted 0.37ms per generation on the same architecture. So the simulation of
the empty MAS consumes about 83.58% of the overall execution time. Thus this overhead has to be
minimized. This is done by the design of novel architectures. When superfluous computations are
reduced then the complexity of the architectures increases in general. We are presenting two new
architectures. The first architecture (HA) shows good simulation results even for a low number of
processors at a low clock rate, but lacks scalability. The second architecture (DAMA) scales better
and contains an additional hardware function to further increase the performance.

2 Global Cellular Automata Model

The GCA model is a generalization of the CA model using dynamic global links to select neighbor
cells. It consists of a set of cells that update their state synchronously in parallel according to a local
rule stored in each cell. Each cell can hold multiple data and link fields. We will not distinguish
between data and link fields and such fields will be called blocks. The term block describes a
memory location holding any kind of data (data or link information). The interpretation of a block
is determined by the application. For each cell a local cell rule is applied calculating the next data
and link states. All cell states at a certain time step t constitute a so called generation. Each cell
has read access to any other cell using the dynamic links. Write conflicts cannot occur, therefore the
model can easily be supported by hardware for a large number of cells. Fig. 1 shows the operation
principle for n blocks.

Figure 1: The GCA operation principle

3 Agent System Layer

Several different architectures and enhancements for the GCA model have been developed [14, 15,
16, 17, 11, 12]. While the GCA model can be used for many different applications our focus is
the simulation of MAS. At first general architectures have been developed. These architectures
are capable of running all GCA algorithms according to the GCA model. Focusing on the task of
multi-agent simulation the general architectures can be enhanced and/or restricted. The resulting

192

International Journal of Networking and Computing

architectures are no longer necessarily capable of running all GCA applications but achieve a higher
simulation performance regarding multi-agent simulations.

Figure 2: Model Stack

With many different agent behavior rules [21, 18, 13, 5], MAS and many different simulation
architectures there is the need of a common interface. Therefore the agent system layer has been
introduced to the overall system (Fig. 2). The agent system layer defines how MAS are simulated
using the GCA model itself or modified versions of it. With the agent system layer the GCA model
can be enhanced or restricted and a mapping of the agent behavior rule into the cell rule is defined.
Furthermore, the agent system layer defines commonly used agent functions (such as cell checks for
moving agents) and abstracts from different architectures. So far, the agent system layer defines the
interface of the commonly used functions. The functions can either be implemented in software or
hardware, depending on the applications need. In a complete agent simulation system a complete
well defined function library can be considered as given. Fig. 2 shows the complete system model
stack. The actual application uses the interface (and the defined functions) for simulation. The
agent system layer, which is based on the GCA model defines the actual architecture.

4 Test Application - Agent Behavior Rule

In order to compare the architectures, an artificial MAS was defined. Agents are moving around on
a 2D grid according to a simple rule. The 2D grid including the agents constitutes the MAS. The
agent’s behavior is implemented as C code running on multiple processors and applied to all agents
of the MAS. The two different object types are: agent (A) and obstacle (O) (Fig. 3).

A: An agent checks four neighbor positions (A1, A2, A3, A5) located in the moving direction of
the agent. For the front position (A3) an easy check is executed as this position only needs to
be empty. The remaining three positions (A1, A2, A5) are checked for an agent with a moving
direction to the front position (A3). If this is the case none of the agents can move to this
position to avoid a collision. If only the agent from the current position (A4) wants to move

193

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

Figure 3: Multi-agent system. Agent A4 checks four cells in its moving direction in order to detect
an obstacle, another agent or a conflict.

to the front position (A3) it is deleted from that position (A4). The agent in Fig. 3 shows this
situation.

O: An obstacle (O1) does not need to check any neighbor, it is not altered and copied to the next
generation.

Each agent (A) behaves according to the following rule:

• if agent can move then move forward and simultaneously turn (toggle between S and W or
between N and E)

• if agent can not move then turn right

The implemented direction of rotation for the two cases is shown in Fig. 4.

Figure 4: Agents behavior. An Agent is moving the SW-NE diagonal up or down if it can move,
otherwise it turns right

5 Multiprocessor Architecture with Hash Function (HA)

5.1 System Overview

The new architecture supporting the GCA model consists of p NIOS II softcore processors [4] each
supplied with a programmemory and a data memory. The programmemory holds the cell rule (agent
behavior). The data memory holds the active cell states. In contrast to the former architecture

194

International Journal of Networking and Computing

(MPA) [15], the one presented here stores only part of the cells in order to save resources and to
process large cell fields that are sparsely occupied by agents. As not all cells are stored in the data
memory we first have to distinguish between the data that is stored and the data that is not stored.
Therefore we defined two cell types:

• active cell: A cell that requires calculation and has relevant data that has to be stored in the
data memory. In the context of agent simulation, this cell is some kind of agent cell. (here:
agent or obstacle)

• inactive cell: A cell that holds no data and does not require to be processed. Therefore
inactive cells are not stored in the data memory. In the context of agent simulation, this cell
is an empty cell.

Each data memory holds a subset of all active cells. Each NIOS II processor applies the rule to
the cells data in its associated data memory. To be able to read the data of a neighbor, all processors
are connected to a network (via various hardware-software functions implemented through custom
instructions). The data memories are implemented as dual port memories (Fig. 5). The first port is
used for read accesses by the associated processor and by a write arbiter, the second port is used for
read accesses by other processors via the network. The data memories are capable of holding two
generations at a time. The current generation is used for all read accesses while the next generation
is used for all write accesses. Thereby data consistency is given at any time (synchronous updating
between generations).

A NIOS II processor, its associated data and program memory, a read/write arbiter, a flag
register and a local buffer is called Processing Unit (PU) (Fig. 5 highlights processing unit 3. The
program memory is not shown). The design of the network is essential for the overall performance.
Previous investigations [15] have shown that a bus network with dynamic arbitration performs very
well for multi-agent simulation in comparison to other networks (ring, omega). Different networks
were also investigated for the hash architecture. It turned out that the bus network with dynamic
arbitration performed best for our application.

All active cells are distributed among the available data memories of all PUs based on their cell
index. As each memory location can only store one cell at a time a hash function (h(i) in Fig. 5) is
used to determine a free memory location. The hash function is used to determine the PU and the
memory location. The address calculated by the hash function consists of a lower part determining
the memory location within the data memory and an upper part selecting the PU.

A cell in the agent world described by its coordinates (x, y) is transformed to a cell index i. The
top left cell is the cell with the coordinates (0, 0). The cell index can be calculated by the following
function where (x, y) are the cells or agents coordinates and MAXX is the dimension of the agent
world in the X-direction:

i = f(x, y) = y ·MAXX + x

Within the cell rule (or agent’s behavior) only the cell index i is used. The neighbor cells of
the cell i can be determined by: i + 1 (right neighbor), i − 1 (left neighbor), i − MAXX (upper
neighbor), i+MAXX (bottom neighbor).

Note that the amount of agents per data memory varies and changes during the execution of the
cell rule due to the usage of a hash function. If the amount of agents is smaller than the capacity
of one data memory all agents could concentrate in one data memory. In that case one processor
has to execute all agents while the other processors are idle. This situation depends on the hash
function, the size of the data memories and the amount of agents. It also varies during the execution,
so it is probably unlikely to happen during multiple generations. This circumstance needs further
investigations. Using a cell rule that does not generate new agents it is guaranteed that all agents
can be stored at any time. If a cell rule is used that generates new agents during execution, the
programmer has to check that the total amount of agents does not exceed the total memory capacity
(size of all data memories) at any time.

The general processing steps are:

195

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

Processing Unit 3

adress

data

adress

datanetwork

data memory 0
R/W buffer

flag
NIOS II

r WB

h(i)

get

cont.

data memory 1
R/W buffer

flag
NIOS II

r WB

h(i)

get

cont.

data memory 2
R/W buffer

flag
NIOS II

r WB

h(i)

get

cont.

data memory 3
R/W buffer

flag
NIOS II

r WB

h(i)

get

cont.

arbiterh(i)

Figure 5: Architecture with hash functions (HA) for p = 4. Active cells are stored in the data mem-
ories. NIOS II/f processor with 512 Byte instruction cache, hardware multiplication and hardware
division.

196

International Journal of Networking and Computing

1. Search for the data in the data memory (R/W-Arbiter) and store it in a local buffer.

2. Load an agent from the local buffer into the NIOS II processor.

3. Check neighbor cells by using the hash function in conjunction with the get and contains
functions.

4. Write the new agent into a local write buffer.

5. The data in the buffers is written back by a write arbiter.

The read unit of the R/W arbiter searches in the memory for active cells and transfers them
into a buffer. A flag field indicates which memory location is actually holding valid data, avoiding
unnecessary memory accesses and speeding-up the search process. The processor reads the data
out of the local buffer and executes the cell rule. Thus reading data out of the memory is done in
parallel to the computation, and the processor does not have to wait for the search process. After
a cell has been processed the new cell data is written into a register (r in Fig. 5). All registers are
transferred into a write buffer by a dedicated custom instruction. A write arbiter fetches the data
of all processors out of the write buffer. The cell index is transformed into a valid write address by
the hash function. The cell state is then stored at this address. External read accesses are more
complex. As not all cells are stored in the data memories a neighbor access first has to check if the
cell exists. The processor initiates the cell check. The read address of the cell is transformed by the
hash function. A contains hardware function (cont. in Fig. 5) checks the flag field for data at
the corresponding address. If the flag is not set the cell is not stored in any of the data memories.
If the flag is set the data has to be read via the network using the get hardware function (get in
Fig. 5). After the cell has been read, the index of the cell has to be compared with the index of
the requested cell. Multiple read operations might be necessary if rehashes had occurred during
the write operation. As the cell index is not equal to the memory address the cell index has to be
stored in the data memory. During external read operations the stored cell index always has to be
compared with the requested index.

5.2 Step-by-Step Sequence of the Process

Given an agent A at cell (a, b) where (a, b) equals cell index c. Let’s assume that A is stored in data
memory 3 at memory location 5 (initial configuration).

The R/W arbiter of PU 3 scans the flag register of PU 3 for all memory positions and finds a
flag for memory location 5. The agent stored at that position is copied out of the memory into the
local buffer. Stored alongside with the agent is the cell index c. The NIOS II processor reads the
data out of the buffer. With the information about the agent type and the cell index c the agents
behavior is determined. As an example the agent might want to move from the current cell c to the
neighbor cell c+ 1. In this case cell c+ 1 and the neighbor cells of cell c+ 1 need to be checked (to
avoid collisions and to maintain data consistency). Let’s just consider how cell c+1 is checked. The
NIOS II processor sends the cells index (c + 1) through the hash function. The result of the hash
function is a global memory address (gma) consisting of data memories address (lower bits) and the
index of the PU (upper bits). The amount of bits used for the upper part is log2 (#PUs) where
PUs is the amount of PUs. The amount of lower bits depends on the size of the data memory.
Using the contains function first the flag register of the gma is checked. If it is set the gma is
used to determine the right data memory via the network and the right location within the data
memory. It is then verified if the agent stored at that location belongs there or if another agent has
been stored there due to rehashes. Further accesses might be necessary. The get function is then
used to load the actual agents data (e.g. direction, type, ...). With that information the Agent A
can determine its new position. The new data of Agent A are stored at the new cell index d. The
data is transfered through the register r into the WB buffer. An arbiter loads the data out of the
WB buffers and transformes the cell index d into a gma. Again, the upper bits of the gma are used
to determine the PU and the lower bits are used to determine the memory location.

197

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

5.3 Generation Transition, Flag Handling

After each processor has processed all cells in its data memory the processor needs to be synchronized
with all other processors. This synchronization is done with a barrier-synchronization technique.
During the synchronization phase the memories are switched from the current generation to the
next generation. The flag field of the current generation has to be reset to indicate that all memory
locations are empty. The flag field has been implemented as registers in order to be able to reset
the complete flag field within one clock cycle.

5.4 Hash Function

The HA uses an agent based approach. The processors do not calculate one cell after another and
therefore can not access each cell by its address. The processors only calculate the agents. In order
to be able to check neighbor cells, the cells address first has to be transformed by a hash function to
get the real memory address. A hash function is used to resolve the addresses, as the total amount
of data memory is reduced and does not store empty cells. The hash function converts the cell
index into a memory address. The cell is stored at that address if the memory location is free. If the
memory location is occupied, a rehash has to be executed determining a new memory address. Good
results for the agent behavior rule (section 4) have been achieved with the following hash function:
h(i) = (i+ 2 · n) mod size, where n is incremented for every rehash for a cell with cell index i. size
denotes the size of all data memories together (number of all data memory locations). The mod
operation is realized by using the least significant bits only. These least significant bits are sufficient
to address any of the data memories. Thus, the upper bits determine the PU while the lower bits
determine the right memory position of the data memory. The amount of bits depend on the size
of the data memories.

5.5 FPGA Prototype Implementation

Table 1: Multiprocessor architecture with hash function. Resources and clock frequency for the
Cyclone II FPGA

PUs LEs network memory bits reg. bits clock (MHz)
LEs

1 13,487 - 153,664 3,802 75.00
2 14,993 62 186,464 5,059 76.19
4 22,579 85 252,064 7,576 70.84
8 103,333 143 383,264 12,614 can’t fit

The prototyping platform was a Cyclone II FPGA [3] with the Quartus II 8.1 synthesis software
from Altera. The Cyclone II FPGA contains 68,416 logic elements (LE) and 1,152,000 RAM bits
[3]. The implementation language was Verilog HDL. The NIOS II processor was built with the
SOPC-Builder. The synthesis settings were optimized for speed. Tab. 1 shows the numbers of logic
elements (LE), logic elements for network, the memory usage and the maximum clock frequency.
Scalability is limited by the use of the flag registers which results in a high usage of combinatorial
logic.

Using the Cyclone II FPGA platfom only up to four processor could be configured. In order to
decrease the implementation resources and to increase the number of softcore processors a second
architecture (DAMA) was designed.

5.6 Simulation Results

The simulation results of the MAS on the HA are shown in Tab. 2. The cycle speed-up is slightly
higher compared to the real speed-up as the clock rate degrades. With the four processors that

198

International Journal of Networking and Computing

could be realized on the Cyclone II FPGA a real speed-up of 2.27 could be reached.

Table 2: Simulation results of the MAS on the HA
processing cycles cycle execution real

units per speed-up time per speed-up
(PUs) generation generation (ms)

1 30,221 - 0.403 -
2 18,107 1.67 0.238 1.70
4 12,600 2.40 0.178 2.27

199

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

6 Dedicated Agent Memory Architecture (DAMA)

6.1 System Overview

The architecture consists of multiple NIOS II processors each with its own program memory and
two data memories (Fig. 6). One data memory (agent memory) holds the agent data, the other
memory (cell field memory) holds pointers to the agent memory. The agents are distributed equally
among all agent memories. Each cell field memory holds a part of the overall cell field. Depending
on the application additional hardware functions can be implemented to enhance the architecture.
For our test application the function (check four neighbors) has been added in order to accelerate the
simulation. All these components form a processing unit PU (Fig. 6). The complete architecture
consists of p PUs connected through a ring network.

PF

processing unit 0

program

memory

agent

memory

check four

neighbors

cell field

memory

NIOS II

PF

processing unit p− 1

program

memory

agent

memory

check four

neighbors

cell field

memory

NIOS II

network

...

Figure 6: Dedicated agent memory architecture (DAMA). Agents are stored in the agent memory.
Pointers to the agents are stored in the cell field memory. A special hardware function checks the
movement condition. PUi can forward a pointer to PUi+1 using Pointer Forwarding (PF). NIOS
II/f processor with 512 Byte instruction cache, hardware multiplication and hardware division.

The components of a PU are in detail:

• agent memory: The agent memory holds the actual data of each agent. This includes the
position (x,y) on the cell field. Other data may be stored for each agent if needed (e.g. agent
type, agent direction).

• cell field memory: The cell field indicates which cell is actually occupied by an agent, and
if so, it stores a pointer to the agent in one of the p agent memories. The cell field does not
contain any agent data, it only holds pointers to the agent memory locations.

• program memory: The program memory holds the cell rule that is applied to each agent.
Depending on the agents’ state and the states of the selected neighbors, the next state of the
agent is calculated.

• check four neighbors: A dedicated hardware function that checks the four neighbor cells
in moving direction of an agent (Fig. 3). This hardware avoids multiple hardware software
transitions and therefore speeds up the computation of the cell rule.

200

International Journal of Networking and Computing

The hardware function check four neighbors is an example that is useful for agent simulation.
Further commonly used functions have to be detected and added to the architecture. As described
in section 3 these functions can be implemented in software or hardware and can be provided to the
programmer as a system library. Missing functions can be implemented within the cell rule.

The simulation of a MAS is executed by the following steps:

(1) An agent is loaded out of the agent memory into the NIOS II processor.

(2) The destination cell for the agent is determined by checking the neighbor cells (function: check
four neighbors).

(3) The position and direction of the agent has to be updated in the agent memory.

(4) The pointer to the agent in the cell field has to be updated.

The cell field memories are used to determine if a cell is occupied by an agent, and if so, where
to find that agent. For occupied cells, accesses to the agent memory are possible (e.g. to check
the agents direction). The new destination cell of an agent requires two memory updates. First
the position of the agent has to be updated in the agent memory. Secondly the cell field has to
be updated. If the agent has moved to a cell that is handled in the cell field of another PU the
write access has to be forwarded to the next PU (Pointer Forwarding (PF) as shown in figure 6).
Write accesses are forwarded until they reach the PU that is responsible for that write access. The
processor does not have to wait for a write access to finish. The write accesses are buffered in each
PU an forwarded whenever possible. No further processor actions are necessary to fully execute the
write process. Note that only the pointer information for the cell field memory is forwarded during
a write operation. The actual agent data is kept in the agent memory and does not move across the
PUs.

6.2 Custom Instructions

The NIOS II CPU has been enhanced by several custom instructions (CI). All custom instructions
define a function call and a swap from software to hardware and back. The custom instructions
enrich the NIOS II instruction set with special functions implemented in hardware. This way the
additional instrictions such as reading a neighbor cell or generation synchronization are realized.

The following custom instructions have been added to the architecture:

• NEXTGEN: generation synchronization of all PU’s. All PU’s are synchronized by AND-
gating.

• WR B{X}: writes the data of block X into a hardware register.

• WR SEND: transfers all hardware registers written by WR B{X} into the agent memory.

• RD NXT AGT B{X}: Read the data of block X of the current agent (internal access).

• GET NXT AGT: Set the address of the agent to be calculated. The agent’s data can be
read using the RD NXT AGT B{X} functions. The function is used to access all agents stored
in associated PU.

• RD B{X}: Reads the data block of an agent. Automatic decision between internal (memory
and processor are in the same PU) and external accesses using the network (memory and
processor are in different PU).

• RD AGT ADR: Reads the link information from the cell field memory.

• CHECK CELL: Calls the hardware function to check the four neighbors of a cell. Returns
the amount of agents {0,1,2,3,4} whose destination is that cell.

201

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

6.3 NIOS II Cell Rule / C-Code

The NIOS II cell rule implements the agent behavior and is shown in Listing 1. For the used ap-
plication two blocks are used. The first block is used to store agents position. The second block is
used to store the agent type. This architecture does not store empty cells and only calculates the
agents movements. Therefore the agents are loaded one after another out of the agent memory1.
The address of the agent memory is first checked for validity (using the GET NXT AGT custom
instruction). If an agent is stored at that address, the agents data is preloaded for easy and fast
access through the custom instructions RD NXT AGT B0 and RD NXT AGT B1. The software
implementation of the CHECK CELL custom instruction is shown in Listing 2. It substitutes lines
24 to 27 in Listing 1. The AGENT NR only holds the address of the local agent memory. It does
not include an processor index. But the addresses stored in the cell field memory consist of an
processor index and the address for the agent memory. The pointer or address AGENT NR is used
to go through the local memory and to process the agents one by one. The pointer or address
NEW AGENT ADR consists of an index and address part. With NEW AGENT ADR a memory
location in one of the cell field memories can be addressed. Inside the cell field memories pointers
to the agent memories are stored. The pointers stored in the cell field memory consist of an index
and address part.
RD AGT ADR reads the pointer stored at NEW AGENT ADR out of one of the cell field memories.
There are no further accesses encapsulated inside RD AGT ADR. CHECK CELL hides multiple
RD AGT ADR and RD B{X} accesses. A software implementation of these accesses is shown in
Listing 2.

Listing 1: Agent behavior rule implementing the agent behaviour (DAMA)

1 int main(){
2 int g, cond;
3 int AGENT NR, NEW AGENT ADR;
4 int AGENT BLOCK0, AGENT BLOCK1;
5

6 CI(NEXTGEN,0,NXTG KEEP); //startup generation synchronization
7 CI(NEXTGEN,0,NXTG KEEP); //keep data in memory
8

9 for(g=0;g<GENS;g++){
10 AGENT NR=0; //begin with first local agent
11 while(CI(GET NXT AGT,AGENT NR,0)!=0) //check if address is valid
12 {
13 AGENT BLOCK0 = CI(RD NXT AGT B0,0,0); //read block 0 = agent address
14 AGENT BLOCK1 = CI(RD NXT AGT B1,0,0); //read block 1 = agent type
15

16 if(AGENT BLOCK1>CELL BLOCK){ //if cell is agent
17 switch(AGENT BLOCK1){ //calculate destination cell address
18 case CELL AGENT N: NEW AGENT ADR = AGENT BLOCK0−MAXY; break;
19 case CELL AGENT S: NEW AGENT ADR = AGENT BLOCK0+MAXY; break;
20 case CELL AGENT E: NEW AGENT ADR = AGENT BLOCK0+1; break;
21 case CELL AGENT W: NEW AGENT ADR = AGENT BLOCK0−1; break;
22 }
23

24 if(CI(RD AGT ADR,NEW AGENT ADR,0)==−1) //check destination neighbors
25 cond=CI(CHECK CELL,NEW AGENT ADR,MAXY); //check four neighbors
26 else
27 cond=999;
28

29 if(cond>1){ //do not move agent
30 if(AGENT BLOCK1==CELL AGENT W)
31 AGENT BLOCK1=CELL AGENT N;

1Other processing techniques are also supported

202

International Journal of Networking and Computing

32 else
33 AGENT BLOCK1+=2;
34

35 CI(WR B0,0,AGENT BLOCK0); //write agent address
36 CI(WR B1,0,AGENT BLOCK1); //write agent type
37 CI(WR SEND,AGENT BLOCK0,0); //write address to cell field memory
38 }
39 else{ //move agent to destination cell
40 switch(AGENT BLOCK1){
41 case CELL AGENT N: AGENT BLOCK1=CELL AGENT E; break;
42 case CELL AGENT S: AGENT BLOCK1=CELL AGENT W; break;
43 case CELL AGENT E: AGENT BLOCK1=CELL AGENT N; break;
44 case CELL AGENT W: AGENT BLOCK1=CELL AGENT S; break;
45 }
46

47 CI(WR B0,0,NEW AGENT ADR); //write agent address
48 CI(WR B1,0,AGENT BLOCK1); //write agent type
49 CI(WR SEND,NEW AGENT ADR,0); //write address to cell field memory
50 }
51 }
52 else{ //treat all other cell types as obstacles
53 CI(WR B0,0,AGENT BLOCK0); //write agent address
54 CI(WR B1,0,AGENT BLOCK1); //write agent type
55 CI(WR SEND,AGENT BLOCK0,0); //write address to cell field memory
56 }
57

58 AGENT NR++; //increment agent counter
59 }
60

61 CI(NEXTGEN,0,NXTG DELETE); //generation synchronization, delete old memory
62 }
63

64 return 0;}

Listing 2: Software implementation of the custom instruction CHECK CELL

1 if(CI(RD AGT ADR,NEW AGENT ADR,0)==−1) //check destination neighbors
2 {
3 cond=0; //check neighbors of destination cells
4 TEMP AGENT=CI(RD AGT ADR,NEW AGENT ADR−MAXY,0);
5 if(TEMP AGENT!=−1 && CELL AGENT S==CI(RD B1,TEMP AGENT,0)) //north
6 {cond++;}
7

8 TEMP AGENT=CI(RD AGT ADR,NEW AGENT ADR+MAXY,0);
9 if(TEMP AGENT!=−1 && CELL AGENT N==CI(RD B1,TEMP AGENT,0)) //south

10 {cond++;}
11

12 TEMP AGENT=CI(RD AGT ADR,NEW AGENT ADR+1,0);
13 if(TEMP AGENT!=−1 && CELL AGENT W==CI(RD B1,TEMP AGENT,0)) //east
14 {cond++;}
15

16 TEMP AGENT=CI(RD AGT ADR,NEW AGENT ADR−1,0);
17 if(TEMP AGENT!=−1 && CELL AGENT E==CI(RD B1,TEMP AGENT,0)) //west
18 {cond++;}
19 }
20 else
21 {cond=999;}

203

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

6.4 FPGA Prototype Implementation

For the prototype implementation the same FPGA, synthesis software and settings as in section 5.5
have been used. Tab. 3 shows the numbers of logic elements (LE), logic elements for network, the
memory usage and the maximum clock frequency for up to 16 processors.

Table 3: Dedicated Agent Memory Architecture. Resources and clock frequency for the Cyclone II
FPGA

PUs LEs network memory bits reg. bits clock (MHz)
LEs

1 3,748 - 137,952 2,075 138.89
2 7,121 355 169,376 3,807 131.25
4 13,611 592 232,224 7,025 105.00
8 26,395 1,101 357,620 13,441 90.91
16 52,330 2,230 609,312 26,284 71.88

In contrast to the implementation results of the HA (section 5.5) the resource usage is noticeably
lower. Comparing the synthesis results for p = 8 shows that the HA needed 103,333 LEs whereas
the DAMA needs 26,395 LEs.

6.5 Simulation Results

The simulation results of the MAS on the DAMA are shown in Tab. 4. Compared to the HA the real
speed-up for four processors increased. The better scalability of the DAMA allows to fit 16 processors
onto the Cyclone II FPGA reaching a real speed-up of 4.17 using 16 processors. The cycle speed-up is
rather low as the architecture only handles the agents and therefore is already quite efficient for one
processor. The distribution of the MAS (distributed cell field memories) as well as the distribution
of the agent memories among the PUs introduces a high load onto the interconnecting network.
With the increasing number of PUs the amount of agents per PU decreases, the amount of network
accesses increases and the possible wait cycles for a generation synchronization increase.

Table 4: Simulation results of the MAS on the DAMA
processing cycles cycle execution real

units per speed-up time per speed-up
(PUs) generation generation (ms)

1 21,586 - 0.155 -
2 11,466 1.88 0.087 1.78
4 6,494 3.32 0.062 2.52
8 3,922 5.50 0.043 3.60
16 2,679 8.06 0.037 4.17

6.6 Performance of Check Four Neighbors

The performance of the DAMA has been evaluated with and without the check four neighbors hard-
ware function. The results are shown in table 5. Adding the hardware function also influences the
maximum reachable clock rate. Comparing the execution times a gain between 20% and 7% can be
reached. The difference for one processing unit is high because a higher clock rate could be reached
using the hardware function which additionally accelerates the execution. But for two processing
units the clock rate for the architecture using the hardware function is lower. Still, a gain of 12%
could be reached.

204

International Journal of Networking and Computing

For a higher number of processing units the gain decreases. This is due to the fact, that the
gain does not compare the acceleration of only the function (hardware vs. software). It shows the
acceleration of the whole cell rule. Therefore the additional times needed for synchronizations or
more network read accesses are included. The synchronization also always has to ensure to wait for
the slowest processing unit, which is also included in these times.

Another fact is, that the hardware function uses network read accesses. These accesses generated
different execution times for any processing unit, whether the function is provided in software or
hardware. So the execution of the function is not constant.

Table 5: Evaluation of the performance of the check four neighbors hardware function. The gain
shows the gain of using the hardware function check fours neighbors comparing the execution times
per generation

without check four neighbors with check four neighbors
PUs clock cycles execution clock cycles execution gain

(MHz) per time (ms) per (MHz) per time (ms) per
generation generation generation generation

1 130.01 2,538,572 0.195 138.89 2,158,566 0.155 20 %
2 135.01 1,340,019 0.099 131.25 1,146,565 0.087 12 %
4 105.01 748,349 0.071 105.00 649,371 0.062 13 %
8 90.91 439,615 0.048 90.91 392,219 0.043 11 %
16 71.88 289,294 0.040 71.88 267,863 0.037 7 %

6.7 Performance with a Varying Amount of Agents

The MAS has been simulated with a varying number of agents. So far the MAS contained 185 agents
in a closed agent world. The border has been realized using 176 obstacles. Additionally the MAS
has been simulated with 20, 50 and 100 agents on the DAMA using 16 processing units. In this
simulation the execution time increases sublinear with the number of agents (table 6). The amount
of obstacles bordering the agent world are fix for all simulations.

Table 6: Performance of the DAMA with a varying amount of agents.
agents 20 50 100 185

time per generation [ms] 0.012 0.015 0.023 0.037

7 Performance and Comparison

In order to compare the performance of the two architectures (HA, DAMA) the cell-update rate
(CUR) was calculated (Fig. 7). CUR(d) is the number of cells updated per millisecond for a
certain density d (0...100%) of agents and obstacles in the cell field. The results were evaluated for
the application described in section 4 for a cell field of size 45 × 45, 185 agents and 176 obstacles
(d = 17, 8%).

The results are shown in Fig. 7. The DAMA performed best and reached a gain

(

CUR(d)
DAMA

CUR(d)
HA

)

between 2.6 and 2.9 compared to the HA (for up to four processors). Furthermore the DAMA can
be used with a higher number of processors. The HA was restricted to four processors on the used
FPGA platform.

205

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

1 2 4 8 16

ce
ll

-u
pd

at
e

ra
te

 (
C

U
R

)

processing units

 HA
 DAMA

Figure 7: Cell-update rate for the two architectures: hash architecture (HA) and dedicated agent
memory architecture (DAMA).

8 Investigating Clock Rate Degradation

One of the main concerns about the architectures is the decreasing clock rate. Adding more pro-
cessors to the architecture results in a lower clock rate so that at some point the performance will
no longer increase or might even start to decrease. To be able to use multiple NIOS II processors
the instructions about creating multiprocessor NIOS II architectures have been followed [2, 8]. This
way each of the processors can be programmed individually through the NIOS II IDE 2. Different
alternative approaches have been examined to create the architectures trying to reach a more stable
clock rate even with a higher number of processors. To reduce any negative effect that might be
introduced by creating all NIOS II processors within one SOPC project only one processor will be
created in the SOPC project. Then multiple instances of that project are generated. With this
method all processors are identical and only one processor can be implemented using the NIOS II
IDE. All processors instruction memories are intialized with the same code. This is no problem for
architectures based on the GCA model. But to enable the execution of the same programm onto
different memory addresses, an additional custom instruction can be added to load an individual
processor id. For the DAMA this is not necessary, as an agent based approach was chosen. The
results of the architecture are now as shown in Tab. 7. The clock rate is now more stable and
only decreases in the range of a few MHz. For the NIOS II IDE all processors are identical and not
distinguishable from one another. Therefore it is no longer possible to load the cell rule into the
programm memory using JTAG which used a certain amount of memory bits. The total amount of
memory bits is lower compared to the previous implementation.

The simulation results using the architecture with the higher clock rates (Tab. 7) are shown in
Tab. 8. With 16 processors a real speed-up of 7.35 can be reached compared to the real speed-up
of 4.17 that was reached before.

8.1 Simulating a Higher Number of PUs

With the used FPGA, systems with up to 16 processors can be evaluated. As it is also interesting
to determine the performance and scalability of the architecture, systems with more processors have
been simulated using ModelSim Altera V6.4 [1, 7]. It has to be mentioned that not all parts of the

2Now replaced by the NIOS II Software Build Tools for Eclipse

206

International Journal of Networking and Computing

Table 7: Dedicated Agent Memory Architecture. Resources and clock frequency for the Cyclone II
FPGA with a more stable clock rate.

PUs LEs network memory bits reg. bits clock (MHz)
LEs

1 2,869 - 96,960 1,628 140.02
2 6,187 331 120,192 3,391 135.01
4 12,207 614 166,656 6,662 135.01
8 24,184 1,154 259,584 13,181 131.25
16 48,064 2,332 445,440 26,220 127.78

Table 8: Simulation results on the DAMA with higher clock rates
processing cycles cycle execution real

units per speed-up time per speed-up
(PUs) generation generation (ms)

1 21,586 - 0.154 -
2 11,466 1.88 0.085 1.82
4 6,494 3.32 0.048 3.21
8 3,922 5.50 0.030 5.16
16 2,679 8.06 0.021 7.35

NIOS II processor are initialized the same way as if it is realized on an FPGA. Therefore the amount
of clock cycles needed in the simulation is slightly higher. The resource usage has been determined
for a Stratix V FPGA (5SGSMB8) using Quartus II V10.1 are shown in Tab. 9. Therefore the
overall clock rate for the same amount of processors is higher. The amount of logic needed for the
network is shown in the network ALUT column, already included in the total amount of resources
shown in the ALM and ALUT column.

Table 9: Dedicated Agent Memory Architecture. Resources and clock frequency for the Stratix V
FPGA

PUs ALMs ALUTs network memory bits reg. bits clock (MHz)
ALUTs

1 1,875 1,712 - 96,960 1,674 216.73
8 15,327 13,997 670 259,584 13,475 166.67
16 30,468 27,822 1,275 445,440 26,785 150.02
32 60,206 55,281 2,560 817,152 53,375 120.00
64 119,854 110,446 5,158 1,560,576 106,493 107.15
128 239,699 221,675 10,404 3,047,424 212,603 95.47

Tab. 10 shows the clock cycles for up to 128 processors. The best performance can be achieved
with 64 processors. The amount of clock cycles starts to increases for 128 processors. With 128 pro-
cessors the amount of agents per processor is low and therefore external read accesses are more often.
External read accesses also need more clock cycles for each read access to accomplish. Therefore
architectures with a large amount of processors are possibly only efficient if the amount of agents
per processor fulfills a certain minimum.

207

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

Table 10: ModelSim simulation results using the DAMA
processing cycles cycle execution real

units per speed-up time per speed-up
(PUs) generation generation (ms)

1 21,644 - 0.100 -
8 4,199 5.16 0.025 3.96
16 3,098 6.99 0.021 4.84
32 2,558 8.46 0.021 4.68
64 2,358 9.18 0.022 4.54
128 2,698 8.02 0.028 3.53

9 Conclusion

The presented hash architecture HA shows a good performance for multi-agent simulation even for a
low number of processors. It overcomes the need of simulating all cells and therefore minimizes the
overhead. Another advantage of the HA is that it is independent of the world size and only depends
on the amount of agents. The resource usage is high due to the flag control logic. This also reduces
the scalability of the architecture. Therefore the maximum amount of processors on the Cyclone II
is four.

The second architecture DAMA uses an agent memory (holding the agents status) and a cell field
memory holding the pointers to the agents. The architecture does not only scale better compared
to the hash architecture, it is also significantly faster. Due to the use of the cell field memory the
architecture is not independent of the world size. The performance of the DAMA was significantly
higher compared to the hash architecture. The DAMA reached a gain between 2.6 and 2.9 compared
to the HA.

The two architectures allow to program agents intuitively. They also minimize the overhead of
simulation which increases the performance. Additionally specialized hardware functions that are
commonly used for multi-agent simulations were added to the architectures.

The clock rate of the DAMA can be kept high using an alternative approach in generating the
NIOS II processors. The DAMA with 16 processors is then 1.76 times faster. A simulation for up to
128 processors shows that the amount of clock cycles starts to increase for more than 64 processors.
This effect is due to the increasing network, increasing amount of network accesses (external read)
and the decreasing amount of agents per processor. Simulation of different MAS using a varying
amount of agents will be done in future investigations.

References

[1] Altera Corporation. Simulating Nios II Embedded Processor Designs, November 2008. AN 351.

[2] Altera Corporation. Creating Multiprocessor Nios II Systems Tutorial, February 2010. Docu-
ment Version: 1.4.

[3] Altera, Datasheet Cyclone II.
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf, 2006.

[4] Altera, NIOS II Website.
http://www.altera.com/products/ip/processors/nios2/ni2-index.html, 2009.

[5] Alexander Keewatin Dewdney. Sharks and fish wage an ecological war on the toroidal planet
Wa-Tor. Scientific American, 251(6):14–22, Dezember 1984.

[6] R.M. D’Souza, M. Lysenko, and K. Rahmani. SugarScape on Steroids: Simulating over a Million
Agents at Interactive Rates. In Proceedings of Agent 2007 Conference, Chicago, IL, 2007.

208

International Journal of Networking and Computing

[7] Ray Duran. Practical Hardware Debugging: Quick Notes On How to Simulate Altera’s Nios II
Multiprocessor Systems Using Mentor Graphics’ ModelSim, March 2007. Staff Design Specialist
FAE, Altera Corporation.

[8] Omar Elkeelany. Implementing a Multiprocessor System on an FPGA using Altera Nios II
Processors & SOPC, 2008. http://iweb.tntech.edu/oelkeelany/6170/lectures/multi.pdf.

[9] Rolf Hoffmann, Klaus-Peter Völkmann, and Stefan Waldschmidt. Global cellular automata
GCA: an universal extension of the CA model. In ACRI 2000 “work in progress” session,
Karlsruhe, Germany, 2000.

[10] Rolf Hoffmann, Klaus-Peter Völkmann, Stefan Waldschmidt, and Wolfgang Heenes. GCA:
Global Cellular Automata, A Flexible Parallel Model. In Proceedings of: 6th International
Conference on Parallel Computing Technologies PaCT2001, Novosibirsk, Russia, 3. bis 7. Sept.,
2001, Lecture Notes in Computer Science (LNCS 2127), Springer Verlag, 2001.

[11] J. Jendrsczok, P. Ediger, and R. Hoffmann. A scalable configurable architecture for the mas-
sively parallel GCA model. Int. J. Parallel Emerg. Distrib. Syst., 24(4):275–291, 2009.

[12] Johannes Jendrsczok, Rolf Hoffmann, and Thomas Lenck. Generated horizontal and vertical
data parallel gca machines for the n-body force calculation. In ARCS ’09: Proceedings of the
22nd International Conference on Architecture of Computing Systems, pages 96–107, Berlin,
Heidelberg, 2009. Springer-Verlag.

[13] Kai Nagel and Michael Schreckenberg. A cellular automaton model for freeway traffic. Journal
de Physique I, 2(115):2221–2229, 1992.

[14] Christian Schäck, Wolfgang Heenes, and Rolf Hoffmann. A Multiprocessor Architecture with an
Omega Network for the Massively Parallel Model GCA. In Koen Bertels, Nikitas J. Dimopoulos,
Cristina Silvano, and Stephan Wong, editors, Embedded Computer Systems: Architectures,
Modeling, and Simulation, 9th International Workshop, SAMOS 2009, Samos, Greece, July
20-23, volume 5657 of Lecture Notes in Computer Science, pages 98–107. Springer Berlin /
Heidelberg, 2009. ISSN 0302-9743 (Print) 1611-3349 (Online).

[15] Christian Schäck, Wolfgang Heenes, and Rolf Hoffmann. GCA Multi-Softcore Architecture for
Agent Systems Simulation. In Erik Maehle Stefan Fischer, editor, Informatik 2009 Im Focus
das Leben, volume P-154 of Lecture Notes in Informatics, pages 278; 2268–82, 2009. ISSN
1617-5468.

[16] Christian Schäck, Wolfgang Heenes, and Rolf Hoffmann. Network Optimization of a Multipro-
cessor Architecture for the Massively Parallel Model GCA. In 22. PARS Workshop, Gesellschaft
für Informatik (GI), volume 26, pages 48–57, 2009. ISSN 0177-0454.

[17] Christian Schäck, Rolf Hoffmann, and Wolfgang Heenes. Efficient Traffic Simulation using
the GCA Model. In 24th IEEE International Parallel and Distributed Processing Symposium,
Workshops and Phd Forum IPDPSW, April 2010. 12th Workshop on Advances in Parallel and
Distributed Computational Models (APDCM), IEEE Catalog Number: CFP1051J-CDR.

[18] Thomas Schmickl, Ronald Thenius, and Karl Crailsheim. Kollektive Sammel-Entscheidungen:
Eine Multi-Agenten-Simulation einer Honigbienenkolonie. Entomologica Austriaca, 13:15–24,
März 2006. ISSN 1681-0406.

[19] David Strippgen and Kai Nagel. Multi-Agent Traffic Simulation with CUDA. In High Perfor-
mance Computing & Simulation (HPCS), pages 106–114, Leipzig, Germany, 2009.

[20] David Strippgen and Kai Nagel. Using common graphics hardware for multi-agent traffic sim-
ulation with CUDA. In Olivier Dalle, Gabriel A. Wainer, L. Felipe Perrone, and Giovanni
Stea, editors, Simutools ’09: Proceedings of the 2nd International Conference on Simulation
Tools and Techniques, pages 1–8, ICST, Brussels, Belgium, 2009. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

209

Specialized Multicore Architectures Supporting Efficient Multi-Agent Simulations

[21] Ronal Thenius, Thomas Schmickl, and Karl Crailsheim. Einfluss der Individualität bei Sam-
melbienen (Apis mellifera L) auf den Sammelerfolg. Entomologica Austriaca, 13:25–29, März
2006.

[22] John Tran, Don Jordan, and David Luebke. New challenges for cellular automata simulation on
the gpu, August 2004. ACM Workshop on General Purpose Computing on Graphics Processors.

[23] Luděk Žaloudek, Lukš Sekanina, and Vclav Šimek. Accelerating cellular automata evolution on
graphics processing units. International Journal on Advances in Software, 3(1):294–303, 2010.

[24] Shiwu Zhang and Jiming Liu. A Massively Multi-agent System for Discovering HIV-Immune In-
teraction Dynamics. In Massively Multi-Agent Systems I, volume 3446, pages 161–173. Springer
Verlag, 2005. ISSN 0302-9743 (Print) 1611-3349 (Online).

210

