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ABSTRACT

Discrete Event Modeling and Simulation (M&S) and Machine Learning (ML) are two frameworks suited
for system modeling which when combined can give powerful tools for system optimization for example.
This paper details how discrete event M&S could be integrated into ML concepts and tools in order to
improve the design and use of ML frameworks. An overview of different improvements are given and three
concerning Reinforcement Learning (RL) are implemented in the framework of the DEVS formalism.
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1 INTRODUCTION

Planning and decision problems belong to an area of Artificial Intelligence (Al) that aims to produce plans
for an autonomous agent, that is, a set of actions that it must perform in order to reach a given goal from a
known initial state. Because of the stochastic nature of the problems, the planning and decisions very often
lean on Machine Learning (ML) (Alpaydin 2016). However, the computer implementation of models and
algorithms associated with ML may require lot of work because: (i) it is difficult to select which model
(algorithm) will fit with the problem to solve (there is a large choice of models allowing to develop a ML
algorithm) (ii) once the model has been chosen, it is difficult to select the hyper-parameters of the chosen
model that will allow to give good results after the learning phase (iii) classical tools dealing with ML do not
allow to connect learning agents involved in ML with a powerful simulation environment. This lack of con-
nection implies difficulties to deal with temporal aspects which may appear in the problem definition or to
deal with multi-agent or even harder to deal with dynamical aspects as agents that may appear or disappear
during simulation. The idea of combining M&S with ML makes it easier to solve difficult problems such
as: smart parking management (which involves simulations of parking time prediction) or the management
of healthcare systems (which involves simulations to help and support decision-making in the increasingly
complex patient treatment process). Also the help simulation-based multi-agent ML could give to the hu-
man/human and human/machine collaboration (Busoniu, Babuska, and Schutter 2006).

In order to bring a solution to these important problems we propose an approach based on discrete-event
Modeling and Simulation (M&S) using the DEVS (Discrete EVent system Specification) (Zeigler, Prae-
hofer, and Kim 2000) and SES (System Entity Structure) (Zeigler, Sarjoughian, Duboz, and Souli 2012)
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formalisms. The DEVS formalism has been introduced as a mathematical abstract formalism for the M&S
of discrete-event systems allowing a complete independence from the simulator using the notion of abstract
simulator. DEVS defines two kinds of models: atomic and coupled models. An atomic model is a basic
model with specifications for the dynamics of the model. It describes the behavior of a component, which
is indivisible, in a timed state transition level. Coupled models tell how to couple several atomic/coupled
together to form a new model. This kind of model can be employed as a component in a larger coupled
model, thus giving rise to the construction of complex models in a hierarchical fashion. A fundamental
representation of DEVS hierarchical modular model structures is the SES which represents a design space
via the elements of a system and their relationships in hierarchical and axiomatic manner. SES is a declar-
ative knowledge representation scheme that characterizes the structure of a family of models in terms of
decompositions, component taxonomies, and coupling specifications and constraints.

In this paper we will concentrate on exploring a set of subjects that has been much neglected in the context
of ML concerning in particular Reinforcement Learning (RL)(Sutton and Barto 1998) and Markov Decision
Processes (MDPs) (Puterman 1994). It is important to add the following features: (i) definition of a DEVS
explicit modeling aspects with agents and environment components involved in RL (ii) introduction of tem-
poral DEVS aspects in RL (iii) proposition of DEVS-based multi-agents M&S scheme. We will focus on
the descriptions of set of topics which can be called as "difficult problems" in the field of RL and on the way
these problems can be treated within the paradigms involved by the DEVS and SES formalisms. In doing
this, we will offer to designers of ML systems based on MDPs an easy way to perceive, interpret, structure
and solve the difficult problems which have been previously pointed out.

The rest of the paper is as follows: the section 2 will describe how DEVS M&S could be integrated into ML
concepts and tools in order to improve the design and use of ML frameworks. Section 3 will point out how
DEVS has been use to: (i) explicitly separate agent and environment components in RL implementations
(ii) take into account temporal aspects in RL (iii) extend RL towards multi-agents M&S. The last section
will conclude and describe future work.

2 MODELING AND SIMULATION AND MACHINE LEARNING

Modeling and Simulation (M&S) and Atrtificial Intelligence (Al) are two domains that can complement
each other. For instance, the Al can help the "simulationist" in the modeling of complex systems that are
impossible to represent mathematically (Nielsen 1991). On the other hand, M&S can help Al models failed
to deal with complex systems for lack of simple or unworkable heuristics.

Systems that already use Al, such as digital supply chains, "smart factories" and other industrial processes
in Industry 4.0, will inevitably need to include Al in their simulation models (Foo and Peppas 2004). For
example, with simulation analysis systems, Al components can be directly integrated into the simulation
model to enable testing and forecasting. In (Meraji and Tropper 2010) the authors use a recursive learning
algorithm (Q-Learning) to combine a dynamic load balancing algorithm and a bounded-window algorithm
for discrete-event simulation of VLSI circuits (Very Large Scale Integration) at gate level.

The Figure 1 depicts some possible integration of M&S aspects into ML framework. Machine learning is a
type of Al that use three types of algorithm (Supervised Learning, Unsupervised Learning, Reinforcement
Learning) in order to build models that can get input set to predict an output set using statistical analysis. For
the simulation part, Monte Carlo simulation is often used to solve ML problems by using a "trial and error"
approach. Monte Carlo simulation can also be used to generate random outcomes from a model estimated
by some ML technique.

ML for the optimization is another opportunity for integration into simulation modeling. Agent-based sys-
tems often have many hyper-parameters and require significant execution times to explore all their permu-
tations to find the best configuration of models. The ML can speed up this configuration phase and provide
more efficient optimization. In return, simulation can also speed up the learning and configuration process
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Figure 1: M&S into Machine Learning.

of Al algorithms.

Simulation can also improve the experimental replay generation in RL problems where the agent’s experi-
ences are stored during the learning phase.

RL components can be developed to replace rule-based models. This is possible when considering human
behavior and decision-making. For example, in (Floyd and Wainer 2010) the authors consider that by ob-
serving a desired behavior, in the form of outputs produced in response to inputs, an equivalent behavioral
model can be constructed (Output Analysis in figure 1). These learning components can either be used in
simulation models to reflect the actual system, or be used to train ML components. By generating the data
sets needed to learn neural networks, simulation models can be a powerful tool in deploying the algorithms
of recursive learning.

Concerning the modeling part, many modeling aspects can be highlighted to help ML implementation:

e Temporal: Basically, the temporal aspect is implicitly in the RL models. For instance, MDPs con-
sider the notion of discrete and continuous time in order to consider the life time of a state. In RL
models, the introduction of time in the awarding of rewards allows the modeling of non-immediate
response of a system. The use of the notion of time in the RL models also makes possible to carry
out asynchronous simulations from real data.

e Hierarchical: The abstraction hierarchy allows the modelling of RL systems with different levels of
detail. This makes possible to determine optimal policies by levels of abstraction and therefore to
have more or less precise policies depending on the level chosen by the user.

e  Multi-Agent: The multi-agent modeling can be used as part of RL where the optimal policy is based
on a communication between an environment and one or more agents that are instantiated in a static
or dynamic way.

e Specification: Assembling all the ML pieces needed to solve problems can be a daunting task. There
are a lot of ML algorithms to choose from and deciding from where to start can be discouraging. By
using specifications based on models libraries and system input analysis, the choice of the appropri-
ate algorithm becomes simpler.

This paper presents the benefits of DEVS formalism aspects to assist in the realization of RL models.



L. Capocchi, J.F. Santucci, and B.P. Zeigler

3 REINFORCEMENT LEARNING AND DEVS FORMALISM

Al learning techniques have already been used in a DEVS simulation context. Indeed, in (Saadawi, Wainer,
and Pliego 2016) the authors propose the integration of some predictive algorithms of automatic learning
in the DEVS simulator in order to considerably reduce the execution times of the simulation for many ap-
plications without compromising their accuracy. In (Toma 2014), the comparative and concurrent DEVS
simulation is used to test all the possible configurations of the hyper-parameters (momentum, learning rate,
etc.) of a neural network. In (Seo, Zeigler, and Kim 2018), the authors present the formal concepts un-
derlying DEVS Markov models and how they are implemented in MS4Me software (Zeigler, Sarjoughian,
Duboz, and Souli 2012). Markov concepts of states and state transitions are fully compatible with the DEVS
characterization of discrete event systems. In (Rachelson, Quesnel, Garcia, and Fabiani 2008), temporal as-
pects has been considered into Generalized Semi-MDPs with observable time and a new simulation-based
RL method has been proposed.

DEVS-Based
Approach

Traditional
Approach

DEVS modeling

Data analysis using SES

Simulation- DEVS Simulation from
based Learning temporal and dynamic
of Agent aspects

Real time DEVS
simulation

Simulation from
real data

Figure 2: Traditional RL process and DEVS formalism.

More generally, the DEVS formalism can be used to facilitate the development of the three traditional phases
involved in a learning process by reinforcement of a given system (Figure 2):

o The Data Analysis phase consists of an exploratory analysis of the data which will make it possible
to determine the type of learning algorithm (supervised, unsupervised, reinforcement) to deal with a
given decision problem. In addition, this phase also makes it possible to determine the state variables
of the future learning model. This phase is one of the most important in the modeling process. As
noted in Figure 2, the System Entity Structure (SES) (Zeigler, Sarjoughian, Duboz, and Souli 2012)
can be used to define a family of RL algorithm models (DQN, DDQN, A3C, Q-Learning, SARSA,
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etc.) (Sutton and Barto 1998) based on the results of the data analysis that uses both statistic tools
and the nature of the RL model (model-free/model-based and on-Policy/off-Policy).

e The Simulation-based learning of an agent consists of simulating entry sets of a learning model to
calibrate it by avoiding over-learning (learning phase). The DEVS formalism makes it possible by
simulating the environment as an atomic model. However, the environment that is interacting with
the agent as part of a traditional RL scheme, can also be considered as a coupled model composed
of several interconnected atomic models. It is in this context that the environment is considered as a
dynamic multi-agent DEVS model in which the number of agents can vary over time.

e The real-time simulation phase consists of submit the model to the actual input data (test phase).
The DEVS formalism and its experimental frame is an excellent candidate to simulate in real time
the decision policies from real simulation data.

Agent

———— > Decision Logic

State
and action
reward
Environment

Discrete-Event
Simulation Model

Figure 3: Learning by reinforcement.

The DEVS formalism allows to formally model a complex system with a discrete-event approach. The
diagram of a RL system (Figure 3) suggests that the Agent and Environment components can be represented
by DEVS models (atomic or coupled depending on the modeling approach).

The coupling of RL and DEVS can be done by two ways:

e DEVS can integrate the algorithms of the RL into its modeling specifications (transition functions,
SES - modeling part) or within its simulation algorithms (sequential, parallel or distributed - simula-
tion part) in order to benefit from an Al for example, improving the pruning phase in the specification
process using SES or improving simulation performance by introducing a neural network-based ar-
chitecture into the simulation engine.

e Al algorithms can benefit from the DEVS formalism to improve the convergence or search for opti-
mal hyper-parameters, for instance. Moreover, multi-agent RL algorithm can be modeled by DEVS
due to its modular and hierarchical modeling possibilities. The paper focused in this last point.

There are several ways to integrate DEVS modeling into RL algorithms. Basically, an agent and an en-
vironment communicate in order to converge the agent towards an optimal policy. Thanks to the modular
and hierarchical aspect of DEVS, the separation between the agent and the environment within the RL
algorithms is improved.

The atomic model Environment will respond to the solicitations of the agent atomic model by assigning it a
new state s, a reward r according to an action it has received. In addition, the model will inform if it reaches
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the final state or not thanks to a variable Boolean d. It is therefore through an external transition function
that this communication will take place. The output function will be activated immediately after the external
transition function to send the pair (s, r, d) to the Agent model. The internal transition function will update
the model’s state variables without generating an output. Finally, the initial state will be to determine the
list of possible states S and actions A and the reward matrix R. The model is responsible for the generation
of episodes (when a final state is reached).

The atomic model Agent is intended to respond to events that occur from the Environment model. When
it receives a new tuple (s, 1, d), it will return an action following a policy depending on the implemented
algorithm (e-greedy for example). The model has a Q state variable which is an SxA dimension matrix for
implementing the learning algorithm (Q-Learning or SARSA for example). When convergence is reached
(depending on the values of Q), the model becomes passive and no longer responds to the environment. The
update of the Q attribute is done in the external transition function after receiving the tuple (s, r, d). The
internal transition function makes the model passive. The output function is activated when the external
function is executed.

This section presents how DEVS is used to specify a RL system represented by an interconnection of an
Agent and Environment DEVS models. The next subsections introduce how DEVS could be used when
dealing with temporal and multi-agents aspect.

3.1 Temporal Aspect

DEVS is based on a formal representation of time in finite state automata. When we talk about deferred
reward, we can think of a simulation time exploitation in order to make possible a reward shifted in time
(example of an agent that does not respond immediately to his environment). It would be interesting to see
what would be the consequences on the final policy in term of time to take a decision. Still on the notion of
time, it would be interesting to invoke the determination of optimal policy at separate time intervals and to
compare the best policy over time.

Markov Modeling is among the most commonly used forms of model expression. Indeed, Markov con-
cepts of states, state transitions and state life time are fully compatible with the DEVS characterization of
discrete-event systems. These concepts are a natural basis for the extended and integrated Markov modeling
facility developed within M&S environments (e.g., MS4Me (Zeigler, Sarjoughian, Duboz, and Souli 2012)
or DEVSimPy (Capocchi, Santucci, Poggi, and Nicolai 2011)). Due to their explicit transition and time
advance structure, DEVS Markov models (Seo, Zeigler, and Kim 2018) can be individualized with specific
transition probabilities and transition times/rates which can be changed during model execution for dynamic
structural change. The basic interpretation of a transition probabilities is of a Markov chain, i.e., a set of
states that generate sequences determined by the probability structure. The transition times/rates allows us
to work with the times of the transitions. These can be referred to variously and equivalently as sojourn
times, transition times, time advances, elapsed times, or residence times depending on the context.

3.2 Multi-agent Aspect

This section provides an introduction towards multi-agent RL. We mainly focus on the possibility to in-
troduce multi-agents in RL in order to solve dynamic tasks online, using algorithms that originate in the
classical temporal-difference RL used previously.
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For example, you could imagine simultaneously training a large number of competing agents and eventually
also mix the types of agents that we are training. One could also use the real-world data as a supervised
feedback signal to "force" the agents in the simulation to collectively behave like the real world.

3.2.1 DEVS Modeling

In order to model a multi-agent RL, a generic framework is proposed to represent the environment part of
RL as a DEVS coupled model connected with one or more agents.

The coupled model describing the Environment has 2 outputs corresponding to the reward and the state com-
puted by simulation and one input corresponding to the action selected by a learning agent. Two kinds of
agents may be defined as atomic models: (i) learning agent whose behavior is the same as defined previously
(ii) agents driven by other kinds of algorithms than a learning procedure. The different agents share the same
global vision of the environment embedded into a single atomic model (global environment atomic model).
Furthermore, the Q-learning algorithm is implemented using the atomic models presented previously (Fig-
ure 3): (i) a DEVS atomic model corresponding to the learning agent (ii) an environment DEVS atomic
model allowing to isolate the information specific to the learning algorithm associated with a learning agent.

3.2.2 Pursuit-Evasion Case Study

In order to illustrate the use of the DEVS formalism to implement a RL framework involving multi-agents,
we propose to use a case study known as Pursuit-Evasion (Hespanha, Kim, and Sastry 1999).

One or more pursuing agents, here called "cat", must have one or more fugitive agents, called "mouse". This
type of problem distinguishes Search and Rescue problems in the sense that the fugitive agent tries at all
costs to avoid pursuers. The mouse-cat problem is played one by one: each agent performs an action and
must wait for all other agents to perform an action before executing the next one. In this paper, we consider
only two agents: one mouse and one cat. We also consider a discrete-time: each action corresponds to a unit
oftimet € T:=1,2,...,T. The reflection and observations are considered to be performed in zero time.

Like time, the space of the problem is discrete. The space in which the part is unfolded is thus a finite and
discrete set of cells x := 1,2,..., X arranged in two dimensions. All movements are therefore discrete and
concern the displacement of an integer number of squares, defined by the unit by default. We will formally
define the distance between the agent 1 and 2 as the number of actions necessary for the agent 1 to occupy
the place of the agent 2, this one not being deployed. This amounts to calculating the Manhattan distance if
the agents are not allowed to use the diagonals.

Two primordial RL notions of the environment are the distance and the identification of a state. The distance
is used as the reward function since it allows to measure the distance between the cat and the mouse. The
identification of a state corresponds to the position of an agent (cat or mouse) on the matrix. For example in
a 9x9 matrix, there are 81 states, each one corresponding to a given position.

A cat is an agent whose goal is to catch a mouse agent. Clearly, this means performing a series of actions
that would lead to a final state where the cat-mouse distance would be zero. At the level of perception, a
cat has a perfect acuity: at any time, he knows the position of all the agents in the space. Information on
the state of the environment is therefore complete and correct. A cat can perform 5 actions which are listed
below:

e Action O: Stay still.
e Action 1: Up, move one box north.
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e Action 2: Right, move forward one space to the East.
e Action 3: Bottom, advance one box to the South.
e Action 4: Left, move one space west.

Note that our cat cannot move diagonally. The mouse agent enjoys exactly the same properties as the cat:
global vision of the space and the same five possible actions.

Our mouse aims to escape cats. We have decided to develop a custom algorithm called best-escape in order
to perform the way the mouse is moving. The principle of the best-escape algorithm is very simple. It
consists first of all in refusing any movement which would throw the mouse into the claws of a cat or any
movement which would lead the mouse into the immediate neighborhood of a cat (we mean by the adjacent
box). These two actions would indeed be synonymous with certain death. For each of the remaining actions,
we compute the escape value, the sum of the squares of the distances of the arrival point of the action with
each of the mice present in the game. The goal is obviously to maximize this value. We then choose the
action giving the greatest possible escape value. If several actions have the same escape value, we take the
first one from the list. The choice is therefore completely deterministic and can be predicted for each given
situation. We introduced a fear factor as a variable in the mouse agent. This very simple parameter actually
introduces the fact that the mouse will not perform any action at a given moment and this without regard to
the rest of the environment. It can also be seen as the fact that the mouse is frozen with fear.

3.2.3 DEVSimPy Simulation

The DEVS implementation of the mouse-cat problem has been realized using the DEVSimPy frame-
work (Capocchi, Santucci, Poggi, and Nicolai 2011). If this implementation was developed specifically
for the mouse-cat problem, we wanted it to be general enough to allow it to be adapted or extended as easily
as possible. The main difference between DEVS multi-agents learning and the single one is the fact that the
learning agent is connected to a DEVS coupled model instead of an atomic model (Figure 4).

This coupled model embeds others agents, the global environment vision and the specific environment as-
sociated with a learning agent. The learning agent called CatAgent in figure 4 is connected to the coupled
DEVS model (called Environment) embedding other agents (as MouseAgent), the global environment vi-
sion (as EnvironmentMat) and the specific environment (as CatEnv) associated with the learning agent (as
CatAgent).

The global environment (EnvironmentMat) defines the space in which the agents will evolve. In our imple-
mentation, this space is a simple matrix of integers. 0 means an empty box. Each other integer means an
agent (1 for the cat and 2 for the mouse). It is quite possible to imagine extending this environment to, for
example, search in a space with 3 dimensions or more. An action is denoted by an integer and corresponds to
a movement of the agent concerned. If the number of possible actions is not problematic, it is also necessary
to assign for each action the corresponding movements of the concerned agent. The chosen implementation
consisted of a simple dictionary assigning, for each action, the corresponding movements.

The heart of Q-Learning algorithm (Sutton and Barto 1998) is implemented in the agent (CatAgent) and is
associated with the specific environment atomic model (CatEnv). From this observation, we will compute
the reward to associate with the action. Both the new state and the computed reward are sent to the inputs of
the CatAgent atomic model. The Q-Learning algorithm, assumes that CatAgent has received a reward and
new state after doing an action.
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Figure 5: Q-Value mean per episode with fear factor.
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Figure 6: Q-Value mean per episode without fear factor.

The mouse agent does not use a RL technique. To choose its action, the mouse uses the Best Escape
algorithm: the mouse tries to minimize the sum of the squares of the distances between itself and the cats
and, if no solution is possible, the mouse remains on the spot.

The simulation has been performed using the fear factor parameter for the mouse agent: (value 0 with fear
factor / value 1 without fear factor). The number of episodes needed by the Q-learning algorithm has been
fixed to 4000.

Figures 5 and 6 gives the evolution of the Q-value mean during the learning phase with and without the fear
factor between one mouse agent and one cat agent. One can notice that since the mouse is not able to move,
the figure 5 is a regular curve. While since the mouse tries to escape when the fear factor is equal to 0, the
figure 6 is not regular. These irregularity of the curve fits with the fact that the mouse is escaping.

3.2.4 Discussion

In the previous example, only one cat agent and one mouse agent are involved. However, when considering
multiple cats, one of the questions is to decide if the agents will perform the learning phase collectively as a
team or individually. Furthermore, when considering multiple mice, we have to decide if the goal is finally
catching a mouse or all mice. These problems are general problems inherent to multi-agent learning since
the research in this domain is interested in studying software agents that learn and adapt to the behavior
of other software agents (Shoham, Powers, and Grenager 2003). In addition the presence of other learning
agents complicates learning since the environment may become non-stationary (a situation of learning a
moving target similar with the fear factor of the mouse agent). Of course the reward function will be also
harder to define since it depends on both the learning agents and the multiple and moving targets.

4 CONCLUSION

The paper deals with the modeling of ML systems using discrete-event M&S features. We have detailed
how discrete-event M&S aspects could be integrated into RL framework. An overview of different RL im-
provements have been proposed and three of them have been implemented in the framework of the DEVS
formalism: (i) explicit representation of the agent and environment involved in RL (ii) introduction of tem-
poral aspects when dealing with RL (iii) possibility to deal with multi-agents in the framework of RL.

The future work we envision concerns the following features: (i) the possibility to deal with dynamic envi-
ronment by allowing the systems to dynamically add or delete agents in the environment (ii) introduction
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of hierarchical learning agents in order to deal with RL according to different levels of abstraction (in the
follow-up to (Kessler, Capocchi, Santucci, and Zeigler 2017)).
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