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Abstract—Robotic systems are cyber-physical systems (CPS) com-
monly equipped with multiple sensors and effectors, making them aware
of dynamic environments, e.g. surrounding humans. A multi-component
structure and potential environment harming make the development of
a robotic system challenging. Recently, the simulation of CPS compo-
nents has become accurate enough to enable the Digital Twin (DT)
concept realisation. However, it is unclear how to employ DT in robotic
system development, e.g. in-development testing.

Goal : We aim to improve the integration between simulated and
physical parts of CPS in various setups. The setups may include multiple
DTs. As a result, the CPS has fewer components, requiring less testing.
Furthermore, the better integration, the better simulation-based testing
coverage of the physical part (hardware and software). Maximising the
integration between simulation and the physical system allows using
simulation for, e.g. parallel and safer development, faster and safer
machine learning, and swift testing of CPS.

Method : In this work, we study the relationship between the sim-
ulated and physical parts of CPS. We propose a Domain-Specific
Language (DSL) called SPSysML (Simulation-Physical System Model-
ing Language). It is based on Systems Modeling Language (SysML).
SPSysML defines the taxonomy of a Simulation-Physical System (SP-
Sys), being a CPS consisting of at least a physical or simulated part.
In particular, the simulated ones can be DTs. We propose a SPSys
Development Procedure (SPSysDP) that enables the maximisation of
the simulation-physical integrity of SPSys by evaluating the proposed
quantitative factors based on SPSysML.

Result : SPSysDP is used to develop a complex robotic system
for the INCARE project. In subsequent iterations of SPSysDP, the
simulation-physical integrity of the system is improved. As a result, the
system model consists of fewer components and a more significant
fraction of the system components is shared between various system
setups. We use the popular Robot Operating System (ROS) and Gazebo
simulator for the implementation and testing.

Conclusion: SPSysML with SPSysDP enables the design of SPSys
(including DT and CPS), multi-setup system development featuring im-
proved integrity between simulation and physical parts in its setups.

1 INTRODUCTION

Simulation is widely used in state-of-the-art development
procedures for cyber-physical systems (CPS). Recent papers
refer to Model-in-the-loop (MIL) [1], Software-in-the-loop
(SIL) [2], Hardware-in-the-loop (HIL) [3] and Rapid Control
Prototyping (RCP) [4] techniques. They are used selectively
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or are composed in sequence, e.g. verification steps in
various development procedures. Each of the techniques
requires a simulation of the system parts. Some systems
utilise the Digital Twin (DT) [5], [6] concept. They employ
an accurate simulation of a system part for, e.g.:

• Swapping a malfunctioned system part with the sim-
ulated one DT that mirrors the part’s functionality in
the simulated world,

• Energy consumption analysis,
• System failure analysis and prediction,
• Technology integration,
• Real-time monitoring.

Some parts (software and hardware) of such a system inter-
act with the real world while other parts with the simulated
world. The set of the parts used in the real world we call
physical embodiment, and the set of the parts used in the
simulated world we call simulated embodiment. The Digital
Twin is a part of the simulated embodiment mirroring a part
of the physical embodiment. DT concept is used in numer-
ous domains and applications [7]. They are systematically
analysed by the authors of [8].

Robots comprise multiple devices and their controllers.
In particular, autonomous mobile robots require a com-
plex navigation system that features multiple closed con-
trol loops, e.g. drive controllers, trajectory controllers, and
Simultaneous Localisation and Mapping (SLAM). Further-
more, the navigation system and the rest of the robot’s
functionality are used to execute the user request (like
object transportation). In some cases, only a fraction of
such a complex system must have DTs. In other cases, if
the robot system has only the simulated embodiment, it is
a demonstrator of the future product.

To clear up the taxonomy of systems featuring simulated
and physical parts, we introduce the Simulation-Physical
System (SPSys) concept (Fig. 1). This kind of system consists
of at least one physical/simulated embodiment and a shared
controller. If it has both embodiments, a simulated part
can be a DT of a physical part. If it has only the physical
embodiment, it is a CPS, and if it has only the simulated
embodiment, it is a simulator.

In the development process, the system parts evolve
from simulated mockups to the physical parts and the soft-
ware deployed on the hardware. The system development
procedure must guide the project team through the process.
The system design created as a milestone in the procedure
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Real world Simulated world
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Simulated embodiment

Shared controller

Physical and Digital Twins mirroring
embodied functionality

 
in the separate embodiments 

Physical embodiment

The maximised shared part of the system

Fig. 1: The idea of Simulation-Physical System

must specify all required parts in all development stages
and compose them in the testing and deployment setups.
Developing reliable systems, especially complex ones like
robot systems, requires comprehensive unit and integration
testing. Some CPS parts can be tested with simulated hard-
ware only; therefore, additional parts that do not comprise
the operational system are required (e.g. human simulator
in a social robot case). Comprehensive testing is complex
in test case specification and time-consuming in test imple-
mentation and execution. From this perspective, software
reusability is a key to fast development of complex, reliable
systems.

We aim to:

• Specify profiled-based requirements of Simulation-
Physical Systems including multiple Digital Twins,

• Re-use of software between DT and its Physical Twin
(PT) and between different system setups, improving
system’s reliability and resulting in more accessible
and faster testing,

• The integrity boost between simulation and physical
embodiments of SPSys enabling a comprehensive
and parallel simulation-based testing of the system
parts,

• Reflection of the dynamic environment in simulation
to enable Digital Twins to observe exogenous actions.

To reach these goals, we propose a Domain-Specific Lan-
guage (DSL) named Simulation-Physical System Modeling
Language (SPSysML). SPSysML models the requirements
and the SPSys, in particular, SPSys consisting of simulated
parts (used either in the system development or in the
operational setup as DT/simulator). Based on SPSysML, we
propose a requirement-based SPSys composition method.
To measure the inter-embodiment integrity of the system,
we propose quantitative optimisation factors for SPSys de-
signs. The factors are used in the proposed SPSys De-
velopment Procedure (SPSysDP) (Fig. 2) to maximise the
shared controller, minimise the system parts number and
improve simulation-physical integrity. Our goal originates
from the conclusion of [9]: The digital models are mainly used
to examine product performance(...). However, how to optimise
the use of those models to enhance the design process and design
collaboration is still needed to be investigated.

Test scenarios

Requirements

Simulation-Physical System
Development Procedure

SPSys specification

Inter-embodiment
integrity factors

evaluation

Implemented and
tested SPSys

An optimised design
for all system setups

Fig. 2: The concept of DES development procedure

(a) Transport task (b) Fall assistance task

Fig. 3: TIAGo robot in INCARE tasks execution

SPSysML comprises a componet-based Platform Inde-
pendent Model (PIM), thus, can be applied to any SP-
Sys. The result of SPSysDP is an implemented and tested
Platform Specific Model (PSM) that can be launched in
the specified setups. PSM implementation utilises platform-
specific tools and software libraries. Therefore, to verify our
approach, we design, implement, test and deploy a spe-
cific SPSys, including the TIAGo service robot [10] for
the INCARE (Integrated Solution for Innovative Elderly
Care) project. The robot features an extended voice inter-
face and additional devices to serve the elderly, e.g. in
object transportation (Fig. 3a) and fall assistance (Fig. 3b).
The resulting system utilises component-based frameworks
like ROS [11], [12], OROCOS [13], Gazebo [14] (in particu-
lar gazebo_ros_control package [15]) that are a standard in
robotics. Thanks to the description of the SPSysDP execution
in the robotics domain, we present an example of DT imple-
mentation in robotic systems. To make the SPSys develop-
ment easier for the community, we share the SysML profiles,
the SPSysML meta-model and the example INCARE system
model1.

In this article, we describe related work concerning mix-
ing simulation-physical setups and meta-models for CPS
(Sec. 2) and state our work’s novelty and its result regarding
the related works (Sec. 3). Subsequently, we define SPSys
requirements model in Sec. 4.1, the meta-model in Sec. 4.2
and its application procedure in Sec. 4.3. Next, we anal-
yse the proposed evaluation factors of SPSys design and
describe features of the systems that evaluation ends with
edge case values of the factors in Sec. 5. Finally, we verify
our method in complex SPSys development for the INCARE
project (Sec. 6). This work is concluded in 7.

1https://github.com/RCPRG-ros-pkg/spsysml

https://github.com/RCPRG-ros-pkg/spsysml
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TABLE 1: Related works comparison with this work

System
development

method
EM EIV Formal

meta-model SCP SO Execution
setups DE E QE MDT Purpose

Digital
Mockup [16] I - - ES - Static

structure - - - RT simulation
for HIL testing

C2PS[17] M - Own
meta-model

Formal
and detailed BS Adaptive - - N/D Digital Twin

in the cloud

[18] M Dolev-Yao
[19]

Formal
and detailed - Static

structure - -
Cyber-security,

physical-digital twin
synchronisation

DEVSRT [20] I - DEVS [21] General - Static
structure - - - - Simulation to embedded

continuous development

aRD[22] M - - General - - - - RT & NonRT
parts integration

HMLF [23] I - - ES - Static
structure - - - - Simulation-driven ML

RSHPN [24] M - RSHPN ES - Single
structure - - - Deadlocks verification,

automated code generation

SPSysML M SysML Formal
and detailed SPO Structure optimisation for

Simulation-Physical Systems

EM – Embodiment modularity, EIV – Embodiment integrity verification, SCP – System creation procedure, SO – Structure optimisation, DE – If the
system execution configuration can contain parts of both embodiments, E – If uncontrolled agents of the physical environment can be modelled in
simulation, QE – If quantitative evaluation factors for system design are proposed, MDT – If a multi Digital Twin system model is presented, I –
Integrated system, ES – Example system as the method application procedure, M – System decomposable to multiple simulation/physical parts,
n/d – No data, BS – The best selection from the previously designed, SPO – Simulated-Physical design optimisation, N/D – Possible, however,
not defined,

2 RELATED WORK

2.1 Mixing simulation-physical setups

In [22], the authors note the complexity of robotic systems
and that the system components are often developed simul-
taneously by heterogeneous teams of researchers and devel-
opers. The authors suggest a demand for system simulation
enabling rapid prototyping and an iterative development
process. They propose the so-called agile Robot Develop-
ment (aRD) concept that facilitates the integration of the
hard real-time part and the non-real-time part of the system
utilising a Matlab/Simulink toolchain. The sim2real prob-
lem is known and mentioned in the recent research results,
e.g. in the domain of self-driving cars [25]. However, to our
knowledge, none of the existing works specifies a flexible
robotic system meta-model that defines mixed simulation-
physical setups of CPS under development.

Agile development implements the idea of rapid pro-
totyping via, e.g. unit testing [26], [27]. These develop-
ment strategies are often used in the domain of robotics.
However, the tests evaluate just one specified simulation-
physical setup of the system. Still, during development,
almost every part of the system evolves from mockup
(realised in simulation) to deployable software or hardware.
Continuous integration is a valuable tool to manage the
system implementation [28].

There are reviews on CPS [29] and DT [9] development.
The CPS-related works focus on controlling a physical object
and its model in a simulation environment with partially
or fully simulated hardware. For example, the authors of
[18] use the DT approach to run the digital embodiment
in a safe virtual machine and confront the physical and
digital embodiments to spot anomalies caused by a cyber-
attack. Another work [23] employs simulation-driven ma-
chine learning for robots.

2.2 Meta-models for CPS

In the development process, a language is required to plan,
conceptualise, and specify the system. Currently, the state-
of-the-art approach is a model-based approach utilising
a DSL. Unified Modeling Language (UML) is the most
known language; however, System Modeling Language
(SysML) [30] is proposed by the Object Management Group
(OMG) to support the design, analysis, and verification of
complex systems comprising software and hardware com-
ponents. There are different Model Driven Engineering ap-
proaches in the robotics domain [31]. For instance, Embod-
ied Agent-Based cybeR-physical control systems modelling
Language (EARL) [32] is SysML specialisation for robotics
which allows analysis and specification of the robotic
system properties. It is based on the Embodied Agent
approach [33]. The approach shapes the robotic system
structure and inter-component communication by defining
SPSys-related artefacts, component classes and their con-
straints. Other DSLs support verification and testing of,
e.g. industry 4.0 plants [34], or agent-based computational
systems [35]). Besides, the work [36] describes the speci-
fication of safety compliance needs for critical computer-
based and software-intensive systems. Confrontation of SP-
SysML with related models and specification methods is
presented in Tab. 1. The related models focus on different
purposes of Simulation-Physical Systems. Two of the works
regard interaction between the DTs and PTs – C2PS [17],
[18], three focus on simulation-based development of CPS
– Digital Mockup [16], DEVSRT [20] and aRD [22], and
the last one – HMLF [23] utilises DT concept in machine
learning. The authors of RSHPN [24] propose a meta-model
to verify the lack of deadlocks in multi-component SPSys
using Hierarchical Petri Nets. The nets are generated from
a DSL-based specification, and the code associated with the
robot controller structure and communication is generated.
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3 THE WORK NOVELTY AND RESULT

None of the models presented in Sec. 2 specifies SPSys
in general, especially including a physical part without
a Digital Twin, simulated parts without a PT, or hybrid
SPSys including Twins and non-Twin components. The key
novel features delivered by SPSysML and SPSysDP are:

• Integrity evaluation with quantitative factors,
• SysML-based structure model and system develop-

ment procedure,
• System design optimisation considering simulation

and physical embodiments of the system,
• Multiple system execution and testing setups speci-

fication,
• Forcing simulation-based testing prior to physical

embodiment development,
• Specification of Simulation-Physical System includ-

ing multiple physical and simulated parts and mul-
tiple Digital Twins,

• Reflection of the dynamic environment in simulation
to enable Digital Twins to observe exogenous actions.

Based on our experience in SPSys development (TIAGo
robot [37], Velma robot [38], IRP6 robot2) and the literature
analysis, we propose the SPSys Development Procedure
focused on simulation-based testing coverage and software
integrity between the system embodiments maximisation.
Complex system structuring is a broad topic with solutions
utilising various methods and strategies, e.g. top-down and
bottom-up. In [39], we describe a binary communication-
focused top-down approach for robotic systems. In this
article, we propose a requirement-based top-down method
customised for SPSys.

4 SIMULATION-PHYSICAL SYSTEM

Simulation-Physical System specification is based on SysML
and EARL. In the following sections, we describe SP-
SysML and SPSysDP. SPSysML defines stereotype-based
meta-models of requirements and structure. Description of
a meta-model requires a notation for multiple blocks or
instances of a stereotype (e.g. two instances of «Agent»).
For this purpose, we append the stereotype with s (e.g.
«Agent»s). We refer to an instance of a stereotype using the
part-name «stereotype» symbol.

4.1 SPSysML – requirements meta-model for SPSys
We define a stereotype-based model of requirements (Fig. 4).
The stereotypes explicate SysML requirement diagrams
used for designing SPSys with SPSysML.

SPSysML specifies the requirements model as SysML
profile. The requirements can be defined based on var-
ious premises. In particular, they can derive from user
requirements [40]. The SPSysML profile defines structural,
functional, configurational and environment requirements.
Auxiliary sequence diagrams presenting the concept of the
system behaviour and use case diagrams are useful for
requirements definition. Before SPSys requirements spec-
ification, its environment must be analysed. Therefore, in

2Real: https://youtu.be/wJpFcy99Gh0, Simulation: https://youtu.be/
BjwcbSdouHw

Fig. 4: Model of system requirements defined for SPSys

SPSysML, we distinguish Environment requirements. They
can be of various stereotypes. In this article, we focus on
«ExegAgentReq» that describe exogenous agents interacting
with the world alongside the system. In SPSysML, the
system is decomposed into parts based on «SysPartReq»s.
Each «SysPartReq» is classified to elementary «HardwareReq»
or more general «PhyPartReq», «SimPartReq» or «SimPhy-
PartReq». «PhyPartReq» determines a part interacting only
with the Physical World (even during the system develop-
ment, e.g. during parallel development of the dependent
parts), and its simulated embodiment is not required (or
cannot be created) during the system development. «Sim-
PartReq» specifies a part interacting only with the Simulated
World (e.g. mock-ups or demonstrators). «SimPhyPartReq»
interacts with both Worlds (e.g. realised with a pair of
DT and PT). «HardwareReq»s are in a satisfy relationship
with «FunctionalReq»s. This means hardware requirements
specified with a «HardwareReq» enable the realisation of the
functionality specified with the given «FunctionalReq». The
configurational stereotypes specify if a system part is oblig-
atory to launch in any of its configurations («ObligatoryReq»)
or if it is not («OptionalReq»).

4.2 SPSysML – structure meta-model for SPSys
SPSysML derives from EARL [32] version 1.3 [41]. We use
a Group of Subsystems («GpSubsys») to gather Subsystems
with a specific common properties, and a Group of Agents
(«GpAgents») to organise the Agents (composed of Subsys-
tems) cooperating for a defined aim in the system. In a SPSys
we differentiate three specific Agent stereotypes that derive
from «Agent» defined in EARL (Fig. 5):

• Physical Agent («PhyAgent») – Runs only in the physi-
cal embodiment (in particular Agent interacting with
or sensing real world),

• Simulation Agent («SimAgent») – Runs only in the
simulated embodiment (in particular Agent interact-
ing with or sensing simulated world),

• Hybrid Agent («HybAgent») – Runs in both embodi-
ments with neither interaction nor perception of any
world.

The Groups of Agents called World Mirror Group of
Agents aggregate «SimAgent»s that are Digital Twins of

https://youtu.be/wJpFcy99Gh0
https://youtu.be/BjwcbSdouHw
https://youtu.be/BjwcbSdouHw
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Fig. 5: Simulation-Physical System composition

Fig. 6: SPSys composed of 0...* Digital Twins (+dt) and
Physical Twins (+pt) realised with «MirrSimGpAgents» and
«MirrPhyGpAgents» accordingly

the Agents in the Physical World that are not under the
control of the system and execute exogenous actions in the
Simulated World. Groups of this type exist if the system
works in a dynamic environment (e.g. an environment with
human inhabitants). For example, a World Mirror Group of
Agents modifies the Simulated World as humans do in the
Physical World.

4.2.1 Digital Twins in SPSys

Integrity between SPSys embodiments is crucial. There-
fore, the existence of DT of physical parts is advisable
and common. We define the mirror relationship between
«PhyAgent» and «SimAgent» to model the relationship be-
tween DT and its PT. To enable multi-agent DT for a single
«PhyAgent» or single-agent DT for multi-agent PT, we in-
troduce «MirrPhyGpAgents» and «MirrSimGpAgents». They
aggregate Agents of different stereotypes (Fig. 6).

The definition of the mirror relationship is as follows:

Definition 4.1 (Mirror relationship). Two Groups of Agents are
said to be in a mirror relationship if their input buffers and
goals are the same and affect Simulated and Real Worlds con-
gruently. The relationship is an association between Digital
and Physical Twins.

It is worth noting that the same stimuli of the mirroring
Groups cause corresponding reactions in specific worlds, in
the Simulated World for Mirror Simulation Group of Agents
and in the Physical World for Mirror Physical Group of Agents.
The particular reaction results from the requirements of the
specific system and does not need to be identical within the
embodiments. The mirror relationship does not propagate
automatically to all the Agents aggregated in the mirroring
Groups, so agents from «MirrSimGpAgents» does not mirror
all agents of mirroring «MirrPhyGpAgents» and vice versa.

The amount of mirroring Agents should be maximised to
maximise coverage of simulation-based testing and profits
of DT. Additionally, the complexity and quantity of mir-
roring Agent Subsystems should be minimised to boost
the modularity and integrity of the system. Otherwise, the
system could be composed of just two mirroring agents. If
a computational functionality is required in both embodi-
ments, a «HybAgent» should be designed for this purpose.

4.2.2 Subsystem types

The Agents are built with Subsystems of different types
based on EARL. In EARL the central computational part
of an Agent is the Control Subsystem «ContSubsys». An
Agent communicates with other Agents using communi-
cation buffers of its «ContSubsys». To percept the envi-
ronment, an Agent uses Real Receptors («RealRec»s), and
to aggregate and preprocess stimuli, it uses Virtual Re-
ceptors («VirtRec»s). To affect the environment, an Agent
uses Real Effectors («RealEff»s). To preprocess «ContSubsys»
commands to signals for «RealEff»s it uses Virtual Effec-
tors («VirtEff»s). SPSys interacts with both the simulated
and physical world; thus, SPSysML differentiates between
the types of the above Subsystems— Simulated, Physical,
and Simulated-Physical. To achieve maximum integrity be-
tween the simulated and physical embodiments, all «Con-
tSubsys»s should be Simulated-Physical («SimPhyContSub-
sys» stereotype) and constitute the general concept of the
shared controller, recall Fig. 1. For iterating design pur-
poses, embodiment-specific Control Subsystems concepts
(«PhyContSubsys» and «SimContSubsys») may be helpful.
The other Subsystems can be Simulated or Physical. SP-
SysML defines «GpSubsys»s that aggregate receptors and
effectors considering their embodiment and the world they
interact with (Fig. 7, Fig. 8). As one «SimPhyContSubsys»
can communicate with multiple Simulated/Physical Virtual
Receptors and Effectors, we define four«GpSubsys»s aggre-
gating Physical/Simulated Virtual/Real Subsystems. The
data flow and communication links for «SimPhyContSubsys»
interacting with Simulated and Physical Worlds is shown in
(Fig. 9).

4.2.3 Realisation of the Subsystem and Agent types

Subsystems in a «PhyHardGpSubsys» expose interface re-
alised with a communication interface controller used
by the effector or sensor (e.g. Linux kernel driver for
Inter-Integrated Circuit (I2C) or network interface card).
To these interfaces «PhyDriverGpSubsys»s are connected
and they expose an embodiment-abstract interface for
a «ContSubsys» of the Agent. Subsystems in «SimHardG-
pSubsys» expose interfaces realised with objects of an
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Fig. 7: Embodiments of Real Effectors and Receptors

Fig. 8: Embodiments of Virtual Effectors and Receptors

interface class defined for the utilised simulation envi-
ronment (e.g. gazebo::ModelPlugin for «SimRealEff» and
gazebo::SensorPlugin for «SimRealRec» in Gazebo3). «Sim-
DriverGpSubsys» connects to these interfaces and exposes
embodiment-abstract interface for «ContSubsys»s. The inter-
action between the groups is shown in Fig. 9.

Each Agent type defined in SPSysML aggregates a par-
ticular number of Subsystems of a specific type (Fig. 10).

It should be noted that the Basic EARL meta-model
defines only one «ContSubsys» in an Agent, and inter-agent

3popular simulation environment for robots

Fig. 9: Interfaces between Subsystem Groups on example,
where two agents share «SimPhyContSubsys»

(a) Physical Agent

(b) Simulation Agent

(c) Hybrid Agent

Fig. 10: Subsystems aggregated by Agent classes

communication is handled only by the «ContSubsys». In SP-
SysML, we differentiate between specific types of «ContSub-
sys» for the embodiments; still, an Agent can aggregate just
one specialisation of «ContSubsys». SPSys can be deployed in
various setups (e.g. testing setups). The setups are a Group
of Agents fulfilling the system’s functionality in the setup.
For the system setup definition, we use «SysSetupGpAgents»
to specify the Group of Agents working in the setup. The
specific «SysSetupGpAgents» is derived from the system’s
requirements and test scenarios. This problem is considered
in the SPSysDP section (Sec. 4.3).

4.3 Simulation-Physical System Development Proce-
dure (SPSysDP)
SPSysML defines system parts and the relations between
them to enable SPSys specification. Various agent-based
system development procedures can be used for SPSysML-
based systems; however, we define one that enables inter-
embodiment integrity optimisation for SPSys (Fig. 11). The
main activities of the procedure can be executed in differ-
ent development approaches, traditional, agile, or hybrid.
In agile and hybrid approaches, the system is specified
and implemented partially in an iterative manner. In the
procedure shown in Fig. 11, there are four decision nodes
D1, D2, D3, and D4. The exact development procedure
results from the logic predicates set to these nodes. D1
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checks if the requirements of the considered system part
are comprehensive and if the system parts and functions,
considering the system’s test scenarios, are expressed in the
requirement diagrams. D2 checks if the structure evaluation
is satisfactory. D3 checks whether any detailed analysis or
requirements modification is required based on the design
iteration, and D4 checks if the required «SysSetupGpAgents»s
are implemented and tested successfully. If needed, the pro-
cedure enables complete reiteration from the design stage.

System planning and analysis

• Step 1 (Requirement specification): The requirements
are specified following the model defined in Sec. 4.1.
It is recommended to define system use cases and
typical interactions between system parts on se-
quence diagrams while specifying the requirements.

• Step 2 (Requirement analysis): Analysis of the re-
quirements considering the project stakeholders’ de-
mands and the system’s test scenarios. In case it
is needed, modifications to these requirements are
made.

System design

• Step 3 (World Synchronization): This step is not
applicable if the system works in a static environ-
ment (there are no exogenous actions of any non-
system agent executed on the system’s environment).
In other cases, simulation of external agents (e.g.
humans) is required, and it is done by WorldSync
«WorldMirrGpAgents». Each «SimAgent» composed in
«WorldMirrGpAgents» manages one «ExegAgentReq»
specified in Steps 1-2. The key design aspects for
the «SimAgent»s are the Simulated World model
perceived by the SPSys’ receptors and the actions
affecting this World. To model humans as «SimA-
gent», we propose our framework Human Behaviour
in Robotics Research (HuBeRo) [42]. It specifies and
implements agents mirroring human behaviours and
their physical models in simulation (Fig. 12).

• Step 4 (System decomposition): The system is de-
composed into Agents systematically, based on the
parts in the requirements. For each «PhyPartReq»
and «SimPartReq» a part «PhyAgent» or part «Sim-
Agent» are created. Each «SimPhyPartReq» that has
only «ComputationalFunReq» becomes part «Hy-
bAgent». The other «SimPhyPartReq»s become pairs
of DT/PT, thus, are realised with a pair of mirroring
part «MirrPhyGpAgents» and part «MirrSimGpA-
gents» (Fig. 13),

• Step 5 (DT/PT decomposition – Mirroring Agent
Groups specification): Each mirroring part «Mir-
rPhyGpAgents» and part «MirrSimGpAgents» is iter-
atively decomposed to more groups to finally reach
mirroring groups that each can be realised with
a single «PhyAgent» or «SimAgent». Each result of the
decomposition iteration represents a layer of the ini-
tial Group. The mirror relationship is set between
«MirrSimGpAgents» and «MirrPhyGpAgents» and is
specified in each layer of the decomposition. The
decomposition scheme is shown in Fig. 13.

Fig. 11: SPSys Development Procedure for Simulation-
Physical Systems
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Fig. 12: Agent types of HuBeRo framework [42] used in
SPSys as «WorldMirrGpAgents» that mirrors humans in Sim-
ulated World.
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Physical Twin (PT)

layer 0

layer M

layer M+1

<<PhyAgent>>

mirror

mirror

mirror

N decomposition iterations M decomposition iterations(...) (...)

(...) (...)

(...) (...)

<<SimPhyPartReq>>

<<HybAgent>>
(...)

Digital Twin (DT)
realised with realised with 

<<MirrSimGPAgents>>
System Part System Part

Fig. 13: Requirement-based SPSys decomposition, where
mirror relationship constituting Physical and Digital Twins
is obligatory for «SimPhyPartReq». As a result of the decom-
position, DT/PT may share «HybAgent»s.

• Step 6 (Agent decomposition): Each «Agent» is de-
composed to Subsystems. Various approaches can
be used depending on the requirements formula-
tion; however, we advise a layered bottom-up one
with a definition of each layer interface. First, the
hardware assigned to each «Agent» is expressed
as «PhyRealRec»s, «PhyRealEff»s, «SimRealEff»s and
«SimRealRec»s (constituting Agent hardware layer).
Next, the interfaces of «PhyVirtRec»s, «PhyVirtEff»s,
«SimVirtEff»s and «SimVirtRec»s are defined based on
Sec. 4.2.2 (constituting Agent driver layer). The tar-
get is to develop a «SimPhyContSubsys» (constituting
Agent control layer) that manages mirroring Agents’
behaviour, uses an embodiment-common interface

and exposes an inter-agent interface. However, dur-
ing the design process and testing, a temporary
«SimContSubsys» and «PhyContSubsys» are helpful.
Mirroring Agents consist of identical control layers;
however, the Agents differ in drivers and hardware
layers. To enable embodiment abstraction for the
control layer in mirroring Agents, the driver layer
must fill the gap between the hardware and con-
troller layers in the specific embodiments.

• Step 7 (Structure evaluation): In each design iter-
ation, the structure is evaluated. We propose the
following evaluation factors for a two-scope analysis:

– System-wide:

∗ Controller integrity factor (IIF= cdcs

cAll ),
where cdcs and cAll are the cardinalities
of «SimPhyContSubsys»s and all «ContSub-
sys»s accordingly,

∗ Driver generalisation factor (GIF= ru
r ),

where ru is the count of Real Subsystems
aggregated in an Agent with a «SimPhy-
ContSubsys» and r is the count of all Real
Subsystems.

∗ Digital Twin coverage (DIF= am
P

aAll
P

), where
amP is the count of «PhyAgent» aggregated
in «MirrPhyGpAgents» with a mirror re-
lationship with a «MirrSimGpAgents», and
aPAll is the count of all «PhyAgent»,

– DT/PT pair-wide:

∗ Mirror integrity factor (MIFn= cdcsn

cAll
n

),
where n is the evaluated pair of mirror-
ing «MirrPhyGpAgents» and «MirrSimG-
pAgents» composing one DT/PT pair, cdcsn

and cAll
n are the counts of «SimPhyContSub-

sys»s and all «ContSubsys»s accordingly in
nth DT.

The structure optimisation target is the maximisation
of the embodiment-common part of the system (IIF,
MIF, GIF, DIF factors) to maximise simulation-based
testing coverage. The share of physical parts mir-
rored with Digital Twins (DIF) additionally boosts
the system’s robustness, as DT can replace malfunc-
tioned hardware. The detailed analysis of the pro-
posed factors is described in Sec. 5. The optimisation
target can be defined with the above factors or others
that can be defined for a specific system. If the
evaluation result is unsatisfactory, the system should
be redesigned (starting from Step 5) following the
factors’ maximisation advices.

• Step 8 (System setups): Based on the optional stereo-
types in the requirements, all possible system setups
emerge. Each setup («SysSetupGpAgents») is specified
with an Internal Block Diagram. The diagram shows
the Agents composing given «SysSetupGpAgents»,
their communication and interaction with Simulated
and Physical Worlds. It should be noted that the
system’s application setups are just a starting point
for «SysSetupGpAgents»s specification. For each im-
plementation testing scenario, a «SysSetupGpAgents»
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should be specified. DTs are broadly used in devel-
opment optimisation and CPS development safety
improvement; therefore, in particular, for testing
a part «MirrPhyGpAgents», a «SysSetupGpAgents»
consisting of part «MirrSimGpAgents» (DT of the
«MirrPhyGpAgents») should be defined. The next
step of this procedure makes sure that the «SysSe-
tupGpAgents» with part «MirrSimGpAgents» is im-
plemented and tested prior to «SysSetupGpAgents»
including part «MirrPhyGpAgents».

System implementation and testing

• Step 9 (Implementation of the Agents): Starts with
a «SysSetupGpAgents», whose simulation implemen-
tation factor is the highest. The simulation imple-
mentation factor for example ex1 «SysSetupGpA-
gents» is SIFex1 = sex1+hex1

aall
, where sex1 and hex1

are cardinalities of the unimplemented «SimAgent»s
and «HybAgent»s in ex1 «SysSetupGpAgents» and
aall is a number of Agents in the system. Before
implementation, Subsystems must be translated to a
PSM. For robotic systems utilising ROS, we propose
MeROS DSL [43]. Implementation should include
unit testing of each Subsystem and Agent.

• Step 10 (Integration verification): Test scenarios exe-
cution for all fully implemented «SysSetupGpAgents».

5 THE DESIGN EVALUATION FACTORS ANALYSIS

This section describes the interpretation of the evaluation
factors and which system features they evaluate. We de-
scribe characteristics of edge case SPSys that scores maxi-
mum or minimum values of the design evaluation factors.
This gives a basic intuition on the correlation between the
factor values and the SPSys features. The interpretation of
the evaluation factors is as follows:

• IIF – is a share of the software controller common
between the embodiments. Virtual Subsystems are
not considered, as their count may be related to the
Real Subsystem counts in each embodiment. It is
maximised by the reduction of the number of «Sim-
ContSubsys»s and «PhyContSubsys»s in favour of an
inter-embodiment «SimPhyContSubsys»s, The higher
IIF is, the more software components are shared
between the simulation and physical embodiments.
At maximum (IIF=1), all hardware abstract parts of
the system are common.

– IIF = 0: There are no «SimPhyContSubsys»,
only «PhyContSubsys» or «SimContSubsys».
The system’s parts in simulated and physi-
cal embodiments are disjunctive. Simulation-
based testing is not possible. The system’s
functions in the simulation may be completely
different from those in the physical embodi-
ment.

– IIF = 1: All Control Subsystems are «SimPhy-
ContSubsys», and there are no «PhyContSubsys»
or «SimContSubsys». This means all hardware
abstract parts of the system are common be-
tween its embodiments, and the coverage of

simulation-based testing is maximised and al-
lows integration testing in simulation.

• MIFn – is a share of the system parts common be-
tween Physical and Digital Twins composing the nth

twin pair (managing «SimPhyPartReq»). It is similar
to IIF but within the scope of nth pair of Physical
and Digital Twin. Tips for maximisation of the MIFn
factor are:

– extraction of common functions as
«HybAgent»s from «MirrPhyGpAgents» and
«MirrSimGpAgents»

– and/or redesign of interfaces between a «Sim-
ContSubsys» and «SimDriverGpSubsys» and be-
tween a «PhyContSubsys» and «PhyDriverGp-
Subsys» to emerge a common «SimPhyContSub-
sys» from the «SimContSubsys» and «PhyCon-
tSubsys»,

• GIF – is a share of Real Subsystems (hardware) con-
trolled by «SimPhyContSubsys»s (shared controller).
It expresses hardware control integrity between the
embodiments.

– GIF = 0: All Hardware parts are controlled by
embodiment-specific Control Subsystems. The
causes of this depend on a specific case:

∗ For Physical Hardware without a DT,
it means the interface to hardware is
embodiment-specific; thus, extending the
system with DT of the hardware is com-
plicated,

∗ For Physical Hardware with a DT, it means
the Hardware Drivers interface of Physical
and Digital Twins differ, and the software
using the interface differs between the em-
bodiments. This means the system part
designed as DT of the Physical hardware
is not a proper DT.

– GIF = 1: All Hardware parts are controlled
by embodiment-abstract Control Subsystems;
thus, the Agents managing hardware are in-
terchangeable between the embodiments, or
future Digital/Physical Twin integration for
Physical/Simulated Hardware is straightfor-
ward.

• DIF – is a share of hardware and its controllers
mirrored with a DT. Its increase boosts coverage of
simulation-based testing of hardware controllers and
system robustness utilising the DT concept. If DIF
= 0, there are no DTs in the system; if DIF = 1, all
Physical Hardware parts have DTs.

Based on the factors’ values, one can evaluate the system
design in terms of the following:

• Safety and hardware independence during software
testing – based on IIF (for system scope), MIFn (for
nth DT),

• Simulation-based testing and failure examina-
tion/prediction of the system parts – based on DIF
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• Inter-embodiment integrity of hardware controllers
and readiness for simulation-based hardware testing
– based on GIF.

Maximisation of the factors is not always required, and
the optimisation goal can be set at a different point in the
factors’ space. The goal depends on the specific system
requirements. However, the factors’ values inform the de-
signer about the inter-embodiment integrity of the system
design, so her/his decision is conscious.

6 VERIFICATION

We execute the SPSysDP to design, implement and test
a complex SPSys utilising a service robot for the INCARE
project. The INCARE system idea and requirements are pub-
lished in [44]. The framework model developed to manage
robot tasks is published in [45], [46]. Developing a complex
system requires different implementations of its parts in
various development phases. In INCARE, we use some
commercial products like the TIAGo robot with its control
system. We develop and integrate new parts into it (e.g.
human fall detector and TIAGo audio interface extension).
In such a case, developing one part requires a dummy of
another part while being developed simultaneously. De-
velopers can simulate the underdeveloped parts while the
physical devices are under construction or development. In
the case of INCARE, we use a dummy for the human fall
detector while developing a TIAGo robot application help-
ing the elderly who may fall over. We use and modify the
TIAGo robot in this project; thus, we specify its hardware
and controller as a part of the INCARE system specification.

The result of each step of SPSysDP is as follows:
Step 1 and 2: we specify the structural and func-

tional requirements based on the general requirements of
the INCARE project. The general and the robot-specific
requirement diagrams are shown in in Fig. 14. The re-
quirements were accepted after some Step 1↔Step 2 it-
erations. These iterations led, for instance, to the decom-
position of the Communication with humans «SimPhy-
FunReq» to TTS and STT «SimPhyFunReq» and Dialoge
management «CompFunReq».

Step 3: The robot in the INCARE project coexists
with humans; thus, we utilise WorldSync «WorldMirrGpA-
gents» to manage humans in the Simulated World. Detailed
specification and realisation of WorldSync «WorldMirrGpA-
gents» is available in [42].

Step 4 and 5: In the final design itera-
tion the system is decomposed to 5 embodiment-
specific Agents, one for each system part: TIAGo «Sim-
Agent» mirroring TIAGo «PhyAgent», FallDetector
«SimAgent» mirroring FallDetector «PhyAgent» and
SmartHome «PhyAgent». Additionally, there are 3 Hy-
brid Agents, one for each computational function of the
system: ComplexTaskExecution «HybAgent», Talker
«HybAgent», FakeAudio «HybAgent». TIAGo «SimAgent»,
FakeAudio «HybAgent» and Talker «HybAgent» compose
Robot «MirrSimGpAgents», and TIAGo «PhyAgent» and
Talker «HybAgent» compose Robot «MirrPhyGpAgents».

Step 6: To provide an example we describe the
final decomposition of TIAGo «SimAgent» and TIAGo
«PhyAgent» Agents only. Each robot hardware component

(a) INCARE structural requirements

(b) The Robot requirements, where TTS and STT are text-to-
speech and speech-to-text functions

Fig. 14: Example part of the INCARE requirements

is specified as either «PhyRealRec», «PhyRealEff», «SimRe-
alRec», or «SimRealEff». We use Gazebo simulation en-
vironment; thus, «SimRealRec»s and «SimRealEff»s expose
gazebo::SensorPlugin and gazebo::ModelPlugin interfaces
accordingly. As the physical robot, we use PAL Robotics’
TIAGo; thus, «PhyRealRec»s, «PhyRealEff»s interfaces are
adequate Linux Kernel drivers managing communication
with the devices. The Simulated Drivers connect to the
gazebo::SensorPlugin and gazebo::ModelPlugin interfaces
and expose the robot state info and typical ROS top-
ics/services (e.g. JointStateInterface and EffortJointInterface
for MobileBaseController «SimVirtEff»4 and /scan ROS
topic for lidar «SimVirtRec»). If Simulated World is the
Gazebo environment, «SimVirtEff»s and «SimVirtRec»s are
usually implemented as Gazebo Plugins. «PhyDriverGpSub-
sys» connects to Linux Kernel drivers and, as a whole
Group, exposes to «ContSubsys» identical interfaces as «Sim-
DriverGpSubsys». Fig. 15 shows IBD of both TIAGo «SimA-
gent» and TIAGo «PhyAgent» and their common RobotIf
«SimPhyContSubsys».

Step 7: The final structure evaluation resulted
with: IIF=1, MIFRobot=1, MIFFallDetector=1, GIF=1, and

4This «VirtEff» is based on gazebo_ros_control package: https://
classic.gazebosim.org/tutorials?tut=ros_control

https://classic.gazebosim.org/tutorials?tut=ros_control
https://classic.gazebosim.org/tutorials?tut=ros_control
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(a) IBD of TIAGo «SimAgent»

(b) IBD of TIAGo «PhyAgent»

Fig. 15: IBD of mirroring Agents executing Robot «SimPhy-
PartReq» in the Physical and Simulated embodiments

DIF=0.67. The result means the structure consists of no
«SimContSubsys» or «PhyContSubsys», and one «PhyAgent»
is not mirrored by a DT (SmartHome «SimAgent»). The
lack of DT for SmartHome «SimAgent» results from the
requirements (Fig. 14a), where Smart Home is not «Sim-
PhyPartReq»); thus, this is an informed decision of the
designer. GIF=1 means SmartHome «SimAgent» has «Sim-
PhyContSubsys», therefore, its DT integration to the sys-
tem in the future is straightforward. One of the pre-
vious design iterations resulted with: IIF= 5

7 = 0.71,
MIFRobot=1, MIFFallDetector=0, GIF= 20

22 = 0.91, DIF=0.67.
In this iteration the FallDetector «SimAgent» and
FallDetector «PhyAgent» use embodiment specific con-
trol layer («SimContSubsys» and «PhyContSubsys»), because
FallDetector «SimAgent» consists «SimContSubsys»s
only. To increase MIFFallDetector and GIF the common part
of FallDetector «SimContSubsys» and FallDetector
«PhyContSubsys» was extracted. The common part consti-
tutes FallDetector «SimPhyContSubsys» in the final de-
sign. The FallDetector «SimPhyContSubsys» is a uni-
versal interface between ComplexTaskExecution «Hy-
bAgent» and the driver layer of FallDetector «PhyAgent».
It forced decomposition of FallDetector «SimAgent»
to FallDetector «SimPhyContSubsys», FallDetector
«SimVirtRec» and FallDetector «SimRealRec». The latter

(a) Simulated «SysSetupGpAgents» with example requirement
allocations

(b) Physical «SysSetupGpAgents» with example requirement
allocations

Fig. 16: IBDs for example «SysSetupGpAgents»

two simulate fall detector sensing. Thanks to the structure
optimisation, FallDetector «SimPhyContSubsys» is used
in both embodiments in the final structure and the transla-
tion of the Fall Detector perception to the message useful
for ComplexTaskExecution «HybAgent» can be tested in
simulation.

Step 8: Based on the «OptionalReq»s in the require-
ments we define 12 «SysSetupGpAgents»s for (SmartHome
«PhyAgent» existing or not, FallDetector «PhyAgent»
or FallDetector «SimAgent» or no FallDetecor, Robot
«PhyAgent» or Robot «SimAgent»). We show Simulated
«SysSetupGpAgents» and Physical «SysSetupGpAgents» In-
ternal Block Diagrams (IBDs) (Fig. 16) to exemplify «SysSe-
tupGpAgents» specification.

Step 9 and 10: In INCARE the Robot «PhyAgent»
and Robot «SimAgent» are realised with TIAGo robot and
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Fig. 17: A frame from WorldSync «WorldMirrGpAgents»
testing.

its simulation. PAL Robotics mostly implemented these.
We mapped the robot hardware and software to our de-
sign (as shown in Fig. 15). RosControl «SimDriverGpSub-
sys» is a software package5 implementing various common
ROS controllers, and SimTIAGoDrives «SimHardGpSub-
sys» is a package6 implementing Gazebo plugins control-
ling TIAGo drives. Additionally, we boosted the robot’s
voice communication ability using the Google Dialogflow
service. We equipped TIAGo «PhyAgent» with additional
USB Microphones [47] to improve its audio perception.
The other «Agent»s were implemented and tested fol-
lowing the simulation implementation factor. In the re-
sult, we got Simulated «SysSetupGpAgents» implemented
and tested before Physical «SysSetupGpAgents», what
improved robot system development safety. The world
synchronisation feature (mirroring humans in the Simu-
lated World) was implemented with HuBeRo framework as
WorldSync «WorldMirrGpAgents» and tested in a crowded
hospital environment (Fig. 17).

The INCARE system was deployed in an end-user home,
and the videos present its performance in the example
tasks— transportation (Fig. 3a)7 and fall assistance (Fig. 3b)8.

7 SUMMARY

Numerous Cyber-Physical Systems include simulation parts
either as Digital Twins (DT), demonstrators, or mock-
ups utilised during their development. We postulate the
Simulation-Physical System (SPSys) concept to describe this
kind of system. SPSys includes physical, simulated and
hybrid parts. They cooperate to fulfil the system’s aim;
however, some are used as DTs to boost the system’s re-
liability and analysis possibility. Some parts of the system
can be used in the development process only as mockups
and prototype simulators to increase the simulation-based
testing coverage of the system. This, in turn, improves
prototype safety and the resulting system robustness.

SPSys application is wide; in particular, it can work
in a dynamic environment so that it can observe exoge-
nous actions of the environment’s habitants. Such a situ-
ation is problematic because DT must perfectly mirror its

5http://wiki.ros.org/ros_control
6http://wiki.ros.org/pal_hardware_gazebo
7https://vimeo.com/670252925
8https://vimeo.com/670246589

PT. To answer the above needs, we propose a Domain-
Specific Language named Simulation-Physical System Mod-
eling Language (SPSysML) that models the SPSys artefact
and demonstrates SPSys taxonomy and the relationships
between the types of SPSys parts.

One of the crucial aspects of reliable software devel-
opment is integrity and reusability. Therefore, we propose
SPSys Development Procedure (SPSysDP) that, using design
evaluation factors, supports quantitative analysis and opti-
misation targeted to software re-use maximisation between
DT and PT and in different system setups. We analyze the
evaluation factors and show features of the systems that
score edge case values of the factors.

Finally, we verify SPSysML and SPSysDP in complex
robot system development. We demonstrate step-by-step
SPSysDP execution. We point out significant system struc-
ture changes resulting from the design evaluation and
the proposed quantitative factor-based guidelines appli-
cations. An example is FallDetector «SimAgent» and
FallDetector «PhyAgent» integration improvement by
common part isolation as «SimPhyContSubsys». Moreover,
the verification shows that 33% of the system’s Physical
Agents do not have DTs, and thanks to the design mod-
ification, the whole hardware (physical and simulated) is
controlled with «SimPhyContSubsys» (GIF=1). This has two
main advantages. First, all pairs of Digital and Physical
Twins share a common control subsystem. Second, if there is
a «PhyAgent» or «SimAgent» without a twin, it can be easily
integrated with its Digital or Physical Twin in the future.

The conducted verification shows that the requirement
profile for SPSys enables critical analysis and may re-
sult in requirement decomposition and explication. An
example is the decomposition of the Communication
with humans «SimPhyFunReq» to TTS and STT «Sim-
PhyFunReq» and Dialoge management «CompFunReq» in
the first and second steps of SPSysDP. Thanks to the
Dialoge management «CompFunReq» separation, the pro-
posed requirement-based procedure for the system decom-
position resulted in the implementation of Talker «Hy-
bAgent» managing the requirement. As a consequence of
the above, the requirement is managed by a component
usable in different setups in cooperation with the simulated
or physical embodiment. Otherwise, the requirement would
be managed separately in simulation and physical embodi-
ments of the robot. The presented verification confirms the
features distinguishing our method from the others listed in
Table 1:

• Integrity evaluation with quantitative factors,
• SysML-based structure model and system develop-

ment procedure,
• System design optimisation considering simulation

and physical embodiments of the system,
• Multiple system execution and testing setups speci-

fication,
• Forcing simulation-based testing prior physical em-

bodiment development using simulation implemen-
tation factor for sequencing «SysSetupGpAgents» im-
plementation and testing,

• Specification of Simulation-Physical System includ-
ing multiple physical and simulated parts and mul-

http://wiki.ros.org/ros_control
http://wiki.ros.org/pal_hardware_gazebo
https://vimeo.com/670252925
https://vimeo.com/670246589
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tiple Digital Twins.
• «WorldMirrGpAgents» artefact definition and includ-

ing its design in SPSysDP to reflect the dynamic
environment in simulation, enabling Digital Twins
to observe exogenous actions.

In the future, we plan to automate testing SPSysML
structure and code generation based on it with known,
universal tools like Matlab and Enterprise Architect. Fur-
thermore, this work revealed the need for a taxonomy of
CPS structure optimisation indicators. SPSysML and future
work leads to optimal structure development automation
for complex robot systems.
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