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Abstract

Industry 4.0 operates based on IoT devices, sensors, and actuators,

transforming the use of computing resources and software solutions in diverse

sectors. Various Industry 4.0 latency-sensitive applications function based on

machine learning and utilize the generated sensor data for automation and other

industrial activities. Sending sensor data to cloud systems is time consuming and

detrimental to the latency constraints of the applications. In this circumstance, fog

computing can be used to support latency-sensitive applications. Executing these

applications across heterogeneous fog systems demonstrates stochastic execution

time behaviour that affects the task completion time. Hence, we investigate and

model various Industry 4.0 ML-based applications’ stochastic executions and

introduce real-world execution time traces of Industry 4.0 applications.

Remote offshore industries like oil and gas are prone to disasters requiring

the coordination of various latency-sensitive activities. Accordingly, their procured

fog computing resources can get oversubscribed due to the surge in the computing

demands during a disaster. Hence, in this dissertation, we propose federating nearby

fog computing systems and forming a fog federation to make remote Industry 4.0

sites resilient against the surge in computing demands. We propose a statistical

resource allocation method across fog federation for latency-sensitive tasks.

Many of the modern Industry 4.0 applications operate based on a workflow

of micro-services that are used alone within an industrial site. As such, industry 4.0

solutions need to be aware of applications’ architecture, particularly monolithic vs.
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micro-service. Therefore, we propose a probability-based resource allocation method

that can partition micro-service workflows across fog federation to meet their

latency constraints. Another concern in Industry 4.0 is the data privacy of the

federated fog. As such, we propose a solution based on federated learning to train

industrial ML applications across federated fog systems without compromising the

data confidentiality.
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Chapter 1: Introduction

Industry 4.0 is revolutionizing the utilization of computing resources across

various industries [1]. With the emergence of the Internet of Things (IoT) and

modern computing systems (e.g., edge computing, fog computing, and serverless

computing), industries are becoming more intelligent with smart sensors and

actuators that create a large quantity of data [2] every day. However, the

computational resources required to store and analyze sensor-generated data are

expensive and particularly scarce in remote areas [3]. In the industrial sector,

various sorts of applications (e.g., machine learning (ML), reporting, alarm

generators, and surveillance) employ sensor-generated data to automate or conduct

complex operations. Sometimes these data require real-time feedback to conduct

fault-intolerant latency-sensitive activities (e.g., drilling operation in an oil rig,

workers’ safety operation, manufacturing products). Alternatively, certain tasks

need large computing capacity and are delay tolerance, necessitating cloud data

center assistance. For instance, the “Fire safety” application [4] utilizes a deep

neural network (DNN) model that needs extensive training in highly configured

cloud data centers. Similarly, “reservoir simulation,” widely used in the petroleum

industry to anticipate the field performance under varies producing strategies,

requires a large quantity of seismic data and high-performance computing systems

[5].

In remote or distant locations of the industrial sectors (e.g., offshore oil

extraction sites, solar fields), transferring the sensor-generated data to a cloud data
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Figure 1.1. Advanced computing systems in various smart industries (e.g., oil and
gas, healthcare, transportation) for real-time latency-sensitive tasks
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center is expensive and latency intensive, influencing the use of computing near the

data sources [6]. Additionally, real-time applications require a faster response time,

which is usually not feasible with cloud computing resources. Hence, bringing

computational resources to the data sources near the end clients is an essential

requirement for remote industries.

One of the solutions for computing near data sources is edge computing [7]

as depicted in figure 1.1, which brings computational resources closer to the end

devices, and data generation sources. As such, edge computing can be defined as a

distributed computing platform that puts industrial applications closer to data

sources like IoT devices or local computer servers. This closeness to data at its

2



source can result in significant business benefits such as faster insights, faster

reaction times, and increased bandwidth availability. Although edge computing

supports real-time latency-sensitive applications, edge devices are resource

constraints that need efficient resource allocation [8] mechanism. Hence, another

solution for computing platforms near end users is fog computing systems [9] that

complement edge computing by having more computing resources, having more

comprehensive middleware for managing workload efficiently.

The main driving force of Industry 4.0 revolution is machine learning (ML)

or deep neural network (DNN) applications [10, 11, 12] that ensure efficient

industrial operations and workplace safety. Hence the ML or DNN-based

applications encompass both the training and inference stages [13]. The training

stage is generally carried out offline due to time and computing resource constraints.

Whereas the inference execution can be completed utilizing general-purpose

computing systems. The DNN-based applications are mainly trained on cloud data

centers or computing servers with high configuration hardware (e.g., GPU, TPU,

FPGA) support. In contrast, the inference operations are performed on the fog

computing systems near the end users. As such, it is essential for a system engineer

or system administrator to understand the performance of these DNN-based

applications in fog computing systems [14]. Especially for fault-intolerance

latency-sensitive critical DNN-based applications, the forecast of inference execution

time within a computing resource can be significantly vital that sometimes save lives

in a disaster situation. As such, we perform a statistical analysis of the inference
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execution time of various Industry 4.0 applications on the cloud and fog systems.

Consequently, we introduce an execution time workload trace that can help system

architects to develop a load-balancing solution robust against stochastic execution

times of Industry 4.0 smart applications. Therefore, efficiency, productivity, and

industrial safety can be ensured by utilizing these robust solutions.

In remote offshore industry, at times of emergencies (e.g., disasters,

accidents), the demand for task processing in the edge or even fog computing

systems can be significantly high, leading to a drop in some tasks due to not meeting

their latency constraints (a.k.a deadlines). As such, we propose to federate nearby

privately owned computing resources by forming a federation of fog systems to

support the surge of task processing requests in times of emergencies. For instance,

in a remote offshore smart oil field, as depicted in Figure 1.2, multiple oil extraction

sites can be built by the respective companies that typically contain privately owned

fog computing systems to support their regular computing demands. At a disaster

time or other emergencies such as an explosion, the computing demands surge to

support multiple recovery procedures to be coordinated. For instance, in a fire

breakout event, various activities such as drone-based inspection, fire detection, and

alert generation with precise fire locations need real-time coordination to neutralize

the emergency. In this scenario, some latency-sensitive tasks can be offloaded [15] to

other fog systems that may have more computational resources or less busy. Hence,

the federated fog systems’ resilience depends on supporting the surge in computing

demands by efficient resource allocation across the federation. Therefore, we
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propose a probabilistic resource allocation method across fog federation for latency

sensitive monolithic tasks to support computing demands in emergency situations.

Figure 1.2. A remote offshore smart oil field consists of multiple oil rigs (oil ex-
traction sites). In this scenario, the oil rigs, drill ships, or even rescue ships have
fog computing systems in the form of mobile data centers to support the oil extrac-
tion computing demands along with any unpredictable emergencies (e.g., oil spill
detection, toxic gas detection)

Smart applications in Industry 4.0 can have various software architectures

(e.g., monolithic, micro-service [16]) that serve different purposes of industrial

operations. Hence, micro-service architecture is one of the widely used software

architectures that comprise various micro-level services having immense benefits on

development and deployment [17]. For instance, as depicted in Figure 1.3, the “fire

safety” micro-service-based application comprises video pre-processing, noise

removal, feature extraction, fire detection, location mapping, and alert generation

micro-services performing different activities. In a typical industrial scenario, these

micro-services are supported by various execution platforms that can have
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Figure 1.3. A typical micro-service application, “fire safety” execution scenario in
edge-fog-cloud paradigm.
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stochastic execution latencies. In contrast, a monolithic architecture is the

conventional unified paradigm for constructing a software application. Monolithic

software is intended to be self-contained, with firmly connected rather than loosely

coupled components or services, as in a micro-service architecture. Although the

industrial revolution influenced the utilization of micro-service applications, various

industries have monolithic legacy applications that are still in operation and need to

be supported by existing execution platforms. In an emergency or disaster, various

application requests with different latency requirements are generated in the

proximity of the disastrous area that needs distinct computational support. Hence,
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the nearby execution platform gets oversubscribed with the surge in demand for

executing numerous applications on time, that can degrade the execution platform’s

performance. In this case, to support the high computation demands utilizing the

proposed federated fog system need an efficient resource allocation method that is

aware of receiving applications’ internal structure, computation, and communication

latencies. Therefore, the reliability of an execution platform in an oversubscribed

situation depends on accommodating various computational demands that ensure

industrial safety.

Federating computing resources in remote industrial areas imposes security

concerns for each participant fog system of the federation, that is owned by private

companies. In addition, individual fog systems can have sensitive data that imposes

privacy issues for the company owning the computing systems. Hence, considering

ML application training across the fog federation suffers from data scarcity, that is

an obstacle to building accurate ML models. As such, a secure and

privacy-preserving distributed ML training method should be in place to build an

accurate ML model that can be crucial in emergency situations in Industry 4.0.

1.1 Research Problem and Objectives

The fundamental purpose of this research is to identify, evaluate, and

manage robust execution of Industry 4.0 applications in remote areas (e.g., offshore

oil fields) across modern edge and fog computing systems. Hence, we develop

solutions that use fog systems in emergency and oversubscribed circumstances to

satisfy the computational demand in remote industrial sectors. This dissertation
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address the following research challenges to enable a robust and QoS-efficient

federated fog system for industry 4.0 applications:

1. How to utilize modern distributed computing systems in the context of remote

smart industries (e.g., oil and gas, energy) considering the industrial

revolution, Industry 4.0?

2. What are the statistical execution behaviors of Industry 4.0 applications in fog

systems?

3. How to enable a robust federated fog computing system that can efficiently

procure computing demands during a workload surge?

4. How to support Industry 4.0 applications with modern micro-service

architecture along with monolithic legacy applications and maintain the

Quality of Service (QoS) of a fog federation?

5. How to utilize federated fog securely to improve the performance of Industry

4.0 applications?

1.2 Contributions

We identified various obstacles as we investigated many facets of federated

fog computing systems in the industrial sector. Therefore, in addition to addressing

significant challenges, we present state-of-the-art solutions and give exhaustive

performance assessments for recommended methodologies. In light of the research

topics outlined in the preceding section, the considerable contributions of this

dissertation are as follows:
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• Identifying the connection of industry 4.0 and modern distributed computing

systems (e.g., edge, fog) and addressing the scope of utilizing advanced

analytics (e.g., artificial intelligence, machine learning, deep learning) in the

context of the remote smart oil field.

• Performance analysis of ML-based Industry 4.0 applications across fog and

cloud computing systems?

• Proposing a real-world workload benchmark of inference execution times for

four different ML-based Industry 4.0 applications.

• Enabling the notion of federated fog via resource allocation methods operating

based on Bayesian probability utilizing fog systems for latency-sensitive tasks

in an oversubscribed system that tries to recover from a disaster.

• Proposing a statistical resource allocation solution across federated fog

systems that is aware of internal software architecture and stochastic latency

requirements of Industry 4.0 micro-service workflow applications.

• Proposing a data privacy preserving ML-based Industry 4.0 application

training solution across federated fog system in remote industrial sites.

1.3 Dissertation Organisation

• Chapter 2 explores the related research works and provides background for

edge & fog computing, fog federation systems, load balancing & task

allocation techniques, and data privacy aspects of a federated fog system.
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Hence, the scope of utilizing the modern distributed systems in the remote

smart oil fields is addressed with various use case scenarios.

– Razin Farhan Hussain, Ali Mokhtari, Mohsen Amini Salehi, and Ali

Ghalambor IoT for Smart Operations in the Oil and Gas Industry

published as a book by Elsevier (ISBN:9780323998444).

• Chapter 3 studies the performance of ML-based Industry 4.0 applications in

heterogeneous cloud computing resources. The statistical analysis of

ML-based applications helped to generate a real-world Industry 4.0

application inference execution time workload that can be beneficial for the

system architect to develop robust load-balancing solutions.

– Razin Farhan Hussain, Alireza Pakravan, and Mohsen Amini Salehi

Analyzing the Performance of Smart Industry 4.0 Applications on Cloud

Computing Systems published in Proceedings of the 22nd IEEE

International Conference on High-Performance Computing and

Communications (HPCC-2020)

• Chapter 4 explores the possible advantages and practicality of building a fog

federation in a distant offshore smart oil field in the event of a disaster. Using

probabilistic load balancing heuristics across the fog federation for resource

allocation can efficiently assure the system’s resiliency. Moreover, compared to

baseline approaches, the advantage of employing probabilistic methods is

backed by a synthetic workload created in EdgeCloudSim simulation[18].
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– Razin Farhan Hussain, Mohsen Amini Salehi, Anna Kovalenko, and

Omid Semiari Federated Edge Computing for Disaster Management in

Remote Smart Oil Fields published in Proceedings of the 21st IEEE

International Conference on High Performance Computing and

Communications (HPCC-2019)

– Razin Farhan Hussain, Omid Semiari, and Mohsen Amini Salehi

Robust Resource Allocation Using Edge Computing for Vehicle to

Infrastructure (V2I) Networks published in Proceedings of the 3rd IEEE

International Conference on Fog and Edge Computing (ICFEC’19)

– Razin Farhan Hussain, Mohsen Amini Salehi, and Omid Semiari

Serverless Edge Computing for Green Oil and Gas Industry published in

Proceedings of IEEE Green Technologies Conference(GreenTech) - 2019

• Chapter 5 explores the advanced micro-service software architecture for

Industry 4.0 applications to enhance the robustness of remote federated fog

systems. Hence, the load balancer should be aware of the software architecture

of the receiving applications as well as the uncertainties of the execution

platform. As a result, the distribution of receiving applications across the fog

federation enhances the possibility of applications being completed on time.

– Razin Farhan Hussain, Mohsen Amini Salehi Adapting Remote

Industry 4.0 Applications to Federated Fog Computing Systems prepared

for submission to Future Generation Computing System journal in 2022
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• Chapter 6 explores the data privacy aspects of ML-based application training

across the federated fog computing systems in Industry 4.0.

• Chapter 7 explores the downsides and side effects of smart solutions for

Industry 4.0. This chapter identifies and proposes various cutting-edge

solutions for security issues of different industrial sectors.

– Razin Farhan Hussain, Ali Mokhtari, Mohsen Amini Salehi, and Ali

Ghalambor IoT for Smart Operations in the Oil and Gas Industry

published as a book by Elsevier (ISBN:9780323998444).

• Chapter 8 concludes the dissertation with a discussion of our main findings

and future research directions in the area of efficient utilization of fog

computing platforms for Industry 4.0.
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Chapter 2: Background and Literature Study

2.1 Computing as a Prominent Aspect of Industry 4.0

Industrial systems are quickly transitioning from human-controlled processes

to closed-loop control services supporting their operations autonomously using

extensive sensor and computing infrastructure. This revolutionary change is critical

for supporting growing data-intensive and time-sensitive Industry 4.0 applications,

particularly at remote locations such as offshore Oil and Gas (O&G) fields where

computer infrastructure is restricted and human resources are limited. Realizing

these systems necessitates interdisciplinary research and study at the interplay of

Industry 4.0 in remote industry, modern computing infrastructure (such as an Edge

and Cloud), and advanced analytics (e.g., ML, DNN).

Consequently, this chapter aims to illustrate the challenges, prospects, and

solutions for establishing a smart and robust remote industry based on the

fundamentals of the Industry 4.0 paradigm. As a result of this study, researchers

and practitioners can be more effective in making the remote industry safer, more

sustainable, greener, automated, and, subsequently, more cost-efficient. This

chapter investigates several computer technologies that support the computing

needs of distant industries. Furthermore, it explains how the synergy of

cutting-edge computing solutions, such as the Internet of Things (IoT), Machine

Learning methodologies, and distributed computing platforms, can be employed to

improve industrial processes. As an ideal example of a remote offshore industry, we

consider Oil and Gas that has been transforming significantly with the industrial
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revolution Industry 4.0. On the other hand, the remote offshore O&G industry has

been facing various disasters and catastrophes that raise concerns about production

efficiency and safety measures. For instance, the deepwater horizon (2010)[19],

usumacinta jack-up disaster (2007) [20], mumbai high north disaster (2005) [21],

and the ocean ranger disaster (1982) incidents are significantly connected with

safety failures in the industrial sites. Hence these incidents motivated us to improve

the computing support in remote industries to ensure safety and productivity.

Therefore, this chapter explores various distributed computing technologies,

federation-friendly execution platforms, software architecture, and security aspects

of Industry 4.0, focusing on the O&G industry.

2.2 Distributed Computing Systems in Industry 4.0

2.2.1 Cloud Computing

Cloud computing is a concept that enables resources (e.g., computing,

storage, services) to be available as a service, on-demand, configurable, and also

shareable [22]. Modern cloud systems provide diverse services in different levels,

such as infrastructure as a service (IaaS), platform as a service (PaaS), software as a

service (SaaS), and function as a service (FaaS).

As presented in Figure 2.1, smart O&G industry increasingly relies on

cloud-based services that are hosted on remote Internet servers (a.k.a. cloud data

centers). These data centers are utilized to store and process their data. According

to Figure 2.1, various sensor-generated data are sent to cloud providers to avail of

different kinds of cloud services. Among these services, some of them send insightful
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Figure 2.1. Various cloud services (e.g., simulation, analytics, visualization, com-
pute, machine learning, reporting) can be employed to store, process, and analyze
sensor-generated data and to control industrial equipment in a smart oil and gas
industry.
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decisions to actuators to close the automation loop in the smart oil field. Cloud

technology enables O&G companies to utilize various data-related and

computational services (e.g., machine learning and visualization) without the need

to maintain any computing infrastructure. However, data privacy and security have

remained a concern for such companies to fully embrace the cloud services. These

security concerns have caused a small pause and hesitation in adoption cloud

services, particularly by major players in this industry. An alternative and more

secure approach is to store the data on an on-premise computing facility that is

known as a private cloud (more recently called fog computing).

On the positive side, cloud systems’ performance and ease-of-use are

tempting for the O&G industry. For instance, one of the main users of data-driven

cloud services is the North American shale industry that drills thousands of wells
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every year [23]. The scalability feature of cloud services helped the growing amount

of data from these wells to be utilized efficiently, allowing the industry to expand

remarkably. As such, various modern cloud-based data analytics services have

emerged to help O&G companies to improve their operational workflows and make

profitable decisions.

2.2.2 Edge and Fog Computing for Remote Industry 4.0

Due to the increasing importance of latency-sensitive applications, real-time

operations close to the end user in remote offshore industries, the interest in the

notion of edge computing has begun to increase. Additionally, the proliferation of

the Internet of Things (IoT) devices and smart sensors in the industrial sector

results in a massive amount of data that need to be processed locally. In a typical

scenario, the data is transported to cloud data centers [24], and responses or results

are transmitted back to clients through the internet, both of which take time and

money. As a result, a distributed computing paradigm has been introduced, which

is located close to the end client and processes client data at the network’s edge [25].

Researchers call this type of computing “Edge Computing” since it operates at the

network’s periphery.

The conventional definition of edge computing is difficult to come by.

Different organizations or sources have different definitions, heavily impacted by

context. The general perception of edge computing is to provide various computing

services (e.g., application execution, data pre-processing) through distributed

computer systems instead of centralized cloud data centers. Hence, edge computing
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enables analysis and knowledge collection at the point of information source. In

network design, an “edge computer” is located directly next to or even on top of

network endpoints (such as controllers and sensors). The data is then partially or

fully processed before being transmitted to the cloud for storage or further

processing. Edge computing, on the other hand, may result in the direct transfer of

huge volumes of data to the cloud. This might have an impact on system capacity,

efficiency, and security. Fog computing [26] solves this problem by inserting a

processing layer between the edge and the cloud. As a result, ‘fog computing’

collects and analyses data at the edge before it reaches the cloud. Hence, the place

from the data source where computing service is offered can be a defining element in

distinguishing Fog/Edge computing from cloud computing. For instance, a

renewable energy company geared with numerous sensors utilizes fog computing for

sensor-data analysis in their operational fields. Accordingly, company‘s production

efficiency improved by 15% by reducing data analysis latency from 10 minutes to

few seconds. Therefore, fog computing placed near data source in remote industries

can enhance efficiency in production.

The emergence of edge and fog computing does not substitute the cloud

computing services; instead, it brings some portion of those services (e.g.,

computing, storage, analytical services) near the end clients. Especially with the

ever-growing Internet of Things (IoT) devices, a considerable amount of data is

generated [2] that is significantly valuable for Industry 4.0 ML applications. The

generated data sometimes need immediate processing (i.e., edge computing

17



support), and alternatively, sometimes need complex processing (i.e., cloud

computing support). Therefore, a continuous computing platform (i.e.,

Edge-to-Cloud Continuum [27]) is required to support both real-time nature and

complex analytical tasks.

Figure 2.2. Edge-to-Cloud continuum for oil and gas industry as an example of
Industry 4.0. The continuum is mainly divided into four tiers, namely end devices,
edge, fog, and cloud data centers. The bottom of the triangle has end devices that
are energy limited, whereas traversing to the top, we find more energy-consuming
systems.
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2.2.3 Edge-to-Cloud Continuum

Although edge and cloud computing has a difference in terms of distance and

resources, they can be utilized as a complement to each other. For a massive

industry such as O&G, diverse operations and services are needed that require

various underlying computing platforms. Hence, the integration of edge or fog

computing with cloud computing is a need of time that reflects the usability of the
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edge-to-cloud continuum[28]. Accordingly, the Edge-to-Cloud continuum is a service

platform that provides various computational resources and infrastructures for

supporting different types of services essential for O&G industry.

Figure 2.2 demonstrates the Edge-to-Cloud continuum as a triangle where

edge devices reside close to end devices (bottom of the triangle) and cloud data

centers are the furthest computing entity from end devices. Accordingly, this is a

hierarchical arrangement that is distributed vertically. Hence cloud computing has

high latency than edge and fog computing. Alternatively, cloud computing has high

availability in terms of elasticity and computing power, whereas edge and fog

devices are highly secure and privacy-preserving than cloud computing. Therefore,

various computing platforms within the continuum serve different purposes for

industrial operations.

2.2.4 Use Case of Edge-to-Cloud Continuum in Smart O&G

We investigate drone-based pipeline inspection scenarios in the oil and gas

industry to understand how the edge-to-cloud continuum supports computing

demands in the industrial sector. Let’s consider a scenario where 4K drone-mounted

cameras can collect hundreds of gigabytes of data per hour. The current method of

analyzing data is to transfer the massive data to the cloud data center, which is

cost-prohibitive and impractical, especially if the analysis is real-time. Hence one

critical question Is it feasible or scalable for the future to have any cloud vendor

send their container truck with petabytes of storage?

An example of the same scenario (presented in figure 2.3) from the oil and
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Figure 2.3. Drone-based inspection scenario where drone captures images and real-
time analysis can be performed in edge computing resource whereas long term analysis
is performed in distant cloud computing facility.
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gas industry perspective is that the drone-based inspection system could use

multi-stage value extraction using an edge-to-cloud continuum. The O&G pipelines

can be thousands of miles long and pass through an immense landscape. Pipe

sections are generally fitted with analog gauges and smart sensors to measure

pressure, flow, and other metrics. By employing an edge AI-enabled surveillance

drone to capture these analog gauge images presented in step 1 of figure 2.3, it is

possible to separate (step 2) the gauge images and transfer only that critical

information to the next compute layer. Here, data pre-processing (image

separation) is real-time nature that is performed in the edge computing system.

Therefore only the localized necessary data is processed for an accurate reading in

the cloud data center (step 3). Then the output of actionable intelligence is sent to
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the on-site maintenance team to resolve pipeline fracture. Therefore, data

pre-processing, lightweight processing, and complex analysis are performed across

the edge-to-cloud continuum to conduct efficient drone-based pipeline surveillance.

2.2.5 Landscape of Computing in O&G

Modern computing systems, such as edge, fog, or cloud enable the smooth

operation of different fault-intolerant processes across different sectors of the O&G

industry. As a cyber-physical system, the computing technology stack of the O&G

industry is composed of the following components:

• Sensors: Numerous sensors of different types (e.g., to gauge pressure, emission

of toxic gases, security cameras, etc.) continuously procure multi-modal data

in the form of signal, text, images, video, and audio. The data is stored or

communicated for offline or online processing to monitor the operation of the

oil field or to make management decisions.

• Computer networks: In a smart oil field, short- and long-range wireless and

wired computer networks (e.g., Bluetooth, CBRS, satellite, etc.) have to be

configured for low-latency and high data-rate communication of devices (e.g.,

sensors, servers, and actuators) both for onsite and offsite communication.

• Computing systems and middleware: All the collected data have to be

eventually processed to be useful. That is why, in the back-end, smart oil

fields are reliant on different forms of computing systems (e.g., HPC, cloud,

fog, edge, and real-time systems) to perform batch or online data processing
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for purposes like monitoring, visualization, and human-based or automatic

decision making.

• Data processing and software technologies: The rule of thumb in a smart oil

field is that “the more data can be processed, the more informed decisions can

be made”. The large amount of multi-modal data (text, images, video, and

signals) continuously generated in a smart oil filed form what is known as big

data. Such diverse formats of big data have to be processed using various

algorithmic techniques, particularly Machine Learning, to provide an insight

from the data or to make informed decisions upon them.

• Actuators: Once a decision is made, it is communicated to an actuator (e.g.,

drilling head and pressure valve) to enact the decision (e.g., increase or

decrease the pressure).

2.3 Smart O&G: Data and Software Aspects

2.3.1 Big Data in the O&G industry

The oil and gas industry generates a large volume of data on a daily basis,

necessitating the need for large-scale computing resources and the cloud. The three

key sources of such considerable data in the O&G industry are as follows::

• Hydrocarbon reservoirs are commonly found between 5,000 and 35,000 feet

below the Earth’s surface. High-resolution images and expensive well logs are

the main options for finding and characterizing reservoirs (after the wells are

dug).
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• Fluids must pass through complex rock to reach the wellbore, and the fluids

themselves are complex, having many different physical properties. Therefore,

learning about the unique characteristics of each oil well and evaluating the

extracted fluid to treat it properly necessitates collecting vast amounts of data

via sensors installed in the oil well and on the drill-head.

• Oil production entails environmental and human safety hazards, and

preventing it requires significant sensor deployment across a large geographical

region to gather data regularly and therefore be able to respond rapidly to any

ecologically polluting discharge.

Big data analytics aids in the automation of critical oil and gas operations,

such as exploration, drilling, production, and delivery. The upstream sector, which

consists of exploration and drilling, is the most dominant data source among all

other sectors, owing to the increasing use of big data analytics for detecting

non-conventional shale gas. Furthermore, the oil and gas industry is becoming more

volatile due to fluctuating oil prices. As a result, in addition to the engineering

team, business teams are increasingly adopting a data-driven strategy to forecast

the market and mitigate risks.

2.3.2 Machine Learning as a Data-driven applications in O&G

The smart O&G industry is a subset of the Industry 4.0 revolution,

supported primarily by artificial intelligence (AI), IoT, and cutting-edge computing

systems (e.g., edge, fog, and cloud computing). An extensive range and volume of
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relevant data are acquired from many sectors of the O&G industry due to the

widespread adoption of smart sensors and actuators. These data may be evaluated

using machine learning models to derive valuable insights and knowledge for the

industry and the environment. As a result, in a broad sense, AI is a vital tool for

transforming sensor-generated data into new and valuable information and

knowledge via Edge-to-Cloud computing.

The term “data-driven approaches” refers to an arsenal of techniques that

can be used to combine different kinds of data, evaluate uncertainties, spot trends,

and recover useful facts. Data-dominated software applications running on ML and

Deep Neural Network (DNN) models, such as oil production control and emergency

surveillance systems [29, 30, 31, 32, 33], have emerged as the fundamental pillars of

the Industry 4.0 revolution [34, 35, 36, 37]. Especially in remote areas where there is

a need for real-time closed-loop automated processes of these applications. The

ML-based solutions often take the shape of micro-service processes, each of which

may have one or more critical paths that together determine the latency of the

whole application [29]. These applications require:

• A large amount of data to be collected in real-time

• Seamless communications of sensing data despite wireless link uncertainties

• Dependable execution of ML applications with latency constraints in the face

of unexpected load surges (for example, during emergencies)

• Transparent deployment and provisioning of applications and resources (also
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known as “serverless”).

Tackling these needs may be difficult, particularly in out-of-the-way places

(such as offshore oil fields) with inconsistent connectivity and unstable access to

cloud services. These communication and computation constraints become crucial

when a remote system must handle massive volumes of data in real-time to manage

several facets of an emergency circumstance (for example, an oil spill). While micro

datacenters (also known as fog systems) are employed to meet the computing

demands of such distant systems, their capabilities are sometimes inadequate to

deal with the real-time data transport, and processing demands of the load spike

[38]. In the following subsection (ref:edgeAi), we revisit the difficulty posed by

limited resources for processing surge in computing demands.

2.3.3 Digital Twin: Another Data-driven Applications in O&G

The term “digital twin” (DT) refers to a computer simulation of an existing

system. Input to the twin may be set from the sensors collecting data from

real-world imitation. The twin may then offer real-time feedback to the

management about the predicted performance or other repercussions by stimulating

the physical object. DT is a data-dominant application that operates based on

Machine Learning and the scalability of cloud computing to bring the goal of data

integration closer to actuality [39]. The importance of data in a DT system cannot

be overstated since it is required for many different types of analysis, prediction,

and automation. High-quality, verified, and referenced data is required to produce a

practical duplicate. Since the DT operates in real-time, all previously collected data
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and models must remain accurate, and up-to-date [40]. By enabling operators and

management in the O&G sector to transform enormous amounts of data into

insights that might make asset failure predictable and hidden revenue opportunities

revealed, DT systems can contribute to operational excellence.

2.4 Edge-to-Cloud for AI and other Data-driven Applications in Smart

O&G

The wide variety of sensors that communicate through heterogeneous

protocols like Modbus, CAN bus, PROFINET, and MQTT [41] makes it challenging

to operationalize an Edge-to-Cloud continuity with local appliances linked to

sensors. It is already difficult to implement, with hundreds of agencies and oil rigs

involved. In addition, the next generation of cloud-native apps needs different

machine learning (ML) frameworks, configurations, and requirements. Furthermore,

applications need to be interoperable to function on a variety of devices with diverse

processing capabilities (e.g., CPU, several kinds of GPU, ASICs, and FPGAs). In

addition, the human aspect of IT operational technologies, developers, and data

scientists all need to join together to manage the IoT application deployed in the

edge-to-cloud continuum. Thus, the primary difficulties throughout the

Edge-to-Cloud spectrum might be summed up as follows:

1. Connecting a huge number of IoT devices, as well as the edge and the cloud.

2. Costs associated with wireless communication technologies.

3. Having access to high-quality computer resources on demand.
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4. Wireless connections that are stagnant, inconsistent, or not operating.

5. The need for real-time operation of ML-based and other data-driven

applications (e.g., digital twin).

6. Data integrity and privacy across Edge-to-Cloud systems.

The Edge-to-Cloud continuum problems for the O&G industry are broad,

complicated, and distinct from traditional solutions. As a result, petroleum

professionals and technological specialists are the primary driving forces in

developing lucrative eco-friendly solutions for the smart O&G industry. Meanwhile,

academic publications, research papers, and books addressing the junction of

petroleum and computer science domains are uncommon. Therefore narrowing the

gap between knowing the issue space and providing efficient solutions can help the

industry to be more productive and safe.

2.5 Federated Fog and It’s Challenges in Remote Industry 4.0

The earlier sections of this chapter demonstrate the edge-fog-cloud

continuum in a hierarchical arrangement where computing resources are distributed

vertically. Hence, multiple tiers of execution platforms can be conceptualize where

higher tier (i.e., cloud) imposes significant latency that may not suitable for

latency-sensitive tasks. Accordingly, we investigate the horizontal scalable execution

platform, fog systems, in a peer-to-peer arrangement to reduce latency issues. In the

industrial sector, fog computing systems are typically located in close proximity

that sometimes potential candidates for forming a federation in a peer-to-peer
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setting to support computing demands in emergencies. For instance, multiple oil

rigs with drillships[42] can be deployed near an offshore hydrocarbon reservoir to

extract oil having their private fog systems. Moreover, rescue ships with mobile

data centers at disaster time comprise fog systems deployed near disastrous areas

whose computing ability can be augmented by forming the fog federation. Hence, it

is feasible to assume that some fog systems are underutilized and can support more

task processing than their day-to-day requests. Thus, efficient resource allocation

across federated computing systems can increase the federated system’s quality of

Service (QoS). In a related study, [43], Xu et al.offer a resource allocation instance

for edge computing platforms. It uses a decoupled architecture that separates

infrastructure management at Edge Computing Infrastructures (ECIs) from service

delivery and administration by service providers (SPs). In addition, the authors

offer an auction-based resource contract mechanism and a latency-aware scheduling

approach that optimizes edge computing systems and service providers’ utility.

Hence, federating edge computing systems with efficient resource allocation may be

used in an emergency to accommodate a spike in task requests. However, several

other problems should be addressed to establish a robust and efficient edge

federation in an emergency or disaster. The main challenges can be addressed in the

following subsections.

2.5.1 Real-time Services of Industry 4.0

To improve the response time of latency-intolerant services (e.g., sensor data

analysis, production monitoring), fog computing systems have been exploited in the
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literature from the network latency perspective. Lorenzo et al.[44] proposed a

resource allocation model for wireless edge systems that harvest unused resources of

mobile devices to mitigate network congestion. The proposed model utilizes

solutions at the physical, access, networking, application, and business layers to

reinforce network robustness. This work solely considers networking latency and not

end-to-end latency. In [45], Chang et al.proposed an optimized resource migration

scheme from mobile IoT devices to a heterogeneous Cloud-Fog-Edge computing

environment that is aware of the resource-constrained nature of edge devices. It

focuses on the performance gain of process migration and assigns tasks based on

their run time expectations on the participating systems.

2.5.2 Heterogeneous Fog Systems in Remote Industry 4.0

Fog systems in remote industries can be heterogeneous, and the research

community addresses two forms of heterogeneity: consistent and inconsistent

heterogeneity [46], respectively. Consistent heterogeneity occurs when the same kind

of machine has different computational resources. Inconsistent heterogeneity occurs

when various types of machines have disparate computational capacities. The

requested job may have different execution times depending on the heterogeneity,

which substantially impacts the task completion time in an edge system. The

problem of heterogeneous data acquisition from sensors in various sectors (e.g.,

upstream, midstream, downstream) of smart oil fields is addressed in [47] where

khan et al.proposed an IoT-based architecture to enable the data acquisition process

more simple, secure, robust, reliable and quick. There are several other works (e.g.,
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[48, 49, 50]) that either do not consider the emergency (oversubscription) or ignore

the uncertainties that exist in federated fog environments. In another related work

[51] by the same author, the main focus was on optimizing the wireless network

while no resource allocation was performed at the fog system. Therefore,

considering both computing and communication latencies is critical to maintaining

the QoS of a fog federation.

2.5.3 Uncertainty of Task Completion in Fog Systems

The primary uncertainty of task completion in a fog federation is influenced

by execution and communication latencies. Hence, execution uncertainty mainly

refers to the computational resources that execute the assigned task, whereas

communication uncertainty is primarily rooted in network systems, especially the

upload and download time uncertainty. Both of these uncertainly significantly

influence task completion within a fog federation. Xu et al.addressed uncertainty in

a similar study [52], mentioning that the execution uncertainty caused by

performance degradation, service failure, and new service additions remains a

significant barrier to the user’s service experience. To overcome the uncertainty, this

study proposes a software-defined network (SDN)-based fog computing architecture

and a dynamic resource provisioning mechanism. Furthermore, the nondominated

sorting genetic algorithm-III is used to maximize two objectives, namely energy

consumption and completion time, to produce balanced scheduling strategies. In

another related paper [53] on resource allocation and uncertainty, Li et al.suggested

a multi-objective optimization problem. Three parallel methods have been
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developed to increase latency, performance, and resource management. First, a

queuing model was investigated in conjunction with task buffering, offloading, and

resource allocation algorithms. The authors designed the resource allocation

strategy using Lyapunov drift [54]. An exchange between latency and throughput is

found in outcomes for improved system performance.

Figure 2.4. Various software architecture for Industry 4.0 smart applications. Seis-
mic analysis is represented as a monolithic application, whereas fire safety application
exhibit micro-service architecture.
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2.5.4 Software Architecture of Industry 4.0 Applications

The industrial revolution has created the demand for emerging smart

applications with different software architectures, as depicted in figure 2.4. Hence,

smart applications consist of various micro-services that can be separately deployed

with the least amount of administration. For instance, a “fire safety” application

based on micro-service architecture comprised of data pre-processing, fire detection,

and alert generation can be deployed in remote industries to ensure the safety of
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onsite workers from fire hazards. However, the rise of micro-service architecture was

mainly introduced to reduce the complexity of large monolithic applications with

huge code-base [17]. Hence, the research community suggests maintaining the size of

micro-service applications optimal [55, 56, 57], not too large, that can impose

complexity in administrating application workflow. In contrast, considering old

operational systems, the centralized cloud can only support legacy applications

[58, 59] with huge latency-tolerant nature. In contrast, modern Industry 4.0

applications are latency sensitive that need a dynamic execution platform to enable

smartness and support swift response time. As such, Rao et al.in [60] proposed a

dynamic runtime for smart industrial applications that utilize 5G technology with

edge-cloud architecture. This work uses application-specific knowledge to map the

micro-services into the execution platform. Hence, authors consider only the critical

path’s latency ignoring various generic micro-services that could play an important

role in completing the smart solutions. Additionally, this work considers utilizing

cloud data centers to ignore emergency and oversubscribed situations. Similarly,

Faticanti et al.in a related study [61], analyzes the throughput needs of

micro-service applications while offloading to various fog systems. The authors in

this work addressed resource allocation challenges for the fog-native application

architectures built on containerized micro-service modules. Two cascading

algorithms make up the entirety of the answer. The first one separates fog

application components according to throughput, whereas the second governs

application orchestration across geographically distributed data centers.
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2.6 The Scope of Fog Federation in Industry 4.0

The smart industry’s numerous sensors create massive volumes of data that

are often not analyzed due to a lack of storage and processing capabilities [62].

Alternatively, only some of the data is relevant to any analytical findings. As a

result, data pre-processing and filtering of noises and anomalies may be performed

in the fog federation [63], leading to effective training of ML models in cloud data

centers.

Augmented reality (AR) and real-time video analytics need a quick response

and efficient, secure storage systems that fog federation can support [64]. For

instance, a significant processing delay may confuse a process engineer to perform

fault-intolerant work, leading to an accident. Hence AR systems supported by fog

computing can maximize throughput and reduce latency in both processing and

transmission. Accordingly, K. Ha, et al.in [65] design and implement a wearable

cognitive assistance spanning backed up by Google Glass and Cloudlet that assists

the user by providing hints for social interaction via real-time scene analysis.

To ensure security and safety, an immense amount of camera sensors are

deployed in smart industries (e.g., oil and gas, transportation, manufacturing) that

perform surveillance 24/7 to detect any anomaly and monitor the hazardous area.

Therefore, the captured video needs storage and computational services that can be

supported by fog federation. In addition, videos’ live streams, transcoding, and ML

processing (e.g., object detection, classification, object tracking) are more frequent

in Industry 4.0 applications. After completing the required services with captured
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videos, the response can be sent to users in the form of notification, events,

description, or video summary. Hence fog federation can be useful for achieving

real-time processing (inference) and feedback on a huge amount of video streaming.

In addition, scalability can be ensured on low-bandwidth output data. Furthermore,

privacy-preserving techniques can also be applied at the fog side to ease the concern

of personal privacy leakage in public surveillance systems.

2.7 Data Privacy Aspects of a Federated Fog Computing System

The technological advancement in smart IoT devices and smartphones has

increased the possibility of using end devices for various complex ML applications,

especially training ML models. The ever-growing power of end devices (e.g., mobile

phones, PDAs, laptops, wearable) in computing and communication makes the

complex Ml model training possible in fog devices. Hence, considering the fog

federation, training with various fog systems’ local data in a distributed manner can

enrich the ML model’s accuracy.

Although, data security and privacy are the major challenges in this

scenario. Hence, federated learning [66] is one solution that shares the ML model

rather than data that does not leave the owner’s fog system. In federated learning,

a global model is sent (global model broadcast) to the participating workers’ system

to train with their local data as presented in figure 2.5. After a certain training

period, the updates are sent back to the central server to incorporate the updates

into the global model. Then the updated global model is again sent back to the

participating FL workers. The process continues until the global model achieves a
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Figure 2.5. A typical federated learning scenario that consists of FL workers and a
central server having the global model. At the beginning of the training, the global
model is broadcast to the participating workers to train with their corresponding local
training data. After a period of training in FL workers, the updated model is sent
back to the server for integration with the global model.
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certain accuracy. Different techniques (e.g., fedAvg, fedSGD, fedProx) can be

utilized considering the global model’s accuracy to incorporate the updates from FL

workers. Furthermore, considering the heterogeneity of FL workers’ computation

and communication capability, the updates can be generated at different times.

Accordingly, two different types of FL techniques are considered in the literature:

asynchronous and synchronous FL, respectively [67]. Considering the various time

to generate updates by the federated worker, some stragglers need to catch up to

the certain period of sending the updates to the server. Therefore, asynchronous FL

tries to incorporate as many updates as possible, whereas synchronous updates

discard the updates that lag behind.

2.7.1 Major Challenges of FL in Fog Federation

The federated learning technique in fog federation ensures the ML services
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while preserving the privacy of the data owners to the end clients. However, due to

heterogeneous fog devices and data anomaly, some major challenges need to be

addressed that are as following:

• Class Imbalance Issue in Training Data: In FL technique, various FL

workers’ local data are utilized for ML network model training. Hence, it is

possible to have class imbalance issues within some participating workers’

local data that can impact the global models’ robustness.

• Communication Cost for Aggregating Updates into Global

Model: To perform FL training, the global model needs to be transferred to

participating workers via the internet. After training, the updates are sent

back to the server for synchronization with the global model, and finally

updated global model is sent to the FL workers. All the transfer operations

utilize internet protocol which can incur a huge amount of communication

cost.

• Efficient Management of FL Workers: The number of participating FL

workers can be huge where unexpected network connectivity and

heterogeneous communication protocol make the management scenario nearly

impossible[68].

2.8 Downside of Smart Solutions in Industry 4.0

Advances in hardware and software technology have evolved the oil and gas

sector into a completely automated and machine-dependent industry [69]. Although
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this digital revolution enhances production efficiency, it may produce numerous

types of vulnerability and side effects that can lead to catastrophic incidents such as

hazardous gas emissions, fire dangers, and oil spills [70]. Furthermore, the constant

advancement of technology opens the potential to hack into information technology

(IT) platforms [71] that deals with diverse industrial data and communication with

the outside network. Another critical technology stack is the operational technology

(OT) platform [72], primarily concerned with direct oil and gas production and

processing operations with limited external access. Hence, the bridge between the

IT and operational technology (OT) platforms , in particular, raises cyber-threats to

oil and gas operations. As a result, while creating smart technology for oil and gas,

researchers must study or be cognizant of the drawbacks of smart solutions. As a

result, new and current smart solutions should contain better security approaches to

ensure the system’s reliability. Furthermore, the possible side effects of smart

solutions might impede operational efficiencies and become counter-productive.

Accordingly, it is necessary to explore and identify various vulnerable areas

of IT and OT platform as well as their interplay aspects in structural categories.

Hence, cyber-threats and device incompatibility should be addressed properly to

identify various open doors for cyber criminals. One of the issues issue with the oil

and gas industry is that it relies on systems that were not designed with network

connectivity in consideration. Industrial plants, for example, were never designed to

be connected to networks, but with the continuous digital revolution, they are

today. This can lead to a risky scenario since a cyber-attack on such a system can
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impair operations and cause the death of life.

The industrial revolution has increased the utilization of various types of

machines that robots or human workers operate. Moreover, these machines

sometimes communicate with other machines to complete an industrial operation.

Hence, machine-machine and human-machine interactions can go wrong and create

opportunities for cyber criminals to sabotage industrial processes. As such,

identification of industrial interaction challenges can help to build smart solutions

that are safe and secure. Finally, developing any physical or software solution

requires human and machine involvement that leads to the engagement of various

biases (e.g., artificial intelligence, automation, and human-related biases) in smart

solutions of Industry 4.0. These biases can lead to unwanted accidents or loopholes

for cyber criminals. Therefore, addressing different forms of bias in industrial

sectors can help build smart solutions that are resilient to cyber-threats and attacks.

2.9 Summary and Positioning of this Dissertation

This section introduced the Edge-to-Cloud continuum and federation of fog

computing paradigms and their goals. First, we discuss various scopes to utilize the

Edge-Fog-Cloud continuum for different Industry 4.0 applications, especially

real-time nature and machine learning (ML) based applications. Then in chapter 3,

we analyze the performance of various Industry 4.0 applications in widely used AWS

cloud and Chameleon fog servers. After that, we investigate the challenges of

federated fog systems and suggest a statistical resource allocation method across

federated fog systems for monolithic workloads in remote industrial sites in chapter

38



4. Then in chapter 5, we explore the micro-service software architecture of the

Industry 4.0 applications and propose a probabilistic partitioning and resource

allocation method to improve the robustness of the fog federation. After that, we

study the data security and privacy aspects of fog federation by addressing

state-of-the-art challenges in privacy-preserving ML-application training for the oil

and gas industry in chapter 6. Finally, in chapter 7, we identify the downsides of

smart solutions and suggest state-of-the-art solutions for the remote oil and gas

industry. In the end, we conclude the dissertation by disclosing a summary of our

findings and future avenues to explore in chapter 8.
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Chapter 3: Performance Analysis of DNN-based Application in Cloud
and Fog Systems

3.1 Overview

This chapter analyzes the performances of Deep Neural Network

(DNN)-based Industry 4.0 applications to study the inference execution times on

cloud and fog computing resources. Being an indispensable part of Industry 4.0,

DNN-based smart applications make the latency-sensitive inference that needs to be

accurate and execute certain application constraints with a specific deadline. The

quality of service(QoS) could be compromised due to missing each application’s

deadline even if the inference accuracy is high. Due to the multi-tenancy and

resource heterogeneity inherent to the cloud and fog computing environments, the

inference time of DNN-based applications is stochastic. Such stochasticity, if not

captured, can potentially lead to a disaster in critical sectors, such as Oil and Gas

industry. To make Industry 4.0 robust, solution architects and researchers need to

understand the behavior of DNN-based applications and capture the stochasticity

that exists in their inference times. Accordingly, in this study, we provide a

descriptive analysis of the inference time in the popular cloud platform, Amazon,

and in Chameleon as Fog system.

We employ two statistical methodologies to evaluate DNN-based

applications: application-centric and resource-centric. First, we begin with an

application-centric analysis in which we statistically model the inference execution

time of four categorically unique DNN applications executing on both Amazon and
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Chameleon. Second, we examine a rate-based indicator known as Million

Instruction Per Second (MIPS) for heterogeneous cloud and fog systems using a

resource-centric approach. The confidence interval of MIPS for heterogeneous cloud

and fog systems is then estimated using non-parametric modeling approaches such

as Jackknife and Bootstrap re-sampling. The findings of this work might help

academics and cloud solution architects build robust solutions against the stochastic

nature of inference time in the cloud, allowing them to deliver higher QoS to their

users while avoiding unanticipated repercussions. Furthermore, we provide a

DNN-based applications benchmark a for system architects to employ in building

effective resource allocation solutions.

3.2 DNN-Based Applications in Industry 4.0

Among various DNN-based applications utilized in Industry 4.0, we consider

four different applications used in the smart O&G industry. The summary of the

chosen applications is demonstrated in table 3.1, which presents the abbreviated

name for each application, its DNN (network) model, the type of its input data, the

scope of deployment in O&G Industry [73], and the code base to build the model.

The applications’ code base, input data, and analysis results are publicly available

for reproducibility purposes in the GitHub repository mentioned earlier. In the rest

of this section, we explore the characteristics of each application type.

3.2.1 Fire Detection

The fire detection application is an essential component of monitoring

ahttps://github.com/hpcclab/Benchmarking-DNN-applications-industry4.0
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Table 3.1. DNN-based applications used in O&G Industry 4.0 along with their network
model, input data type, usage scope, and code base.

Application Type DNN Model Input Type Scope Code Base

Fire Detection (Fire) Customized Alexnet Video Segment
Control &
Monitoring

Tensorflow
(tflearn)

Human Activity
Recognition (HAR)

Customized Sequential
Neural Network

Motion sensors
Workers
Safety

keras

Oil Spill Detec. (Oil) FCN-8 SAR Images
Disaster
Management

keras

Acoustic Impedance
Estimation (AIE)

Temporal Convolutional
Network

Seismic Data
Seismic
Exploration

PyTorch

systems designed to provide safety and resilience in Industry 4.0. We used a

convolutional neural network (CNN) to investigate a fire detection DNN-based

application proposed by Dunnings and Breckon [74]. It identifies fire areas (pixels)

in real-time in the frames of a monitored video. We use the FireNet model, which

correctly identifies and locates fire in each frame of a given video segment, among

the several fire detection models offered by the authors. FireNet is a simplified

version of the AlexNet model [75], with three convolutional layers of sizes 64, 128,

and 256. To obtain high-frequency features with a significant response from the

preceding layer, each convolutional layer in this model is enhanced with a

max-pooling layer and a local response normalization. We created a benchmarking

dataset of 240 videos with varied backgrounds to examine the inference time of the

fire detection application. All videos are regarded as two seconds long for a fair and

accurate appraisal.

3.2.2 Human Activity Recognition

Human Activity Recognition (HAR) systems are widely used in Industry 4.0

to ensure workers’ safety in hazardous zones. In the HAR system, various sensor
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data are analyzed that are generated from different sensors used by human workers

while performing any physical movement. In this case, motion sensors, such as

accelerometers and gyroscopes, that are widely available on handheld PDA devices

are utilized to capture human activity-related sensor data. The HAR system we use

operates based on the sequential neural network model with four layers to identify

the worker’s activities (walking, walking upstairs, walking downstairs, sitting). For

analysis, we use a dataset of the UCI machine learning repository, known as Human

Activity Recognition Using Smartphones [76].

Figure 3.1. The FCN-8 model is presented in block diagram that consist of 5 fully
convolutional network blocks, and 2 up-sampling blocks. The model receives input as a
SAR image and perform pixel-wise classification to output a labeled image.
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3.2.3 Oil Spill Detection

Detecting the oil spill is of paramount importance to have a safe and clean

O&G Industry 4.0. The accuracy of DNN-based oil spill detection systems has been

promising [77]. We utilize a detection system that operates based on the FCN-8
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model [78], which is depicted in Figure 3.1. As we can see, the model contains five

Fully Convolutional Network (FCN) blocks and two up-sampling blocks that

collectively perform semantic segmentation (i.e., classifying every pixel) of an input

image and output a labeled image. The FCN-8 model functions based on the

satellite (a.k.a. SAR) [79] images. We configure the analysis to obtain the inference

time of 110 SAR images collected by MKLab [77].

Figure 3.2. Schematic view of Temporal Convolutional Network (TCN) model that
consists of six temporal blocks, the input data, and the output in form of the predicted AI.
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3.2.4 Acoustic Impedance Estimation

Estimating acoustic impedance (AI) from seismic data is an important step

in O&G exploration. To estimate AI from seismic data, we utilize a solution

functions based on the temporal convolutional network [80], shown in Figure 3.2.

The solution outperforms others in terms of gradient vanishing and overfitting.

Marmousi 2 dataset [81] is used to estimate AI.

3.3 Computing Platforms for Industry 4.0

3.3.1 Amazon Cloud

AWS is a pioneer in the Cloud computing industry and provides more than

175 services, including Amazon EC2 [82], across a large set of distributed data
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centers. Amazon EC2 provides inconsistently heterogeneous machines (e.g., CPU,

GPU, and Inferentia) in form of various VM instance types (e.g., general purpose,

compute-optimized, and machine learning (ML)). Within each VM type, a range of

VM configurations (e.g., large, xlarge, 2xlarge) are offered that reflect the

consistent heterogeneity within that VM type. To realize the impact of machine

heterogeneity on the inference time of various applications, we choose one

representative VM type of each offered machine type. Table 3.2 represents the type

of machines and their specification in terms of number of cores and memory. We

note that all the machine types use SSD storage units. Although General Purpose

machines are not considered suitable for latency-sensitive DNN-based applications,

the reason we study them is their similarity to the specifications of machine types

often used in the fog computing platforms. As such, considering these types of

machines (and similarly m1.small in the Chameleon cloud) makes the results of this

study applicable to cases where fog computing is employed for latency-sensitive

applications [83].

Table 3.2. Heterogeneous machine types and VM configurations in Amazon EC2
that are considered for performance modeling of DNN-based applications. In this
table, ML Optimized represents Inferentia machine type offered by AWS.

Machine Type VM Config. vCPU GPU Mem. (GB)
Mem. Optimized r5d.xlarge 4 0 32
ML Optimized inf1.xlarge 4 0 8
GPU g4dn.xlarge 4 1 16
General Purpose m5ad.xlarge 4 0 16
Comp. Optimized c5d.xlarge 4 0 8
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Table 3.3. Various VM flavors in Chameleon cloud are configured to represent a
consistently heterogeneous system.

VM Config. vCPU Mem. (GB)

m1.xlarge 8 16
m1.large 4 8
m1.medium 2 4
m1.small 1 2

3.3.2 Chameleon as Fog Computing System

Chameleon [84] is a large-scale public computing platform maintained by

National Science Foundation (NSF) that usually utilized for academic research

purposes. Due to Chameleon’s maintenance issues (e.g., transient failures,

unexpected downtime, resource scarcity), less large scale VM flavors, and

distributed nature, we consider Chameleon as Fog computing system. Chameleon

supports VM-based heterogeneous computing. It offers the flexibility to manage the

compute, memory, and storage capacity of the VM instances. In this study, we use

the Chameleon to configure a set of consistently heterogeneous machines (Fog

Systems). We configure four VM flavors, namely m1.xlarge, m1.large,

m1.medium, and m1.small, as detailed in Table 3.3. We note that VMs offered by

Chameleon uses HDD unit as storage.

3.4 Environmental Setup for Performance Modeling

The focus of this study is on latency-sensitive DNN-based applications that

are widely used in Industry 4.0. Accordingly, we consider a dynamic (online) system

that is already loaded with pre-trained DNN-based applications, explained in the

previous section, and executes arriving requests on the pertinent application. This
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means that we measure the hot start inference time [85] in the considered

applications. The DNN-based applications mostly use TensorFlow, and the VMs

both in AWS and Chameleon are configured to use the framework on top of Ubuntu

18.04.

Figure 3.3. The stochastic nature of inference execution time of oil spill application while
running on heterogeneous VMs in the AWS. For every VM instance, the oil spill detection
application is executed 30 times and those executions are plotted as number of attempts
along x-axis. The y-axis represents the inference time for every attempts.
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Our initial evaluations in AWS (shown in Figure 3.3) demonstrate that, in

different attempts, the inference execution time of an application (Oil Spill) on the

same machine type can be highly stochastic. Similar stochasticity is found for

chameleon cloud while we run the oil spill detection application 30 times within

same VM instance. Hence to capture this randomness (aka consistent heterogeneity)

that is caused by several factors, such as transient failures or multi-tenancy [86, 87],

we base our analysis on 30 times execution of the same request within same VM.

3.5 Application-Centric Analysis of Inference Time

3.5.1 Overview

In this part, we capture the inference time of the four DNN applications and

try to identify their underlying statistical distributions using various statistical

methods. Then, to describe the behavior of inference execution time using a single

metric, we explore the central tendency of the distributions.
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3.5.2 Statistical Distribution of Inference Execution Time

Among various statistical methods, normality tests are widely employed to

understand the distribution of the collected samples. Hence, we first use the

Shapiro-Wilk test [88] to verify the normality of the inference time distribution on

each machine type. Next, we employ the Kolmogorov-Smirnov test [89] to find the

best fit distribution based on the sampled inference execution times.

3.5.2.1 Shapiro-Wilk test to verify normality of the sampled data.

The null hypothesis is that the inference execution times are normally distributed.

To understand whether a random sample comes from a normal distribution, we

perform the Shapiro-Wilk test. The result of this test is considered as W , whose low

value (lower than wα threshold) indicates that the sampled data are not normally

distributed and vice versa.

The value of W is used to perform the significant testing (i.e., calculating

P-value). The higher P-value, especially greater than a threshold value (typically

0.05), supports the null hypothesis that the sampled data are normally distributed.

Table 3.4. The execution time distributions of DNN-based applications in AWS clouds
machines using Shapiro-Wilk test.

Execution Time Distribution with Shapiro-Wilk Test in AWS Cloud
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire
Not Gaussian
(P=2.73e−16)

Not Gaussian
(P=5.42e−16)

Not Gaussian
(P=6.59e−16)

Not Gaussian
(P=2.06e−13)

Not Gaussian
(P=3.9e−16)

HAR
Not Gaussian
(P=7.12e−8)

Not Gaussian
(P=1.04e−8)

Gaussian
(P=0.19)

Not Gaussian
(P=1.76e−8)

Not Gaussian
(P=0.4.62e−5)

Oil
Not Gaussian

(P=8e−4)
Not Gaussian
(P=2.9e−16)

Not Gaussian
(P=0.012)

Not Gaussian
(P=1.27e−16)

Not Gaussian
(P=5.86e−14)

AIE
Gaussian
(P=0.46)

Gaussian
(P=0.23)

Gaussian
(P=0.08)

Not Gaussian
(P=1.99e−10)

Gaussian
(P=0.96)

The results of Shapiro-Wilk test on the collected inference times for AWS are
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Table 3.5. The execution time distributions of DNN applications in Chameleon cloud
using Shapiro-Wilk test.

Execution Time Distribution with Shapiro-Wilk Test in Chemeleon
App. Type m1.xlarge m1.large m1.medium m1.small

Fire
Not Gaussian
(P=4.05e−5)

Not Gaussian
(P=1.e−4)

Not Gaussian
(P=7.58e−6)

Not Gaussian
(P=1.32e−7)

HAR
Gaussian
(P=0.74)

Not Gaussian
(P=0.02)

Gaussian
(P=0.18)

Gaussian
(P=0.84)

Oil
Not Gaussian

(P=0.01)
Not Gaussian
(P=5.5e−7)

Not Gaussian
(P=0.01)

N/A

AIE
Not Gaussian
(P=2.77e−10)

Not Gaussian
(P= 3.46e−6)

Not Gaussian
(P= 1.4e−4)

Not Gaussian
(P=2.46e−6)

presented in Table 3.4, where columns present the various machine types and rows

define the application types. The table reflects that our initial assumption is not

totally valid. The Shapiro-Wilk test result for the Chameleon cloud, depicted in

Table 3.5, shows that for only three of the total cases, the normality assumption

holds. Considering the lack of normality in several cases, in the next section, we

utilize Kolmogorov-Smirnov test to more granularly explore the best fitting

distribution for the inference time of each application and also cross validate the

prior results we obtained using another statistical method.

3.5.2.2 Kolmogorov-Smirnov test to identify the execution time

distribution. The null hypothesis for the Kolmogorov-Smirnov test is that the

inference times of a certain application type on a given machine type follows a

statistical distribution. The Kolmogorov-Smirnov Goodness of Fit test (a.k.a. K-S

test) identifies whether a set of samples derived from a population fits to a specific

distribution. Precisely, the test measures the largest vertical distance (called test

statistic D) between a known hypothetical probability distribution and the

distribution generated by the observed inference times (a.k.a. empirical distribution
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function (EDF)). Then, if D is greater than the critical value obtained from the K-S

test P-Value table, then the null hypothesis is rejected.

Table 3.6. Inference time distributions of DNN-based applications in AWS cloud machines
using Kolmogorov-Smirnov test.

Execution Time Distribution with Kolmogorov-Smirnov Test in AWS Cloud
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire No Distr. No Distr. No Distr. No Distr. No Distr.

HAR
Student’s t
(P=0.08)

Student’s t
(P=0.77)

Student’s t
(P=0.99)

Student’s t
(P=0.57)

Student’s t
(P=0.95)

Oil
Student’s t
(P=0.44)

Student’s t
(P=0.96)

Student’s t
(P=0.5)

Student’s t
(P=0.20)

Exponential
(P=0.21)

AIE
Normal

(P=0.99)
Normal

(P=0.54)
Normal

(P=0.47)
Exponential

(P=0.16)
Normal

(P=0.99)

Table 3.7. Inference time distributions of DNN-based applications in Chameleon’s ma-
chines using the K-S test.

Execution Time Distribution with Kolmogorov-Smirnov test in Chameleon
App. Type m1.xlarge m1.large m1.medium m1.small

Fire No Distr No Distr No Distr Log-normal

HAR
Normal

(P=0.98)
Student’s t
(P=0.88)

Normal
(P=0.66)

Normal
(P=0.96)

Oil
Log-normal
(P=0.36)

Log-normal
(P=0.99)

Log-normal
(P=0.81)

N/A

AIE
Student’s t
(P= 0.47)

Student’s t
(P=0.12)

Student’s t
(P=0.25)

Student’s t
(P=0.83)

The results of the K-S test on the observed inference times in AWS and

Chameleon clouds are depicted in Table 3.6 and 3.7, respectively. From Table 3.6,

we find that, in AWS, majority of the entries either represent Normal distribution or

Student’s t-distribution that exposes similar properties. However, we observe that

the inference time of Fire Detection application does not follow any particular

distribution with an acceptable P-Value. We also observe that the inference times of

both Oil Spill application on Compute Optimized machine and AIE application on

General Purpose machine follow Exponential distribution. However, low P-Value in

both of these cases indicate a weak acceptance of the null hypothesis.
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On the contrary, Table 3.7 reflects the dominance of Log-normal (i.e., the

logarithm of the random variable is normally distributed) and Student’s

t-distribution over other distributions in the Chameleon cloud. Analyzing the

execution traces shows us that the inference times in Chameleon are predominantly

larger than the ones in AWS that causes right-skewed property. Hence, the

distribution tends to be Log-normal. Consistent with AWS observations, we see

that the Fire Detection application does not follow any distribution in most cases.

Our further analysis showed that the lack of distribution is due to the input videos’

variety (e.g., frame rate and resolution). When we reduced the degree of freedom in

the input videos and limited them to those with the same configuration (frame

rate), we noticed the inference time followed a Log-normal distribution. The

observation shows that the characteristics and variation of input data can be

decisive in the statistical behavior of inference times (mentioned in highlighted

insight). Finally, we note that the Oil Spill application cannot be run on m1.small

machine owing to its limited memory.

Insights: The key insights of the analysis we conducted on identifying the

distribution of inference time are as follows:

• Shapiro-Wilk test for AWS and Chameleon rejects the null hypothesis that
the inference times of DNN-based applications follow the Normal distribu-
tion.

• The K-S test reflects the dominance of Student’s t-distribution of inference
time in both AWS (Table 3.6), and Chameleon (Table 3.7).

• Various configurations of input data is decisive on the statistical distribution
of the inference time.
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Table 3.8. The measurement of central tendency metric (µ), and data dispersion metric
(σ) on the observed inference times in AWS.

Mean and Standarad Deviation of Inference Execution Times (ms) in AWS
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire
µ=1461.8
σ=457.3

µ=1281.7
σ=387.93

µ=1349.5
σ=418.9

µ =1534.8
σ=494.7

µ=1421.4
σ=441.8

HAR
µ=1.27
σ=0.082

µ=0.66
σ=0.006

µ=0.51
σ=0.006

µ =1.17
σ=0.042

µ=0.66
σ=0.003

Oil
µ=269.9
σ=1.01

µ=218.8
σ=0.66

µ=65.98
σ=0.47

µ=667.1
σ=2.26

µ=242.9
σ=0.68

AIE
µ=7.02
σ=0.02

µ=6.41
σ=0.03

µ=7.55
σ=0.04

µ=9.35
σ=0.06

µ=7.95
σ=0.02

Table 3.9. Central tendency metric (µ), and data dispersion metric (σ) of the inference
times in the Chameleon cloud.

Mean and Std. of Inference Execution Times (ms) in Chameleon
App. Type m1.xlarge m1.large m1.medium m1.small

Fire
µ=2155.20
σ=725.48

µ=2213.30
σ=731.50

µ=2330.80
σ=742.20

µ=3184.80
σ=1033.30

HAR
µ=22.14
σ=0.76

µ=47.69
σ=1.26

µ=49.24
σ=0.57

µ=52.69
σ=0.78

Oil
µ=147.16
σ=5.23

µ=222.22
σ=2.89

µ=412.78
σ=4.99

N/A

AIE
µ=6.23
σ=0.25

µ=6.23
σ=0.15

µ=6.40
σ=0.13

µ=7.72
σ=0.24

3.5.3 Analysis of Central Tendency and Dispersion Measures

Leveraging the statistical distributions of inference times, in this part, we

explore their central tendency metric that summarizes the behavior of collected

observations in a single value. In addition, to analyze the statistical dispersion of

the observations, we measure the standard deviation of the inference times. In

particular, we estimate the arithmetic mean and standard deviation of the inference

times. The central tendency metric of inference times for AWS and Chameleon

systems are shown in Tables 3.8 and 3.9, respectively. The key insights are as

follows:
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• Machine Learning Optimized and GPU instances often outperform other
AWS machine types.

• In both clouds, the inference times of Fire and Oil experience a higher stan-
dard deviation in compare with other applications. The high uncertainty
is attributed to the characteristics of their input data; Oil Spill input im-
ages suffer from class imbalance [77], whereas, Fire input videos are highly
variant.

• In Chameleon VMs with a consistent heterogeneity, DNN applications with
dense network models (e.g., Oil and Fire) can take advantage of powerful
machines (e.g., m1.xlarge) to significantly reduce their inference times.

• Overall, AWS offers a lower inference time than Chameleon. The reason is
utilizing SSD units in AWS rather than HDD in Chameleon. In addition, we
noticed that Chameleon experiences more transient failures that can slow
down the applications.

3.6 Resource-Centric Analysis of Inference Time

In performance analysis of computing systems, a rate-based metric

[90] is defined as the normalization of number of computer instructions executed to

a standard time unit. MIPS is a popular rate-based metric that allows comparison

of computing speed across two or more computing systems. Given that computing

systems (e.g., AWS ML Optimized and GPU) increasingly use instruction-level

facilities for ML applications, our objective in this part is to analyze

the performance of different machine types in processing DNN-based applications.

The results of this analysis can be of particular interest to researchers and

cloud solution architects whose endeavor is to develop tailored resource allocation

solutions for Industry 4.0 use cases. As for rate-based metrics we do not assume

any distribution [91], we conduct a non-parametric approach. In addition to MIPS,

we provide the range of MIPS in form of Confidence Intervals (CI) for each case.
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Table 3.10. MIPS values of heterogeneous machines in AWS for each DNN-based appli-
cation.

The MIPS for DNN Applications in AWS Cloud
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire 1938.63 2196.35 2092.72 1862.04 1989.56
HAR 838640.65 1595874.34 2040057.33 891754.48 1581709.12
Oil 164.54 168.58 331.98 20.46 162.01
AIE 145.58 180.28 150.25 131.25 160.32

Table 3.11. MIPS vales for heterogeneous machines on Chameleon cloud for each DNN-
based application.

The MIPS for DNN Applications in Chameleon
App. Types m1.xlarge m1.large m1.medium m1.small

Fire 1327.81 1282.33 1249.63 871.36
HAR 91.78 102.51 124.76 136.62
Oil 18267.35 11233.41 6243.94 N/A
AIE 246366.52 249551.29 236300.93 201807.49

Let application i with ni instructions have tim inference time

on machine m. Then, MIPS of machine m to execute the application is defined as

MIPSmi = ni/(tim× 106). Hence, before calculating MIPS for any machine, we need

to estimate the number of instructions (n) of each DNN-based application. For that

purpose, we execute each task ti on a machine whose MIPS is known and estimated

ni. Then, for each machine m, we measure tim and subsequently calculate MIPSmi.

Tables 3.10 and 3.11 show the MIPS values for AWS and Chameleon, respectively.

To measure the confidence intervals (CI) of MIPS for each application type

in each machine type, we use the non-parametric statistical methods [91] that

perform prediction based on the sample data without making any assumption about

their underlying distributions. As we deal with a rate-based metric, we use

harmonic mean that offers a precise analysis for this type of metric rather than the

arithmetic mean. We utilize Jackknife [91] re-sampling method and validate it using
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Bootstrap [91], which is another well-known re-sampling method. Both of these

methods employ harmonic mean to measure the confidence intervals of MIPS.

Table 3.12. The confidence intervals of MIPS values for DNN-based applications in AWS
machines, resulted from Jackknife re-sampling method.

CI of MIPS using Jackknife Method in AWS cloud
App. Type Mem. Opt. ML Opt. GPU Gen. Pur. Compt. Opt.

Fire
[1549.42,
1975.65]

[1770.81,
2243.04]

[1671.78,
2131.66]

[1465.31,
1889.77]

[1594.78,
2028.36]

HAR
[812040.26,
856355.96]

[1592214.75,
1599426.64]

[2033084.47,
2046727.57]

[880417.69,
901345.49]

[1580275.10,
1585598.85]

Oil
[163.55,
165.47]

[168.36,
168.81]

[330.68,
333.22]

[20.35,
20.57]

[161.86,
162.17]

AIE
[139.02,
141.04]

[155.56,
156.01]

[141.57,
142.03]

[118.06,
119.82]

[148.35,
149.00]

Table 3.13. Confidence intervals of MIPS values for different DNN-based applications in
Chameleon machines, resulted from Jackknife re-sampling method.

CI of MIPS using Jackknife Method in Chameleon Cloud
App. Type m1.xlarge m1.large m1.medium m1.small

Fire
[1032.11,
1341.75]

[1010.62,
1303.02]

[964.76,
1259.68]

[670.82,
872.85]

HAR
[88.27,
94.20]

[99.84,
104.49]

[122.33,
126.67]

[135.13,
137.92]

Oil
[18083.59,
18628.64]

[11159.71,
11662.41]

[6139.59,
6262.15]

N/A

AIE
[237710.12,
252686.82]

[247166.73,
251673.68]

[168804.58,
268273.11]

[199676.71,
203681.17]

3.6.1 Estimating Confidence Interval using Jackknife Method

Let p be the number of observed inference times. The Jackknife method

calculates the harmonic mean in p iterations, each time by eliminating one sample.

That is, each time it creates a new sample (re-sample) with size p− 1. Let xj be the

jth observed inference time. Then, the harmonic mean of re-sample i is called the

pseudo-harmonic value (denoted as yi) and is calculated based on Equation 3.1.

yi =
p− 1
p∑

j=1,j 6=i

1
xj

(3.1)
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Next, the arithmetic mean (denoted ȳ) of the p pseudo-harmonic values is

computed, and is used to estimate the standard deviation. Finally, the

t-distribution table is used to calculate the CI boundaries with a 95% confidence

level. The result of the Jackknife method for AWS machines is shown in Table 3.12

that conforms with the MIPS calculation in Table 3.10. Similarly, the results of

analysis for Chameleon cloud using Jackknife method, shown in Table 3.13, validate

the prior MIPS calculations in Table 3.11. However, in the next part, we

cross-validate these results using Bootstrap method.

3.6.2 Estimating Confidence Interval using Bootstrap Method

Bootstrap repeatedly performs random sampling with a replacement technique

[91] on the observed inference times. The random sampling refers to the selection of a

sample with the chance of non-zero probability and the number (represented as k) of

re-sample data depends on the user’s consideration. After re-sampling, the harmonic

means of k number of samples are calculated and sorted in ascending order to estimate

the confidence intervals. Finally, for a specific confidence level, the (α/2× k)th and

((1− α/2)× k)th values are selected from the sorted samples as the lower and upper

bounds of the CI. We set the k value to 100 and α to 0.05 for 95% confidence level.

For both AWS and Chameleon, the results of CI analysis using the Bootstrap

method are similar to, thus validate, the ranges estimated by the Jackknife method.

Therefore, due to the shortage of space, we do not report the table of MIPS values

for the Bootstrap method. However, we note that the CI ranges provided by the

Bootstrap method are shorter (i.e., have less uncertainty), regardless of the
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application type and the cloud platform. The reason for the shorter range is that

Bootstrap performs re-sampling with a user-defined number of samples that can be

larger than the original sample size.

Figure 3.4. Comparative analysis of the MIPS values of AWS and Chameleon machines
for various DNN-based applications. For the sake of presentation, the MIPS values are
normalized between [0,1].
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To perform a cross-platform analysis of the MIPS values, in Figure 3.4, we

compare the range of MIPS values for AWS Compute Optimized against m1.large

that is a compatible machine type in Chameleon (see Tables 3.2 and 3.3). The

horizontal axis of this figure shows different application types and the vertical axis

shows the MIPS values, normalized based on MinMax Scaling in the range of [0,1],

for the sake of better presentation. Due to high variation in the input videos, we

observe a broad CI range for Fire detection across both cloud platforms. However,

for HAR, Oil Spill, and AIE applications, we observe that the first and third
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quartiles of the CI range in Chameleon (whose machines are prone to more transient

failures [92]) is larger than those in AWS. This wide range indicates that, apart

from variations in the input data, the reliability of underlying resources is also

decisive on the stochasticity of the inference times.

3.7 Summary and Discussion

Accurately estimating the inference time of latency-sensitive DNN-based

applications plays a critical role in robustness and safety of Industry 4.0. Such

accurate estimations enable cloud providers and solution architects to devise

resource allocation and load balancing solutions that are robust against uncertainty

exists in the execution time of DNN-based applications. In this work, we provide

application- and resource-centric analyses on the uncertainty exists in the inference

times of several DNN-based applications deployed on heterogeneous machines of two

computing platforms, namely AWS and Chameleon. In the first part, we utilized

the Shapiro-Wilk test to verify if the assumption of Normal distribution for the

inference time holds. We observed that the inference times often do not follow a

Normal distribution. Therefore, in the second part, we broaden our distribution

testing investigation and utilized the Kolmogorov-Smirnov test to verify the

underlying distributions in each case. The analysis showed that inference times

across the two computing platforms often follow Student’s t-distribution. However,

in several cases in Chameleon system we observed the Log-normal distribution that

we attribute it to the uncertain performance of VMs in this platform. Next, to

conduct a resource-centric analysis, we modeled MIPS (as a rate-based performance
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metric) of the heterogeneous machines for each application type. In the analysis, we

took a non-parametric approach, which is suitable for rate-based metrics, and

utilized the Jackknife and Bootstrap re-sampling methods with harmonic mean to

determine the range of confidence intervals of the MIPS values in each case. The

calculated MIPS values and their CI ranges reflect the behavior of different

DNN-based applications under various machine types of cloud and fog systems. A

comparative analysis of the CI ranges across AWS and Chameleon demonstrate that

the uncertainty in the inference time is because of variations in the input data and

unreliability of the underlying platforms. In the future, we plan to incorporate the

findings of this research to devise accurate resource allocation methods in IoT and

edge computing systems. In addition, we plan to develop a predictive analysis to

determine the execution of each inference task upon arrival.
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Chapter 4: The Benefits of Federated Fog to Manage Monolithic
Workload in Remote Industrial Sites

4.1 Overview

In the previous chapters, our preliminary research found that fog federation

can be a potential computational platform for remote smart industries with

stochastic execution behaviors for Industry 4.0 applications. Hence, the stochastic

execution of Industry 4.0 applications has an influence on task completion times. In

this case, an efficient resource allocation and load balancing technique that is aware

of stochastic execution behaviors of Industry 4.0 applications can ensure the

system’s robustness by enabling the on-time completion of receiving tasks.

Accordingly, in this chapter, we first strategically develop a load-balancing method

for allocating arriving tasks to a fog federation. Hence, our primary goal is to ensure

the system’s robustness (fog federation) in terms of meeting the deadlines of

arriving tasks. To achieve the goal, we estimate the end-to-end latency of a

receiving task in a fog system and utilize the latency to predict the task completion

time across the fog federation. Hence, we propose a probabilistic task allocation

method in the load balancer of each fog system that is aware of the latency

constraints of the receiving tasks. Then, in the second part, we evaluate our

proposed load balancing method using the synthetic workload (customized to

industrial tasks workload) of EdgeCloudSim [18] simulator.
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4.2 End-to-End Latency in Federated Fog Systems

When a task request arrives at a fog system’s load balancer, communication

and computational latencies combine to generate the end-to-end latency.

Furthermore, several factors impact each of these latencies, causing them to behave

stochastically. For these reasons, calculating end-to-end latency and capturing its

stochastic character in fog computing systems is difficult. In the following sections,

we go over the elements that influence communication and processing latencies. In

addition, we present a model for estimating end-to-end latency while accounting for

its stochastic character.

4.2.1 Estimating Communication Latency

The time it takes to process and return a response to a task request is the

communication latency. More specifically, communication latency is caused by

transmission latency and propagation latency. The transmission latency between

any two points m and n (e.g., two fog systems in the fog federation) for task t of

type i, denoted Θi(m,n), is defined as the sum of uplink transmission latency,

denoted τu(m,n, i), and downlink transmission latency, denoted τd(m,n, i). That is,

we have Θi(m,n) = τu(m,n, i) + τd(m,n, i). Let Iu(i) be the size of data payload (in

bits), originally captured by a sensor, serving as input for task type i. Note that, for

some sensors (e.g., cameras), there can be randomness in the size of captured data,

in every sensor reading. Also, let Ru(m,n) represent the uplink bandwidth, through

which the data is transmitted. T is the time required to transmit each data packet

to the uplink channel (known as Transmission Time Intervals (TTI)). Then, the
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uplink latency is calculated based on Equation 4.1.

τu(m,n, i) = d Iu(i)

Ru(m,n)·T
e (4.1)

Similarly, the downlink latency is defined as Equation 4.2.

τd(m,n, i) = d Id(i)

Rd(m,n)·T
e (4.2)

An orthogonal frequency-division multiplexing (OFDM) with total bandwidth W is

divided equally into a set of k sub-channels (where k ∈ K) each with bandwidth w.

Accordingly, the downlink bandwidth is defined based on Equation 4.3.

Rd(m,n) = w·
∑
k∈K

ymnk log2(1 + γd(m,n, k)) (4.3)

where ymnk = 1, if sub-channel k is allocated, otherwise ymnk = 0. As the wireless

communication is prone to noise and interference from other fog systems in the

federation, the value of Rd(m,n) also depends on downlink signal to noise plus

interference ratio (also known as SINR [93]). SINR is defined as the power of a

particular signal divided by the sum of the interference power (from all the other

interfering signals) along with the power of background noise. We note that, details

of calculating uplink transmission latency (τu(m,n, i)) is similar to those for

downlink.

In fog federation, due to the vicinity, the propagation latency between fog

systems is negligible. In contrast, the communication between fog systems and

cloud datacenters is commonly achieved via satellite that introduces a substantial

propagation latency [94]. The propagation latency, denoted τp, is calculated based
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on Equation 4.4.

τp = 2· d(n, st)

Sl
(4.4)

In the Equation 4.4, d(n, st) is the distance between fog n to satellite st and Sl is

the propagation speed in medium or link. To calculate propagation latency in the

round trip time, the fraction value should be doubled. Once we know propagation

latency, the overall communication latency, denoted dcomm, to access cloud

datacenter is calculated based on Equation 4.5.

dcomm = Θi(m,n) + τp (4.5)

As we noticed, there are several factors that collectively form the communication

latency with stochastic behavior. To capture this stochastic behavior, we treat

communication latency as a random variable and model it using statistical

distribution. That is, we represent the communication latency between any two

points (e.g., two fog systems in the federation) using a probability density function

(PDF), built upon historical communication information [46]. Based on the central

limit theorem, communication latency can be modeled using Normal distribution.

4.2.2 Estimating Computational Latency

Once the load balancer assigns arriving task request t to a fog system, the

task has to wait in the scheduling queues of the fog system before its execution. For

a given task t of type i, denoted ti, its completion time (i.e., computational latency)

is influenced by the waiting time in the queue (queuing latency), plus the task’s

execution time (execution latency) on the machines of the assigned fog system.
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Importantly, both of these factors are stochastic, as a result, the task completion

time exhibits a stochastic behavior.

The queuing latency of task ti is dependent on the number and execution

times of tasks ahead of it in the fog system. The stochasticity in execution time can

be due to different task types and characteristics of machines in different fog

systems. Even the execution time of tasks from the same type on homogeneous

machines of the same fog system is stochastic. This can be because of variations in

the size of data to be processed and multi-tenancy of tasks in the fog system [95].

Other factors, such as machine failure, can also be reasons for stochastic task

execution time.

To capture the stochasticity in computational latency, we consider the task

completion time of each task type on each fog system as a random variable. Then,

we model the computational latency using statistical distribution. That is, the

computational latency is modeled using PDF, built upon historical completion time

information of each task type on each fog system. Based on the central limit

theorem, the computational latency of each task type on each fog system can be

modeled using Normal distribution.

4.2.3 Estimating End-to-End Latency

Once we estimate the communication and computational latencies, their

compound latency forms the end-to-end latency. More specifically, the compound

latency can be obtained by convolving the PDF of communication latency with the

PDF of the computational latency. For an arriving task ti to a load balancer, let Ni
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be PDF of its communication latency to another fog system in the federation. Also,

let Mi be PDF of the computational latency of ti on the other fog system. Then,

the end-to-end latency for ti, denoted Ei, is calculated as Ei = Ni ~Mi.

4.3 Robust Resource Allocation in the Federated Fog Computing System

The synopsis of the proposed resource allocation model in the federated fog

computing system is demonstrated in Figure 4.1. The resource allocation model

utilizes a load balancer module that is the main enabler of fog federation. Every fog

system is equipped with a load balancer that, for each arriving task, it determines

the appropriate fog system (either the receiving fog or to a neighboring one) where

the task has the highest likelihood of completion before its deadline.

The functionality of load balancer is particularly prominent to cope with the

uncertainty exists in task arrivals (e.g., during disaster time) and make the fog

system robust against it. The load balancer operates in immediate mode [96] and

assigns arriving tasks to the appropriate fog system, immediately upon task arrival.

The appropriateness is characterized based on the fog system that maximizes the

probability of the task meeting its deadline (known as the probability of success).

The probability of success for task ti with deadline δi can be calculated for each

neighboring fog system, by leveraging the end-to-end latency distribution of

executing task ti on that system. To avoid repetitive task reassignment and

compound latency, we determine that once a task assignment decision is made, the

task cannot be re-allocated.

The resource allocation of each fog system leverages the historical
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Figure 4.1. A Fog system with load balancer module that facilitates fog federation.
Task requests generated by sensors are received by the load balancer module and are
assigned to the fog system that maximizes the likelihood of success for the task.
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information of computational and communication latencies to build PDF of their

distributions. For that purpose, each load balancer maintains two matrices, namely

Estimated Task Completion (ETC) [97] and Estimated Task Transfer (ETT), to

keep track of computational and communication latencies for each task type on each

neighboring fog system. Entry ETC(i, j) keeps the PDF of computational latency

for task type i on fog system j. Similarly, entry ETT (i, j) keeps the PDF of

communication latency for task type i to reach fog system j. The entries of ETC

and ETT matrices are periodically updated in an offline manner and they do not

interfere with the real-time operation of the load balancer.
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Upon arriving task ti, load balancer of the receiving fog can calculate the

end-to-end latency distribution of ti on any neighboring fog j, using ETC(i, j) and

ETT (i, j). The end-to-end distribution can be used to obtain the probability of

completing ti before its deadline, denoted pj(ti), on any of those fog systems. We

have: pj(ti) = P(Ei ≤ δi). We note that the probability calculation for task ti on the

receiving fog does not imply further communication latency. As such, for the

receiving fog r we have: pr(ti) = P(Mi ≤ δi). In the next step, the fog system that

provides the highest probability of success is chosen as a suitable destination to

assign task ti. This implies that task ti is assigned to a neighboring fog system, only

if even after considering the communication latency, the neighboring fog provides a

higher probability of success.

It is noteworthy that the probability of success on a neighboring fog can be

higher than the receiving fog by a non-significant amount. In practice, a task should

be assigned to a neighboring fog, only if the neighboring fog system offers a

substantially higher probability of success. To understand if the difference between

the probabilities is substantial, we leverage confidence intervals (CI) of the

underlying end-to-end distributions, from which the probability of success for

receiving and remote fogs are calculated. More specifically, we determine a

neighboring fog offers a significantly higher probability of success for a given task,

only if CI of end-to-end distribution of the neighboring fog does not overlap with

the CI of end-to-end distribution of the receiving fog.

The pseudo-code provided in Algorithm 1 expresses the robust task
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Algorithm 1: Task assignment algorithm for load balancer.

Input : Task ti; ETC and ETT matrices; G (set of neighboring fog
systems)

Output: Chosen fog j ∈ G to assign ti
1 pr(ti)← Probability of success on receiving fog r
2 foreach fog system j ∈ G do
3 pj(ti)← Probability of success on neighbor fog j
4 if pj(ti) > pr(ti) then
5 Add pj(ti) to P , as a potential fog for assignment

6 end

7 end
8 Sort elements of set P in descending order
9 Consider receiving fog r as default assignment for ti

10 foreach pj ∈ P do
11 if CI of Ej does not overlap with CI of Nr then
12 Choose fog j as destination and assign ti to it
13 Exit the loop

14 end

15 end

assignment heuristic that load balancer utilizes to take advantage of federated fog

system and increase the robustness of the system. The heuristic is called Maximum

Robustness (MR) and invoked upon arrival of a new task ti to the load balancer of a

fog system. Based on the deadline of the arriving task (δi), the algorithm first

calculates the probability of success for ti on the receiving fog and on its

neighboring fog systems (Step 1-7 in Algorithm 1). Then, in Step 8, the calculated

probabilities are sorted in the descending order. If the probability of success on the

receiving fog is higher, then the task is allocated to the receiving fog system (Step

9). Otherwise, CI of the end-to-end latency distribution for the neighbor with the

highest probability of success is compared against receiving fog CI. If the CIs do not

overlap, then task ti is assigned to the neighboring fog (Step 12). Otherwise, the
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same procedure is performed for the rest of the neighbors of the receiving fog

system. If there is no no-overlap neighbor found then, task ti is assigned to the

receiving fog system (default assignment in Step 9).

4.4 Performance Evaluation of Federated Fog

We have used EdgeCloudSim [18], which is a discrete event simulator for

performance evaluation. We simulate five fog systems (micro-datacenters) each one

with eight cores and [1500, 2500] Million Instructions Per seconds (MIPs)

computational capacity. Cores of each fog system are homogeneous: however,

different fog systems have different MIPs that represents the heterogeneity across

the fog systems. We also consider a cloud datacenter with 40,000 MIPs to process

non-urgent tasks. Task within each fog is mapped in the first come first serve

manner. The bandwidth to access cloud is based on satellite communication and set

to 200 Mbps, and the propagation delay is 0.57 seconds [98].

In each workload trial, generated to simulate load of a smart oil field, we

consider half of the tasks represent urgent and the other half represent non-urgent

tasks. Each task is of a certain type that represents its service type. In each

workload trial, urgent tasks are instantiated from two different task types and

non-urgent tasks are instantiated from two other task types. The execution time of

each task instantiated from a certain type is sampled from a normal distribution,

representing that particular task type. Each task is considered to be sequential

(requires one core) and its execution time is simulated in the form of MIPs. Poisson

distribution (with different means for different task types) is used to generate the
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inter-arrival rate of the tasks and simulate task arrival during oversubscription

periods. The number of tasks in each workload trial is varied to represent different

oversubscription levels.

Deadline for task i in a workload trial is generated as: δi =

arri + β· avgicomp + α· avgicomm + ε, where arri is the task arrival time, avgicomp is

average computational latency of the task type across fog systems, and avgicomm is

average communication latency. β and α are coefficients, respectively, represent

computation and communication uncertainties, and ε is the slack of other

uncertainties exist in the system. We consider maintaining ETC and ETT matrices

in every fog system and update them in every 10% of the workload execution. The

entries of these matrices are considered as normal distribution as mentioned in the

system model. For accuracy, each experiment was conducted 30 times and the mean

and 95% confidence interval of the results are reported.

4.4.1 Baseline Task Assignment Heuristics for Load Balancer

Minimum Expected Completion Time (MECT): This heuristic [46] uses the

ETC matrix to calculate the average expected completion time for the arriving task

on each fog system and selects the fog system with the minimum expected

completion time.

Maximum Computation Certainty (MCC): This heuristic (used in [99])

utilizes ETC matrix to calculate the difference between the task’s deadline and

average completion time (called certainty). Then, the task is assigned to the fog

that offers the highest certainty.

70



Edge Cloud (EC): This heuristic operates based on conventional fog

computing model where no federation is recognized. Specifically, urgent tasks are

assigned to the receiving fog and non-urgent tasks are assigned to the cloud

datacenter.

4.4.2 Experimental Results

4.4.2.1 Analyzing the impact of oversubscription. The main metric to

measure the robustness of an oversubscribed fog system in a smart oil field is the

deadline miss rate of tasks. In this experiment, we study the performance of our

system by increasing the number of tasks sensors generate (i.e., oversubscription

level). Figure 4.2 shows the results of varying the number of arriving tasks (from

1,500 to 7,500 in the horizontal axis) on deadline miss rate (vertical axis) when

different task assignment heuristics is applied.

Figure 4.2. The impact of increasing oversubscription level (number of arriving
tasks) on deadline miss rate using different task assignment heuristics in the load
balancer.
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In Figure 4.2, it is visible that as the number of tasks increases, the deadline

miss rate grows for all of the heuristics. Under low oversubscription level (1,500

tasks), MR, MECT, and MCC perform similarly. However, as the system gets more

oversubscribed (4,500 tasks) the difference becomes substantial. With 7,500 tasks,

MR offers around 16% lower deadline miss rate than MECT and MCC and

approximately 21% better than EC. The reason is that MR captures end-to-end

latency and proactively utilizes federation, only if it has a remarkable impact on the

probability of success. Nonetheless, EC does not consider federation, and other

baseline heuristics only consider the computational latency. We can conclude that

considering end-to-end latency and capturing its underlying uncertainties can

remarkably improve the robustness, particularly, when the system is oversubscribed

(e.g., at a disaster time).

4.4.2.2 Analyzing communication overhead of fog federation.

Although we showed in the previous experiment that using federation improves

system robustness, we are unaware of the communication overhead of task

assignment in the federated environment. Therefore, in this experiment, we evaluate

the communication latency imposed as a result of applying different task assignment

heuristics. Specifically, we measure the mean communication latency overhead

(vertical axis in Figure 4.3) induced to each task, for the various number of arriving

tasks (horizontal axis in Figure 4.3).

Figure 4.3 shows that MECT and MCC cause higher average communication

latency. The reason is that these heuristics do not consider the communication
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Figure 4.3. Mean communication latency overhead introduced to each task in fog
federation by different heuristics.
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latency and aggressively redirect tasks to the same fog system, making that

particular network link (between receiving fog and redirected fog system) congested.

In contrast, MR that considers communication latency and redirect tasks more

conservatively, only if the improvement in the probability of success is substantial.

4.4.2.3 Analyzing average makespan of tasks. Different task

assignment heuristics cause various computational latencies for the tasks. To

understand the computational latency, we measure the average makespan of tasks,

resulted by applying various task assignment heuristics.

Figure 4.4 demonstrates that EC leads to the maximum average makespan

time. The reason is that EC does not utilize federation, making the receiving fog

system highly oversubscribed while other neighboring fog systems are underutilized.
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Figure 4.4. Average makespan time(seconds) of tasks using various task assignment
heuristics.
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Hence, average makespan time rapidly rises after the receiving fog is saturated with

3,000 tasks. MECT and MCC do not consider the stochastic nature of task

completion time; hence, they can potentially assign arriving tasks to one fog and

oversubscribe that. As a result, the average makespan of tasks rises. In contrast,

MR considers stochastic nature of end-to-end latency and calculates the probability

of success on neighboring fog systems. Besides, it assigns tasks to a neighboring fog

system, only if it offers a sufficiently higher probability of success. Hence, MR offers

the lowest average makespan time than other heuristics.

4.5 Summary

In this chapter, we explored the usability of a fog federation for a smart

Industry (Oil and Gas) in a disastrous situation. To support the computational

demands in an emergency situation allocating various tasks in suitable fog system is
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challenging due to heterogeneity across fog systems. Hence, maintaining the

robustness of the system in terms of every real-time urgent tasks deadline can be

difficult unless any efficient load balancing technique adopted by the system. To

achieve that, we presented dynamic federation of fog computing systems, exist in

nearby industries. Within the federated environment, we captured two sources of

uncertainty, namely communication and computation, that are otherwise

detrimental to the real-time services. The federation is achieved by a load-balancer

module in each fog system that is aware of the end-to-end latency between fog

systems and can capture the stochasticity in it. The load balancer leverages this

awareness to find the fog system that can substantially improve the probability of

success for each arriving task. Experimental results demonstrate that our proposed

federated system can enhance the robustness of fog computing systems against

uncertainties in arrival time, communication, and computational latencies. We

concluded that the load balancer could be particularly useful (by up to 27%) for

higher levels of oversubscription. Even for näıve load balancing methods (MCC and

MECT) in the federation, the performance improvement is approximately 13%.
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Chapter 5: Adapting Remote Industry 4.0 Smart Micro-Service
Applications to Federated Fog Computing Systems

5.1 Overview

The advancement of IoT technologies with smart applications drives the

wheel of Industry 4.0 [71] revolution. Various smart sensors, actuators, and smart

devices are deployed in different industries (e.g., manufacturing, food processing, oil

& gas) to control the operational technology platform [100, 101]. Accordingly,

sensors utilized in industrial operations frequently produce tons of data every day

[102]. The oil and gas industry is an example of generating enormous amounts of

sensor data and the necessity for processing close to the data source. For instance, a

typical offshore oil rig produces 1 to 2 TB of data daily [103]. The majority of this

data is fed to advanced computing applications (e.g., machine learning, report

generation, automation) that can make smart latency-sensitive decisions to improve

energy efficiency, production, and safety measures. For example, applications like

workplace air quality estimation [104] for workers’ safety utilize environmental

sensors that measure the quality (i.e., the existence of harmful particles in the air)

of breathable air in the surrounding of the workplace. Hence, the air quality

estimation must be fast to avoid potential occurrences.

In the remote offshore industry, several services (e.g., data acquisition, alert

generation, object tracking) are critical for complex or safety-related operations that

need to be performed synchronously. The situation can worsen when any unwanted

emergency brings many more computational activities completed within limited
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time frames. In this case, our motivation is the smart Oil and Gas industry that has

been facing various disasters and catastrophes (e.g., the deepwater horizon

(2010)[19], usumacinta jack-up disaster (2007) [20], mumbai high north disaster

(2005) [21], the ocean ranger disaster (1982) [105] ) due to complex fault intolerant

industrial processes in exploration, drilling, and production operations. Therefore,

remote offshore industries need latency-aware support [106] that can not be feasible

with typical cloud data centers due to the remote locations of the industrial

operation sites. The current solution utilizes fluctuating satellite communication

[107] for sending data to mainland cloud data centers reducing the quality of service

(QoS) and increasing the industrial safety risk. Hence, the high-level challenge is

the lack of computational resources to support over-subscribed situations in remote

industries.

Figure 5.1. The structure of a microservice-based workflow is presented in a block
diagram. Every microservice need to be processed to complete the fire safety appli-
cation.
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5.1.1 Smart Micro-Service Applications for Industry 4.0

Industry 4.0 smart applications typically follow modern software architecture

[16, 108] where various micro-services [17] need to be executed in order. However,
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micro-services can be separately deployed using an automated deployment process,

require the least amount of administration, can be developed using a variety of

programming languages and data storage techniques, and can each be independently

updated, changed, and scaled. Thus, we concentrate on micro-services applications

frequently used in remote industries. For instance, as depicted in figure 5.1, a “fire

safety” application can include micro-services for capturing video surveillance data,

pre-processing captured video, noise removal, feature extraction, fire detection,

location mapping, alert generation, and expansion prediction. In contrast, many

industries have previously deployed legacy applications [109] with inflexible software

architecture. Hence, the execution platform should support both monolithic legacy

applications and modern micro-services to ensure industrial safety and fault-tolerant

operations. However, modern industry 4.0 applications are comprised of

micro-services that pose new challenges for the execution platforms. Under this

arrangement, an application‘s latency constraint is subject to the completion time of

the micro-services defined by the underlying software architecture. Therefore, to

develop a robust execution platform for industry 4.0, system architects need to

understand the software architecture of the receiving applications.

5.1.2 Federated Fog Systems for Industry 4.0 Micro-service

Applications

The emerging industrial IoT and advancements in communication technology

have brought computational resources near the data sources and end devices. For

instance, nowadays, fog computing systems [110] in remote industries typically
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Figure 5.2. Offshore oil and gas industry has the fog federation infrastructure that
can support smart microservice-based applications.
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execute the industrial computational process to enable smooth production and

workplace safety. However, as depicted in figure 5.2, a federated fog platform can be

conceptualized from chapter 4 that can form by connecting through wireless

gateways denoted as Gi. Hence, various applications with heterogeneous latency

constraints require computational support from federated fog computing systems.

Accordingly, the federation should be cognizant of communications and computing

uncertainties, as well as the applications’ software structure and latency

requirements. Thus, an application execution plan needs to perform for monolithic

and micro-service software structures, considering the stochastic execution times

and uncertainties that derive from the execution platform and communication

technology.

Consequently, in our previous work [38] presented in chapter 4, the resource
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allocation methods are explored intensively for monolithic applications.

Furthermore, considering a complex operational process performed by various

micro-services, one of the main problems is ensuring the completion of the whole

application workflow within the time limit known as the deadline. Hence, it is

crucial to know the optimal point to partition the application workflow so that it

can be completed on time. Accordingly, the question that needs to be addressed is

“How to distribute Industry 4.0 applications (e.g., monolithic, micro-service) across

fog federation so that the application workflow can be completed within the given

time frame?”. Hence, from a system administration perspective executing the smart

micro-service applications raises two more questions, and they are 1) How to

partition the micro-service workflows so that its deadline constraint can be realized?

2) How do we allocate partitioned micro-services across fog federation so that it has

the highest likelihood of completing on time?

Our prior work [38] suggests that federating nearby resources is one solution

to the resource restrictions (i.e., oversubscribe) encountered by edge computing

systems in distant sectors like Oil and Gas. Furthermore, we explore new challenges

imposed by smart software architecture, a.k.a micro-service workflows. Therefore, to

address the difficulties faced by the offshore O&G sector at large, we propose a

resource provisioning method for Industry 4.0 applications across the federated fog

system that is aware of both the software architecture and the underlying execution

platform’s structure. More so, the solution maintains the deadline limitations of the

micro-service workflow, which in turn makes the execution platform more reliable.

80



As a result, our approach consists of two stages: understanding the software

architecture of the receiving applications and allocating computational resources for

the successful completion of these applications. Therefore, the following are the

contribution of this research:

• Proposing a probabilistic partitioning method that is aware of the underlying

software architecture of Industry 4.0 applications.

• Proposing a statistical resource allocation heuristic considering the time

constraints of the application.

• Providing extensive evaluation of partitioning technique along with resource

allocation across fog federation.

The suggested solution can serve as a foundation upon which system

architects or industry-focused research associates might construct more elaborate

solutions referring to distant offshore sectors at peak demand. In addition, the

solution is compatible with monolithic legacy applications, which may aid

conventional industries in transitioning to and adapting to the changes brought

about by Industry 4.0.

5.2 Partitioning Method for Micro-service Application Workflow

Maintaining latency constraints of a smart application comprising multiple

micro-services depends on underlying software architecture and mapping of

computational resources. For example, executing a micro-service application into a

single fog system may not be possible or may not maintain its deadline constraint.
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On the other hand, a monolithic application can not be partitioned and can be

considered an application with a single micro-service. For micro-service software

architecture, partitioning the application into multiple partitions and allocating

them across fog federation can increase the likelihood of its completion within the

latency constraint. Furthermore, allocating appropriate computational resources to

the partitioned micro-services also ensures the completion of the whole application

workflow.

Figure 5.3. The flowchart of the workflow partitioning method. The partitioned
workflow is sent to the resource allocation module, which is denoted as the end box
for this flow chart.

estimate the chance of on
time completion for workflow

on the local fog

no

yes submit       to the
resource allocation

module

partition workflow       into
two sub-graphs    and    

estimate the chance of
sucess for each partition   ,   


across fog federation

rollback to    
yes

no

yes no

  

OR

OR

The main goal of the partitioning method is to partition the micro-service

application in a way such that the application can meet its deadline. Hence, we
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considered an application having micro-service architecture as a set of micro-services

that are connected together in some manner to form a graph G = (V,E), where the

set of vertices V = (m1,m2, ..mn) denotes the micro-services and edge

e(mi,mj) ∈ E represents the communication between micro-service mi and mj. As

the first step of the partitioning method, we consider executing the whole

micro-service workflow into the local fog system without partitioning. As such, the

partitioning method estimates the chance of on-time completion for workflow w on

the local fog, which is the first processing box of flowchart 5.3. To estimate the

deadline for the whole application workflow w, we perform a summation of the

deadlines for the micro-services that can be defined as δw = mδ
1 +mδ

2 + ...+mδ
n.

Hence, each micro-service has a deadline (mδ
i ) known in advance to the load

balancer. Furthermore, for each micro-service type, we have computational latency

distribution (md
i ) that represents the execution times across fog federation. Hence,

to estimate the probability of success for the entire w, we convolve the

computational latency distributions of the application’s micro-services that can be

defined as

Dw = md
1 ~md

2 ~ ....md
n (5.1)

Finally, using the convolved distribution DA, we measure the probability of success

as follows,

P (w) = P(DA ≤ δA) (5.2)

The output of equation 5.2 is compared with a conditional variable α as depicted in

first condition of flowchart 5.3. We choose an average success rate (i.e., 50%) for α
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as our experimental evaluation scenario. When the likelihood of completing the

workflow is less than α, the partitioning service takes place using the min-cut [111]

graph partitioning algorithm, which is the partition workflow w into two sub-graphs

i and j process box in figure 5.3. Hence, considering the flow of actions within the

application, we employ one of the widely utilized graph theorems, max-flow

min-cute [112] in our proposed solution.

Due to finding the minimum number of partitions which is an np-hard

problem, we developed our customized solution for Industry 4.0 micro-service

applications. Thus, the partitions resulting from the min-cut are estimated for the

chance of success across fog federation using equation 5.1 and 5.2 in the third

process box of flowchart 5.3. As we utilize probability to determine the partitions,

we named the proposed partitioning method as Probabilistic Paritioning (ProPart).

If the new sub-graphs completion success is less than the prior success rate (2nd

condition of the flowchart), we consider earlier partitions as optimal (rollback to w

process box). Accordingly, the resource allocation methods for those partitions are

started, which is the end process box of the flowchart.

On the other hand, if the latest partition’s chance of on-time completion is

greater than the prior success rate, then we evaluate each partition’s micro-service

architecture, which is the third condition of the flowchart. If the condition fails

(“no” line from the third condition), the partitioning process is halted for partitions

with only one micro-service, and the resource allocation service takes place. In

contrast, for partitions with more than one micro-service (“yes” line from the third
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condition), the partitioning process is repeated until each has a single micro-service.

Therefore, the partitioning method is a repeated process where the output is the

optimal number of partitions that are submitted to the resource allocation module.

5.3 Resource Allocation Method for Partitioned Micro-service Applica-

tions Across Fog Federation

Resource allocation occurs when the partitioning is completed with an

optimum number of partitions. The partitioning method returns the whole

application as one part to the resource allocation module for a monolithic

application that is considered a single micro-service workflow. The efficacy of the

resource allocation approach is significant in dealing with the unpredictability that

occurs in applications’ arrival (e.g., during disaster time) and making the fog

system resilient. The resource allocation module runs in immediate mode [96] and

quickly allocates incoming applications or micro-service partitions to the relevant

fog system. The relevance is defined by the fog system, which increases the

likelihood of the micro-services achieving their deadlines (a.k.a the probability of

success). Hence, the likelihood of on-time completion for a micro-service mi on a

particular fog system can be estimated using the historical end-to-end latency

distribution. Furthermore, to minimize frequent application reassignment and

compound delay, we have decided that the micro-service cannot be relocated once

an assignment choice is made.

Each fog system’s resource allocation module uses prior data on

computational and communication latencies of various micro-service types across
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fog federation to generate PDFs of their distributions. To that end, each load

balancer keeps track of computational and communication latencies for each

micro-service type on each nearby fog using two matrices: Estimated Task

Completion (ETC) [97] and Estimated Task Transfer (ETT). The PDF of

computational delay for micro-service type i on fog system j is stored in entry

ETC(i, j) that is previously used in the partitioning method. Similarly, the item

ETT (i, j) maintains the PDF of communication delay for micro-service type i to

reach fog system j. Hence, the resource allocation module is aware of

communication latencies as well, whereas the partitioning method is only aware of

computation latencies. The entries of the ETC and ETT matrices are regularly

updated offline and do not interfere with the load balancer’s real-time functionality.

The resource allocation module can compute the end-to-end latency

distribution across fog federation upon the arrival of a partition of micro-services

using convolution of ETC(i, j) and ETT (i, j). On any fog system j, the end-to-end

distribution can be used to calculate the probability of completing each

micro-service partition mpi before its deadline, denoted pj(mpi). Hence, we estimate

the deadline δi for the given partition mpi by adding each micro-service’s deadline

within that partition. Then we convolve each micro-service’s computational latency

distribution dcomp with communication distribution dcomm to measure the

completion time ei in a particular fog system. To estimate the completion time of

the partition mpi denoted as Ei, we convolve the completion time distribution for

each micro-service within a given partition. We have: pj(mpi) = P(Ei ≤ δi). We see
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that the probability of mpi on the receiving fog does not entail any additional

communication delay. Consequently, for receiving fog system, we don’t convolve

communication latency distribution to completion time estimation. In the

subsequent stage, the fog system with the greatest likelihood of completion is

selected as a viable destination to allocate mpi. This assignment entails that the

micro-service partition mpi is only given to an adjacent fog system if the

surrounding fog offers a greater chance of on-time completion after accounting for

communication delay.

It‘s important to note that the success rate on a neighboring fog could be

greater than on the receiving fog. This is because assigning a micro-service partition

to a fog system in close proximity should only be done if doing so significantly

increases the likelihood of the partition being completed successfully. Hence, we use

confidence intervals (CI) of the underlying end-to-end distributions, from which we

derive the likelihood of success for receiving and distant fogs, to assess the

significance of the discrepancy. In particular, we find that the CI of the end-to-end

distribution of the nearby fog does not overlap with the CI of the receiving fog only

if the neighboring fog gives a much better likelihood of success for a given

micro-service partition.

The pseudo-code provided in Algorithm 2 expresses the resource allocation

method that the load balancer utilizes to take advantage of the federated fog system

and increase the system’s robustness. The method is called Maximum Robustness

(MR) and is invoked when the partitioning method sends micro-service partitions
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Algorithm 2: Resource allocation algorithm

Input : Micro-service partition set M ; ETC and ETT matrices; G (set of
neighboring fog systems)

Output: Chosen fog f ∈ G to assign micro-service partitions mpn ∈M
1 foreach micro-service partition mpi ∈M do
2 pr(mpi)← Probability of success on receiving fog r
3 foreach fog system f ∈ G do
4 pf (mpi)← Probability of success on neighbor fog f
5 if pf (mpi) > pr(mpi) then
6 Add pf (mpi) to P , as a potential fog for assignment

7 end

8 end
9 Sort elements of set P in descending order

10 Consider receiving fog r as default assignment for mpi
11 foreach pf ∈ P do
12 if CI of Ef does not overlap with CI of Nr then
13 Choose fog f as destination and assign mpi to it
14 Exit the loop

15 end

16 end

17 end

M for resource allocation. At first, the micro-service partitions are separated for

further processing. Then based on the deadline (δi) of each micro-service partition

mpi, the algorithm calculates the probability of success on the receiving fog and on

its neighboring fog systems (Step 2-8 in Algorithm 2). Next, step 9 sorts the

calculated probabilities in descending order. If the probability of success on the

receiving fog is higher, then the micro-service partition mpi is considered for

allocation to the receiving fog system (Step 10). Otherwise, the CI of the end-to-end

latency distribution for the neighbor with the highest probability of success is

compared against receiving fog’s CI. If the CIs do not overlap, then partition mpi is

assigned to the neighboring fog (Step 13). Otherwise, the same procedure is
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performed for the rest of the neighbors of the receiving fog system. If no

non-overlap neighbor is found, then partition mpi is assigned to the receiving fog

system (default assignment in Step 10).

5.4 Performance Evaluation of Software Architecture-Aware Federated

Fog Systems

The partitioning and resource allocation components of the proposed

technique occur one after the other within the load balancer module. As a

consequence, we evaluate each component separately in various experiments. The

recommended partitioning approach is compared to different baselines in the first

experiment to examine how the deadline constraints for workflow applications based

on microservices have improved. Following partitioning, the allocation of resources

to those partitions must be evaluated. We execute the second category of trials to

assess the system’s efficacy, which compares our proposed resource allocation

techniques to alternative baselines. The third experiment is then performed to

determine how scaling the fog federation impacts the suggested solution. Finally, for

microservice and monolithic applications, we examine the computational latencies

resulting from partitioning and resource allocation approaches. The experiments are

thoroughly described in the subsections that follow.

5.4.1 Comparison of Micro-service Workflow Partitioning Methods

In this experiment, we use the suggested partitioning technique

(Probabilistic Partitioning, defined as ProPart) for accepting microservice-based

workflow applications and compare it to the other two baselines (Min-cut, Least
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data transfer, for example). In this experiment, we increase the number of

microservice applications submitted to the system to generate oversubscribed

conditions and record the applications’ deadline meet rate in each round of request

submission, shown as a bar chart in figure 5.4. The figure’s x-axis indicates the

number of microservice-based applications received by the system, while the y-axis

reflects the rate at which application deadlines have been met.

Figure 5.4. Comparison of the partitioning techniques in terms of workflow deadline
meet rate while utilizing proposed probabilistic partitioning technique. The x-axis
represents the increasing number of arriving workflow execution requests, whereas the
y-axis represents the workflow deadline meet rate.
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The results of this experiment, shown in figure 5.4, indicate that the deadline

meet rate decreases as the number of workflow requests to the system increases for

all partitioning techniques. However, in every round of submissions, ProPart

surpasses other baselines. For less overloaded scenarios (e.g., 100 & 200 requests),

the performance gap between the least efficient strategy (least data transfer) and

the suggested technique ProPart is greater than for completely oversubscribed
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conditions (e.g., 300 & 400 requests). The primary reason for ProPart’s superior

performance is its statistical assessment of each partition’s success likelihood. For

up to 200 application requests, the min-cut strategy performed better than the least

data transfer. In contrast, in totally overloaded scenarios, the least data transfer

performed marginally better than the min-cut because it considers the connection

that generates the least output data for splitting. Min-cut, in contrast, examines

the smallest communication channel when partitioning. Finally, due to the repeated

probabilistic calculation of deadline fulfillment for all microservices, ProPart

performed better in totally oversubscribed conditions.

5.4.2 Comparison of Resource Allocation Methods

The load balancer in every fog system utilizes a resource allocation technique

after the partitioning steps for microservice-based workflow applications. In

contrast, for monolithic applications, as soon as load balancer receives a request, it

performs resource allocation using probabilistic estimation across fog federation. As

such, to compare the proposed resource allocation technique, we performed the

following experiments with three different resource allocation methods for

microservice and monolithic applications respectively.

Microservice-based Workflow Applications: Similar to the previous

experiment, the number of receiving microservice-based application is incremented

to create more oversubscribed situations(i.e., the x-axis of the graph). To visualize

the performance of the resource allocation techniques, the deadline meet rates of

receiving applications are captured and plotted in figure 5.5.
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Figure 5.5. Comparison of resource allocation techniques while utilizing proposed
workflow partitioning technique for microservice-based workflow applications.
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The result represents a downward trend for all the resource allocation

techniques with increasing oversubscribed situations. Hence, it is visible that the

proposed resource allocation technique, MR outperforms other baselines in every

oversubscribed situation. This is because MR is aware of uncertainty in

computation and communication of receiving microservices. In contrast, MECT is

only aware of computation, and Certainty utilizes deadlines in its resource

allocation technique which lacks communication information.

Monolithic Independent Applications: In this experiment, we investigate the

performance of our system by increasing the number of monolithic applications

generated by sensors (i.e., the oversubscription level). Figure 5.6 shows the effects

of altering the number of incoming applications (from 400 to 1000 on the horizontal

axis) on the deadline meet rate (vertical axis) when various resource allocation

heuristics are employed.
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Figure 5.6. Comparison of resource allocation techniques for monolithic applica-
tions. The proposed resource allocation technique MR outperforms other baselines
in every application arrival trial.
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In figure 5.6, it is visible that as the number of applications increases, the

deadline meets rate decreases for all of the heuristics. Under low oversubscription

levels (400 tasks), MR, MECT, and MCC perform similarly. However, the difference

becomes substantial as the system gets more oversubscribed (800 applications).

With 1000 applications, MR offers around 18-20% higher deadline-meeting rates

than MECT and MCC. The reason is that MR captures end-to-end latency and

proactively utilizes federation only if it remarkably impacts the probability of

success. Nonetheless, other baseline heuristics only consider computational latency.

Therefore, we can conclude that for monolithic applications considering end-to-end

latency and capturing its underlying uncertainties can remarkably improve the

robustness, particularly when the system is oversubscribed (e.g., at a disaster time).

5.4.3 Fog Federation Scaling Impact

Fog federation in remote offshore areas can be scaled up in times of

93



emergencies by utilizing mobile fog systems mounted on a boat or other vehicles. In

contrast, a scaled-down fog federation can decrease the system’s robustness. Hence,

to understand the impact of federation scaling over the proposed solution, we

increase the fog federation degree that represents the number of neighbors and

captures the deadline meet rates of the received applications within the increasing

oversubscribed situations. The result of this experiment is presented in figure 5.7.

In addition, we performed a similar experiment for monolithic applications, where

we fixed the number of receiving tasks and incremented the fog federation degree.

The result for monolithic applications is presented in figure 5.8.

Figure 5.7. Impact of scaling the fog federation for proposed partitioning and
resource allocation techniques in increasing oversubscribed situations considering mi-
croservice applications. The degree represents the number of neighbors each fog
system has for executing the Industry 4.0 applications.
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Microservice-based Application: The result shown in 5.7 demonstrates the

advantages of scaling up the fog federation. As a result, in any overcrowded

circumstance, the federation with the greatest number of neighbors (i.e., fog fed.

degree 4) excels. Despite this, considerable performance improvements are seen in
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most oversubscribed circumstances (i.e., a system processing 400 microservice-based

workflows). For less overloaded scenarios (for example, a system with 100 - 200

receiving microservice-based workflows), the performance difference for minor

scale-up fog federation is negligible. This is due to the suggested method,

particularly the partitioning technique, attempting to put the whole application into

a fog system rather than partitioning and distributing them around the federation

in less oversubscribed conditions. As a result, the performance increase is

substantial in the fully oversubscribed scenario with the most neighbors.

Figure 5.8. Impact of scaling the fog federation for proposed resource allocation
techniques on monolithic applications. The degree represents the number of neighbors
each fog system has for executing the Industry 4.0 applications.
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Monolithic Applications: In this experiment, we compare the resource

allocation techniques for monolithic applications while scaling up the fog federation.

Similar to microservice-based workflows, the monolithic applications positively

impact federation scaling, which is visible from figure 5.8. The result reflected a

significant performance improvement when the federation scaled up from degree 1 to
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degree 2 for all heuristics. Hence, degree 1 defines only one neighbor, and the

federation is formed with two fog systems. Therefore, none of the heuristics

performed well. Even though the proposed method MR, performed better than

baselines. Whereas for the highest degree of the federation, the proposed MR

heuristic performed approximately 18-20% better than MECT and MCC. However,

for all of the federation scales up, the proposed MR heuristic outperforms others.

The main reason is that MR, efficiently utilizes fog federation resources, considering

the communication and computation latencies to complete every monolithic

application on time.

5.5 Summary

The advancement in software and hardware stack has brought the industrial

revolution, Industry 4.0, that changed many legacy system architectures and

imposed latency constraints. As such, complex industrial processes are adopting

smart solutions every day. Hence, computation near the data source supports smart

microservice-based solutions that significantly face resource scarcity and latency

constraints challenges. Especially in remote offshore Industries (e.g., Oil and Gas,

mining ), the latency issue can be critical for complex fault-intolerant industrial

processes (e.g., hydrocarbon exploration, drilling). Moreover, in emergency

situations, the computational execution platform gets oversubscribed with various

types of microservices. To overcome challenges enforced by the smart

microservice-based solutions, a robust task allocation scheme proposed in this

research work that is aware of the software architecture of the solution as well as
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uncertainties imposed by fog federation. Hence, the proposed solution works on two

levels within a load balancer module that exists in every fog system of the

federation. The first level considers the software architecture of the receiving

application and performs partitioning if necessary, utilizing the probabilistic success

rate to complete the applications. Then in the second level, the received

applications (e.g., monolithic applications or partitioned microservices) are mapped

across fog federation, considering the computation and communication constraints.

The evaluation results reflect the benefits of using the proposed solution in

oversubscribed situations that are approximately 15∼20% better than the baseline

partitioning and resource allocation techniques. In the future, we plan to

incorporate an ML-based resource provisioning method to improve the robustness of

the federated fog system.
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Chapter 6: Data Security & Privacy Aspects in Federated Fog
Computing System

6.1 Overview

The rise of Industry 4.0 [113] elevates the utilization of IoT devices (e.g.,

sensors, actuators) and fog computing for developing deep neural network (DNN)

applications in various industrial sectors (e.g., smart oil field, smart farms, smart

factory). The DNN-based applications mainly backed up by ML network models

that are supposed to train with huge amount of data for achieving relatively high

accuracy. Although the training data could be privacy preserving (i.e., sensitive to

any company), and sometimes data acquisition (e.g., Satellite image data, high

resolution camera data) is expensive, and time consuming. The expense of

developing these DNN-based applications could also increase with data transfer to

cloud datacenter using internet for training operation. Hence fog federation (formed

by multiple private companies fog systems) can be a potential candidate for

supporting computational demand of ML-model training where data security and

privacy of the participant private fog systems in the federation need to be addressed

to efficient ML training. In this case, federated Learning (FL) techniques [66] that

brings ML-model to participant end user without leaving the data their source

device, can be applied to overcome the privacy constrains of the fog systems owned

by private companies. Although the privacy preservation constraints are mitigated

by FL as depicted in Figure 6.1, it can impose some new challenges for the ML

models training operation. Here, the problem is that data are coming from various
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sources, and it is feasible to assume data distribution tends to be non-identical and

independent distribution (non-IID). As such, lack of any priority class (i.e., consider

oil spill class in oil spill detection problem) that is termed as class imbalance [114]

can reduce the performance of the global DNN model in a FL setup as presented in

Figure 6.1. Hence, ignoring the class imbalance issue, current federated learning

methods [66] are providing less robust DNN model for oil spill detection. In this

case, an object detection model can show misleading high accuracy for all other

classes while providing low performance for the desired class (oil spill).

Figure 6.1. A federated learning setup in fog federation. Multiple company share
their fog systems to train oil spill detection DNN model where data security is pre-
served by federated learning.
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Federated learning is a special branch of distributed machine learning where

the global model needs to be converged at a constraint rate. Hence, the convergence

of FL mainly depends on the local workers’ aggregation that affects the global

model’s performance. Among two types of federated learning (synchronize and
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asynchronous), we propose to utilize the synchronize FL method as it is a proven

model, especially for class imbalance issue [115, 116]. As such to overcome the

challenges of FL for oil spill detection, we have adopted an objective function (loss

function) to train the local model considering the class imbalance problem.

Considering the priority class (i.e., oil spill), we introduce a weight for each

participating worker that intensifies or attenuates its influence over the global

model. The relevant worker selection based on the worker weights is verified by

empirical evaluation in section 6.5. Finally, a dynamic threshold mechanism has been

proposed to select relevant workers efficiently considering the global model’s

performance and fast convergence.

6.2 Problem Formulation for Federated Learning

The oil spill detection problem can be well defined in semantic segmentation

domain of deep learning where various classes are identified in pixel level from

original source image. In oil spill detection training various classes (e.g., oil-spill,

look-alike, land, ship, sea-surface) are found in real world satellite image data set

[77]. Here, each class is labeled as an individual color in ground truth image. For

training a deep neural network (DNN) model (e.g., Unet) with federated learning

settings a set of workers (i.e., fog systems of a fog federation) S = 1, 2, 3, ..., S are

considered with its own local data set DL where L ∈ S with nL samples. Here, D =⋃
L∈S

DL is the full training data set. The total size of these workers’ data set for a

random set of workers S ′ is N(S ′) =
∑
L∈S′

nL. The objective loss function over a

model m and a sample z can be denoted as L(m, z).
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Then in most prior FL work, the goal is to solve the following

min
w

f(w) =
M∑
m=1

pmFm(w)

where pm =
nm
D

is the fraction of the total data worker, and thus,
∑
m

pm = 1. The

local objective Fm is typically defined by the empirical loss over local data,

Fm(w) =
1

nm

nm∑
j=1

Lj(m, z). Here, w is the model parameter that used for predicting

loss over a sample data, and the goal is to find the optimal w for which the loss

should be minimized. Accordingly, we focus on utilizing a loss function that consider

class imbalance problem in local data samples, and select a set of client worker’s

(fog system) models to aggregate that have certain level of accuracy (i.e., mean

intersection over union (mIoU) for semantic segmentation) to ensure the robustness

of the global model. Hence, our new objective for this work would be as following:

min
w

f(w) =
M∑
m=1

pmFm(w)

s.t. mIoU(m) >= γ,

θ > 1

Where, γ is a dynamic threshold (initial value set to 50% or 0.5) for checking the

local trained model’s mIoU with auxiliary test data, and θ is the user defined

worker’s weight with respect to oil spill class. Both of this parameters are used to

select the relevant worker’s model for aggregation into the global model that ensure

the robustness, and consistency of the convergence for the aggregated model.
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Table 6.1. Pixel distribution for each of the class in oil spill detection data set

Class Pixels
Sea Surface 797.7 M
Oil Spill 9.1 M
Look-alike 50.4 M
Ship 0.3 M
Land 45.7 M

6.3 Federated Learning to Mitigate the Class Imbalance

In a typical federated learning setup, the server (e.g., fog device, cloud)

stores a global ML model for training with local data of the participating workers

(i.e., fog systems). We use one of the popular semantic segmentation DNN models

named as Unet [117] model for oil spill detection in the FL setup. The figure 6.2

represents a pictorial view of our solution. At first, some fog nodes agree to

participate in the FL training, and they download the global model (i.e., Unet)

from the fog server presented in step 1 of figure 6.2. Then, downloaded ML models

are trained with their local data in step 2. Hence, we utilize tversky loss function for

local training that work efficiently for class imbalance issue proven by the research

community [118, 119, 120, 121, 122]. In step 3, ML models are checked for relevant

worker model selection. Finally, in step 4, selected workers updated models are

aggregated (new model), and the previous global model is updated accordingly.

This whole process is considered a federated round. The updated model is again

downloaded by participating worker for the next federated round, and the training

continues. The proposed solution is presented in algorithm 3.

Usually, the aggregator fog server provides the global model and aggregates
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Figure 6.2. Federated learning training considering class imbalance and global
convergence. Tversky loss is used in the training considering class imbalance. After
training of each epoch, mean intersection over union (mIoU) is checked with a dynamic
threshold for global convergence.
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the updates sent by the worker fogs. The FedBal algorithm starts with initializing

global model mg, relevant worker list, rf , and setting the threshold, th value to 0.50.

After that, the federated round continues as a for loop that is presented with

variable f . Then m number of workers are selected from K participating worker,

and assigned to selected worker list, St for training (“ClientUpdate” function) with

their local data in the second for loop of the algorithm 3. Finally, relevant workers

are selected using function “selectionCriteria”, and aggregate into the new global

model, mg using “averageModel” function. The “ClientUpdate” function performs

the training with the tversky loss function and defined number of epochs to reduce

the class imbalance at the local level. The proposed solution’s global level is
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Algorithm 3: The K workers are indexed by k, C is the initial worker
selection percentage

1 Initialize global model, mg, test data, Dtest, relevant Worker List, rf ;
2 Set threshold, th = 0.50;
3 for each federated round f = 1,2,... do
4 m← max(C.K, 1);
5 St ← (random set of m workers);
6 for each worker k ∈ St in parallel do
7 ClientUpdate(k,mg);

8 rf = selectionCriteria(St, Dtest, th);
9 mg = averageModels(mg, rf );

triggered in the “selectionCriteria” function, where trained worker models are

evaluated according to their weight, θ, and mIoU value. The dynamic threshold

mechanism also takes place in the “selectionCriteria” function to ensure the

robustness of the global model. In this way, in every federated round,f , the global

model updates and converges to a model robust against class imbalance with

guaranteeing performance for our priority class, oil spill.

6.4 Experimental Setup

The Federated learning setup can be synthesized by PyTorch’s one of the

popular library pysyft [123], and TensorFlow’s federated learning library named as

tff [124]. Due to pysyft’s customization capability, we have selected pysyft as our

development library. The oil spill detection is considered a semantic segmentation

problem that typically uses real-world SAR image data sets (in this work, the data

set is collected from MKLab [77], a research institute in Greece) for training a DNN

model. To execute the DNN training operation, we used Google’s Colab [125]

run-time environment that provides a GPU platform with a high-speed ram of size
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24 GB with storage of 128 GB.

The Colab provides Tesla P100, T4, or similar GPUs for the paid “pro”

version. It also has the high-RAM option for faster execution while using GPU. We

utilize pysyft’s virtual worker’s concept to synthesize fog devices. Our primary focus

in this work is to reduce class imbalance issues and ensure a robust global model.

Hence we concentrate on the computation part of FL and ignore the communication

(i.e., network) of conventional FL setup. Our federated learning setup can be

utilized for any aggregation algorithms (e.g., FedAvg, FedSGD, FedProx), and as

such, we develop our codebase on top of these baseline algorithms. As our FL setup

works on reducing the class imbalance, we named this setup “FedBal”. In most of

our experiments, we use 20 federated rounds where each round consists of 50

epochs. The reason behind choosing these values for the training parameters (e.g.,

number of epoch, number of federated rounds) is to observe a significant difference

among the aggregation algorithms. Finally, due to time constraints, we bound our

experiments within 20 federated rounds of aggregation.

6.5 Performance Evaluation

The federated learning setup is always beneficial for fog devices where data

tends to be generated frequently. Hence, to understand the advantage of utilizing

federated learning, we perform an experiment capturing the loss found in each

epoch of training using federated learning and single machine training. The

federated learning setup (a) could use more data as there are four workers perform

the DNN model(Unet) training. On the other hand, a non-federated learning setup
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uses fewer data to train the model with a single fog device. Moreover, the

uncertainty in federated learning setup is less severe than non-federated learning

that we found in our initial experiment, (b). Considering the convergence of the

training model, FL is also faster than non-fl. Although FL has better performance

than typical machine learning, the class imbalance issue in the local data can make

the global model’s performance degradation. Hence, our local worker level solution

utilizes the tversky loss function where α for penalizing false negative and β for

penalizing false positive parameters need to be tuned for better performance. The

experiments with these parameters are provided in the following section.

6.5.1 Tuning Loss Function

To find the optimal Tversky loss function, we change the alpha parameter

value from 0.6 to 0.8 and capture each training epoch’s loss. The main goal is to

find the optimum alpha value for which the loss will be minimal. The results of

these experiments are demonstrated in figure 6.3.

The figure 6.3 represents the training loss (i.e., y-axis of the figure) for each

epoch (i.e., the x-axis of the figure) while using alpha values 0.6, 0.7, and 0.8

respectively within FedAvg, and FedBal FL setup. From figure 6.3, we find that

FedBal performed similar in comparison with FedAvg. It is also visible that for

alpha value 0f 0.7, FedBal has minimum training loss. When we increase the alpha

value to 0.8, the training loss does not decrease, which means we can penalize false

negatives up to a certain point (i.e., α = 0.7). The reason is that while we are

penalizing false negatives, the false positive predictions are ignored (i.e., α + β = 1)
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Figure 6.3. Comparison of FedAvg and FedBal training loss utilizing tversky loss
function. The alpha parameter of tversky index is changed from 0.6 to 0.8 (left to
right) and the loss per epoch is captured for both FedAvg and FedBal algorithm.
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as well. Hence for a higher value of alpha, we get less benefit by penalizing

false-negative predictions. Therefore, we use α = 0.7 for the rest of our experiments

throughout this work.

Figure 6.4. Comparison of FedBal with FedAvg, FedSGD, and FedProx method’s
global model performance in IID setup.

Global model mIoU comparison in IID setup

(a) Comparison with FedAvg (b) Comparison with FedSGD (c) Comparison with FedProx

6.5.2 The Impact of Using IID Data Distribution

The benefit of a federated learning setup is reflected in the performance (i.e.,

accuracy (mIoU)) of the global model after the aggregation step of FL is completed.
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Hence, we measure the mIoU of the global model after every communication or

federated round of FedBal with FedAvg, FedSGD, and FedProx, respectively. Then,

we plot the result as a line graph in figure 6.4. For this experiment, we consider the

data distribution among the FL workers is identical and independent distribution

(a.k.a IID) which means every worker gets all the classes of images in their local

data for training.

The x-axis of the figure 6.4 represents the federated rounds, whereas the

y-axis presents the mIoU of the global model. From the figure 6.4 (a), it is visible

that FedBal has outperformed FedAvg in most of the fed rounds. Considering

FedSGD, in figure 6.4 (b), FedBal performed significantly well in the last few

rounds. Although, in the initial rounds, FedSGD performed better than FedBal.

Finally, from figure 6.4 (c), we find that comparing FedProx, our FedBal method

performed significantly well. This improvement mainly comes from the utilization of

left-out workers in the global model. In addition, the worker selection in FedBal

considers the class imbalance issue and the priority class (i.e., oil spill class) for

aggregation into the global model. In contrast, other methods randomly select

active workers for aggregation, leading to a less robust global model than FedBal.

6.5.3 The Impact of Using non-IID Data Distribution

In a real-world scenario, data distribution among FL workers is typically

non-IID. That means every worker will get some fixed number of classes (not all the

classes) for local training. Hence, we consider providing two classes for each worker,

and these classes are different for every worker. Similar to our previous experiment,
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we measure the mIoU of the global models for FedAvg and FedBal algorithms in

each federated round. The result is provided in figure 6.5 for 20 federated rounds

with six federated fog workers.

Figure 6.5. The performance comparison of global models in terms of mIoU using
FedAvg and FedBal methods. The data distribution is non-IID, the number of workers
are 6, and in each fed round 50 epochs of training has been performed.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Fed Rounds

38

40

42

44

46

m
ea

n 
in

te
rs

ec
tio

n 
ov

er
 u

ni
on

 (m
Io

U)
 %

Global Model Performance nonIID
FedAvg
FedBal

The figure 6.5 reflects that FedBal has a consistent performance (mIoU) for

20 federated rounds then FedAvg. The FedBal method has less uncertainty (fewer

spikes in orange line of figure 6.5) across the federated rounds for selecting relevant

workers in every federated round. Although FedBal has less significant performance

improvement than FedAvg, the average mIoU of the global model of FedBal is

higher than FedAvg. This consistent performance of FedBal represents the

robustness of our method across the federated rounds.

6.5.4 The Impact of Using non-IID and Unbalanced Data Distribution

The non-IID and unbalance data distribution means each FL worker has a

different number of classes. For instance, worker one can have two classes, whereas

worker two can have only one class in its training data. Hence, we measure the
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mIoU of the global model and compare our method (FedBal) with the other three

baseline methods named FedAvg, FedProx, and FedSGD, respectively. As our

method is considered an improvement of any federated learning aggregation method

(e.g., FedAvg, FedProx, FedSGD), we compare the baselines separately in three

different sub-figures. The result demonstrates as a line plot in the figure 6.6 where

the x-axis represents the federated rounds, and the y-axis represents the mean

intersection over union (mIoU) of the global model.

Figure 6.6. Comparison of FedBal with FedAvg, FedProx, and FedSGD method’s
global model performance in non-IID and unbalanced data distribution.

Global model mIoU comparison in non-IID and unbalanced setup

(a) Comparison with FedAvg (b) Comparison with FedProx (c) Comparison with FedSGD

Figure 6.6 represents that FedBal outperforms FedAvg, FedProx, and

FedSGD respectively in the final round. Although, in the 19th federated round,

FedSGD and FedBal perform similarly. The performance improvement for FedBal is

significant for FedProx, due to the utilization of the left out workers in the global

model. It is also visible that baseline methods performance has severe uncertainty

(more spikes than FedBal), whereas FedBal has comparatively consistent

performance throughout the federated rounds. The main reason behind this

consistency is the relevant worker selection in FedBal with a dynamic threshold

mechanism that maintains a certain performance and provides a robust global
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model against class imbalance issues in the local data set.

6.5.5 The Impact of Class Imbalance Intensity

The class imbalance is a common phenomenon in the oil spill data set where

the intensity of the imbalance can be severe within the FL setup. As such, we

consider our solution, FedBal, to be performed consistently well than the baseline

FedAvg algorithm in all levels of class imbalance intensity. To explore the class

imbalance intensity, we distribute the classes from high imbalance to low imbalance

using a non-IID setup and measure the mIoU of the global model for FedBal and

FedAvg across the federated rounds of FL training. We estimate the difference of

mIoU values for each federated round for three cases (one class, two classes, and

three classes distribution) of imbalanced data distribution. Furthermore, then we

plot a bar chart presented in figure 6.7 where positive values indicate FedBal’s

improvement over FedAvg, and negative values represent the opposite.

Figure 6.7 represents the advantage or disadvantage of FedBal over FedAvg

algorithm across 20 federated rounds of training. For the first nine federated

rounds, the improvement of FedBal over FedAvg is not significant. In the 10th

federated round, the difference values are all positive, and in the final federated

round (20th), we find the highest performance of FedBal over FedAvg. We also

notice that for 2 class per worker distribution, FedBal constantly outperforms

FedAvg. For high intense class distribution (only 1 class per worker), FedBal starts

to perform well after the 10th round. In the final round, we find that for 3 class

distribution FedBal has the most remarkable improvement. The main reason behind
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Figure 6.7. Comparison of FedAvg, and FedBal method’s global model performance
in non-IID data distribution from high intensity(only 1 class per worker) to low inten-
sity(3 classes per worker). The difference of mIoU of FedBal, and FedAvg is plotted
as barchart for 3 case scenarios (1 class, 2 class, and 3 class).
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the less significant performance could be the dynamic threshold mechanism that

starts with a good mIoU value (50%) and dynamically change over federated rounds

to increase the performance of the global model. After the 10th round, the

threshold becomes stable with a sufficient number of relevant workers, and we see

performance improvement for the last ten rounds of federated training.

6.5.6 The Impact of Number of Workers on the Global Model

To understand the influence of FL workers in our federated learning method,

we measure the maximum mIoU of the global model for FedBal and FedAvg

methods by gradually increasing workers from 6 to 25. The main focus of this

experiment is to compare the performance of our method, FedBal over FedAvg,
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Figure 6.8. The influence of federated worker on global models performance (mIoU)
for FedBal, and FedAvg is measured by increasing the number of federated worker
from 6 worker to 25 worker. For each case of worker pool 20 federated rounds of
training are performed for both FedBal, and FedAvg method, and for each case
maximum mIoU of both methods are considered for plotting as a barchart.
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while increasing the FL workers gradually. The result of this experiment is provided

in the figure 6.8.

The figure 6.8 presents that the performance improvement of FedBal is

significant when we have an increased number of FL workers. It is visible that up to

15 workers FedBal does not show performance improvement then FedAvg. The

reason is that FedBal selects relevant workers from the active workers’ pool, and

sometimes the relevant workers are very few, leading to a less improved global

model. On the contrary, FedAvg always selects the same number of FL workers

throughout the federated round, thus having better performance than the low

number of FL workers pool. Therefore, an increased number of workers can

significantly improve the global model’s performance using the FedBal method.

6.5.7 Verifying the Impact of Aggregation Scheme on Global Model

The selection technique of the FedBal algorithm considers the relevant
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Figure 6.9. The impact of workers weight (averaged on each of the federated round)
on global model’s mIoU.
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worker by checking their weights defined by the priority class (oil spill class). Hence,

workers with significant performance have a positive impact on the global model’s

mIoU. To explore the impact of the workers’ weight in the global model, we measure

the average workers’ weight in each federated round and estimate the global model’s

mIoU after the aggregation. The result of this experiment is presented in figure 6.9,

where the x-axis presents the federated round, the left y-axis presents the average

workers’ weight, and the right y-axis presents the global model’s mIoU.

The figure 6.9 presents that selected worker’s weight has a positive impact on

the global model. It is visible that with the increase of the average weight, the

mIoU of the global model goes up, and with the decrease, the mIoU goes down.

Therefore, the FedBal method’s relevant workers are supported by the user-defined

weight based on priority class, oil spill.
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6.6 Summary

The federated learning technique has revolutionized distributed machine

learning, especially considering data privacy and computational flexibility. With the

emergence of IoT, Edge, and Fog computing, the data generation is getting faster

and expensive when needed to be transferred utilizing network bandwidth. Hence

federated learning can bring the ML model to the data generation sources that is

less expensive and secure than cloud data centers. This case is more applicable than

conventional centralized DNN model training considering ML support in remote

areas. In addition, the data captured or collected in remote oil fields are sensitive,

and privacy preservation is of significant importance for oil and gas companies.

Although federated learning can overcome these challenges, the class imbalance

issue can degrade the DNN model’s performance. As such, we focus on reducing the

effect of class imbalance at the local level while training the model, and the global

level while aggregating the federated worker into the global model. At the local

level, we use the tversky loss function with appropriate parameters (e.g., α, β)

tuning to train each federated workers model considering the class imbalance issue.

Then we assign each worker a weight, considering our priority class, oil spill.

Finally, we check each federated worker’s model mIoU with a predefined widely

accepted mIoU value (50% or 0.50) and dynamically change the threshold to ensure

the robustness of the global model.

In the empirical evaluation considering the global model’s mIoU we find that

for IID setup, FedBal has around 3% performance improvement than FedAvg. For
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non-IID setup, we find similar performance in the final federated round (20th)

compared to FedAvg. Although, FedBal’s average performance for the non-IID

setup is better than FedAvg. For non-IID and unbalanced setup, FedBal

outperforms FedAvg, FedProx, and FedSGD respectively in the 20th federated

round. Although, FedSGD has similar performance compared to FedBal, it has

more uncertainty than FedBal (figure 6.6 (c)). In the class imbalance intensity, we

find FedBal performs better than FedAvg in the final federated round (20th round)

in three of the cases. Although, for high-class imbalance (only one class per worker)

intensity FedBal has less significant improvement (0.25%) whereas for low-class

imbalance (three class per worker) intensity FedBal shows significant performance

improvement (more than 2%). The experiment with the increasing number of

federated workers reflects that FedBal’s performance can be improved (up to 2%)

with an increased number of federated workers. Due to time constraints and

network vulnerability, we could not scale up the experiments, especially with the

increased number of workers and class imbalance intensity. Finally, the impact of

FL workers weight in FedBal method’s global model reflects a positive relation that

verifies the selection methods acceptability. The ML training parameters (number of

epochs per federated rounds, optimizer, batch size) can be tuned in a more granular

way to explore the areas of improvement using the FedBal method that is

considered as the future work of this research. Accordingly in future, we also plan

to develop a custom loss function for the semantic segmentation field of deep

learning and enhance our method (FedBal) as a service plugin that can be used on
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top of any federated learning algorithm to improve the robustness of the ML model.
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Chapter 7: Threats and Side-Effects of Smart Solutions in Industry 4.0

7.1 Overview

The convergence of new IoT technologies, cloud computing systems,

improved wireless networks, and machine learning solutions have enabled smooth

operations of large-scale cyber-physical industrial systems. Wireless connection, in

particular, has altered operating paradigms to the point that most, if not all,

production activity may now be managed remotely using a variety of sensors and

actuators. Furthermore, these technologies have significantly increased the

production and efficiency of various complex industrial operations. However, not

everything about the digitization and smartness paradigm shift is positive! There

are some disadvantages to consider as well—digital transformation and pervasive

connection present weaknesses that criminals might use to launch cyber-attacks,

thus jeopardizing industrial production, distribution, and even safety. As we have

noticed in several recent instances, such as colonial pipeline [126],

Amsterdam-Rotterdam-Antwerp (ARA) cyber-attack [127], and Norwegian energy

company [128], malicious software systems (a.k.a. malware) have been able to take

over the control of a system and block its regular operation until the intruders’

demand has been fulfilled. Indeed, these recent cyber-attacks have proven that

cyber-attacks can be as harmful as physical attacks in terms of both implications

and severity.

Smart sectors, such as O&G, have unique security challenges that can only be

addressed through in-depth research and diagnostics of the entire system. However,
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specific security solutions for smart industries have yet to be available due to their

high implementation complexity. This security vacuum has allowed countless

cyberattacks to flourish in recent years, endangering people and communities

worldwide. Therefore, it is imperative that, as part of the Industry 4.0 revolution,

all-encompassing security solutions be investigated for smart industries due to the

crucial nature of these sectors and the managerial and technical gaps between them.

As the oil and gas industry becomes increasingly complicated and digitized,

we are considering researching key areas of smart O& G that pose a security risk.

The upstream, midstream and downstream deployment of a vast network of linked

“things” (IoT devices) presents a significant security risk for the oil and gas industry

as a whole. Predictive maintenance and on-site worker safety are just two examples

of the kinds of efficiency gains that may be made possible by processing the massive

amounts of real-time, real-world data generated by smart sensors. There is a risk

that the use of internet-connected devices might compromise the physical security

and safety of O&G infrastructure. For instance, interconnected cameras equipped

with object-tracking capabilities, geofencing perimeter protection solutions,

third-party infiltration, and other access control systems can cause security breaches

in operational sites. Therefore, this thesis section focuses on the adverse outcomes

of smart solutions for Industry 4.0 and the strategies for minimizing those outcomes.
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Figure 7.1. A taxonomy reflecting the downsides of smart solutions implemented
with advanced technology is organized using box flow-chart form. The main three
levels are colored in orange, blue, and yellow. The white boxes represent different
types (examples) of its parent box.
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7.2 Taxonomy of Cyber-Threats and Side-Effects in the Smart O&G In-

dustry

To categorically explore various drawbacks of smart solutions in the O&G

industry, we develop a taxonomy that is presented in Figure 7.1. We separate the

possible drawbacks of smart solutions into two groups in this taxonomy:

vulnerabilities and side-effects. The vulnerability section investigates cyber-threats
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and challenges caused by device incompatibilities in a smart O&G system, focusing

on software, hardware, infrastructure, and data-related vulnerabilities in the oil and

gas industry. On the other hand, the side-effect category focuses on difficulties that

develop as a result of interactions with smart solutions (e.g., human-machine and

machine-machine interactions) and biases in a smart system.

Figure 7.1 categorizes various drawbacks of smart solutions implemented or

will be implemented in the near future. This taxonomy serves as the blueprint for

this chapter, enabling readers to keep track of sophisticated smart solutions and

their accompanying outcomes. Therefore, we will traverse major taxonomy sections

in the following parts to comprehend the magnitude of smart solutions’ drawbacks.

7.3 Vulnerabilities caused by the Interplay of Informational and Opera-

tional technologies

A smart oil and gas industry’s technological operations are organized into

two key technological platforms: information technology (IT) and operational

technology (OT). Figure 7.2 depicts an overview of an oil and gas company’s IT and

OT components. As seen in the diagram, the IT component is primarily concerned

with the movement of data and information throughout the company. IT

components frequently access outside networks due to their operational context,

which is mainly business logic. In contrast, the OT component is involved with the

operation of physical processes of oil and gas production and the machinery needed

to carry them out. As a result, cyber thieves primarily target IT and OT platforms

to meet their needs. Traditionally, the IT component has been more susceptible than
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the OT platforms because IT has numerous open windows (e.g., operating systems,

email servers, direct communication applications) that attackers may exploit.

On the other hand, OT platforms mainly deal with direct oil and gas

production and processing activities with limited external access. Notably, the

junction of IT and OT platforms is frequently a target for cyber attacks that system

architects must effectively handle. Furthermore, smart IoT solutions based on

sophisticated computing technologies are opening up access to OT platforms with

the rise of IoT. As a result, we explore the extent of the vulnerabilities in these two

platforms as well as their overlap.

Figure 7.2. Information technology (IT) and operational technology (OT) platforms
of a smart oil and gas company that operates using different networks to run the entire
operation of smart O&G industry. The IT platform is significantly related to business
applications and the financial side of O&G, whereas the OT platform directly involves
with oil or gas extraction and production operations. Both IT and OT platform is
connected at some point which creates the sweet spot for cyber-attackers to penetrate
into the whole system.

Information Technology (IT) Operational Technology (OT)

ERP Solution
Refinery operation

Pipeline management

Hydrocarbon extraction

Vulnerability

Smart O&G

Supervison
system

Control
system

Database
management

wireless network

router

Sensor

users applications network  usersoperationsapplicationsnetwork 

The OT platform is comprised of technologies that are actively engaged in

the production of petroleum end products. The activities include extraction,

refining, pipelines, production, control, and monitoring systems. On the other hand,

122



the oil and gas IT commodity primarily deals with finance, database administration,

digital asset management, and other business operations using different computer

platforms and communication protocols. In this case, the OT entity provides the

petroleum end products, while the IT entity develops commercial prospects and

financial policies by exploiting the OT entity’s output. Therefore, compared to the

OT entity, the contact with the outside network from the O&G company’s internal

network is substantially greater for the IT entity. Because of this relationship, a

petroleum company might become a victim of ransomware and other cyber-attacks.

OT was traditionally an “air-gapped” environment, which was not linked to

public networks or other digital technologies. For decades, traditional OT has

depended on computers to monitor or modify a system’s physical state, such as

employing SCADA systems to monitor and control equipment to increase

operational efficiency. Traditional OT security largely comprises simple physical

tasks, such as ensuring that a machine performs the same operation correctly and

that an assembly line continues to run. Nonetheless, the emergence of Industry 4.0

in recent years has altered the conventional OT environment. Companies have

started to deploy new digital solutions in their networks to boost automation via

the addition of “smart devices” that can gather data more effectively and have

network access. The IT and OT systems were integrated as a consequence of this

connection and to process/analyze the OT data as it was generated. Although this

technological paradigm change (referred to as IT-OT Convergence [129, 130]) has

generated new possibilities and unlocked new use cases, it has also offered scope for
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cybersecurity vulnerabilities. For example, Colonial Pipeline’s assault [131]

demonstrates how poor password management may harm the country’s largest

gasoline pipeline. The hackers found the password for an old but still working VPN

account. In light of this threat, oil and gas companies should establish strict

cybersecurity safeguards, including employee training. STUXNET [132] was the

first specialized hack into industrial control system (ICS) to attract considerable

attention, although not being the first cyberattack against an industrial

environment. STUXNET is a computer worm that is accused of creating havoc on

Iran’s nuclear programme, damaging more than 20% of the country’s nuclear

centrifuges. Since then, cyber-attacks on industrial organizations have progressively

risen, affecting a wide range of industries, including power grids (Industroyer),

energy (Black Energy), petrochemicals (Havex), and oil and gas (Havex) (TRISIS).

Hackers are hacking into industrial networks, among other things, to shut down

machines, demand ransom, and steal data.

7.4 Cyber Threats in Smart Oil and Gas Industry

The challenge with the oil and gas industry is that its systems need to be

designed with network connections in mind. For instance, plants were never

designed to be network-connected. However, they are today as a result of the

developing digital revolution. This may create a dangerous scenario since a

cyberattack on such a system can damage operations and cause loss of life. In terms

of cybersecurity, the O&G industry lags behind other industries. Even though

cybersecurity is vital to the company’s sustainability, many companies still need to
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spend more on robust systems. The remainder of this section discusses some

security problems the O&G industry confronts.

7.4.1 Vulnerabilities of Sensitive Data

When stored on industrial IoT devices (sensors and actuators), sensitive

information must be protected by rigorous security protocols. As a result, oil and

gas companies now routinely examine private information gathered from a wide

range of sources. Here are some examples of such data sources:

• Historical oil & gas exploration, delivery, and pricing data

• Demographic data

• Response data from job postings

• Web browsing patterns (on informational websites)

• Social Media

• Traditional enterprise data from operational systems

• Data from sensors during oil and gas drilling exploration, production,

transportation, and refining

The aforementioned are examples of highly confidential information for any private

corporation. Various confidential information belonging to one company might be

precious to a company’s competitors in the oil and gas industry due to the intense

rivalry in this sector. As a result, hackers with questionable ethics increasingly focus

on gaining access to these sensitive records.
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7.4.2 Vulnerabilities of Smart Systems

In earlier chapters, we covered smart solutions that empower Industry 4.0.

Although these are intriguing and future technologies that might assist the oil and

gas sector as a whole, their weaknesses should also be acknowledged. The following

are some of the ways a smart solution might fail or be compromised:

Inherent bias in a machine learning method: The quality of the training

dataset is crucial to the success of any machine learning model. A biased dataset is

one that has been selected in such a way that some types of examples are given

more weight than others. For example, suppose the photo dataset used to train the

model for pipeline leakage detection by drones mostly covers bright weather settings.

In that case, the trained model will perform badly in rainy or snowy weather.

Predictive maintenance may also be used when a model is taught to work with a

certain brand of equipment under certain conditions. Consequently, the model failed

to generalize previously observed data correctly. Therefore, it would need to

improve in accuracy before it could be used as a predictive maintenance model.

Uncertainty exists in the machine learning model: Machine learning models

are susceptible due to their inherent ambiguity. However, it is feasible that the

model may provide false-positive or false-negative findings, which might have

disastrous repercussions. For example, if a refinery’s smart fire detection system

overlooks a fire, it might cause severe damage quite rapidly.

Failure in the workflow of a smart application: Smart solutions are usually

composed of many parts that work together to build a directed acyclic graph or
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DAG. Face detection on an oil rig, for example, entails capturing videos, removing

frames, and then analyzing each frame individually. Interrupting such a smart

application cycle at any point might cause the whole application to fail, making it

vulnerable. Similarly, if the command is not sent to the actuator, the whole

workflow may be deactivated, resulting in a loss of control over the system.

7.4.3 Malware and Vulnerability of Information Technology (IT)

Malware, an abbreviation for “malicious software,” refers to any invasive

program created by cyber criminals (also referred to as “hackers”) to steal data and

damage or destroy computers and computer systems. Examples of malware include

viruses, worms, trojans, spyware, adware, and ransomware. Recent malware attacks

have resulted in massive data leaks. Therefore, the malicious actor(s) must be

identified swiftly to remove malware. Among many forms of malwares, we discuss

four major types in the following paragraphs.

Virus: In order to infect other computers, viruses often attach themselves

to files that can run macros. The virus will remain latent inside the downloaded file

until it is opened. Viruses are malicious programmes that interfere with normal

system functioning. This means that infections may interrupt operations and lead

to lost data.

Worm: A worm is a piece of malicious software that can quickly copy itself

and infect any system on a network. In contrast to viruses, worms may spread

without the help of any host software. For example, a worm may infect a device by

a file download or a network connection, then rapidly replicate and spread. Worms,
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like viruses, may drastically impair a device’s functionality and lead to data loss.

Trojan: Often, Trojan malware may mask as seemingly valuable pieces of

software. However, once downloaded, the Trojan virus may access the user’s private

information and make changes, prevent access, or even erase it. The device’s

functionality may suffer severely as a result. In contrast to common viruses and

worms, Trojan viruses are not programmed to multiply.

Spyware: Spyware is malicious software that works surreptitiously on a

computer and feeds data back to an outside source. Spyware is especially hazardous

since it affects device performance, targets sensitive data, and allows would-be

attackers remote access. Spyware often targets financial or personal data. A

key-logger, for example, is a kind of spyware that records users’ keystrokes in order

to steal passwords and other confidential information.

Ransomware: Ransomware is a kind of malicious software that infiltrates

a system, encrypts its data so that the user cannot access it, and then demands

payment in exchange for decrypting the data. The use of ransomware is often

associated with a phishing scheme. Figure 7.3 depicts the stages of an actual

ransomware attack. As can be seen, in these assaults, the victim downloads the

ransomware by accidentally clicking on a spoofed link. The attacker then encrypts

the targeted data using a cryptographic key that is known only to the attacker.

Finally, in exchange for money, the hacker will release the information. We then go

on to analyze this threat in further depth because of its rising prevalence over the

last several years, especially in the oil and gas sector.
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7.4.3.1 Ransomware attack incidents. During a targeted cyberattack, a

single virus may be used for a variety of reasons, including data theft, spread, and

penetration. The threat actor’s goal is to maintain persistence inside the victim’s

network. Therefore, they have to constantly communicate with and update their

virus. Using the DNS protocol, a process known as DNS tunneling [133] transmits

information between malware and the controller. Additionally, email and cloud

services have greatly expanded the scope of modern-day communication, which

creates a wide door for ransomware criminals.

Figure 7.3. The anatomy of ransomware from start to end. The ransomware client
enters the IT platform through malicious email or other external mediums. The
client then communicate with hacker’s command and control server to download the
encryption key. The user’s data encrypted by the ransomware client, and finally
extortion notice is sent.
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Historically, hackers used spam botnets to infiltrate as many systems as

possible and propagate ransomware. reference mandal2020digital. Although

ransomware has always been a huge problem for everyone with digital files, it has

become an even bigger problem as criminals have begun to specifically target

businesses in assaults that may have devastating effects on operations. The

following are examples of some of the most notable ransomware attacks:

BitPaymer19: BitPaymer19 [134] is a particularly deadly type of

ransomware that recently attacked a U.S. firm providing oil well drilling services.

BitPaymer actors often employ phishing emails to infect their victim with first

malware before moving laterally throughout the network to compromise other

sensitive data. When IT personnel are unavailable (e.g., on weekends and holidays),

the ransomware attacks are

APT33: One well-known actor group’s primary concentration is on the oil

sector and its supply networks. Organizations in the energy sector with linkages to

petrochemical manufacturing and the aviation industry, where APT33 is involved in

both military and commercial capacities, have been targeted. APT33 has also hit

energy companies in Europe and Asia. From October 2018 through December 2018

and into 2019, a Powerton C&C server was hosted on the C&C timesync.com

website and communicated with a small number of IP addresses belonging to oil

corporations. Over the course of three weeks in late November and early December

of 2019, a database server run by a European oil company in India spoke with a

Powerton C&C server used by APT33. In the fall of 2018, it was discovered that a
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significant UK-based corporation offering specialized services to oil refineries and

petrochemical plants might have been penetrated by APT33.

Email phishing was APT33’s most common method of infiltration. For many

years, this scam has relied on the same bait: an email that seems legitimate but is a

spear phishing attempt to offer a job. Other campaigns were directed against the

recruiting procedure in the aviation and oil industries [135]. Additionally, a link to

the malicious “.hta” file is provided in the email. To further entrench themselves in

the target’s network, APT33 may use the PowerShell script downloaded with the

“.hta” file to download further malware.

7.5 Incompatible IoT Devices

Among the smart O&G sector’s most common vulnerabilities is the use of

incompatible Internet of Things (IoT) devices, as seen in Figure 7.1. In fact,

automated systems that take data from a wide variety of Internet of Things (IoT)

devices and sensors, a process that data using machine learning or statistical

models, and then implement their decisions via a variety of actuation operations are

the real engines behind a smart industry like oil and gas. In reality, the sensors and

other linked IoT devices are created and purchased by a wide variety of companies,

making them inherently heterogeneous. This diversity may cause incompatibilities

and can be exploited by cyber-attackers or lead to gaps in service during times of

crisis. For effective data transmission and offering real-time communication during

emergency scenarios (for example, poisonous gas detection), it is crucial to configure

linked and suitable IoT devices that can interact seamlessly.
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Since acquiring uniform and completely compatible IoT equipment is

difficult, if not impossible, researchers are looking at other solutions, such as the

development of standard protocols that would enable effective communication

across all industrial IoT devices—because of this, leading IT firms are collaborating

to create a single protocol (called matter protocol [136]) that will be compatible

with any and all Internet of Things (IoT) gadgets. The issue is a new protocol for

inter-network communication between smart homes that are being backed by the

Connectivity Standards Alliance, which includes tech giants like Apple, Google,

Amazon, and others. The problem is the lack of a standard, IP-based

communication protocol that is based on tried and true technologies to construct

safe and secure IoT ecosystems.

In smart O&G and other smart industrial contexts, we might examine three

different kinds and degrees of incompatibility. In the following sections, we will

discuss the incompatibilities that exist: those at the hardware, the software, and the

data pipeline.

7.5.1 Hardware-level Incompatibility

Commonly available products are increasingly being utilized to replace

specialized equipment in the oil and gas sector. They are more susceptible to

security problems than traditional process control systems because of their

adaptability. Because they are so widely used and deployed, the attack surface is

widened significantly. There are several methods to assault an oil field. For

instance, a smart real-time video camera may be employed to keep an eye on a
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potentially dangerous region for anomaly detection. Still, an unauthorized user

might be able to use the control system to open a valve that lets poisonous or

explosive gas escape. Sensors, actuators, cameras, and their supporting hardware

might be protected against this kind of assault if they all used the same protocol to

check for vulnerabilities and flag any unusual activity.

7.5.2 Software-level Incompatibility

Compatibility issues at the software level might arise from the usage of

outdated or unsupported software, which can lead to system failure. Furthermore,

there is a risk that malicious viruses will be introduced into internal systems

through third-party software. But antiquated software must be updated to work

with modern hardware and applications. Systems are more likely to be attacked if

they haven’t been kept up-to-date or are using enhancements that weren’t made for

their operating system.

Companies in the oil and gas industry often purchase digital items on the

assumption that they are secure and can be integrated into the more extensive

system. However, it is common practice for them to verify that everything else in

the system is compatible with the new component. Also, oil and gas companies may

not always have the resources available to verify incompatibility at the software

level. That’s how cybercriminals get into oil and gas firms’ private networks via

vulnerabilities in “smart” technology.

As a result of the Internet of Things (IoT) smartness, business leaders in the

petroleum supply chain must come up with novel approaches to preventing
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cybersecurity concerns. In recent hacks, vulnerabilities in the software were used. In

2017, a cyberattack known as NotPetya hit a variety of institutions, including a

single electricity provider, banks, public transportation networks, and a large

international container shipping firm. Interestingly, the virus propagated via

Ukrainian companies’ updated accounting software. When the infection spread to

other computers, it caused crashes; in this case, the cybercriminals had infected

customer-ready, certified software with spyware known as “SolarWinds” (2021). In

both cases, hackers used vulnerabilities in software to get into connected vendors’

systems. In addition, they put in place loopholes that might be used to steal IP

financial data or propagate malware among user machines.

7.6 Blockchain to Overcome Cyber-Threats in Smart O&G

Blockchain technology, which has recently risen to prominence as the

foundation of cryptocurrencies such as BitCoin and Etherium, is an effective

security method. As the data is stored, it is linked in a series of blocks, and the

hash value of the preceding block is kept in each block. Since the hash value of a

tampered data block would no longer be consistent with that of the succeeding

block, the attack could be traced. Several subsystems of Industry 4.0 and smart

O&G are now using blockchain technology.

7.6.1 Blockchain-based Control Systems (SCADA)

The Industry 4.0 movement has transformed the role of IT and OT in the

modern industry. The SCADA systems that gather information from the smart IoT

devices and send it to the servers where it is analyzed constitute the backbone of
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most OT platforms. However, this kind of data collection is inherently unsafe and

unreliable, providing an opening for hackers. For this reason, edge and fog

computing-based blockchain security procedures have been suggested to safeguard

SCADA systems’ data collection transactions. The gathered sensor data are

encrypted in data blocks before being processed on a cloud-based SCADA system,

and a high-level overview of this method is shown graphically in Figure 7.4. Data

hashes from the previous and current blocks are stored in each block. Then, the

Data Aggregator (DA) and all relay servers participate in the block verification

procedure. The servers will answer many times for the purpose of verification. Upon

consensus that the block is legitimate, the DA will forward the request to all

participating servers. The DA adds the new block to the blockchain and then

successfully sends the updated blockchain to the command center. Both the mining

node selection technique and a more secure consensus process that is compatible

with Industry 4.0 have been suggested in a recent paper [137], and these are

discussed in the following sections.

7.6.1.1 Consensus mechanism. Simply put, a consensus mechanism is a

process by which validators/miners verify the authenticity of freshly released blocks

before adding them to the blockchain, hence preserving the integrity of the network.

Various blockchain networks have spent considerable time and energy developing

various consensus techniques. Both public and private blockchains use some

consensus mechanisms. Proof-of-Work (PoW), Proof-of-Stake (PoS), Delegated

Proof-of-Stake (DPoS), Practical Byzantine Fault Tolerance (PBFT),
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Figure 7.4. Blockchain based data transmission within end-to-end SCADA system
of an oil and gas company. Blockchain enable encryption while transmitting the data
for processing that increase the data security even data is hijacked while transmitting.
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Proof-of-Authority (PoA), and RAFT [138] are all examples of popular consensus

techniques. Both the benefits and drawbacks of each consensus technique are

distinct. PoW, for instance, is unjust to new entrants since it has a large processing

expense and favors the richest validators. On the other hand, DPoS is less robust

and decentralized. Due to its lack of anonymity, PBFT has restricted to permission

(non-public) blockchains [139].

7.6.1.2 Mining node selection. A machine that participates in a

blockchain network by hosting blockchain software and facilitating data transfer is

called a “node.” Nodes in a network might be anything from a laptop to a phone to

a router. “mining nodes” are the nodes that participate in the processing and

verification of blockchain transactions. Any participant in the blockchain network

may choose to take part in the mining process. As a term, “mining” refers to the

activity of adding new transactions to a blockchain. Figure 7.4 shows the Data
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Aggregator (DA) edge server collecting data, processing it, and coordinating mining

node selection and verification. If you want to save as much time and processing

power as possible, place the DA on the same private network as the relay servers.

Because of this, the fog servers used in the pre-processing stage of the data shown in

Figure 7.4 are hosted inside the DAs’ own private network

In [137], the authors provide a specialized method for selecting mining nodes.

To begin, the DA server initiates a data request to the relay servers. Once the DA

collects all of the readings from the various relays, it will produce a random number

and send it out across the network. To count how many times a random number

appears, relay servers hash their data and compare the results. At this point, the

DA’s server statistics are identical to every other server’s. Ultimately, every server

casts a vote for the one that has made the most random appearances during the

process. The DA server will choose the relay with the highest count as the mining

node for the current cycle if all other relay servers agree. On the other hand, let’s

pretend that a large number of relay hosts have the same highest count or that they

all have 0. The DA here selects the mining node at random using a

cryptographically sound process [140].

7.6.2 Blockchain to Enable Trust Across Industrial IoT

The problem of trust is one of the barriers to the security of the industrial

Internet of Things (IIoT). The conventional Public Key Infrastructure (PKI) design,

which is built on a single root of trust, does not operate well in this heterogeneous

dispersed IoT environment, which may be subject to several administrative
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domains. Therefore, a distributed trust model that can be constructed on top of

current trust domains and produce end-to-end trust across IoT devices without

depending on a single root of trust is necessary for this sort of scenario. As a result,

establishing a credit-based Blockchain with an integrated reputation system might

be beneficial [141].

Another potential use of blockchain in the oil and gas sector is the storage of

credentials required to operate safety-critical industrial machinery. For example,

employee and contractor qualifications, such as H2S training, first aid, and welding,

may be securely recorded and preserved on a company’s blockchain network. By

storing such information in a blockchain network [142], all members may perform

verification of credentials and standard operating procedures at any time.

7.7 Risks of Smart Solutions in industrial IoT

As technology improves and more industries and products are connected to

the internet, it is important to understand the risks of industrial IoT installations.

Any business that wants to use IoT in manufacturing or industry or connect

existing technologies for automated and remote monitoring should consider the

advantages and disadvantages. In the next section, we’ll discuss about the possible

inadequate performances of smart solutions.

7.7.1 Human-Machine Interaction Issues

The industrial IoT has come a long way; machines can now process data

from connected devices automatically. In addition, various automated sensors and

actuators (like video cameras, smart glasses, and automatic valves with audio
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input/output) are in place to help or replace the human worker in order to make

sure that production runs smoothly and/or that workers are safe when using

different machines to do their jobs.

Figure 7.5. Human-machine interaction workflow from sensing to control operation.
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Figure 7.5 shows how the human and machine sides of human-machine

interaction work together. As this picture shows, people use different senses (like

sight, smell, and hearing) to look at the machine’s results. So, a human worker uses

information processing to run or control the machines. Then, machines do their
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jobs, and the results are shown to people so they can figure out what they mean.

The whole process of how people and machines work together is called the

human-machine interaction process.

Production and safety on the job site may be jeopardized if the

interdependent machines fail to operate as intended or are not user-friendly. To

perform vital industrial tasks or, more crucially, to ”emphasize overrule” the choice

of a smart system, human interactions are often required beyond those with a

computational interface through input/output devices. Take the case of a drone or

ROV sent to a politically sensitive location (like a border region) to conduct

autonomous oil and gas surveys. However, inefficiently or a glitch in its algorithm

may cause it to survey regions beyond the designated zone and prevent the operator

from navigating the survey route. Unforeseen repercussions on the political or

military front may result from such a glitch in human-machine interaction.

7.7.2 Machine-to-Machine Interaction Issues

Machines communicate with one another in networked autonomous systems

to complete various activities. In these systems, an automated sequence of actions is

carried out using multiple devices; if anything goes wrong, it could be due to (A)

the devices producing misleading output (for instance, automated valve shutdown

with wrong anomaly detection or automatic door closing that traps onsite workers

with false alarm), or (B) incompatibility across devices. Accidents or catastrophes

may arise due to machine-to-machine interface issues in a production setting with

fault-intolerant operations.
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Figure 7.6. A small fire breakout accident occurs in a closed oil production area in
a compressor unit. The fire alarm generates, and water sprinkler starts to sprinkle
water that causes power failure in power generator that made the electric door locked.
Unfortunately, workers were working on pipeline maintenance, and were trapped in-
side the facility due to door closure. Here, machine to machine interaction cause the
safety issue of the onsite worker.
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Figure 7.6 depicts one scenario illustrating the repercussions of the

machine-to-machine interaction problem. Consider pipeline maintenance and

communication with numerous pieces of equipment in a production scenario.

Consider a pipeline linked to a machine (for example, a distillation unit) in an

enclosed space that requires repair. As a result, maintenance staff works within the

enclosed space when a fire danger occurs. As a precaution, the gas sensor detects

smoke (Step 2 in Figure 7.6), activates the water sprinkler (Step 3), and sends an

alert to the controller. The electricity generator shuts down due to sprinkler water
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(step 4). To safeguard the safety of the outside employees, the controller instantly

sends the automatic door to shut (Step 5) while disregarding the workers within the

area. In this scenario, the controller cannot recognize personnel within the facility

and executes a safety action for outside workers, putting the workers inside at risk.

We can see that machine-to-machine interaction concerns may sometimes lead to

scenarios that must be solved by evaluating a smart solution for the O&G industry.

7.8 Bias in Smart Industry

Human intervention at different stages of software development may

introduce a wide range of biases that might undermine the quality of otherwise

intelligent software solutions [143]. Accidents and potentially dangerous situations

have occurred as a result of prejudices in the past. Many types of bias exist,

including those based on age, race, sexual orientation, disability, and other

demographics. In addition, many onsite team members (e.g., workers, engineers,

and coordinators) rely on software tools and simulations that are prone to the above

mentioned flaws. Our discussion here will center on the different kinds of bias and

the damage they might do to the smart O&G business and beyond.

7.8.1 Biases Caused by the Artificial Intelligence (AI) Solutions

Even though AI systems have shown to be revolutionary in several contexts,

they are prone to the following two types of bias:

• There are gaps in the training dataset that cause the model to underperform

on certain inputs.
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• The model’s biases are the same as those found in the original dataset used for

training.

An absence of training datasets is one source of AI bias, as shown by the

commercial face recognition system. The lack of dark-skinned women [144] in the

training dataset is the root cause of the face recognition system’s discrepancy

between its 99.9 percent accuracy with white males and its 35.0 percent accuracy

with women of colour, as determined by the researchers. The issue, however, is that

“Big Data” does not necessarily provide valid and trustworthy models. For instance,

social media is a well-established mine for massive datasets. Conclusions obtained

from Twitter data should be treated with caution since just 24% of internet

teenagers utilize the platform, as reported by [145].

An unfair model does not necessarily perform poorly on a demographic

subset. Even if the model is correct, it is still unjust. The dataset is skewed in this

situation, and the model repeats or amplifies the inherited bias. Natural Language

Processing (NLP) models, for example, are often trained on a vast corpus of

human-written text (e.g., article news). However, word embeddings trained on

Google News articles have been observed to reflect female/male gender stereotypes.

The models, for example, replied that a father is a doctor while the mother is a

nurse, or that a “man” is a “computer programmer” while a “woman” is a

“homemaker.” This kind of bias occurs when a model is trained on skewed data

owing to unjust procedures or structures [146].

Another example of AI bias is Yelp’s restaurant review system. Restaurants
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may pay Yelp to promote their locations on the Yelp platform, but this inevitably

influences how many people see adverts for a particular restaurant and, as a result,

who decides to dine there. As a result, Yelp evaluations may be unjustly slanted in

favor of more prominent eateries.

7.8.2 Automation Bias in Smart Solutions of Industry 4.0

One of the most respected psychologists in the field, Linda J. Skitka of the

University of Illinois at Chicago, defined automation bias as “a specific class of

errors individuals tend to make in highly automated decision-making scenarios when

many decisions are handled by automated aids (such as computers, IoT devices, and

smartphones) and the human actor is primarily present to monitor ongoing tasks.”

A bias toward using automated assistance and decision support systems is

often known as “automation bias.” When the Enbridge pipeline ruptured [147] on

July 26, 2010, sending enormous amounts of crude oil into the Kalamazoo River and

Talmadge Creek, automation bias was a major factor. Both complacency and a

leaning toward automation were shown to have played significant factors in the

Enbridge oil pipeline disaster. Therefore, businesses, governments, and regulators

must account for automation bias while designing systems to reduce the potential

for careless errors. “Automation bias” is humans’ propensity to favour actions

requiring the least amount of mental effort. Similar thinking applies to the

underlying principle of AI and automation: learning from massive amounts of data.

Such calculations imply that future conditions will mostly stay the same. Another

factor to consider is the possibility that faulty training data may lead to faulty
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learning [148] that is implicitly related to AI bias.

7.8.3 Gender Bias in O&G Industry

According to a study report [149], the oil and gas sector is confronting a

skilled personnel scarcity, while gender prejudice is exacerbating the problem by

excluding female workers from recruiting. The research contains interviews with

various male and female workers from around the globe and an analysis of their

comments. Indeed, the oil and gas industry has a reputation for being controlled by

males. However, while some oil and gas businesses work hard to achieve gender

parity and worker diversity, others are allowing the gender gap to widen. Although

many businesses strive to include gender equality in their policies, actions, and

procedures, they still face challenges such as gender imbalance and various types of

implicit prejudice.

7.8.4 Cognitive Bias in Smart O&G Solutions

Cognitive biases, a newly discovered notion, are mental faults in human

thinking and information processing that may result in inaccurate or irrational

assessments or decisions. Amos Tversky and Daniel Kahneman first proposed it in a

1974 article for Science Magazine (Tversky & Kahneman, 1974 [150]). Since then, a

great deal of literature has been produced on cognitive biases and how they impact

human thoughts and actions.

According to a common understanding of cognitive bias, it is a mental flaw

that results in incorrect interpretation of external data and impairs the logic and

precision of choices and verdicts. Biases are unconsciously occurring, automatic
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processes that speed up and improve decision-making effectiveness. There are

several factors that might contribute to cognitive biases, including public influence

and emotions. There has been a growing awareness of the threats cognitive bias

may bring to operational safety during the last several years. Biases like deviance,

normalization, and group thinking, for instance, are now widely accepted.

Additionally, the Deepwater Horizon [151] investigation in 2010 brought cognitive

bias to the public’s attention, at least among those working in the offshore drilling

industry. Consequently, the International Association of Oil and Gas Producers

(IOGP) has brought attention to how crucial these cognitive impairments are to

safety. Therefore, it is high time that cognitive bias should be addressed while

building smart, automated solutions that require human decisions for complex

industrial operations.

7.9 Summary

Oil and gas operations have seen dramatic changes as a result of the digital

Industry 4.0 revolution, which has made extensive use of cutting-edge computer

hardware and software. However, with these developments come opportunities for

cyber criminals to improve their efficiency in locating vulnerabilities in either IT or

OT systems, or in the hybrids that exist between the two. Another possible entry

point for cyber criminals is provided by the heterogeneity and incompatibility of

smart technologies, as well as the connection difficulty between them. Problems with

human-machine and machine-to-machine interactions, as well as incompatibilities

between technologies acquired through time, are among the most significant
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obstacles to the widespread adoption of smart technologies in the legacy and smart

oil and gas sectors. Though Industry 4.0 has been a boon to the oil and gas sector,

business executives and professionals working in the sector should be wary of its

smarts being misapplied. In the last several years, we’ve learned the hard way that

blindly installing or embracing smart technology may open the door to a wide

variety of risks. Researchers and practitioners must bear in mind these drawbacks

while deciding whether or not to use smart technology. In this regard, as a part of

this dissertation, we published a book [152] on the scope of IoT technologies with

the rise of the Industry 4.0 revolution that addresses a detailed analysis of smart

solutions and their drawbacks in the context of smart O&G Industry.
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Chapter 8: Conclusion and Future Research Directions

The ever-growing IoT and smart devices (e.g., smart gateway, sensors,

controllers, actuators) produce a substantial amount of raw data that need to be

stored, pre-processed, and analyzed to bring out potential insights that can make

the industrial systems more efficient. Accordingly, various Industry 4.0

latency-sensitive applications operate based on machine learning (ML) and utilize

the generated sensor data to achieve automation and other industrial activities.

Hence, the cloud computing platform has been offering services [153] to perform

various operations on the ever-growing data generated in the industrial sectors.

Privacy, centrality, and expenses have been significant constraints to utilizing cloud

data centers effectively. As such, edge and fog computing bring the computational

services [154, 155, 156] near the end-users closer to the data sources. However, edge

devices may support limited computing demands due to resource limitations. In

contrast, the fog system can be a preferable option to meet computing needs due to

its availability of computational resources and more robust middleware compared to

edge systems. Because, fog systems are heterogeneous and the heterogeneity is one

factor that introduces stochasticity in the execution time of Industry 4.0

applications that affects the completion times of these applications. To develop a

robust solution for Industry 4.0, it is necessary to study the execution time

behaviour of various ML-based applications in heterogeneous fog systems. As such,

we perform statistical analysis of ML-based Industry 4.0 applications to understand

the execution time pattern of these applications. In addition, we introduce
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real-world Industry 4.0 smart application execution traces in fog computing systems

that can be beneficial for the future research works.

Even though fog systems have more computing resources than edge systems,

the surge in computing demands at disasters can reduce performance. Therefore, in

this dissertation, we propose federating fog computing systems (owned by private

companies) from nearby sites to support such scenarios. Furthermore, the fog

federation concept can be practical with system administrators’ efficient resource

allocation mechanisms adopted by research works related to load-balancing

methods. A real-world Industry 4.0 application execution traces on fog computing

platforms can be crucial for devising effective resource allocation methods. As a

result, we utilize our prior workload trace to devise a statistical resource allocation

method across federated fog systems for Industry 4.0 latency-sensitive applications.

In addition, the heterogeneous software methodologies (e.g., monolithic,

micro-service) of Industry 4.0 applications can affect the execution plan of a fog

federation due to their diverse latency constraints, resulting in decreasing system

performance. Hence, the decomposition of micro-service applications with effective

resource allocation methods can maintain the systems’ performance in

oversubscribed situations (e.g., accidents, and disasters). Accordingly, the industrial

computing platform (i.e., federated fog system) should be cognizant of stochastic

execution behaviour, software structure, and latency requirements of micro-service

workflow applications. We propose a resource allocation method based on

probability estimation that partition micro-service workflows across the federated
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fog computing systems to support their latency requirements. Furthermore, the

concept of federating fog resources raises data security and privacy concerns for

private fog systems participating in the federation due to having sensitive company

data stored or processed in these fog systems. Thus, we propose a data privacy

preserving solution that works based on federated learning method for training

ML-based Industry 4.0 application across federated fog systems.

8.1 Discussion

In this dissertation, our main objective was to investigate and develop

effective resource allocation solutions using modern distributed computing systems

for remote Industry 4.0. As such, we first explore and identify various smart

computing aspects in remote offshore industries (e.g., oil and gas, minerals,

sustainable energy) where computing demand is significantly high and conventional

computing systems are inefficient due to latency constraints. Hence, privately

owned fog systems in remote areas can support industrial computing demands.

Hence, we identify stochastic execution time behaviours of latency-sensitive tasks

executing in heterogeneous fog systems. As such, we explore the execution time

behaviour of various ML-based applications in heterogeneous execution platforms

(e.g., amazon web service, chameleon). Consequently, we introduce a real-world

workload of execution time in heterogeneous computing resources. Furthermore, in

remote industries, the surge in computing demand can decrease the fog systems’

performance at disaster times by not completing latency-sensitive task requests on

time. Accordingly, we propose federating nearby fog systems in remote industries
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and forming a fog federation to support surge computing demands. Thus, we enable

the federation concept and develop a statistical resource allocation method using

prior synthesized real-world application workload considering an oversubscribed

situation. Hence we evaluate our proposed solution for monolithic applications

widely used in Industry 4.0. After that, we investigate smart micro-service

applications’ internal structure to understand the impact of the decomposition on

application workflow completion. We suggest a probabilistic workflow partitioning

method along with the previously proposed resource allocation method that

improves the fog federation’s performance and ensures safety in remote Industry 4.0.

Finally, we address the data privacy issue for sharing privately owned fog systems in

developing accurate ML models for Industry 4.0. Hence, we explore the federated

learning techniques across the fog federation that ensure data privacy for privately

owned fog systems. In this context, we address the class imbalance issue in a

federated learning setup that can reduce the robustness of the global model.

Therefore, we propose a federated learning method that is robust against the class

imbalance issue.

In chapter 3, we analyze and estimate the performance of DNN-based

applications in heterogeneous cloud and fog resources (e.g., amazon, chameleon).

Here, we identify stochastic execution behaviours of various Industry 4.0

applications. Thus we explore, and model the inference execution behaviours of

various Industry 4.0 smart applications utilizing different statistical tools from two

distinct perspectives, namely application-centric and resource-centric, respectively.
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Furthermore, we introduce an execution time workload of four different DNN-based

applications for Industry 4.0 with the intent of developing robust resource allocation

methods across federated fog systems.

In chapter 4, we explore the usability and benefits of fog federation that can

be formed to support emergencies such as disasters (e.g., fire explosions, oil spills).

As an example of a smart industry, we consider remote smart oil fields with multiple

oil extraction sites in close vicinity, each with fog computing systems to support its

local computing demands. Although in case of an emergency like an oil spill, the

computing demands can rise due to the coordination of multiple activities (e.g.,

drone inspection of oil spill, video camera images, sensors data processing) to

support the situation. Hence we propose a probabilistic resource allocation method

for monolithic latency-sensitive applications that effectively selects a relevant fog

system from the federation by utilizing our prior workload. As the resource

allocation method is aware of the receiving applications stochastic execution

behaviours from our prior work, it ensures the robustness of the fog federation by

completing majority of the receiving workload on time.

In chapter 5, we explore modern software architecture (i.e., micro-service) of

Industry 4.0 applications to create an efficient execution strategy over fog

federation. In contrast, we identified legacy applications with monolithic software

architecture are still exists in various industrial sector. Therefore, to support the

computational demands in remote industry the execution platform (federated fog

system) should be aware of software architectures of the Industry 4.0 applications.
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Hence, for micro-services we consider the idea of using an application breakdown

strategy to increase the chance of finishing the execution on time. Furthermore, for

monolithic applications and individual micro-services we utilizes our prior

knowledge of stochastic execution behaviour to efficiently allocate fog resources

across the federated fog systems. As a result, we propose a statistical micro-service

partitioning and resource allocation method that considers the underlying software

architecture and the stochastic execution latencies of Industry 4.0 applications.

In chapter 6, we explore the data security and privacy aspects of fog

federation while training ML-based applications in remote Industry 4.0. In this

case, we investigate the federated learning techniques utilizing fog federation to

train a ML-based oil spill detection application that provide data security to

privately owned fog systems of the federation. Accordingly, we identified low

occurrence events in training data (i.e., class imbalance) can reduce the accuracy of

the ML-model that can be detrimental in emergency situations. Here, we propose a

customized federated learning technique, considering the class imbalance issue

across fog federation to increase the safety measures of remote Industry 4.0.

In chapter 7, we investigate the downsides and side-effects of smart solutions

developed with the integration of various applications in the industrial sectors.

Hence, we introduce a taxonomy of cyber threats and side-effects of smart solutions

in the context of the O&G industry that structurally address the unsafe areas of

these smart solutions. Accordingly, various vulnerable areas, including both

software and hardware components, machine-human interaction issues, and different
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forms of biases in smart solutions, are addressed with efficient resilience methods

that would help system architects or industrial researchers to develop robust smart

solutions for Industry 4.0.

In conclusion, we explore and investigate the stochastic execution behaviour

of various Industry 4.0 applications and introduce a real-world execution workload

that has been utilized in our resource allocation research works. Then, we explore

the federation concept using privately owned fog systems for various computing

demands of Industry 4.0. Especially in oversubscribed situations like disasters, the

federation could be more efficient if the load is adequately balanced. Hence we

develop a load-balancing method to make the federation robust in emergencies that

we consider the system administration level of our research track. Then we dive into

the application level by investigating various software architectures (e.g.,

monolithic, micro-service) of Industry 4.0 applications. Hence, we identify

micro-service workflow applications can be decomposed to improve the application

workflow completion on time. Accordingly, we propose a probabilistic micro-service

partitioning and resource allocation method that can enhance the performance of

the fog federation. Then, we explore the data security and privacy aspects of

federated fog systems while training ML-based Industry 4.0 applications. Finally, in

the end, we identify various pitfalls of smart solutions that need to be appropriately

addressed to develop efficient and robust smart solutions for Industry 4.0

applications.
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8.2 Future Research Directions

Based on our findings during the development of the resource allocation,

micro-service workflow partitioning, and secure resource-sharing solutions, we

identify some of the expansion areas that can improve the robustness and safety of

Industry 4.0. There are several points where the work could be expanded.

8.2.1 Resource Allocation Using Reinforcement Learning for Industry

4.0 Applications across Federated Fog System

In this dissertation, we suggest a statistical application completion time

estimation method across the fog federation system to allocate Industry 4.0

applications into a relevant fog system. Our estimation of task completion success

could be coarse that sometimes leads to the deadline miss of a receiving task. We

think that a resource allocation method operating based on the reinforcement

learning technique [157, 158] can improve the quality of service for the federated fog

system. The field of reinforcement learning (RL) has emerged as an important

subset of machine learning because it enables autonomous agents to make sound

decisions in response to changing conditions in their environment. Hence, uncertain

execution behaviour can be addressed effectively using RL technique. In this

scenario, RL might be used to allocate resources [159] for offloading and executing

tasks in a federated fog computing system, leading to better overall performance.

8.2.2 Data Locality-Aware Resource Allocation Across Federated Fog

System

The proliferation of IoT devices has coincided with a surge in network traffic
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that may overwhelm the potential of the current network. Furthermore, data

privacy and latency are important concerns when these devices analyze sensor or

user information. Therefore, conventional methods such as cloud computing don’t

work. Although, advanced computing platform like fog computing can fill this need.

Understanding how the initial input data’s localization impacts on fog platforms’

performance is critical to developing reasonable load balancing and resource

allocation solutions [160, 161]. As a result, if several data-intensive applications

with deadline restrictions arrive dynamically, performance evaluation of a

heterogeneous federated fog environment is required. For example, the applications

may need data from the IoT layer or from local fog resources (e.g., sensor data that

have already been transferred to the fog layer or data processed by prior

applications). In this scenario, examining the influence of input data localization on

system performance across federated fog systems with varying data placement

probability might influence the federation’s resource allocation efficiency. Therefore,

we consider exploring the impact of data localization on resource allocation methods

across federated fog systems in the oversubscribed situation for remote Industry 4.0.

8.2.3 Dynamic Fault-Tolerant Federated Fog Systems for Industry 4.0

Operation

The fog computing systems provide low latency to the end users being close

to the data sources. In contrast, the distributed characteristics of fog aid in

processing vast amounts of sensor-generated data of Industry 4.0. Hence, federating

fog computing resources can support latency-sensitive tasks and data processing
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services. However, fog systems have various uncertainties (e.g., transient failures

[162], network and power outage) that need to be considered when supporting surge

computing demands. Especially in an emergency, those uncertainties can lead to

unsuccessful task completion causing significant damage to the environment and

even human lives. Hence, the resource management system for fog federation should

be aware of the uncertainties and provide efficient fault-tolerant [163, 164, 165]

solution to ensure successful completion of the receiving latency-sensitive tasks on

time. Accordingly, the federation management system should consider providing a

service that continuously monitors the fog resources and then sends the signal to all

the participant fogs about the neighbouring fog’s state. In addition, already ongoing

service execution can get disrupted or fail due to the fog system’s internal issues

(e.g., software, hardware). In this case, every fog system should have a method

(e.g., re-execution, offloading the failed task to another fog) to ensure successful

completion of receiving task’s execution. Therefore, a fault-tolerant federated fog

system is crucial for supporting surge computing demands in emergency or disaster

situations, enabling the system’s robustness and leading to a safe Industry 4.0.

Similar to super cloud [166], fog systems provide various virtual services [167]

like application deployment, multi-tenancy, interoperability, and service migration

across fog federation. Hence, to enable a fog federation that can avail various fog

virtual services need to support fault-tolerant characteristics for efficient utilization

of fog services. In addition, in oversubscribed situation, the fault-tolerant service

needs to address the scalability of fog federation, ensuring the system’s robustness
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in a dynamic condition. Therefore, to achieve all these requirements, we are

considering performing research works in future on developing a fog system (super

fog) that provides fault-tolerant fog services across the federated fog systems to

improve the efficiency of the federation.

The popularity of fog systems with heterogeneous resources and dynamic fog

federation [168] concept has created the demand for developing the fog-friendly

application that requires proper investigation of the application stack and fog

resources. However, building this type of application is time-consuming and requires

overcoming some major obstacles. The first is to support the dynamic nature of the

fog network; the second is to manage the context-dependent qualities of application

logic; the third is to cope with the system’s massive size. As a result, we must

consider how to decompose and deploy applications to a geographically dispersed

fog federation utilizing current software components that may be altered and reused

to participate in fog applications [169]. Hence abstracting the application layer from

the execution layer can be the primary objective to solve the heterogeneity challenge

of the fog systems. Thus, we would like to perform research on developing

fog-friendly applications for dynamic federated fog systems that are cognizant of

super fog systems’ characteristics.

8.2.4 The Cognitive Aspects of Human-Machine Interaction for Smart

Industry 4.0 Solutions

Industry 4.0, an industrial technology paradigm shift, mandates new ways in

which human and machine (e.g., robots, drones) will work together. The
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introduction of ever-more-advanced sensors and collaborating machines raises

important questions about the influence on safety in the highly technical and

inventive scenario of Industry 4.0, defined by a succession of enabling technologies

and a strong interconnectedness of resources between human and machine. On the

one hand, advanced software tools and machines facilitate human work

(human-machine cooperation). On the contrary, it must communicate and share

data with other intelligent devices (human-machine interaction) [170]. Since the

advent of “smart” technologies, both the environment in which these innovations

are deployed and the responsibilities of front-line human workers have changed. In

complex industrial operations or at disaster times, the human-machine interaction

can be challenging that is significantly related to cognitive aspects [171] of the

human workers. When some tasks need specialized human abilities, there is genuine

“collaboration” between humans and machines. In today’s modern industries,

workers’ interactions with “smart machines” can make their jobs easier by making

their tasks more automated and less prone to human error. In contrast, it makes the

workplace more complicated by increasing information and communication flow

between different systems. For example, using sensors and cutting-edge technology,

we can collect the information we need to make accurate forecasts about the health

of industrial machinery and carry out precise treatments. As humans must handle

the massive amounts of data (big data) that need to be gathered, analyzed, and

understood, the cognitive interaction effort of the machine operator rises from the

skill level to the knowledge level [172]. Therefore, we would like to address various
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cognitive aspects of human-machine interaction issues in Industry 4.0 and develop

smart solutions for human workers to aid in a complex industrial scenario.

8.2.5 Fog Computing and Advanced Analytics for Human-Machine

Interaction in Industrial Sector

The advancement in computing technology with industrial revolution has

transformed the industrial operations using automation, robotics, artificial

intelligence and other modern smart solutions. Although, various complex industrial

operations (e.g., machine maintenance, oil well drilling operation, manufacturing

machines) need human intervention and interaction [173, 174] to ensure precision

and accuracy of the operation. Hence, human operator that communicate with

machine sometimes need to process machine generated data to efficiently

communicate with machines [175, 176]. In this case human operators can use a

mobile device with them to process the data or visualize the data that is processed

a nearby computing systems. Hence, fog computing can be a potential candidate to

support the computing demands of human-machine interactions [177, 178, 179].

Furthermore, fog computing utilizing various advanced analytics (e.g., machine

learning, deep neural network, reinforcement learning) on machine generated data

can provide useful insights to the human operators that can improve

human-machine interactions.
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