Dynamic Structure in Peer-to-Peer Based Distributed Simulation

Azzedine Boukerche, Ming Zhang, Hengheng Xie
Paradise Research Lab
School of Information Technology and Engineering (SITE)
University of Ottawa, 800 King Edwards St.
Ottawa, Ontario, K1N 6N5, Canada
{boukerch, mizhang, hxie(72}@site.uottawa.ca

Keywords: Dynamic Structure, Distributed Simulation,
Time Management Service

Abstract

Distributed simulation have been an dominant technique in
recent years due to its capability in solving large-scale and
complex simulation problems. Traditional distributed simula-
tion techniques, such as HLA/RTI, are facing new challenges
due to the fast advances in parallel and distributed comput-
ing techniques. Moreover, the increasing interests in flexible
and scalable Peer-to-Peer (P2P) technique opens up new di-
rection for us to discover the potentials for establishing next-
generation distributed simulation standards and methodolo-
gies. In this paper, we propose a novel “dynamic structure”
technique in the context of a P2P based distributed simu-
lation infrastructure. This new technique aims to provide a
highly reconfigurable distributed simulation environment, in
which simulation entities can join/leave a running simulation
at any time without significantly disturbing the core Time
Management Service (TMS). Moreover, we implemented a
prototype of this new technique, which demonstrated how
a model can dynamically join a running simulation, auto-
matically discover the TMS in the network, and then ex-
change messages with TMS and other running models, all
in a autonomous fashion. We believe that our proposed “dy-
namic structure” technique can greatly promote the in-depth
research for next-generation of distributed simulation, which
needs to address more on reconfigurability, self-awareness,
interoperability, and etc.

1. INTRODUCTION

With the increasing demands for distributed simulation,
many research has been conducted in order to enhance ex-
isting distributed simulation frameworks or to propose novel
solutions. In recent years, the importance of reconfigurable
simulation, especially in distributed environment, is aware
due to the fact that many of today’s simulation problems
need the simulation models to be dynamically reconfigurable.
Such techniques have been addressed by many simulation re-
searchers. For instance, [1] proposed a technique called “vari-
able structure” in the context of Discrete Event System Spec-
ification (DEVS) [2], which is able to reconfigure the run-

ning simulation models based on predefined events in other
model’s specifications. As a widely recognized distributed
simulation standard, mainly for interoperability of network
distributed simulation entities, HLA [3] provides a rich set of
services to address simulation time management, data man-
agement, simulation objects registration and management,
and etc. However, it supports limited model run-time recon-
figurations, and many recent research, in terms of HLA based
simulation reconfigurations, are focused on the federates mi-
grations which in most cases require “freezing” the time man-
agement service and checkpointing/restoring the migrated
federates run-time states. As a matter of fact, the existing ap-
proaches for reconfigurable distributed simulation are largely
confined by the traditional client/server based paradigm and
the middleware based solutions.

In contrast, in this paper, we propose a novel solution
for simulation reconfiguration in the context of P2P net-
work environment, where new simulation entities can freely
join/leave a running simulation without “freezing” the TMS
as traditional approaches do. Our technique allows the newly
involved simulation entities to pace themselves with TMS and
other running simulation entities in an autonomous fashion.
Moreover, the dynamic model structure changes can happen
at any time during a simulation execution period, and such
changes can be realized as a predefined event-triggered or as
a “at-will” mechanisms. Indeed, our approach is based upon
our previous work in Time Management Service (TMS) in a
P2P based distributed simulation infrastructure [4], and this
new technique aims to provide a highly reconfigurable TMS
in a distributed simulation environment, which can support
dynamic simulation model reconfiguration as well as seam-
less run-time model joining/leaving. Compared with tradi-
tional approaches, our approach does not need to “freeze” the
TMS and checkpointing/restoring the run-time model states
information, and therefore, the overhead generated by “freez-
ing” TMS is greatly reduced. Furthermore, we implemented
a prototype of this new technique, which demonstrated how
a model can dynamically joining a running simulation, auto-
matically discovering the TMS in the network, and then ex-
changing messages with TMS and other running models.

We will discuss the detail of our proposed techniques in
the following sections, which are organized as follows: Sec-

tion 2 introduces related background with a focus on JXTA
and some recent distributed simulation tools in terms of re-
configurability; Section 3 presents our proposed “dynamic
structure” technique in JXTA based distributed simulations;
Section 4 demonstrates a prototype example on dynamic re-
configuration of a running simulation; Section 5 concludes
this paper with suggestion for some future work.

2. BACKGROUND

Peer-to-Peer (P2P) based networking technology is an
emerging technique in recent years. Compared to traditional
client/server or middleware based distributed system archi-
tectures, P2P system is able to provide higher level of flex-
ibility, scalability and robustness. The key idea of P2P is to
eliminate the bottleneck caused by a centralized server, and
therefore, the overall system efficiency and resource utiliza-
tion are improved. Indeed, many new distributed system con-
cepts are now introduced based upon the new Peer-to-Peer
philosophy. As one of the well-known P2P techniques, JXTA
[5,6] becomes an reliable and efficient application frame-
work, which supports rapidly developing advanced P2P ap-
plications. Basically, JXTA provides a rich set of protocols
to support network peers that can discover, communicate,
and monitor one with another. The key concept of JXTA is
demonstrated in Figure 1, in which, we can see that a vir-
tual network is built upon “peer groups” and their relation-
ships. “Peers” can easily join or leave “Group” through an
publish/discover mechanism supported by JXTA peer dis-
covery protocol. JXTA has six solid built-in protocols to
enable autonomous P2P networking, which includes: Peer
Discovery Protocol (PDP), Peer Information Protocol (PIP),
Peer Resolver Protocol (PRP), Pipe Binding Protocol (PBP),
Endpoint Routing Protocol (ERP), and Rendezvous Protocol
(RVP) [6]. Therefore, the applications built upon these proto-
cols can take the advantages of such a highly reconfigurable
and self-aware heterogeneous virtual computing infrastruc-
ture. It worth mentioning that JXTA uses Pipe based con-
cept for message passing and XML format for common mes-
sage encoding and service advertisement, which makes it ca-
pable of supporting interoperability, platform independency,
and ubiquity [5].

As a matter of fact, P2P based concept has not yet been
widely used in the distributed simulation area. In the con-
trary, many existing distributed simulation frameworks are
still use middleware based solutions to extend single pro-
cessor’s simulation towards large-scale distributed environ-
ment. For instance, [8] implemented HLA’s key functional-
ities as Grid service, thus, provided a distributed simulation
framework based on invocations of Grid services. Other tools,
such as DEVS/SOA [9], DCD++[10], used the same strategy
to wrap their existing single processor’s simulators as stan-
dard web services to form a integrated distributed simula-

[
eer Group

Feer Group

Figure 1. JXTA Peer Group Based Virtual Network [7]

tion environment with the Internet as backbone. Meanwhile,
ADEVSJ11], PCD++[12] are DEVS based distributed simu-
lation tools which are based on PVM and MPI. In term of
reconfigurability and flexibility, these solutions are largely
confined by the underlying non-dynamic architectures pro-
vided by HLA, MPI, and etc. Considering the limitation of
these tools, some efforts have been given in order to achieve
higher level or reconfigurability and robustness in a dis-
tributed simulation environment, which include DEVS/RMI
[13] DEVS/GRID[14], DEVS/P2P [15]. However, these tools
lack of interoperability and can only provide limited reconfig-
urability.

3. DYNAMIC STRUCTURE IN JXTA
BASED DISTRIBUTED SIMULATION

In this section, we will propose our idea on simulation en-
tities run-time reconfiguration based on our previous work on
distributed simulation framework using JXTA P2P technique.
We first review our previous work on JXTA based Time Man-
agement Service (TMS), and then focus our discussion on
how a “dynamic structure” is realized and implemented based
upon JXTA’s peer discover protocol, simulation entities’ pub-
lish/subscribe advertisement mechanisms, and JXTA based
simulation entities’ capabilities for dynamic creations of in-
put/output ports.

3.1. Time Management Service (TMS)

We will first briefly review the TMS that we proposed and
implemented in our previous work demonstrated in [6]. The

TMS is in fact a JXTA group based service, which can au-
tomatically publish its existence and handles the time ad-
vance requests among all simulation entities within a group.
It implements a conservative time management algorithm us-
ing JXTA Pipe concept, which makes it a robust and state-
less core unit in the overall distributed simulation framework
[anss-08]. The concept of “plug-and-play” is used to support
high level of reusability and interoperability between simula-
tion components. For instance, we can easily replace one time
management implementation with another without affecting
any other parts of the system as long as the replaced one con-
forms to the same input/output pipes’ definitions. Taking the
advantages of JXTA virtual network, our TMS can be trans-
parently migrate to any computing node without affecting the
overall system integrity. It worth mentioning that the TMS
only handles the time advance and synchronization of all in-
volved simulation entities, while the message passing or event
propagation happens directly among the entities. Thus, the
TMS is lightweight and stateless, which makes it easier to
support dynamic structure changes in the simulation system.
Moreover, the TMS and the simulation entities and can also
interact directly with other simulation services whenever nec-
essary. As we can see, such approach makes the deployment
and partition of simulation entities much easier compared to
those middleware based solutions.

3.2. Dynamic Structure

Based upon our previous research work on TMS, we take
a step further on proposing and implementing a “Dynamic
Structure” mechanism that can significantly enhance the flex-
ibility and adaptiveness of our distributed simulation run-
time management. Differentiating it from existing approaches
for reconfigurable distributed simulation frameworks, our ap-
proach aims to provide a higher level of reconfigurability,
self-awareness, robustness.

The key idea of our approach is that the TMS is
lightweight, stateless and self-adaptive. Thus, whenever new
simulation entities join a running simulation, TMS can au-
tomatically adjust itself to the changes in terms of system
structure. The TMS actually has a designated input/output
pipes to handles the dynamic entities’ registration (pipe event
based mechanism), and then automatically paces itself to
the system structure’s change before entering next simula-
tion loop. Therefore, the overall simulation execution is non-
interrupted, and the new simulation entities then join the run-
ning execution seamlessly.

As shown on Figure 2, the dynamic simulation entities
lookup the TMS service during a simulation execution, then
register themselves to the TMS; TMS then replies with “reg-
istration done” message back, based upon which the dynamic
entities create necessary input/output pipes during run-time,
then automatically pace themselves to the forwarding simu-

lation loops. In other words, the overall distributed simula-
tion is a self-awareness and self-adaptive system, in which,
simulation entities and the TMS can automatically discover
each other and adapt to any changes in the system, all in an
autonomous fashion. It worth mentioning that our proposed
“dynamic structure” technique is based on the most advanced
JXTA service protocols, which makes it different from tra-
ditional approaches that rely on complex procedures of state
checkpointing, “freezing” the TMS, and etc. In the follow-
ing section, we will present our prototype based experiment
which implements the idea we demonstrated in this section.

‘TMS‘
T

Create pipes
and publish itself
| Create pipes
and lookup TMS
! Request

I
|
1
]
| |
Registration Done
I
I
|
]
T
I
1
1
1

‘ Predefined Simulation Entities

‘ Dynamic Simulation Entities

Request TN

Lookup TMS

= -- o

Reply TN

Request registration

Registration Done

Create pipes

=t

Request TN o Request TN

Reply TN

|
Reply TN]
1

Figure 2. Sequence Diagram for Dynamic Simulation Entity
Joining

4. EXPERIMENT

Our experiment is conducted using two machines and
four individual JXTA-enabled Java processes. One machine
(bouker19) is equipped with Intel Pentium 4 3.2G CPU with
1G memory, and another machine (bouker5) has a Intel Pen-
tium 4 3.0G CPU with 512M memory; they are in the same
100M sub-network. Both machines are installed with Linux
2.6.20, JDK 1.6.0_04 and JXTA library version 2.5_rcl.

In the following experiment, we will use two types of sim-
ulation entities and JXTA service based implementation of
TMS. Followings are a briefly descriptions of involved simu-
lation entities and TMS:

Generator: a simple simulation entity that periodically
generate “task” message to other simulation entities. The time
of next event of a Generator is period*n, where period is a
predefined model parameter as double value, and n=1,2,3,...

Processor: a simple simulation entity that process re-
ceived “task” using a predefined interval. The time of next

event of a Processor is event_time+processing_time*n, where
event_time is the clock time when Processor receives a
“task”, processing_time is a predefined model parameter as
double value, and n=1,2,3,...

TMS: a JXTA service that implements a conservative time
management algorithm as described in section 3.1. TMS has
input/output pipes for simulation entities registration, mes-
sage exchanging, and a specified pipes for handling dynamic
simulation entities registration.

In this experiment, we first simulate a generator-processor
(g-p) model, and a generator-processor-processor (g-p-p)
model respectively using one machine(bouker19). As shown
in Figure 3, the TMS starts on one console window first,
then “generator” and “processor” entities start in the other
two consoles windows. The sequence of starting these three
processes does not matter because the “generator” and “pro-
cessor” entities all use the infinite loop to search the TMS in
the network, and then register themselves to the TMS. The
main simulation control loop is handled by the TMS after all
involved simulation entities have been registered. As shown
in Figure 3, the TMS has an output pattern as “3, 5, 8, 10, 13,
15, 18, 20,...” , which is actually the time of next event among
all models. Similarly, Figure 4 is the dump screen of running
g-p-p model, where another “processor’ entity is started from
another machine (bouker5). In this case, the TMS is set to ac-
cept three simulation entities’ registration before the simula-
tion loop starts. The TMS now has output pattern as “3, 4, 5,
8,9, 10, 13, 14, 15, 18,19 20, ...” because the second “proces-
sor” initiated on bouker5 has a processing time of 4 as model
internal parameter.

Now we will see how we can reconfigure a “g-p” model
to a “g-p-p”” model during the simulation run-time. As shown
in Figure 5, the TMS is initially set to accept two simulation
entities’ registration before the simulation loop starts. There-
fore, at first, the TMS starts its loops with a output pattern the
same as the “g-p” model shown in Figure 3. During this sim-
ulation execution, we starts the second “processor” on ma-
chine “bouker5” at any time “at will”, the TMS is then au-
tomatically adapt itself to this system structure changes, and
then simulate the “g-p-p” model thereafter. The output pat-
tern of TMS then conforms to the pattern shown in Figure
4. As a matter of fact, when the second “processor” starts on
“bouker5”, it sends out a registration message to the running
TMS, which then uses its dynamic registration pipe to re-
ceive this registration event. TMS then updates its registered
entities to 3, and sends out a message to this newly joined
“processor” for creating necessary pipes before TMS enters
to its next cycle. All this happens seamlessly in TMS without
“freeze” and “resume” mechanism. In other words, the TMS
is self-awareness of the dynamic model structure changes and
also self-adaptive to this change in a totally autonomous fash-
ion.

As a matter of fact, all these Java processes used in this
experiment can be placed on any selected machines in a local
sub-network to generate same result without any changes of
the codes. This is due to the JXTA’s powerful set of peer based
protocols.

S. CONCLUSION AND FUTURE WORK

In this paper, we extends our previous research work on
P2P based distributed simulation infrastructure with a novel
technique called “dynamic structure”, which seamlessly in-
tegrate itself to our existing JXTA based Time Management
Service (TMS). We demonstrate a prototype implementa-
tion of this new technique that verifies the feasibility of us-
ing JXTA based service protocols for developing next gen-
eration distributed simulation infrastructure, in which higher
level of flexibility, robustness, and self-awareness can be eas-
ily addressed. Our proposed simulation run-time reconfigu-
ration technique can be used for distributed interactive sim-
ulation, gaming based simulation, as well as traditional an-
alytical based simulation, in which users(or new simulation
entities) can join a running simulation at any time “at will”.
Compared with existing approaches, our approach does not
need to “freeze” the TMS and checkpointing/restoring the
run-time model states information, and moreover, the sys-
tem’s model structure changes are not necessary predefined.
We believe that our proposed “dynamic structure” technique,
in the context of JXTA based distributed simulation infras-
tructure, can greatly promote the in-depth research in next
generation distributed simulation, which not only focus on
high performance, but also higher level of interoperability,
reconfigurability and self-awareness.

For the future work, we will further standardize our ap-
proach, and also apply it towards complex simulation prob-
lems. The overhead and performance in a distributed network
will be measured to obtain the clues for further optimizing
our approach.

6. REFERENCES

[1]. X. Hu, B.P. Zeigler, “Model Continuity in the Design
of Dynamic Distributed Real-Time Systems”, IEEE Transac-
tions On Systems, Man And Cybernetics— Part A: Systems
And Humans, 35(6), 2005, pages 867- 878.

[2]. IEEE Standard. IEEE Standard for Modeling and Sim-
ulation (M&S) High Level Architecture (HLA)—Framework
and Rules. 1516-2000, September 2000.

[3]. B. P. Zeigler, T.G. Kim, and H. Prachofer, “Theory of
Modeling and Simulation”, 2 ed., New York, NY: Academic
Press, 2000.

[4]. Azzedine Boukerche, Ming Zhang, Hengheng Xie,
“An Efficient Time Management Scheme for Large-Scale
Distributed Simulation Based on JXTA Peer-to-Peer Net-

instrict.doc coreSim) S5_ming_fles

Terminal Terminal

Ele Edt View Teminad Tabs Help
(bouker1o)mishang(98)S java —cp .:juta-jax test3.ent2 j .:jxta.jar test3.entl
ed..

imihEng Some

ated. . ated. .
ipel ing i ipel
CH t pipe « put pive
v i i e Service advertisement
KL . KL
2

S il

o output pipe OK2 iting for msgs on input p
ol Lcgxta. . L:3xta.jar test3.entl
2 ea oup created. .
ted

searching for the Time Management Service advertisenent Service advertisement

Il o o

THimBED ﬁreat)ng output pipe 0

a Terminal
Fle Edt View Teminal Tabs Help Fle Edit View Teminal Tabs Help
GoukerSJmizhang(15)5 Java -cp .ifxta.Jar test3.ent3 (bouker10)mizhang (116)$ java -cp .:jxta.jar test3.DINVS
group d..

oy crested.

Creating input pipel

Waiting for nsgs on input pij

searching for the Tine Vanagement Service advertisenent

.ijxta.jar test3.ent3

d balancing paper.
d

N_DEVS. pif

(@] (18 (mizhanal & Teminal & Teminal & Teminal & Teminal) IDS-RTO8 O [JoumalDraft_VHI) [J [TMS_VS_word - [ava-DTMVS.ja... | BB ©
B Arpications Places Sysem @B B S 106PM @

Figure 3. Running g-p model

P 2 @0 =

Gelev=RMI £ vancou.pf instrict.doc ANSS_ming jutastude

e a Terminal
Ele Edit View Teminad Tabs Help
i {bouker1o)mishang(O8)S java —cp .:jxtajax test3.ent2

a
Eile Edit View Teminal Tabs Help
{bouker19)nizhang(100)S java ~cp . :jxta.jar test3. entl

iR Eome

ate d N ed..
ipel eaf pipel .
iting for m t pipe ut pipe
. . Service advertisement
o . KL

S il

3
s
Creating output pipe OK2
@ i

THimbED

a Terminal Ferminal
Ele Eit View Teminal Tabs Help Ele Edit View Teminal Tabs Help

(boukerS}mizhang(15)$ java —cp .:jxta.jar test3.ent3 Sinulation Controller at

Sinulation Controller at

Sinulation Controller at

Simlation Controller at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

at

oller at
{bouker19}mizhang(116)$ [l
=

Exeating output pipe 0K2

oocooooocoooocooobooo00

= =
_— = =
N @
L\
o

QUSUML pf

(@) (@ Imizhanal & Terminal & Teminal & Terminal 83 Terminal) [DS-RT08] = [JoumalDraft_VHI || [TMS_VS_word - > [lava- ent3.ava-...| BB ©
B Avpicaiions Places System @G DB & Toem &

Figure 4. Running g-p-p model

uct.doc

Terminal Terminal

Eile Edit View Temminal Tabs Help Eile Edit View Terminal Tabs Help
Creating input pipe2 Creating output pipe OKL
i i Creating input pipe2
Waiting for msgs on input pipe
{bouker19}mizhang(88)$ java -cp .:jxta.jar test3.ent2 {bouker19}mizhang(92)$ java -cp .:jxta.jar test3.entl
group created
group created
Creating input pipel
Waiting for msgs on input pipe
searching for the Time Management Service advertisement
.Creating output pipe OKL
Creating input pipe2
Waiting for msgs on input pipe
Creating output pipe 0K2
{bouker19}mizhang(89)$ java -cp .:jxta.jar test3.ent2

searching for the Time Managsmsnt Service advertisement
.Creating output pipe

Creating input pipe2

Waiting for msgs on input pipe

Ereating output pipe 0K2

Terminal Terminal

Eile Edit View Terminal Tabs Help Eile Edit View Terminal Tabs Help

group created. .

group created. .

Creating input pipel

Waiting for msgs on input pipe

dyn inport created.

searching for the Registering Service advertisement
**Creating output pipe OK1

{bouker Shmizhang(6)$ java -cp .:jxta.jar test3.ent3

01364606 pdf

(=) Terminal Terminal Terminal - [DS-RT08 = [loumalDraft VH1 [[[TMS_VS_word - [Java-DTMVS.a.. | EBEEEEIEE ©
Applications Places System @R D EH T 1wssam &

Figure 5. Reconfiguring the g-p model to g-p-p model in run-time

work”, Proceedings of IEEE/ACM International Symposium
on Distributed Simulation and Real-Time Applications, 2008.

[5]. JXSE 2.5 Programmers Guide:
JXTA Concepts, online at: https://jxta-
guide.dev.java.net/source/browse/*checkout*/jxta-
guide/trunk/src/guide_v2.5/JXSE_ProgGuide_v2.5.pdf

[6]. JXTA Protocols Specification, online at http://jxta-
spec.dev.java.net.

[7]. A. Boukerche,M. Zhang, “Towards Peer-to-Peer Based
Distributed Simulations on a Grid infrastructure”, 41st An-
nual Simulation Symposium(ANSS-41 2008),pp. 212-219.

[8] K. Pan, S. J.Turner, W. Cai , Z. Li, “A Service Oriented
HLA RTI on the Grid”, 2007 IEEE International Conference
on Web Services ICWS 2007).

[9]. S. Mittal, J. L. Risco-Martin, B.P. Zeigler, "DEVS-
Based Simulation Web Services for Netcentric T&E", Sum-
mer Computer Simulation Conference SCSC’07, July 2007.

[10]. J. Chazal, L. Quinet, Q. Liu, M. K. Traoré, G. Wainer,
“Performance Analysis of Web-based Distributed Simulation
in DCD++: A Case Study across the Atlantic Ocean”, HPCS,
part of Spring Simulation Multiconference 2008.

[11]. ADEVS, http://www.ornl.gov/~1qgn/adevs/index.html

[12] Q. Liu, G. Wainer, “Parallel Environment for DEVS
and Cell-DEVS Models”, Simulation, Transactions of the
SCS. Vol. 83, No. 6, 449-471 (2007).

[13] Ming Zhang, B.P. Zeigler, P. Hammonds,
"DEVS/RMI-An Auto-Adaptive and Reconfigurable
Distributed Simulation Environment for Engineering Stud-
ies", International Test & Evaluation Association (ITEA)
Journal of Test and Evaluation, March/April 2006, Volume
27, Number 1, Page 49-60.

[14]. C. Seo, S. Park, B. Kim, S. Cheon, B. P. Zeigler, “Im-
plementation of Distributed High-performance DEVS Sim-
ulation Framework in the Grid Computing Environment”,
2004 High Performance Computing Symposium.

[15]. S. Cheon, C. Seo, S. Park, B. P. Zeigler, “Design and
Implementation of Distributed DEVS Simulation in a Peer
to Peer Network System”, 2004 Military, Government, and
Aerospace Simulation.

