
J. Yang et al. / VegaProf

VegaProf: Profiling Vega Visualizations

J. Yang1 , A. Bäuerle2 , D. Moritz3 , and Ç. Demiralp2

1University of Washington, WA, USA, work done at Sigma Computing
2Sigma Computing, CA, USA

3Carnegie Mellon University, PA, USA

loadData() - 340ms
initScales() - 60ms
renderMark() - 10ms

1 - Flame Graph 3 - Dataflow Graph2 - DSL Specification

Figure 1: VegaProf records low-level execution times and encodes them in coordinated visualizations corresponding to different abstraction
levels of Vega’s DSL execution. (1) A flame graph provides an overview of where the major amount of time is spent. (2) In contrast to previous
debugging approaches, which relied on trial and error-based changes of the visualization specification, VegaProf maps performance measures
directly to the Vega specification. (3) To analyze performance on different levels, VegaProf augments the dataflow graph with performance
measures.

Abstract
Vega is a popular domain-specific language (DSL) for visualization specification. At runtime, Vega’s DSL is first transformed
into a dataflow graph and then functions to render visualization primitives. While the Vega abstraction of implementation
details simplifies visualization creation, it also makes Vega visualizations challenging to debug and profile without adequate
tools. Our formative interviews with three practitioners at Sigma Computing showed that existing developer tools are not
suited for visualization profiling as they are disconnected from the semantics of the Vega DSL specification and its resulting
dataflow graph. We introduce VegaProf, the first performance profiler for Vega visualizations. VegaProf effectively instruments
the Vega library by associating the declarative specification with its compilation and execution. Using interactive visualizations,
VegaProf enables visualization engineers to interactively profile visualization performance at three abstraction levels: function,
dataflow graph, and visualization specification. Our evaluation through two use cases and feedback from five visualization
engineers at Sigma Computing shows that VegaProf makes visualization profiling tractable and actionable.

CCS Concepts
• Human-centered computing → Visualization toolkits; • Software and its engineering → Domain specific languages;

1. Introduction

Domain-specific languages (DSLs) such as Vega [Veg22a],
gglpot2 [Wic16], and D3 [BOH11] simplify and accelerate visu-
alization creation by abstracting implementation details from prac-
titioners. Using intermediate representations (IRs), DSLs also open
opportunities for automated optimizations, which otherwise require

deep domain knowledge and programming expertise. For exam-
ple, Vega parses a visualization specification that is written in
JSON—whose format has been informed by the grammar of graph-
ics [Wil12]—into a dataflow graph. The resulting dataflow graph,
in turn, triggers the execution of low-level visualization rendering
functions. This successive creation of IRs to execute DSL code is
also called the lowering process.

ar
X

iv
:2

21
2.

13
67

0v
1 

 [
cs

.H
C

] 
 2

8 
D

ec
 2

02
2

https://orcid.org/0000-0002-8467-2917
https://orcid.org/0000-0003-3886-8799
https://orcid.org/0000-0002-3110-1053


J. Yang et al. / VegaProf

However, the abstraction that DSLs provide through the lower-
ing process comes at a price. One limitation that Vega trades in for
its simplicity is the limited access to code execution [HSH15]; there
is no direct mapping between the DSL specification, the dataflow
graph, and measured function performance. Since Vega specifica-
tions are parsed and then finally rendered by the underlying frame-
work, there is currently no way of connecting the elements de-
fined in the DSL and the functions executed to generate visualiza-
tion primitives. Vega is often developed in a browser environment,
which typically provide integrated profiling instruments. However,
because of the missing connection between Vega’s IRs, these in-
struments cannot provide such a multi-level performance trace. In
turn, one might know which rendering function slowed down the
visualization drawing, but this knowledge cannot be mapped back
to parts of the DSL or its resulting dataflow graph. As a result of
this missing link between performance measures and elements of
the DSL, we found that visualization engineers often have to use
trial-and-error procedures to fix their performance problems. This
calls for dedicated visualization profiling tools that operate under
the premise of DSLs, visualization parsers, and their rendering en-
gines.

To support visualization engineers discover and resolve perfor-
mance problems of their Vega visualizations, we present VegaProf
(video demo available online), the first profiler for the Vega visual-
ization grammar. We enable such debugging capabilities by tracing
execution time measured at a function execution level all the way
back to the DSL, creating a bidirectional mapping between per-
formance issues on the function level, the dataflow graph, and the
user-defined or computer-generated DSL code. Based on this map-
ping, we provide timings for DSL segments, nodes of the result-
ing dataflow graph, as well as rendering functions generated from
dataflow graph nodes. In addition to the mere recording of perfor-
mance measures, we further present interactive profiling visualiza-
tions within a familiar developer tool, the Vega Editor. Bridging the
gap of current profiling tools through a direct-manipulation visual-
ization interface [HHN85], practitioners can trace performance bot-
tlenecks from rendering functions all the way back to the DSL. Our
evaluation with five visualization engineers shows that this form of
performance tracing and visualization introduces means to reason
about and resolve performance bottlenecks in a way that was not
possible before. VegaProf is available as open-source software on
GitHub.

In summary, we contribute VegaProf, an interactive profiler en-
abling visualization practitioners to quickly explore the time per-
formance of Vega visualizations at different IRs of the Vega DSL.
We demonstrate VegaProf’s usage workflow with two use cases
of visualization-based profiling and evaluate VegaProf by eliciting
feedback from five visualization engineers through a user study.
Our findings from the user study show the necessity for and us-
ability of VegaProf. In addition, these findings indicate the effec-
tiveness of encoding performance measurements in a flame graph
visualization linked to the underlying visualization specification.
While VegaProf is the first profiler dedicated to Vega, the presented
concepts could be applied to any visualization DSL. We release
VegaProf as open-source software to support future research and
applications.

2. Related Work

Our work relates to prior research on both visualization debugging
and dataflow system profiling. VegaProf adds a new element to
both lines of earlier work as it is the first time-performance pro-
filer for DSL-specified visualizations. Through interactive visual-
izations, VegaProf enables profiling across all underlying abstrac-
tion levels of the DSL.

2.1. Debugging Visualizations

While data visualization has a long history of tools [KWHH17,
WQM∗17, MWN∗18] and grammars [Veg22a, SMWH16, BOH11]
for visualization specification, research into linting and debugging
visualizations is nascent. McNutt and Kindlmann [MK18] intro-
duce one of the first visualization linters. Their linter checks a pre-
defined set of rules on a given visualization and returns the list of
failed rules with explanations. This postprocessing approach is dis-
connected from the development workflow and does not localize
errors for rendered visualizations directly in their specifications. In
contrast, VisuaLint [HCS20] annotates visualizations in situ with
red marks. These marks are akin to conventional linting-error visu-
alizations in IDEs, but cannot be traced back to the visualization
specification. To rectify defective visualization designs, VizLin-
ter [CSX∗21] highlights flaws directly in the visualization speci-
fication. VizLinter maps flaws to the DSL code while suggesting
potential fixes. Since interactions can be particularly hard to debug,
Hoffswell et al. [HSH16] propose debugging techniques specifi-
cally designed for reactive visualizations. Prior to their work, users
could only use the JavaScript console to traverse the system in-
ternals, which required existing knowledge and was hard to track
changes. To provide the needed detail to the visualization engineer,
they track state through interactions and map that to a visual de-
bugging interface.

As these works focus on discovering errors in the visualization
specification rather than providing performance insights, they tar-
get a different problem space than VegaProf. With VegaProf, we
provide the first performance profiler for visualizations specified
with a DSL.

2.2. Profiling Dataflow Systems

A bidirectional coupling of the dataflow graph with the underly-
ing DSL code and visualization rendering functions is central to
interactive profiling in VegaProf. Dataflow graphs are a common
abstraction used by myriad tools and DSLs across domains beyond
data visualization (e.g., PyTorch, TensorFlow, Spark, Flink, Naiad,
SQL). Earlier work presents profiling tools to help discover perfor-
mance issues in dataflow systems [GLB20]. For example, Perfopti-
con [MHHH15] shows the runtime distribution of individual query
operators and per-worker execution traces. Similar to our approach,
Perfopticon also maps the profiling result to user input. Battle et al.
propose StreamTrace [BFD∗16], disentangling SQL queries as a
series of intermediate queries to help developers debug the behav-
ior of their queries. In a similar vein, Grust et al. [GKRS11] link
intermediate query results directly to the SQL code that generated
them instead of using representative visualizations.

https://drive.google.com/file/d/1RblCu4f-cg2AUKqVSEMm4JtHhKg4DgDM/view?usp=sharing
https://github.com/JunranY/editor


J. Yang et al. / VegaProf

Other approaches from the deep learning domain [GGGP21,
WCLR22,CLC∗22] focus on program code performance optimiza-
tion. Skyline [YGP20] embeds neural network training perfor-
mance predictions in the code editor to help machine learning prac-
titioners tune hyperparameters. Umlaut [SHH21], another profiling
instrument for the deep learning domain, provides heuristics and
error messages by analyzing the program structure and model be-
havior. Mapping performance directly to code has been a common
paradigm in recent research [CLRG19]. However, none of the ap-
proaches discussed in this paragraph target visualization engineers
or consider dataflow graphs as a profiling entity.

Beischl et al. [BKB∗21] propose a multi-level performance pro-
filing technique specifically for dataflow-based systems. We build
on this approach and adopt it for data visualization, where different
abstraction levels and, more importantly, user-facing specification
code need to be considered. Additionally, we provide an interactive,
visualization-based interface for mitigating performance problems,
whereas Beischl et al. focus on the technical aspects of performance
profiling.

3. Formative Interviews

To assess the needs of visualization engineers, we interviewed 3
professional visualization engineers at Sigma Computing. For all
participants, the programmatic generation of Vega visualizations is
part of their daily work. We conducted and recorded our interviews
in a semi-structured manner via online video conferencing soft-
ware. A list of predefined topics and questions was covered, while
at the same time leaving room for open discussion. We specifically
asked our interviewees about their performance optimization needs,
their current practice and tools, and potential improvements.

3.1. Performance Optimization

We discovered that performance issues “they usually have large
impacts” (P1). Our interviewees attributed this to the fact that per-
formance issues are currently hard to localize, debug, and fix. This
manifests in the fact that “performance issues are often neglected
to fix” (P2) and “once they find the causes, they always tell the
customers not to perform such operations” (P1). Furthermore, vi-
sualization engineers typically “limit the data input to Vega spec
to be less than 25k [data points] to prevent a lot of slow rendering
issues” (P3). Moving forward, these cannot be the go-to solutions,
especially since interviewees “have seen a lot of questions regard-
ing visualization performance” (P1).

3.2. Current Tooling

To reason about poor performance, visualization engineers typi-
cally “have zoom meetings with customers to talk about problem-
atic visualizations” (P1). Then, they often “simulate the config-
urations” (P1 and P3) and test them in a sandbox environment.
As such, they do not have specialized tooling for performance de-
bugging, but instead rely on “the Vega Editor in combination with
Chrome’s devtools” (All participants). However, the problem with
this is that “devtools can only tell you that the issues are caused
by Vega function calls, but it can’t help with locating them in the
spec” (P1).

3.3. Potential Improvements

When asked about what tooling could improve their situation, inter-
viewees asked for a “breakdown of the transforms, mark rendering,
etc. that can immediately indicate which lines [in the DSL] caused
the issue” (P3). Thus, what professional visualization engineers are
asking for is a mapping from performance issues back to the visu-
alization specification and the IRs of the underlying DSL repre-
sentation. Therefore, adequate developer tooling for performance
profiling must surface this mapping effectively.

4. Design Goals

Based on our insights from the aforementioned formative inter-
views, we distilled the following requirements for a successful Vega
performance profiler:

Bidirectional timing mapping. To help visualization engineers
discover the root cause of performance bottlenecks, it is not suffi-
cient to just measure function execution times. Instead, to be able to
make informed decisions about performance optimizations, practi-
tioners need a bidirectional mapping that connects these timings to
the DSL, its associated dataflow graph, and individual rendering
function calls.

Multi-level profiling insights. Once a bidirectional mapping of
timings between function execution and the DSL exists, practition-
ers need to be able to investigate the results of this mapping. Visu-
alization instruments that surface timing measurements can support
this investigation. Using such visualizations, practitioners can trace
performance measurements through the IRs used in the lowering
pipeline of a DSL.

Familiar development environment. Finally, we want to support
visualization engineers in a familiar environment. visualization en-
gineers adopt a tool only if the burden of entry does not outweigh
its benefits. Therefore, we want to provide these visual insights for
visualization performance debugging in a familiar environment, in
our case, the Vega Editor [Veg22b].

5. Bidirectional Profiling Map

Like other profiling instruments, we measure function execution
times. To do this, we hook into how Vega parses specifications and
instantiates dataflow operators and record the runtime when opera-
tors’ evaluation functions are executed.

While recording function execution times is well-established for
time-profiling, effective profiling instruments for a visualization
DSL rely on a bidirectional mapping of execution time measure-
ments and DSL segments with semantic meanings. Only with such
a mapping can visualization engineers put performance bottlenecks
in the context of the IRs that the DSL gets transformed into (cf. Fig-
ure 2).

To realize such a mapping, we annotate the nodes of the dataflow
graph description as they are created when parsing the visualiza-
tion specification. This way, we are also able to reverse this map-
ping, associating dataflow graph nodes with the corresponding lines
of DSL code. Once the dataflow graph description is transformed
into a dataflow runtime where the nodes represent functions to be



J. Yang et al. / VegaProf

DSL Specification

Dataflow Graph

Function Execution

"type": "rect",
"from": {"data":"table"},
"encode": {
...

loadData() - 340ms
initScales() - 60ms
renderMark() - 10ms

Low
ering

Annotation
oflow

erlevels. Ba
ck
tra
ck
in
g

M
ap
pi
ng
ex
ec
ut
io
n
tim
e
to
hi
gh
er
lev
el
s.

Figure 2: During the lowering process, the DSL specification is
parsed into a computation graph and then functions to be evaluated
eventually. We hook into this lowering process and add annotations
that indicate which element on a higher-level IR corresponds to
what part of the lowered representation, e.g., what part of the spec
corresponds to which data flow graph nodes. Based on these anno-
tations, we can track measured function evaluation times back to
higher levels, i.e., assigning time-measurements to the nodes of the
dataflow graph and visualization specification.

evaluated, we further annotate these functions with the respective
dataflow graph nodes to realize such a mapping for this second low-
ering process. This way, our measurements of function execution
time can be mapped back to the node of the dataflow graph that trig-
gered the execution. By chaining the aforementioned annotations,
we are able to assign the execution of individual functions not only
to nodes in the dataflow graph but also to lines and segments of
DSL code. Using this bidirectional mapping, execution times can
be traced from the function level all the way to the highest level of
operation, namely the DSL specification for the visualization.

Altogether, this directly addresses our first design goal of cre-
ating a bidirectional mapping between Vega’s IRs. While we only
use this inter-IR indexing approach to provide better profiling in-
struments, it could be helpful for other introspection tools such as
educating about Vega’s lowering process or dataflow debugging as
well. In theory, this bidirectional profiling map can be visualized
and analyzed in any environment. We integrated this bidirectional
mapping into a well-established visualization development tool, the
Vega Editor. In the following section, we explain how this technol-
ogy is used for visually supporting visualization engineer’s perfor-
mance analysis needs.

6. Visual Performance Inspection

On the basis of the information obtained through the aforemen-
tioned bidirectional mapping of profiling results, we provide a vi-
sual interface that enables visualization engineers to take action and

improve the performance of their visualization designs. We imple-
mented this interactive performance profiling interface as an exten-
sion to the Vega Editor to place visualization engineers in a familiar
environment. A new performance tab provides a performance flame
graph (cf. Figure 3 (B)) and augments the dataflow graph (cf. Fig-
ure 3 (C)) as well as the DSL specification editor (cf. Figure 3 (A)).
All three of those components are connected through brushing and
linking techniques using our bidirectional profiling map (cf. Sec-
tion 5) as the underlying data source. This way, we map selections,
mouseover events, and zoom transitions that happen in one of the
three views to the other two. Throughout our visualizations, such
interactions are indicated through blue highlights. Hereby, hovered
items are assigned a semi-transparent blue highlight, whereas se-
lected items are highlighted in full blue consistently across all vi-
sualizations.

Aside from these main views, the Vega Editor further displays
the visualization that results from the provided specification. If
the visualization is interactive, the resulting profiling and opera-
tor states from interaction events are recorded as multiple pulses.
The first pulse marks the initial rendering of the visualization. Sub-
sequent pulses are added whenever the visualization needs to be
updated based on user interaction. Pulses can be selected from the
pulse table, updating the flame graph and dataflow graph to only
show the operators being re-evaluated and their timings. In addi-
tion, pulses augment the dataflow graph via the node tooltips by
providing insights of how data changes in the individual nodes
along every pulses. By default, we show profiling results for the
initial rendering pulse for both static and interactive charts. This
way, visualization engineers can use our visualizations and profil-
ing results not only to debug the initial rendering process but also
to improve interaction performance. Directly above the pulse selec-
tion, we prominently show the total runtime of the selected pulse.
This way, users have an anchor to put all the timings in the visual
interface into context.

6.1. DSL Specification Editor

The DSL specification editor is prominently positioned at the left
edge of the Vega Editor (cf. Figure 3 (A)), marking a natural entry
point for visualization engineers. It represents the highest level of
abstraction for VegaProf, directly connecting performance profiles
to the DSL code that defines the visualization. Since this level can
be directly influenced by visualization engineers, it is often where
their time-performance analysis begins.

To map function execution times to blocks of the DSL specifi-
cation, we consider different levels of ranges in the specification.
These blocks directly map to JSON’s hierarchical object struc-
ture in the Vega specification. For example, a user would specify
both the x-axis and y-axis blocks under the axis block. In Vega,
these blocks are the units that visualization engineers would asso-
ciate with visual components. Hence, this is the level at which they
would make edits, e.g., changing the type of mark that is used for
rendering or how data is mapped to these marks. As such, this way
of clustering parts of the DSL naturally aligns with how Vega users
understand and modify the specifications.

Hovering over one of these blocks of DSL code highlights the
respective specification segment. When clicking on such a high-



J. Yang et al. / VegaProf

A - DSL Specification Editor

B - Performance Flame Graph

C - Dataflow View

Figure 3: Our visual inspection tools were implemented in a familiar development environment – the Vega Editor. (A) We highlight selected
regions of DSL code when inspecting performance bottlenecks. (B) A flame graph depicts the measurement of rendering function execution
time. (C) In Vega’s dataflow graph, we highlight nodes that contribute to selected timing measurements. Note how hovering over the flame
graph highlights the corresponding elements in the dataflow graph and DSL editor.

lighted block of code, it is selected for further inspection. As men-
tioned at the beginning of this Section, highlights and selections are
transferred to the according elements in the dataflow graph and the
performance flame graph. Maybe even more importantly, we also
implemented the reverse linking directions from the flame graph
and the dataflow graph. As a result, one can easily interpret, the
high-level responsibility of a certain element of the flame chart and
the dataflow graph by inspecting the highlighted block in the spec-
ification. Meanwhile, visualization engineers get insight into how
much time individual blocks of the visualization specification re-
quire during rendering. For example, investigating elements that
require a large portion of the rendering time in the flame graph
scrolls to the corresponding code segment of the DSL and high-
lights it. This makes such performance measures insightful and ac-
tionable, as visualization engineers can make direct adjustments to
relevant parts of the DSL code.

6.2. Dataflow View

As a first IR of the Vega visualization grammar, the DSL specifi-
cation provided by the visualization engineer is transformed into
a dataflow graph. With the dataflow view, our visual performance
inspection interface also allows for analysis at this more detailed
level. The dataflow view contains a visualization of the parsed
dataflow graph that Vega’s DSL gets transformed into (cf. Figure 3
(C)). It can be color-coded by node type or, more conveniently

for performance analysis, by node runtime. We use D3’s interpo-
lateReds color scale to encode node runtime since red is often used
as an alarm color, again drawing attention to the nodes that are most
performance-intensive during rendering.

Whenever a node is selected from this graph visualization, the
dataflow graph gets transformed to show only the subgraph with
connections to the selected node based on dependency. A zoom-in
animation further puts the focus on selected nodes. If a selection
comes from any other visualization, such as the DSL editor or the
performance flame graph, we analyze the nodes that are involved in
the selected subset of performance analysis elements and employ a
filtering and zooming similar to the one for direct node selection.
This interaction concept further embraces the combined analysis
of Vega’s different IRs, similar to how interaction with the DSL
specification editor is mapped to all other visualizations.

To directly surface the most time-consuming nodes, VegaProf
further includes a table of all nodes, positioned next to the dataflow
graph. This table is based on the dataflow graph and ordered by
node execution time, placing the most performance-intensive nodes
at the top. With this ordering, this tabular visualization can be used
as an entry-point of the analysis on the dataflow level as it guides
the visualization engineer’s attention directly to nodes of interest.



J. Yang et al. / VegaProf

6.3. Performance Flame Graph

Positioned directly above the dataflow graph, the performance
flame graph (cf. Figure 3 (B)) functions as an intermediate rep-
resentation between the dataflow graph and the DSL specification
editor. The flame graph is defined by its different levels of aggrega-
tion, going from coarse performance elements to more fine-grained
ones. To symbolize this aggregation structure, coarser levels are
colored in grey and light blue, whereas a dark blue coloring is em-
ployed for the most detailed performance analysis levels. The most
detailed level in this flame graph directly represents nodes of the
dataflow graph. However, the flame graph also visualizes the hier-
archical structure of the Vega DSL at its higher levels, connecting
the two other views in one visualization.

Hovering over and selecting elements in the flame graph works
just as it does in our other visualizations. The flame graph addition-
ally zooms into selected elements to provide more detailed infor-
mation about a selection. Similar to the dataflow graph, this zoom-
ing and highlighting might also be triggered by events from other
visualizations. Altogether, the flame graph, with its different levels
of performance aggregation and linked interaction concepts, serves
as a bridge between both the specification editor and the dataflow
view.

7. Use Cases

This section describes two example use cases for VegaProf. It
demonstrates how VegaProf can help visualization engineers in dis-
covering and resolving performance problems of their Vega visual-
izations. These use cases highlight how connecting different IRs
help debug performance and, specifically, how a direct linking of
performance bottlenecks to Vega’s specification make such analy-
ses actionable.

7.1. Visualization Design Decisions

Mary is a visualization engineer in the data analysis team of a large
airline. She wants to analyze the effect of flight distance on the
delay of flights based on a dataset that contains information on three
million flights. She considers a scatter plot to visualize the data.
When she specifies the scatter plot in Vega, she notices that the
visualization she has created is too slow to be usable.

Having heard of VegaProf, Mary loads her data and visualiza-
tion specification in the Vega Editor and analyzes the performance
of her visualization. Through an investigation of the Flame Graph,
she immediately notices that mark rendering takes most of the over-
all visualization generation time. Looking at the connected location
in the visualization specification, she notices that rendering individ-
ual scatter marks for millions of flights is just too slow to sustain
interactivity.

Since Mary is looking after general trends rather than individual
flights anyway, she decides to get rid of these marks and instead
render a heatmap for binned results.

Next, Mary notices that loading the data was rather slow. Us-
ing the dataflow graph, she locates an operation that copies part of
the data during the transformation stage. As the relevant part of the

Vega specification is highlighted when she hovers the correspond-
ing dataflow node, she identifies the problem and is able to mod-
ify the transformation code so that data processing becomes much
more performant.

After these modifications, Mary notices that while much faster
than before, data processing is still her main performance bottle-
neck. The final step she could take is to pre-aggregate data instead
of binning it at present time. However, since the data frequently
changes, she decides against it and accepts the initial loading time
because of the data transformation.

7.2. Offloading Computational-Intensive Operations

Alice works as a visualization engineer for a software company.
Her team is responsible for implementing product features around
UI-based visualization authoring. Within their product, users can
create various types of visualizations to explore data in a cloud data
warehouse (CDW) without programming expertise. Alice’s team
uses Vega as the underlying technology to specify visualizations
through the product’s UI.

By default, Vega requires all data to be loaded and processed in
the client’s browser. However, it is computationally impossible to
query the CDW for the raw data and transfer it to the browser’s
memory for processing in Vega. Therefore, Alice decides to pre-
process the data with SQL queries so that the query result is ready
to be directly mapped to visual channels without further Vega trans-
forms. However, her testing visualization is not fast in its initial
rendering and does not seamlessly respond to user interactions.

When Alice inspects VegaProf’s pulses and dataflow graph visu-
alizations, she finds out that both the initial rendering and every in-
teraction trigger a request to the CDW, blocking the entire dataflow
graph. Since all the data processing is done as a pre-process step in
SQL, each interactive selection re-executes the whole data pipeline.
In turn, Vega is blocked waiting for data that could have been
cached. Knowing that the transforms parameterized by interactions
are fast enough to be executed in the browser, she moves these
interaction-based data transformations into the Vega specification,
keeping only the underlying computational-intensive operations on
the backend. These time-consuming operations are only executed
once and cached in the dataflow graph. As a result, the initial ren-
dering time for the chart is acceptable, while interactions are sig-
nificantly smoother.

8. Expert Interviews

To further evaluate the usability of VegaProf, we conducted a qual-
itative user study with five visualization engineers at Sigma Com-
puting. In the following, we describe the study setup and then re-
port our observations gathered during these interviews. Finally, we
summarize feedback on the usability of VegaProf elicited from par-
ticipants through a post-study questionnaire.

8.1. Interview Setup

We now provide details on the setup of our study, including our
participant pool, and the procedure and data used.



J. Yang et al. / VegaProf

Figure 4: During our evaluation, we used a scatter plot with binned aggregation as an example. At the beginning, the rendering time was
about 600 ms. The individual point marks did not add substantial value to the visualization; in fact, they even obstructed the aggregated
heatmap visualization. Thus, removing them did not undermine the message the visualization aims to communicate while reducing the mark
rendering time to almost zero. Furthermore, the data transformation was specified in a suboptimal way that required Vega to copy data.
Restructuring the data transformation further saved about 200 ms without changing the visualization.

Participants. Our interviewees worked with Vega-generated visu-
alizations daily, although they had different levels of background
knowledge of Vega’s internal dataflow. As such, they well repre-
sented VegaProf’s target audience. While we had to collect our data
opportunistically because of the limited availability of our partici-
pants, field studies like ours excel at capturing how visualization
engineers actually work.

Procedure. To understand the affordances and limitations of Ve-
gaProf, we had 30-minute long think-aloud sessions with each in-
terviewee individually. During the interviews, we first gave a quick
tutorial of VegaProf, before participants could experiment with the
profiler themselves. For this experimentation, our participants got
access to VegaProf with a visualization specification preloaded.
Our participants were asked to explore the profiler based on two
guiding questions, namely how can the mark rendering be im-
proved without harming the message of the visualization? and how
can the data processing be improved?. We also encouraged them to
share a specification from their recent work and show us how they
would use VegaProf to inspect it. Finally, after the main think-aloud
session, we sent interviewees an online questionnaire to evaluate
the usefulness of a visualization profiler to their job in general, and
their ratings of each VegaProf’s specific feature.

Data and specification. The specification we used for this evalua-
tion renders a scatter plot with binned aggregation (cf. Figure 4) as
described in Section 7.1. It includes three million data points and
supports panning and zooming to re-calculate the aggregation with
new buckets. Naturally, rendering or aggregating a large number of
data points is prone to performance issues.

8.2. Study Observations and Discussion

In the following, we outline the main findings of our interviews.

Initial performance improvements. With the help of the flame
graph, all participants correctly identified the point marks as the
most time-consuming components. They located the relevant part
in the specification by hovering on the flame graph and stated that

they found the feature useful “it is impressive that you can high-
light the spec [from the flame chart]” (P3). Based on the high-
lighted region in the specification, all participants recognized that
a scatter plot might not be the most efficient visually and compu-
tationally and removed it. Highlighting relevant parts of the visual-
ization specification was one of the most well-received features of
VegaProf as the current way of debugging slow specifications is to
“just guess which part is the cause and modify it so see if it solves
the issue or not” (P1). VegaProf greatly simplifies this laborious
process as it connects profiling measurements back to the visualiza-
tion specification. One participant underlined the importance of the
flame graph to their workflow, since without VegaProf “we could
separate the data transform out and profile it programmatically,
but there was no way to do that for everything else, [including] the
marks, the rendering, etc.” (P5).

Data transformation performance. As participants inspected the
resulting performance after this first edit, they discovered that the
runtime for rendering the marks was greatly reduced. Subsequently,
they recognized that, with the modified specification, the most
time-consuming operations came from the transformations that
were used for processing the data. Participants were able to select
the relevant dataflow nodes responsible for the performance bot-
tleneck, however, most of them lacked the background knowledge
about how nodes are instantiated from the specification through
parsing and compilation. Specifically, they were not able to in-
fer from the node name relay that the performance bottleneck was
caused by a unnecessary data copy operation. P5 managed to solve
the task by removing unnecessary operations, although it required
a hint from our side: “Now that you told me a transform in the spec
can be expanded to multiple operations, I can see it in the flame
chart and everything makes sense to me” (P5). Some participants
couldn’t come up with a solution addressing this performance bot-
tleneck. After we explained how to reconstruct the data transforma-
tion pipeline, our participants acknowledged that knowing the Vega
internals and inspecting the dataflow graph would help optimize
specification authoring: “I’m surprised that doing this can save so



J. Yang et al. / VegaProf

much [execution] time!” (P1). We believe that the above findings
also suggest that the data pipeline development in Vega can be fur-
ther optimized, for example, to avoid unnecessary data copying and
streaming regardless of how users structure the specifications.

Visualization usage. Overall, we observed that participants spent
most of their time exploring the flame chart “because it exactly
tells you what part of rendering is taking up all the time” (P2).
When our participants decided to temporarily focus on part of the
flame chart after initial exploration, they typically inspected the
highlighted segments of the specification. Participants spent less
time inspecting the dataflow graph. This might be partly due to the
fact that most participants had a lack of understanding of the node
names and “so far have just been using Vega as a black box [...]
assuming that it would work well” (P2).

Dataflow graph usability. Initially, even participants who had fre-
quently debugged Vega visualizations with the dataflow graph be-
fore found the flame chart more helpful than the dataflow graph.
They focused more on the dataflow graph only after being reminded
of the connection between the flame chart and dataflow graph.
While this underlines the importance of our flame graph visual-
ization, it also raises questions about the usefulness of the dataflow
graph for debugging purposes. One of our participants noted that
“we used a lot of the Chrome Devtools and their entire interface is
basically only the flame chart” (P3), attributing their focused view
partly to previous habits. However, they also mentioned that “the
connection between the spec and dataflow graph, and the struc-
tural features [in the dataflow graph] could be really helpful to
understand what goes on behind the scenes for Vega” (P4). Fur-
ther research targeted directly at visualizing dataflow systems in
a more understandable way, including explanations of individual
nodes, might help visualization engineers make better use of the
dataflow graph as an IR for debugging.

Participant-provided specifications. After the guided explo-
ration, three participants asked us to directly explore specifications
they recently worked on in VegaProf. We observed how they used
VegaProf to validate or reject their assumptions about a given spec-
ification. P2 showed us a scatter plot with categorical data. At first,
they were surprised that “the axes took the longest to render and
then the marks were comparatively shorter [...] that’s not what I
would have guessed initially” (P2). Then, they realized that the
dataset they used was relatively small while the categorical vari-
ables being mapped to the axes had a high cardinality. P3 shared a
Sankey diagram that they have been working on for Sigma Com-
puting’s product with us. During the development, they frequently
inspected the dataflow graph to understand and debug the connec-
tion between nodes. Concluding that “I’m not surprised that the
“linkpath” and “datajoin” operations took the most time” (P4),
they verified that the performance conformed with their mental
model for such diagram. Finally, P5 wanted to explore a visualiza-
tion automatically generated from a Sigma Workbook [GSU∗22].
They exported the specification of a simple chart to test their men-
tal model of how it was implemented. As expected, it was imple-
mented well, such that “it’s so fast that the axis take half of the
rendering time” (P5).

−50 0 50 100
Percentage

Profiler importance

Profiler helpfulness

Would use VegaProf

Like presented functionality

Like IR connection

Like presented visualizations

Spec visualization

Dataflow visualization

Flame graph

Interactive pulses

Strongly disagree
Disagree
Neither agree nor disagree
Agree
Strongly agree

Response
Profiler Value

VegaProf Functionality

Individual Components

Figure 5: After the main think-aloud session, our study partic-
ipants rated VegaProf on a five-point Likert scale. We separated
these questions into three main topics. First, we asked about the
general value of a visualization profiler and VegaProf specifically.
Second, participants gave feedback about the perceived usefulness
of VegaProf’s functionality. Third, we evaluated individual com-
ponents of VegaProf. Overall, our participants saw great value in
VegaProf and its visualizations.

8.3. Usefulness Questionnaire

Upon completion of the main interview study, we sent our partic-
ipants a link to an online form with ten questions to be answered.
Participants were able to provide feedback on their experience and
takeaways from our interview session on a 5-point Likert scale. The
results of this evaluation can be seen in Figure 5.

Questions one (I think a visualization profiler is an important
tool), two (A visualization profiler would be helpful to my work),
and three (If I ever have to profile visualizations, I would use the
presented profiler) were targeted at the general value of a visualiza-
tion profiler and VegaProf, specifically. Overall, participants found
visualization profilers useful and noted that they might be helpful
to their work. This confirms the findings from our formative inter-
views. Furthermore, most of them would like to use VegaProf for
their visualization profiling needs, affirming the usefulness of our
profiler implementation.

Questions four (Overall, I like the functionality of the presented
profiler) and five (The fact that different levels of profiling are
linked is very helpful) were to evaluate the functionality of Veg-
aProf. Regarding the way VegaProf functions, our participants all
liked its functionality, indicating that it indeed provides tooling that
was not available before. Our participants also liked the way we co-
ordinate Vega’s intermediate representations via visual interaction,
supporting our architectural design choices.

Finally, questions six to ten were designed to assess the usability
of VegaProf’s individual components (Overall, I like the visualiza-
tions used to present profiling results, Visualizing which part of the
specification can be attributed to profiling results is very helpful,
Visualizing profiling results in the dataflow graph is very helpful,
The flame graph is very helpful, and I like the fact that I can select
pulses and this way debug interactive visualizations). Overall, our



J. Yang et al. / VegaProf

participants also liked the individual visualizations that VegaProf
provides. They were especially fond of the visualization of perfor-
mance results mapped to the DSL specification and the flame graph,
which can provide an overview of performance results. Participants
were torn on the usefulness of interactive pulses. One reason for
that might be that we did not focus on them for the interactive eval-
uation session, however. The most controversial of the visualiza-
tions was the dataflow graph. While some found it valuable, others
did not see it as beneficial for their workflows. We discuss potential
reasons for this discrepancy in the previous subsection.

Overall, our participants rated VegaProf very positively, under-
lining the importance of this line of work, its architectural design
choices, and most of the visualization decisions we made.

9. Discussion

VegaProf is the first profiler for the Vega visualization grammar.
Through its multi-level performance tracing approach, VegaProf
provides previously unavailable background for performance prob-
lems, making performance debugging tractable and actionable. In
the following, we will discuss our findings made during the devel-
opment and evaluation of VegaProf. Lastly, while our studies and
experiments show that VegaProf can be helpful for profiling Vega
visualizations, we also identified several promising directions for
future research.

Direct visualization connection. Surprisingly, our study partici-
pants did not interact much with the rendered visualization. How-
ever, there might still be a case to be made for dataflow graph nodes
to be connected to the scene graph that renders the visualizations.
With such a connection, components of the resulting visualization
could be linked to the visualizations included in our profiler.

Profiling dataflow systems. While VegaProf focuses on the Vega
DSL, the underlying approach and visual interaction design can
readily apply to other DSLs. Many DSLs go through a similar low-
ering process and use a dataflow graph as an intermediate represen-
tation. Further generalization of our approach could enable perfor-
mance profiling for a wide array of these systems, broadening the
availability of accessible profiling even further.

Performance at scale. Our evaluation shows how our approach
enables performance improvements for individual visualizations.
However, DSLs are also frequently used for visualization genera-
tion at scale. As a result, thousands of users can use automatically
generated visualizations, e.g., in web applications under different
browser and cloud configurations. Future research could extend our
work to help visualization engineers profile the distributed perfor-
mance of visualizations.

Improvement recommendations. While mapping performance is-
sues to the DSL proved to be an important step towards providing
visualization engineers with more powerful profiling tools, the next
step would be to suggest ways of improving performance. Here,
knowledge from other visualizations or performance improvement
sessions could be used to provide suggestions proactively. Using
approaches such as the described performance at scale in combi-
nation with machine learning methods could enable such recom-
mendations.

In-browser profiling. Based on the insights of our formative in-
terviews, we provide our profiler as an extension to the Vega Ed-
itor. While this is a common place for Vega visualization experi-
ments, debugging is even more commonly done in the browser. We
developed our visualizations in the Vega Editor because of its ex-
tensibility and flexibility in accessing Vega internals and providing
rich visualizations. If the same tooling could be provided directly
in browser profiling tools, fixing performance issues might become
even more accessible.

Scope of evaluation. While our studies were conducted with pro-
fessional visualization engineers, they all work at the same insti-
tution. In this context, they work with a spectrum of visualiza-
tions targeted at the business intelligence domain, creating visu-
alizations for large data sets and user bases. This is a common use
case for DSL-based visualization grammars; however, we recog-
nize that our findings might not transfer to all usage scenarios, such
as one-off visualizations, small data sets, and specific user bases.
Future work might evaluate the usefulness of our approach in such
settings.

Offloading decisions. A common pattern we saw during our evalu-
ation was that visualization engineers are willing to offload certain
aspects of the data transformation to a dedicated backend. How-
ever, they often do not know which parts are worth the effort. With
VegaProf, such offloading decisions become much easier, as data
transformation performance can be inspected in detail and tailored
for specific designs. In turn, VegaProf could be combined with tools
like VegaPlus [YJY∗22], VegaFusion [KMM22], and other back-
ends or data processors to move time-consuming parts of the visu-
alization process to dedicated services.

10. Conclusion

We introduced VegaProf, the first profiler enabling in-depth anal-
ysis of visualization performance bottlenecks. The design of Ve-
gaProf is informed by formative interviews that surfaced the dif-
ficulty of Vega visualization performance debugging. VegaProf
brings visual profiling affordances to Vega’s different IRs by hook-
ing into the lowering process. This way, the presented visualiza-
tions surface profiling results directly on the dataflow graph and
visualization specification. We demonstrated the usefulness of Ve-
gaProf through two use cases and reported feedback elicited from
five visualization engineers, utilizing one of the use cases as a
probe. In this evaluation, visualization engineers were able to locate
and address performance bottlenecks through our linked visualiza-
tion of Vega’s IRs. VegaProf replaces the state of the art of either
debugging Vega’s performance through trial and error procedures
or unnecessarily limiting data set sizes.

While our work marks the first endeavor into the domain of vi-
sualization profiling, we hope that future research will broaden the
applicability of our approach. In particular, our instrumentation for
bidirectional mapping and corresponding visual interaction design
coupling IRs can benefit developer tools for dataflow systems at
large. Finally, we advocate for designing future visualization DSLs
with their developer tools, such as debuggers and profilers, in mind.
This co-design approach would simplify and accelerate the devel-
opment of introspection tools for DSLs, further enhancing the de-
veloper experience in using them.



J. Yang et al. / VegaProf

References
[BFD∗16] BATTLE L., FISHER D., DELINE R., BARNETT M., CHAN-

DRAMOULI B., GOLDSTEIN J.: Making sense of temporal queries with
interactive visualization. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (2016), pp. 5433–5443. 2

[BKB∗21] BEISCHL A., KERSTEN T., BANDLE M., GICEVA J., NEU-
MANN T.: Profiling dataflow systems on multiple abstraction levels. In
Proceedings of the Sixteenth European Conference on Computer Systems
(2021), pp. 474–489. 3

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3 data-driven doc-
uments. IEEE transactions on visualization and computer graphics 17,
12 (2011), 2301–2309. 1, 2

[CLC∗22] CAO J., LI M., CHEN X., WEN M., TIAN Y., WU B., CHE-
UNG S.-C.: Deepfd: Automated fault diagnosis and localization for deep
learning programs. arXiv preprint arXiv:2205.01938 (2022). 3

[CLRG19] CITO J., LEITNER P., RINARD M., GALL H. C.: Interactive
production performance feedback in the ide. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE) (2019), IEEE,
pp. 971–981. 3

[CSX∗21] CHEN Q., SUN F., XU X., CHEN Z., WANG J., CAO N.: Vi-
zlinter: A linter and fixer framework for data visualization. IEEE trans-
actions on visualization and computer graphics 28, 1 (2021), 206–216.
2

[GGGP21] GEOFFREY X. Y., GAO Y., GOLIKOV P., PEKHIMENKO G.:
Habitat: A {Runtime-Based} computational performance predictor for
deep neural network training. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21) (2021), pp. 503–521. 3

[GKRS11] GRUST T., KLIEBHAN F., RITTINGER J., SCHREIBER T.:
True language-level sql debugging. In Proceedings of the 14th Interna-
tional Conference on Extending Database Technology (2011), pp. 562–
565. 2

[GLB20] GATHANI S., LIM P., BATTLE L.: Debugging database
queries: A survey of tools, techniques, and users. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (2020),
pp. 1–16. 2

[GSU∗22] GALE J., SEIDEN M., UTKARSH D., FRANTZ J., WOOLLEN
R., DEMIRALP Ç.: Sigma workbook: A spreadsheet for cloud data ware-
houses. arXiv preprint arXiv:2204.03128 (2022). 8

[HCS20] HOPKINS A. K., CORRELL M., SATYANARAYAN A.: Visu-
alint: Sketchy in situ annotations of chart construction errors. In Com-
puter Graphics Forum (2020), vol. 39, Wiley Online Library, pp. 219–
228. 2

[HHN85] HUTCHINS E. L., HOLLAN J. D., NORMAN D. A.: Direct
manipulation interfaces. Human–computer interaction 1, 4 (1985), 311–
338. 2

[HSH15] HOFFSWELL J., SATYANARAYAN A., HEER J.: Debugging
Vega through Inspection of the Data Flow Graph. In EuroVis Work-
shop on Reproducibility, Verification, and Validation in Visualization
(EuroRV3) (2015), Aigner W., Rosenthal P., Scheidegger C., (Eds.), The
Eurographics Association. doi:10.2312/eurorv3.20151144. 2

[HSH16] HOFFSWELL J., SATYANARAYAN A., HEER J.: Visual debug-
ging techniques for reactive data visualization. In Computer Graphics
Forum (2016), vol. 35, Wiley Online Library, pp. 271–280. 2

[KMM22] KRUCHTEN N., MEASE J., MORITZ D.: Vegafusion:
Automatic server-side scaling for interactive vega visualizations,
2022. URL: https://arxiv.org/abs/2208.06631, doi:10.
48550/ARXIV.2208.06631. 9

[KWHH17] KIM Y., WONGSUPHASAWAT K., HULLMAN J., HEER J.:
Graphscape: A model for automated reasoning about visualization sim-
ilarity and sequencing. In Proceedings of the 2017 CHI conference on
human factors in computing systems (2017), pp. 2628–2638. 2

[MHHH15] MORITZ D., HALPERIN D., HOWE B., HEER J.: Perfopti-
con: Visual query analysis for distributed databases. In Computer Graph-
ics Forum (2015), vol. 34, Wiley Online Library, pp. 71–80. 2

[MK18] MCNUTT A., KINDLMANN G.: Linting for visualization: To-
wards a practical automated visualization guidance system. In Vis-
Guides: 2nd Workshop on the Creation, Curation, Critique and Condi-
tioning of Principles and Guidelines in Visualization (2018). 2

[MWN∗18] MORITZ D., WANG C., NELSON G. L., LIN H., SMITH
A. M., HOWE B., HEER J.: Formalizing visualization design knowl-
edge as constraints: Actionable and extensible models in draco. IEEE
transactions on visualization and computer graphics 25, 1 (2018), 438–
448. 2

[SHH21] SCHOOP E., HUANG F., HARTMANN B.: Umlaut: Debugging
deep learning programs using program structure and model behavior. In
Proceedings of the 2021 CHI Conference on Human Factors in Comput-
ing Systems (2021), pp. 1–16. 3

[SMWH16] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-lite: A grammar of interactive graphics. IEEE transac-
tions on visualization and computer graphics 23, 1 (2016), 341–350. 2

[Veg22a] VEGA: Vega & vega lite visualization grammars, 2022. URL:
https://vega.github.io/. 1, 2

[Veg22b] VEGA: Vega editor, 2022. URL: https://vega.github.
io/editor/. 3

[WCLR22] WARDAT M., CRUZ B. D., LE W., RAJAN H.: Deepdiagno-
sis: automatically diagnosing faults and recommending actionable fixes
in deep learning programs. In Proceedings of the 44th International Con-
ference on Software Engineering (2022), pp. 561–572. 3

[Wic16] WICKHAM H.: ggplot2: Elegant Graphics for Data Analy-
sis. Springer-Verlag New York, 2016. URL: https://ggplot2.
tidyverse.org. 1

[Wil12] WILKINSON L.: The grammar of graphics. In Handbook of
computational statistics. Springer, 2012, pp. 375–414. 1

[WQM∗17] WONGSUPHASAWAT K., QU Z., MORITZ D., CHANG R.,
OUK F., ANAND A., MACKINLAY J., HOWE B., HEER J.: Voyager 2:
Augmenting visual analysis with partial view specifications. In Proceed-
ings of the 2017 chi conference on human factors in computing systems
(2017), pp. 2648–2659. 2

[YGP20] YU G. X., GROSSMAN T., PEKHIMENKO G.: Skyline: In-
teractive in-editor computational performance profiling for deep neural
network training. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology (2020), pp. 126–139. 3

[YJY∗22] YANG J., JOO H. K., YERRAMREDDY S. S., LI S., MORITZ
D., BATTLE L.: Demonstration of vegaplus: Optimizing declarative vi-
sualization languages. In Proceedings of the 2022 International Confer-
ence on Management of Data (2022), pp. 2425–2428. 9

https://doi.org/10.2312/eurorv3.20151144
https://arxiv.org/abs/2208.06631
https://doi.org/10.48550/ARXIV.2208.06631
https://doi.org/10.48550/ARXIV.2208.06631
https://vega.github.io/
https://vega.github.io/editor/
https://vega.github.io/editor/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org

