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Introduction

This document is a tutorial to help students and working professionals learn the inner workings of
tools that perform electromagnetic transient (EMT) simulations. The tutorial is introductory in
that it shows the workings through two simple examples and expects the reader to build expertise
through more detailed readings. Nonetheless, this document is an excellent first step for anyone
interested in the subject, especially those interested in building their own tools.

Before we dive into EMT models and simulation, it is pertinent to discuss the two types of
commonly performed time-domain simulations in the power community:

• Transient Stability: Performs time-domain simulations on balanced networks (only pos-
itive sequence components). It does not include network impedance response and models
them moving from one steady-state to another instantaneously. Therefore transient stability
frameworks model the network constraints with single-frequency power flow equations.

• Electromagnetic Transient Simulation: Works exactly as circuit-simulation tools (for
instance, SPICE and CADENCE). It models all three phases, including the transient response
for the network impedance components.

This document focuses on electromagnetic transient simulation. These are becoming increas-
ingly common (with significant active research) due to the introduction of inverter-based resources
on the grid. The document provides a step-by-step tutorial on running an EMT simulation for sim-
ple networks from the first principles. It uses concepts from circuit simulation, Newton-Raphson,
and numerical integration with difference methods. Good references to brush up on these topics
are [1],[2], and [3].

Furthermore, this document uses modified nodal analysis (MNA) to encapsulate network physics.
Alternate approaches like Tree Link Analysis (TLA) and Sparse Tableau Analysis (STA) [1] ex-
ist but are not covered in this document. In naive nodal analysis, the currents at each node are
summed to zero (i.e., Kirchhoff’s current law) to satisfy network physics. However, the method
fails when the network includes voltage sources, as the current through the voltage source is not
implicitly known. Therefore, to include voltage sources, the modified version adds one additional
constraint per voltage source to the set of nodal equations. These additional constraints give us
the currents through the voltage sources as new variables. The term modified in MNA is to refer
to this fact. Finally, the readers must note that anytime in this document when they come across
the following terms: system matrix, Y matrix, solution matrix, or simple nodal matrix, these all
refer to the same thing: a set of MNA equations for the linearized network that is being evaluated
at a given time-step t.

1

ar
X

iv
:2

21
2.

12
36

8v
1 

 [
ee

ss
.S

Y
] 

 2
3 

D
ec

 2
02

2



1 Tutorial: Electromagnetic Transient Simulation Methodology

We will use an equivalent circuit framework [4], [5] for power grids to develop EMT models for two
simple toy networks. These toy examples are based on a simple 2-node three-phase power network
with different load configurations. We consider the following load scenarios:

• a linear wye-connected series RL load (see Fig. 3)

• a non-linear induction motor load (see Fig. 11)

Note: For both examples, we assume that the load is connected in a WYE configuration and all
the neutrals in the network are grounded.

The illustration of the two-node power network with a generic load model is shown in Fig. 1.
It includes power system verbiage such as infinite bus and wye-connected load. For the moment,
the infinite bus (on node 1) can be thought of as the power source, and the load bus (on node 2)
can be thought of as the power sink.

Figure 1: Power system representation of the 2-bus power network.

The illustration in Fig. 1 is a power system representation. To perform EMT simulation with an
equivalent circuit framework, as a first step, we represent any power grid-specific elements as electric
circuit elements. The network in Fig. 1 has three components i) infinite bus, ii) transmission line (a
very simplified version), and iii) load. Two of these three components (infinite bus and transmission
line) are shared across the two examples. Therefore, we begin with them. The infinite bus is trivial
to model as a circuit element. It is simply an ideal voltage source with a known magnitude and
phase angle. For a three-phase network, the infinite bus is modeled by a set of three independent
voltage sources (offset by 120◦) connected in a wye formation. The network with an infinite bus
replaced with circuit elements is shown in Fig. 2. The transmission line model with R and X values
is already represented as a set of circuit elements and does not require translation.
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Figure 2: Power system representation of the 2-bus power network.

The last step is to convert the load component in Fig. 2 into an equivalent circuit before
getting started with EMT-related steps. Loads in power systems correspond to various devices
ranging from large induction motors to resistive heating loads. We will translate the two load
models into equivalent circuits in their respective sub-sections.

1.1 Wye-connected RL Load

The first example represents the load via a wye-connected series RL impedance. With series RL
impedance as the load component, the equivalent circuit representation of the 2-bus network is
trivial and is shown in Fig. 3. Simple observation confirms that all elements in this equivalent
circuit are linear; therefore, to obtain the transient response, we only need to recursively solve the
network as a function of time. Iterative solves with Newton-Raphson (NR) are only necessary in
presence of nonlinear components. We will learn about that in the induction motor (IM) example.

Figure 3: Power system representation of the 2-bus power network.

In current EMT tools (for instance, EMTP-RV or PSCAD), a sequence of steps that are followed
to obtain the time-domain response of a linear power network are as follows:

1. First, ordinary differential equations (ODEs) corresponding to the sum of currents at each
node in the network are defined

2. Second, numerical integration approximation (such as trapezoidal or backward Euler) is ap-
plied to these ODE equations to convert them from differential algebraic equation (DAE)
form to purely algebraic equation (AE) form
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3. Third, if the network is linear, the final solution for each time instance is obtained via a linear
solve of the algebraic equations for each time-tick

Note that the equations for subsequent time steps are coupled through terms obtained from
numerical integration. So currents at t = n+ 1 will be functions of currents at t = n. We will see
this in more detail while constructing the companion models in the following subsections. Also,
note that linear equations are recursively solved to traverse through simulation time by choosing a
time-step (∆t). The value of this time step depends on the local truncation error (LTE). More
details on the calculation of LTE can be found in [1].

Next, I will describe how to tackle the same problem in an equivalent circuit approach (ECA). To
obtain the time-domain response of the network with ECA, we apply two (2) circuit-simulation
tricks to enable efficient construction of the linearized nodal equations (YtVt − Jt = 0) for each
time step (t) in the transient simulation.

First, rather than defining the ordinary differential equation (ODE) that captures the KCL
constraint (sum of currents) at each node, we construct specialized symbolic stamps for each com-
ponent in the network (e.g., resistance, inductance, etc.). Note that a stamp(s) here refers to
term(s) that are to be added to the solution matrix. We use these stamps to implicitly construct
the system matrix at each time tick. To do so, we parse through each circuit element in the network
(for each time tick), and we add the stamps corresponding to this element in the solution matrix.
Once completed, the matrix (completed by adding stamps from each component) will be equivalent
to if we constructed the matrix by adding linearized nodal equations in each row. In this approach,
rather than arduously constructing nodal equations for each node (imagine a circuit with million
nodes), we only have to symbolically construct stamps for the number of types of circuit elements.
Once that is done, all we need to do is add the stamps for each circuit element into the solution
matrix.

Second circuit simulation trick corresponds to the numerical integration of differential
terms. Instead of applying numerical integration to all nodal ODE equations, we develop and use
companion circuits for time derivative elements (e.g., inductance and capacitance) in the network.

In ECA, with the two tricks, we follow the following steps sequentially to enable modular
construction and solution of the system matrix at each time tick without ever having to define the
complete set of nodal equations explicitly:

1. Represent time-derivative elements in the circuit (e.g., inductor, capacitor etc.) with their
companion circuits

2. Develop a specialized stamp for each element in the circuit (with derivative elements replaced
by their companion circuits)

3. ∀t ∈ τ = {t0, ..., tfinal}, parse through the overall network (generally a netlist or input file of
sorts) and stamp the terms corresponding to each element in a sparse linear matrix (remember
at this point, time-derivative terms are replaced by their companion models)

4. Solve the linear problem YtVt = Jt, to obtain the solution of state variables at time t

This approach allows us to implicitly obtain and solve the linearized nodal equations without
constructing them symbolically. This is highly beneficial for developing heuristics and for solving
large-scale networks. More on that later.
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1.1.1 Companion Model for Inductors and Trapezoidal Rule

Returning to the RL-load example, the inductor is the only element with a time derivative term
in this network (see Fig. 3). Therefore all we have to do is construct a companion model for the
inductor. We then replace all the inductors in the network with the companion model. We now
discuss the construction of companion models.

This tutorial will use Trapezoidal integration approximation to construct companion models.
Other Euler-based or higher-order numerical integration methods can also be used following the
same approach. Applying the trapezoidal integration approximation, the companion circuit for the
inductor can be derived as follows (for more details, read [1]):

L
di

dt
= v (1)

di =
vdt

L
(2)

∫ tn+1

tn

di =

∫ tn+1

tn

vdt

L
(3)

(i(tn+1)− i(tn)) = (v(tn+1) + v(tn))
∆t

2L
(4)

i(tn+1) = i(tn) + v(tn)
∆t

2L
+ v(tn+1)

∆t

2L
(5)

The equation in (5) has three terms. The last term ∆t
2L describes the relationship between current

and voltage at time tn+1 and is a conductance G. The first two terms are constants that are
known at prior time-point tn states and therefore are represented via a constant current source
I. Aggregating these elements into a circuit, we get the equivalent circuit in Fig. 4, and it is a
companion model for an inductor with trapezoidal numerical integration approximation.

Figure 4: Inductor Trapezoidal Companion Circuit. [Reconstructed from Pileggi, Carnegie Mellon ECE 18-762 Notes]

With the companion model constructed, we can replace the inductor elements in Fig. 3 with the
respective companion circuits. Following this step, we obtain a time-dependent equivalent circuit
(see Fig. 5), which can be characterized entirely by linear algebraic equations. This set of equations
is repeatedly solved to find the solution to the electromagnetic transient response of the network.

However, as discussed, the trick is to avoid explicitly constructing the complete equivalent
circuit and corresponding nodal equations (Y V − J) for each node. Instead, we will follow a
modular approach. As we encounter each element in the netlist of the network, we will add the
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Figure 5: Equivalent circuit with companion models.

specialized stamps corresponding to that element into the sparse system matrix. In this example
(see Fig. 5), there are three ideal voltage sources, six resistance and six inductor models. Therefore,
we will cover the stamps for these elements, which will be sufficient to construct the linearized nodal
equations for each time-step (YtVt− Jt = 0) for the network in Fig. 5. By recursively solving these
equations over time from the initial time-step t0 to the final time step tfinal, we can obtain the
time-domain response of this network. Next, we will cover the stamps for these elements.

Note: We will refer to the sparse linear matrix for the system as Y from here on. Each time step
will have a different system matrix notated by Yt or sometimes simply by Y . Further, even for each
time step, the matrix can be expressed as the sum of two separate matrices: Yt = Y lin

t + Y nlin
t .

Terms in Y nlin
t change for each iteration of NR, whereas the Y lin

t , remain fixed. Because this circuit
is linear, we do not have Y nlin

t .

1.1.2 Stamp for resistors

A resistance R between node m and n has the following stamps in the nodal matrix Y :

Figure 6: Resistance stamps in the nodal matrix. [Redrawn from CMU, ECE, 18-762 Notes]

The general approach is that when you encounter resistance in an input file, add the terms defined
in Fig. 6 in sparse linear matrix Y corresponding in the index locations: (m,m), (m,n), (n,m),
and (n, n). Here node m is the from node of the resistor, and n is the to node of the resistor.

1.1.3 Stamps for an independent current source

An independent current source stamp I between node m and n will add no additional stamps to
matrix Y but instead will add terms to column vector J . The column vector J only consists of
constant terms that are not a function of any state in the network. The negative sign in the J
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vector is due to moving the constant number to the RHS of the equation. However, keep in mind
the direction of the current flow from the independent current source for the signage.

Figure 7: Independent current source stamps in J vector. [redrawn from Pileggi, CMU 18-762 Notes]

1.1.4 Stamps for inductors

Inductor consists of time-derivative terms. Therefore, as a first step, each time we encounter an
inductor in the netlist between node m and node n, we will have to stamp the corresponding
companion circuit. Remember doing so will replace the time-derivative terms with algebraic ex-
pressions. It consists of a current source and a resistor in parallel between nodes m and n as seen
in Fig. 4. As we have already covered stamps for resistance and current source, follow the steps
in the previous subsections for those components. The key thing to note is that stamp values for
inductors in system matrix Y will change for each time step and must be updated accordingly.
This is because the magnitude of the independent current source in the companion circuit will be
a function of currents and voltages from the last time tick tn.

1.1.5 Stamps for independent voltage source

Next, we derive the stamps for a voltage source. To include an independent voltage source between
nodes m and n, nodal equations are augmented to include an additional row. With an extra row
comes an additional variable representing the magnitude of current flow through the voltage source.
The term modified in modified nodal analysis (MNA) is to notate this modification. The additional
row (for each voltage source) constrains the potential difference between node m and node n:

Vm − Vn = VS (6)

, and the additional current is notated by (i). The stamps in the nodal matrix (Y ) and source
vector (J) for independent voltage source are shown in Fig. 8

Now that we have learned how to develop stamps for the resistor, inductor, current source,
and voltage source, we can construct the nodal matrix (Y ) and source vector (J) for the simple
power system network in Fig. 3 for each time tn+1. To obtain the time-domain response of the
network, the set of linearized equations is recursively solved with a sparse matrix solver (using LU
factorization). Note that to obtain the network’s response at time t = 0+, we require the network
states at time tn = 0. For this particular network, these are needed to initiate the terms in inductor
stamps dependent on the prior time step. Not just that, it also helps dictate the system state at
which the time-domain response begins.
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Figure 8: Independent voltage source stamps. [redrawn from Pileggi, CMU- 18-762 Notes]

1.1.6 Initialization

We can initialize the linear circuit through AC or DC analysis. In DC analysis, we replace the
sinusoidal voltage sources with DC voltage sources. In AC analysis, we convert the inductors to an
impedance at a single frequency.

Here we will describe the DC analysis approach to initialization. Let us assume that the network
is in the DC state between t = − inf and t = 0. At t=0, it switches to the AC sinusoidal source,
and let us assume the switching is smooth (i.e., DC voltage and AC voltage at time t = 0 are
identical). To know the initial states of the circuit at t = 0, we perform DC analysis, wherein the
following condition holds true for memory elements (inductors and capacitors):

L
di

dt
= 0 @DC (7)

C
dv

dt
= 0 @DC (8)

From these conditions in (7) and (8), we can infer that during the DC state, the inductor is
short-circuited (VL = 0) and the capacitor is open-circuited (IC = 0). For this example, the DC
equivalent of the network in Fig. 5 is shown via a network in Fig. 9. With access to DC equivalent
circuit, we stamp the elements in the circuit into the system matrix Ydc and vector Jdc and solve
them using a sparse linear solver. The solution is used to define the system state at t = 0.

Figure 9: Corresponding equivalent circuit during DC state. Note that the sinusoidal voltage sources are set to a fixed DC
value in the case of DC analysis.

8



1.1.7 Time-domain solution

With access to the initial state at t = 0, we recursively solve a system matrix (moving forward
by ∆t in each recursion) following steps described in Fig. 10 to obtain the time-domain response
from t = 0 to t = tfinal. We dynamically adjust ∆t at each step based on the trade-off between
simulation run-time and local truncation error (LTE).

One facet that this example does not cover is how to handle nonlinear terms. We will learn
how to include nonlinear terms in the following example with IM as an electric load. We will also
learn to use an alternative form (other than MNA) to describe the system’s behavior. In addition
to the electrical physics of IM, we will incorporate mechanical physics, like rotor speed, with the
circuit-theoretic paradigm, into the mathematical formulation.

Figure 10: Running EMT simulation for linear networks.

1.2 Induction Motor Load

In the second example, we will learn how to obtain the time-domain response for a non-linear grid
component: the induction motor (IM). To construct a toy power grid network with IM, we will
replace the RL load in the first example with an IM load (see Fig. 11).
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Figure 11: 2-bus network with induction motor load.

Analyzing IM in the abc frame can be difficult. The flux generated by the three-phase IM in
abc frame has time-varying coefficients in its voltage terms due to the sinusoidal nature of the
mutual inductance. This makes the analysis of three-phase IM cumbersome in the abc reference
frame. However, this undesirable feature can be eliminated by the use of dq transformation. dq
transformation is a linear transformation. It can be performed by choosing one of the three reference
frames: i) synchronous reference frame, ii) stationary reference frame, and iii) rotating reference
frame.

For derivations in this document, we will use a stationary reference frame. abc variables (both
currents and voltages) are converted to dq variables by following matrix transformation:

[F0dq] = [Pθ][Fabc] (9)

where:

[Pθ] =
2

3

 0.5 0.5 0.5
cos(θ) cos(θ − λ) cos(θ + λ)
sin(θ) sin(θ − λ) sin(θ + λ)

 (10)

λ represents the phase difference between phases abc and is:

λ =
2π

3
rad (11)

After applying dq transformation to IM and decoupling abc components from dq components
using controlled current and voltage sources, the network model in Fig. 11 is modified to one in
Fig. 12.

Note that controlled current and voltage sources in Fig. 12 encapsulate the math behind dq and
inverse dq transformation for the variables. dq transformation is applied to capture abc network
voltages and supply those to IM in dq frame. Inverse dq transformation is used to convert the dq
currents through the IM into abc frame such that they can be fed into the network.
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Figure 12: 2-bus network with induction motor load after dq transformation.

Fig. 12 has three components: i) the infinite bus represented by a set of wye-connected inde-
pendent voltage sources, ii) the transmission line represented by a series RL circuit, and iii) an IM.
We have covered how to develop stamps and companion circuits for infinite bus and transmission
line elements. Now, we will learn how to represent the physics of an IM with an equivalent circuit.
We will also learn how to replace the time derivative terms in the IM equivalent circuit with an
equivalent companion circuit.

For stationary dq frame, the equations that represent the electrical component of IM physics
are given by:

vds = RsIds + pψds − ψqspθ (12)

vqs = RsIqs + pψqs + ψdspθ (13)

vdr = RrIdr + pψdr − ψqrpβ (14)

vqr = RrIqr + pψqr + ψdrpβ (15)

where p is the differential operator and,

ψds = (Lls + Lm)Ids + LmIdr (16)

ψdr = (Llr + Lm)Idr + LmIds (17)

ψqs = (Lls + Lm)Iqs + LmIqr (18)

ψqr = (Llr + Lm)Iqr + LmIqs (19)

and θ = 0, β = −θr and pβ = ωr
In the IM equations, Lls and Llr represent the leakage inductance of the stator circuit and rotor

circuit, respectively. Lm is the mutual inductance between the rotor and stator circuits. Rs and Rr
are the stator and rotor resistance, respectively. The nonlinearity in the electrical part of the IM
is due to the speed voltage terms (ψqrωr, ψdrωr). In addition to the equations for the IM electrical
part given by (13)-(19), the mechanical part of the IM is defined by the swing equation, a single
differential equation (20):
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pωr =
(TE − TL −Dωr)

J
(20)

where, electrical torque TE is described by an interaction between the IM currents, which also
introduces nonlinearities in the IM model:

TE =
3

4
LmNp(IdrIqs − IqrIds) (21)

TE is the electrical torque of the IM in N.m and J is the motor net inertia in kg.m2. Np is the
number of poles in the IM. The load torque TL is generally described as a polynomial function of
rotor speed.

Mapping the IM into an equivalent circuit with ωs set to 0 in the stationary frame, we get the
modified equivalent circuit shown in Fig. 13, with the following additional terms and constraints:

Ls = Lls+ Lm (22)

Lr = Llr + Lm (23)

Vdr = 0 (24)

Vqr = 0 (25)

Note that the rotor voltages Vdr and Vqr are shorted in most IM designs.

Figure 13: Equivalent circuit for IM in the stationary frame.
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One can observe in Fig. 13 that aside from self-inductance (Ls and Lr), the IM equivalent
circuit also includes time-derivative terms (given by p) for mutual inductance (Lm) and rotor speed
(ωr). We have previously learned how to approximate time-derivative terms for self-inductance
by constructing and stamping the corresponding companion circuits. Here, we will derive the
companion circuits for combined self and mutual inductance elements (see blue elements in Fig.
14). We will use a simple two-coil example in Fig. 15 to develop the companion circuit for combined
self- and mutual inductance. Later in the section, we will learn how to construct the companion
circuit for time-derivative terms corresponding to rotor speed.

Figure 14: Illustration of combined self and mutual inductances in IM.

Figure 15: Two coil example.

We construct the companion circuit for combined self and mutual inductances to approximate
its time-derivative behavior by a set of algebraic equations. This way, we can approximately solve a
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set of ODEs parameterized by self- and mutual- inductances by recursively solving a set of algebraic
equations over time. We begin the derivation by observing a two-coil example in Fig. 15, which
has two pairs of self- and mutual-inductance (self: L11 or L22, mutual: L12). We focus on voltage
V1 expression in the first coil. It can be represented as a sum of the voltage across the self and
mutual inductances:

V1(t) = L11
dI1

dt
+ L12

dI2

dt
(26)

The voltage expression in (26) is an ODE that includes time-derivative terms. Therefore, we apply
the trapezoidal integral rule to approximate the ODE’s solution. With the trapezoidal integral rule
applied, the voltage across self- and mutual- inductance (26) can be represented by the sum of the
following difference equations, which are purely algebraic terms:

V11(tn+1) =
2L1

∆t
(I1(tn+1)− I1(tn))− V11(tn) (27)

V12(tn+1) =
2L12

∆t
(I2(tn+1)− I2(tn))− V12(tn) (28)

Therefore the total voltage induced in coil 1 (V1(t) = V11(t) + V12(t)) is given by:

V1(tn+1) =
2L1

∆t
(I1(tn+1)− I1(tn))− V11(tn) +

2L12

∆t
(I2(tn+1)− I2(tn))− V12(tn) (29)

and after re-arranging the terms:

V1(tn+1) =
2L1

∆t
I1(tn+1) +

2L12

∆t
I2(tn+1)−

(
2L1

∆t
I1(tn) +

2L12

∆t
I2(tn) + V12(tn) + V11(tn)

)
(30)

The voltage at time tn+1 across the coil 1 is approximated using (30) and is represented as
an equivalent circuit in Fig. 16. The third term is only dependent on the historical values of the
variables and can be represented by an independent voltage source V1 hist. Similarly, a resistance
REQ can represent the first term as it represents a linear relationship between the voltage and
current and a current controlled voltage source can represent the second term.

Figure 16: Two coil example companion circuit.

By replacing the time-derivative terms for self- and mutual-inductance with the corresponding
companion circuit in Fig. 16, we can solve the set of ODEs corresponding to the electrical part of
IM over a time duration with NR. But before, we must learn how to address the time-derivative
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term in the mechanical part of the IM model. The variables in the mechanical part impact the
electrical part and vice-versa. Therefore we need to solve the mechanical part concurrently with
the electrical portion of IM. The approach for solving the mechanical part is trivial. On close
observation, one can see the mechanical circuit of the IM is analogous to a parallel RC electrical
circuit with current sources, where inertia J is analogous to capacitance C, TL is analogous to a
constant current source I, D is analogous to a conductanceG, TE is analogous to a current controlled
current source (see (21)), and ωr is analogous to the voltage at the mechanical the circuit. The only
time-derivative term in the mechanical circuit corresponds to the partial derivative of rotor speed
times inertia (J dωr

dt ), which is analogous to a current through a capacitor. Therefore, we will learn
how to construct a companion circuit for a capacitor and replace the time-derivative term in the
mechanical part with the analogous companion circuit. Once we have replaced the time-derivative
term, we can represent the physics of the mechanical part of IM with a single nodal equation, which
can be iteratively solved for a single time step along with electrical equations using NR.

To construct the companion model for a capacitor, we will use Trapezoidal integration approx-
imation following the same approach we applied in the case of inductors. Applying the trapezoidal
integration approximation, the expression for current/voltage through/across a capacitor at time
tn+1 given values at time tn can be expressed as follows:

C
dv

dt
= i (31)

dv =
idt

C
(32)

∫ tn+1

tn

dv =

∫ tn+1

tn

idt

C
(33)

(v(tn+1)− v(tn)) = (i(tn+1) + i(tn))
∆t

2C
(34)

v(tn+1) = v(tn) + i(tn)
∆t

2C
+ i(tn+1)

∆t

2C
(35)

The equation in (35) has three terms. The last term ∆t
2L describes the relationship between current

and voltage at time tn+1 and is a conductance G. The first two terms are constants that are known
from prior time-point tn and therefore are represented via a constant current source I. Aggregating
these elements into a circuit, we get the equivalent circuit in Fig. 4. This is a companion model
for a capacitor with trapezoidal numerical integration approximation. In the case of IM, note that
we must have analogous symbols like inertia J instead of capacitor C and rotor speed ωr instead
of voltage v.

1.2.1 Handling nonlinear terms

In the case of IM, we began with a set of models characterized by a set of differential-algebraic
equations (DAEs), which had both differential and nonlinear terms. As a first step, we used
companion circuits to approximate the differential term behavior using a set of algebraic terms.
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Figure 17: Capacitor Trapezoidal Companion Circuit. [redrawn from Pileggi, 18-762 Notes]

Next, we must linearize the nonlinear terms and iteratively solve the equations using a sparse linear
solver.

We linearize the nonlinear terms using first-order Taylor’s approximation, similar to the case
of nonlinear power flow analysis. However, instead of linearizing the nodal or loop equations, we
linearize the nonlinear terms corresponding to each component and develop a linearized equivalent
circuit. Then for each iteration of NR, we iteratively update the stamps corresponding to this
component in the system matrix Y and resolve.

Let us write out the general use of first-order Taylor approximation. For general nonlinear
function f(x) (x : RN×1), the first order Taylor approximation is given by:

fk+1(x) = fk(x) + f ′(x)
T

(xk+1 − xk) (36)

In the IM model in Fig. 13, for the electrical part, the non-linearity stems from four speed-
voltage terms (ωrLrIdr, ωrLmIds, ωrLrIqr, and ωrLmIqs). For further discussion consider one amongst
them: f(ωr, Idr) = ωrLrIdr. This expression is a nonlinear function of the rotor speed (ωr) and
direct-axis rotor current (Idr). The linearized approximation for this expression used in (k + 1)th

NR iteration is:

fk+1(ωr, Idr) = fk(ωr, Idr) +

(
∂f

∂ωr

)
k

(ωk+1
r − ωkr ) +

(
∂f

∂Idr

)
k

(Ik+1
dr − I

k
dr) (37)

Similar to this nonlinear term, other nonlinear terms in the IM are also linearized and stored
in symbolic form. These terms are added (or stamped) in the system matrix Y and updated for
each iteration of NR.

1.2.2 Stamping IM equations

So far, we have discussed how to address nonlinear and differential terms at a component level. The
next step is to learn how to add (or stamp) the terms corresponding to various component-based
equivalent circuits into a system matrix (such that system-level physics is satisfied). We must also
learn when to update these terms to obtain a time-domain solution for the overall circuit. We
can stamp most components (except for IM) in the network into the system matrix following the
MNA approach as described in Example 1. For IM, we will use an alternative approach. If we were
to stamp the IM circuit elements using MNA, we would end up with ∼ 20 additional nodes and
corresponding equations for each IM we encounter in the network (refer to Fig. 13). Therefore,
to reduce the dimension of IM equations, in this tutorial, we will instead use a combination of
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Kirchhoff Voltage Law (KVL)-based constraints and KCL-based nodal constraints to stamp the IM
model’s equivalent circuit elements. With this approach, we will stamp the equations corresponding
to electrical sub-circuits (i through iv in Fig. 13) in 4 new rows of the system matrix Y following
KVL-based loop constraints. Specifically, for each electrical sub-circuit in Fig. 13, moving from
left to right, we will add stamps (for voltages) for each element such that the net sum of voltages in
the loop is equal to zero. For the mechanical part (no. (v) in Fig. 13), we will add terms to matrix
Y for various elements (including linearized TE and companion circuits ∂ωr

∂t ) following KCL-based
nodal constraint. With this approach, we only add five new variables and corresponding rows for
each instance of IM (instead of ωr). The variables are Ids, Iqs, Idr, Iqr, and ωr.

Note that before stamping the terms into the system matrix Y , we have to perform two steps.
First, we will replace the circuit elements with time-derivative terms with corresponding equiv-
alent companion circuits. Second, we will replace the circuits with nonlinear terms with their
linearized approximation. Next, to obtain the transient response of the nonlinear IM network, we
will recursively solve the system matrix Y over time, and we will perform iterations to solve the
nonlinear terms. We will update the linearized terms in each iteration. We will update the terms
in companion circuits only when we recursively move forward in time.

1.2.3 Initialization

For initializing the IM network, we can use many approaches. We will discuss one such approach.
Remember because of dq-transformation on IM variables, two sub-circuits evolve (see left and right
of Fig. 12). The sub-circuit on the left without the IM equations is a linear circuit. AC analysis
can be used to obtain the initial condition for these, assuming a rated complex current draw by
IM (which models the Ia, Ib, and Ic in Fig. 12). A good guess for a complex current draw by
IM can be obtained by running power flow with IM modeled as a PQ load and calculating the
current from the solution (I = S∗IM/V

∗
IM ). Initialization of the IM components requires handling

the nonlinearities due to speed-flux terms. With the proper choice of the reference frame in dq-
transformation (rotating reference frame), we can use DC analysis to obtain the initial conditions
for the IM circuit. The Vds, and Vqs voltages are DC-values in the rotating reference frame. We can
short the inductor and open the capacitors to obtain the steady-state initial conditions with the
source voltages as DC values. The rated voltage at the IM terminals for dq-transformation can be
obtained from the power flow solution VIM . In reality, with a slightly more complex procedure, we
can get an exact initial condition for the circuit by solving a set of nonlinear equations representing
the overall circuit iteratively using NR.

1.2.4 Nonlinear time-domain simulation

For the nonlinear IM problem, with access to the initial state at t = 0, we repeatedly solve a
system matrix Y (moving forward by ∆t in each recursion) following steps described in Fig. 18 to
obtain the time-domain response from t = 0 to t = tfinal. How we update the system matrix in
the nonlinear analysis is different than in the case of linear analysis in Section 1.1.7. Linearized
terms in the system matrix Y corresponding to nonlinear devices are updated iteratively after each
linear solve. The memory-stamps corresponding to the devices with differential terms are only
updated each time we move forward in time (recursion). We only move forward in time once the
nonlinear stamps have converged (i.e., no considerable difference in the value of linearized stamps
in subsequent iterations). As in the linear case, we dynamically adjust ∆t at each step based on
the trade-off between simulation run-time and local truncation error (LTE).
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Figure 18: Running EMT simulation for nonlinear networks.
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