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Abstract

We demonstrate a Physics-informed Neural Network (PINN) based model for real-
time health monitoring of a heat exchanger, that plays a critical role in improving
energy efficiency of thermal power plants. A hypernetwork based approach is used
to enable the domain-decomposed PINN learn the thermal behavior of the heat
exchanger in response to dynamic boundary conditions, eliminating the need to
re-train. As a result, we achieve orders of magnitude reduction in inference time
in comparison to existing PINNs, while maintaining the accuracy on par with the
physics-based simulations. This makes the approach very attractive for predictive
maintenance of the heat exchanger in digital twin environments.

1 Introduction

Air preheaters (APH) are regenerative heat exchangers used in thermal power plants, that improve
the boiler thermal efficiency by up to 10%, cutting the greenhouse gas emissions by up to a million
tons annually. Fouling is a major issue faced by most APH, that causes forced outages of entire plant
incurring huge revenue losses. Fouling is governed by a complex multi-physics phenomena among
interacting gases and metals (see schematic of APH in Figure 4). Absence of sensors within the
APH makes it difficult to monitor its condition, complicating the on-field decision-making. Accurate
estimation of internal thermal profile as a function of external sensor measurements can go a long
way in monitoring and controlling this fouling.

There have been several efforts towards this using physics-based modeling [1], data-driven modeling
[2] and more recently physics-informed neural networks (PINN) [3]. The case for utility of PINNs
is already well established given their superior inference speed and reduced dependence on sensor
data for training [4]. However, digital twins [5] of industrial systems such as APH need real-time
inference with dynamically changing conditions; a challenge PINNs fail to address [6]. PINNs
require re-training when boundary conditions change, which involves large cost and effort. Several
approaches including transfer learning [7, 8], meta learning [9], a mosaic flow predictor [6] and
HyperPINNs [10] have been attempted. However, most of these solutions either do not eliminate
the re-training requirement completely or have been demonstrated on very simplified problems with
simplified physics/geometry. With a multi-sector arrangement inducing discontinuity in thermal

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

ar
X

iv
:2

21
2.

10
03

2v
1 

 [
cs

.L
G

] 
 2

0 
D

ec
 2

02
2



Figure 1: Training and Inference - Hypernetwork for Domain Decomposed PINN

profile, multiple fluids interacting with each other through a rotating porous solid material and a
non-standard geometry, real-time inference for APH through PINNs is quite challenging.

In this work, we demonstrate a hypernetwork based PINN solution for training-free inference enabling
real-time internal temperature estimation. The hypernetwork is trained based on weights extracted
from PINNs trained on multiple tasks (a designed set of varying boundary conditions). A case of
using Taguchi design of experiments [11] for identifying the optimal trade-off between accuracy and
training cost is also presented. The hypernetwork predicts the weights for an arbitrary task (boundary
condition) in near real-time without a significant loss of accuracy vis-a-vis physics-based simulation.
To the best of our knowledge, this work is the first demonstration of a PINN model trained to predict
for unseen boundary conditions for a complex industrial scale heat exchanger.

2 Methods

Heat transfer in APH can be described as conduction and convection phenomena occurring between
gases, air and rotating metal packing across multiple sectors and is governed by non-dimensional
system of equations and boundary conditions [12]. For details of the equations see appendix A.1.

We replicate a domain-decomposed PINN for APH proposed by [3] and use it a base PINN in this
work. Their PINN uΘ(x) is a union of multiple individual PINNs uΘj (x) for each fluid medium j
(∀j = 1, 2, 3) woven together by specific interface conditions (eqns. 6,7,8). The complete solution is
given as:

uΘ(x) =

3⋃
j=1

uΘj
(x) (1)

However, this base PINN is difficult to generalize for dynamic boundary conditions and therefore
needs re-training if and when the conditions change, incurring computational costs and additional
time. To enable training-free inference on these PINNs, we train a hypernetwork [13] for predicting
the weights of the base PINN, as a function of parameterized dynamic conditions/tasks (λ). It is
represented by equation 2, where Θh represents the learnable parameters for the hypernetwork and Θ
represents the weights of the PINN corresponding to parametric conditions λ.

Θ = NΘh
(λ) (2)

The training data for the hypernetwork is generated by creating several base PINN models for varying
boundary conditions (λ) over a typical range observed in the field. The boundary conditions include
inlet temperature and flow-rate conditions for APH. A hypernetwork is then trained using the weights
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from this base PINN set, as shown in figure 1. The idea is to enable the hypernetwork to capture
the dynamics introduced due to changing boundary values based on a bank of pre-generated PINN
solutions. The rationale behind learning weights of base PINN instead of directly the thermal field
is the flexibility and adaptability it provides. In industrial settings, when measurements may come
at different frequency and granularity, this PINN-based hypernetwork can provide a unified way to
integrate and learn from all such data. It would be tough to do the same if the thermal field values
are directly used in the hypernetwork. Once trained, this hypernetwork and base PINN together
enable real-time inference of the thermal field as a function of previously unseen boundary conditions
(available as sensor values on field). The hypernetwork architecture and hyper-parameter details are
provided in appendix A.2.

3 Results and Discussion

To observe the training cost and accuracy trade-off, base PINNs were trained for all combinations of
tasks (Full factorial design FF with 315 tasks) within the given ranges (table 2). Hypernetworks were
then trained by creating different designs (L4-L200) of base PINN tasks by varying the step size,
inspired by Taguchi design of experiments [11]. For instance, L200 indicates a training set of 200
different tasks distributed across the search space and orthogonal to each other (see appendix A.3.
The hypernetwork approach is evaluated based on the accuracy of inference, the training time/effort
and the inference time. First, the inference from hypernetwork based PINN is compared against
that from a physics-based model, that uses a finite difference method to solve the set of governing
equations, recreated and validated based on [1]. As seen in Figure 2, Mean Absolute Error (MAE)
across all the train, validation and test sets (see table 3) is under 4 ◦C, indicating that hypernetwork
based PINNs are able to predict at a satisfactory level of accuracy. However, the maximum error only
improves once the number of training tasks increases with each design, also increasing the training
costs. A trade-off between the desired accuracy and the required training costs can be achieved
based on Figure 2. For example, while the accuracy over task designs L49 and FF315 is within the
acceptable range, the offline training time increases by almost 500% for FF315 design. Depending
upon the constraints, a suitable design of tasks can be selected.

Figure 3 shows the comparison of MAE on each of the tasks in the test set with hypernetworks trained
using L49 and FF315 design against the base PINN [3] and the naive method. The naive method
here refers to a simplified method of selecting the nearest (neighbor) available PINN for inferring the
thermal field for a given condition (without training a hypernetwork). Both the base PINN and the
hypernetwork-based PINNs outperform the naive inference consistently. Often, small perturbations
to the external condition lead to significant variations in the thermal field inside the APH, which
the naive approach may sometimes miss that PINNs seem to capture.The accuracy of hypernetwork
based PINNs appears to match the base PINN accuracy almost across all the test tasks.

However, the major advantage the hypernetwork based PINNs provide over the base PINNs is the
training-free inference, as base PINNs need re-training for every new boundary condition. The
inference time of hypernetwork based PINN (∼5 sec) is quite superior both to the benchmark physics-
based iterative solver (∼200 sec) [1] and the transfer-learnt base PINN (∼180 sec) [3]. Fouling
within APH is a strong function of its internal thermal field, which governs the chemical reactions
and location of deposition. An accuracy band of up to 5◦C and near real-time inference is highly
desirable for monitoring of fouling. The real-time accurate estimation of internal temperatures as a
function of external sensor values (boundary conditions) reported here is significant, as it can be used
for real-time estimation of fouling propensity [3] as well as forecasting future progression of fouling
[2], to avoid forced outages of the plant.

4 Conclusion

A hypernetwork-based training regime for domain-decomposed PINNs [3] is demonstrated, that
enables the PINNs to learn the underlying physical behavior of the system without explicit re-
training for dynamic boundary conditions. As a result, the hypernetwork-based PINN provides
a significant improvement over iterative physical simulations or conventional PINNs in terms of
inference time, without significant loss of accuracy. This model can enable real-time monitoring and
control of APH fouling in an industrial digital twin, potentially avoiding huge revenue losses. To the
best of our knowledge, this is the first demonstration of hypernetwork-based domain-decomposed
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Figure 2: Mean absolute and Max error for different design of training tasks for hypernetwork PINNs
and total time required for training the hypernetwork for each design

Figure 3: Comparison of test set errors for Hypernetwork trained on L49 task design, FF315 task
design, base PINN approach and a naive nearest-neighbor approach based on FF315 task design
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PINNs successfully applied to a complex industrial heat exchanger. We plan to improve and extend
the proposed methodology to accommodate changes in boundary type as well as learning from a
combination of actual data and PINNs, which is critical for digital twin environment.

5 Broad Impact

Although, PINNs have been popular for scientific discovery, their industrial use has been limited
due to boundary condition management issue among others. The methodology demonstrated here is
generic and will make PINNs more amenable to industrial digital twins by reducing the inference
time as well as doing away with re-training requirement.
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A Appendix

A.1 Heat Transfer in APH and the domain-decomposed PINN

Figure 4 shows a schematic of APH and computational domain with co-ordinate system. Computational
domain is divided into three sub-domains and each sub domain shares a common interface with the other two
sub-domains. Subscript j is used to represent these sub-domains. Equation 3 and 4 represent conduction and
convection heat transfer in APH in non-dimensional form. Solution of these equations constitute the fluid
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Figure 4: APH Schematic and computational domain [3]

Table 1: Grid Independence study of the physics model

Grid Size (on gas and air side) T2out (◦C) T1out (◦C)

30 × 30 354.93 126.35
60 × 60 357.26 123.60

120 × 120 358.39 122.25
240 × 240 358.93 121.58
480 × 480 359.20 121.26

temperature (T ) and metal temperature (Tm) for given co-ordinates (ϕ, z). NTU and Pe represent the number
of transfer units and Peclet number respectively.

∂Tmj

∂ϕ
= NTUmj (Tj − Tmj ) +

1

Pemj

∂2Tmj

∂z2
(3)

∂Tj

∂z
= NTUmj

(
Tmj − Tj ,

)
j = 1, 2, 3 (4)

Tj (ϕ, z = 0) = Tin,j , j = 1, 2, 3 (5)
Tm1(ϕ = 0, z) = Tm3(ϕ = 1, 1− z) (6)
Tm1(ϕ = 1, z) = Tm2(ϕ = 0, 1− z) (7)
Tm2(ϕ = 1, z) = Tm3(ϕ = 0, z) (8)
∂Tmj [z = 0, 1]

∂z
= 0, j = 1, 2, 3 (9)

Temperature measurements for Gas inlet temperature (Tin,1), primary air inlet temperature (Tin,2), and secondary
air inlet temperature (Tin,3) are used as boundary conditions (equation 5). Continuity constraints on the metal
temperature due to rotation of the metal are given by equation 6,7,8. Constraint on the metal temperature gradient
due to absence of axial conduction at the top and bottom of the subdomains is given by equation 9.

The governing equations are solved using finite difference method [14] and a grid independence study was
performed to obtain the optimal grid size 240×240, beyond which the predictions don’t change significantly (see
Table 1). The results of finite difference method were validated with the experimental results provided in [1].

Figure 5 shows the domain decomposed PINN [3] used as base PINN in this work. Base PINN consists of three
sub-networks which takes co-ordinates (ϕ, z) as input and outputs fluid and metal temperature. Each of the
sub-network has input layer with 2 neurons, 2 hidden dense layers with 16 neurons and output layer with 2
neurons. Base PINN is trained using Adam optimizer.

A.2 Hypernetworks - additional details

Figure 6 represents the architecture of hypernetwork, comprising one input layer (4 neurons), 2 hidden layers (256
neurons each and tanh activation) and 3 output layers (354 neurons each and linear activation). Hypernetwork is
trained using Adam optimizer with a learning rate of 1e-4. Early stopping callback was used for stopping the
training by monitoring the validation loss and a minimum delta threshold of 1e-6. Training and evaluation of
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Figure 5: Domain Decomposed Base PINN architecture [3]

Table 2: Maximum and minimum values considered for taguchi design

Minimum Value Maximum Value

Inlet Gas Temperature Tin,1 (◦C) 200 400
Inlet Primary Air Temperature Tin,2(◦C) 10 80
Inlet Secondary Air Temperature Tin,3(◦C) 10 80
Gas Flow Rate m1(kg/s) 600 800

networks was performed on a machine having an AMD Ryzen 5 5500U processor with Radeon graphics 2.10
GHz, 16 GB RAM, with Tensorflow [15] as the deep learning framework.

The training tasks for the hypernetwork vary depending upon the total number of tasks in the design based on
Taguchi method. The validation and the test tasks are given in table 3

Figure 7 shows the comparison of thermal profile predicted with physics-based simulation, domain-decomposed
PINN and the hypernetwork-based PINN for a representative test task (Tin,1 = 300.00 ◦C , Tin,2= 21.59 ◦C ,
Tin,2=16.69 ◦C , m1=790.06 kg/s).

A.3 Taguchi Design of Experiments

The designs proposed by Taguchi [11] comprise orthogonal arrays that structure the influential variables of a
process for efficient experimentation. Therefore, instead of testing all the possible combinations of variables,
the method provides a limited set of combinations that assists in identifying the most influential variables with
minimal time and cost. Typically, standard designs (designated as L4, L16 and so on) for different number of
variables and their levels are available and can be manipulated to create new experiment design as per the need.
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Table 3: Validation and test tasks used for hypernetwork assessment

Validation Tasks

task Tin,1(◦C) Tin,2(◦C) Tin,2(◦C) m1 (kg/s)

1 206.36 45.01 39.56 769.01
2 215.47 66.02 60.47 627.49
3 216.36 38.01 29.11 668.11
4 234.15 62.99 57.68 697.88
5 242.47 23.35 18.18 680.32
6 253.50 52.02 47.27 623.54
7 259.12 32.91 29.26 628.07
8 281.47 40.60 31.34 769.81
9 290.43 49.47 41.01 619.54
10 305.69 64.71 55.12 689.05
11 318.63 47.02 39.80 779.24
12 333.94 49.59 43.96 694.81
13 340.12 24.60 18.84 751.40
14 367.38 58.36 53.24 639.89
15 373.33 15.55 11.50 649.93
16 379.90 24.18 15.05 741.61
17 386.80 26.87 22.95 700.05
18 387.55 70.64 65.04 742.06
19 403.56 33.74 29.93 611.67

Test Tasks

task Tin,1(◦C) Tin,2(◦C) Tin,2(◦C) m1 (kg/s)

1 220.76 64.23 56.86 632.42
2 228.96 36.18 31.26 733.69
3 238.17 66.39 60.71 637.70
4 239.28 42.42 37.12 719.83
5 259.04 20.87 14.56 766.32
6 260.89 55.96 46.17 661.23
7 280.41 46.87 42.31 709.90
8 282.55 58.91 50.03 642.26
9 289.06 22.44 15.81 615.61
10 300.00 21.59 16.69 790.06
11 301.80 55.02 50.10 622.88
12 307.74 23.99 14.24 684.91
13 314.51 47.60 39.18 680.84
14 339.71 67.90 62.03 784.34
15 341.12 28.50 23.07 758.78
16 365.33 59.99 56.01 606.63
17 386.19 58.01 50.42 768.40
18 391.75 68.53 62.12 701.84
19 398.48 53.51 49.94 746.56
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Figure 6: Hypernetwork Architecture
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Figure 7: PINN, Hypernetwork and Physics Simulation Comparison

11


	1 Introduction
	2 Methods
	3 Results and Discussion
	4 Conclusion
	5 Broad Impact
	A Appendix
	A.1 Heat Transfer in APH and the domain-decomposed PINN
	A.2 Hypernetworks - additional details
	A.3 Taguchi Design of Experiments


