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ABSTRACT

In a fixed budget ranking and Selection (R&S) problem, one aims to identify the best design among a
finite number of candidates by efficiently allocating the given simulation budget to evaluate design
performance. Classical methods for fixed budget R&S usually assume known input distributions,
which are the distributions that model the randomness in the system and drive the simulation. In
this paper, we consider the practical scenario where the input distribution is unknown but can be
estimated from streaming input data that arrive in batches over time. We model the R&S problem
in this dynamic setting as a multi-stage problem, where the input distribution estimate is updated at
each stage and a stage-wise optimization problem is formulated to allocate the simulation budget.
We characterize the optimality conditions for the stage-wise budget allocation problem by applying
the large deviations theory to maximize the decay rate of probability of false selection. Based on
the optimality conditions and combined with the updating of input distribution estimates, we design
two sequential budget allocation procedures for R&S under streaming input data. We theoretically
guarantee the consistency and asymptotic optimality of the two proposed procedures. We also
demonstrate the practical efficiency through numerical experiments in comparison with the equal
allocation policy and two extensions of the Optimal Computing Budget Allocation (OCBA) algorithm.
Keywords: ranking and selection, input uncertainty, large deviations theory, optimal computing
budget allocation

1 Introduction

Stochastic simulation has been a powerful tool for designing and analyzing modern complex systems arising in many
industrial areas. In building a good simulation model, one needs to capture not only the system’s internal logic but also
the random factors that affect the system’s performance. These random factors, such as customer demand, traveling
time, and service time, are often modeled by probability distributions, which are commonly referred to as “input
distributions". A simulator generates samples from input distributions to simulate real-world scenarios and evaluate the
system’s performance on these scenarios.

Evaluation via simulation brings simulation error, which mainly comes from two sources. The first is known as the
input uncertainty (IU), which refers to the estimation error of the input distribution from input data observed from
the real world. Another source is the stochastic uncertainty (SU), which is induced by random samples generated in
the simulation process. The evaluation accuracy can be severely impacted if either type of uncertainty remains large
and is ignored. Therefore, it is important for a simulation analysis procedure to take into account both sources of
error/uncertainty.

SU can be reduced by carrying out more simulation replications, while IU is determined by the amount of input data. In
many application problems, input data are often collected in batches over time to reduce IU and refine the simulation
model, which is then used to test and compare potential system designs or strategies. More specifically, each time a new
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batch of data come, the simulator updates the estimate of the input distributions and run additional simulation based
on the new input distributions. The simulation budget, which is the amount of simulation effort can be implemented,
between arrivals of two successive batches of input data is usually limited and determined by external factors such as
the inter-arrival time of input data and simulation cost. The goal is to identify the best design/strategy through smart
allocation of the limited given simulation budget to evaluate different designs/strategies.

This motivates us to consider a fixed budget ranking and selection (R&S) problem with streaming data where new
input data arrive over time in batches of possibly varying sizes. A procedure for fixed budget R&S aims to achieve a
probability of correct selection (PCS) as high as possible with a given simulation budget. Our proposed procedure for
the streaming data setting is built on the Optimal Computing Budget Allocation (OCBA) algorithm, which is one of
the most widely applied and studied algorithms for fixed budget R&S with a fixed input distribution. It computes the
budget allocation rule by repeatedly maximizing an approximate PCS objective in each iteration with plug-in estimators
of design performances. OCBA was first proposed in [5] and was shown to converge asympotically to the optimal
allocation rule in [32]. The statistical validity of OCBA crucially relies on the stationarity of the underlying input
distribution, which implies that the simulation outputs are independent and identically distributed (i.i.d.) samples even
though they are generated in different iterations of the algorithm. Hence, the performance estimation error diminishes
as more samples are generated over iterations, leading to convergence of the allocation policy to the optimal policy.
OCBA have been extended in the past years to various problems such as subset selection ([4] and [18]), contextual R&S
([20] and [27]), multi-objective ([31]), finding simplest good designs ([26] and [45]), maximizing opportunity cost
([19]), robust R&S under input uncertainty ([21]), and many others. All of these works either assume a known input
distributions or consider an empirical input distribution estimated with a fixed set of input data, where the performance
samples for the same design follow the same input distribution over iterations.

The setting of streaming data considered in this paper is more challenging than the setting of fixed input distribution in
the aforementioned OCBA works. Most notably, the underlying input distribution is no longer fixed but is updated with
new input data at each time stage, and hence it breaks the i.i.d. condition of the simulation outputs for each fixed design.
Moreover, since simulation is often time consuming compared to the inter-arrival time of data, only a limited (small)
number of simulation replications can be carried out at each stage, i.e., in between arrivals of input data. To control the
variance of performance estimates, it is necessary to reuse simulation outputs generated under heterogeneous input
distributions over part stages. To efficiently aggregate simulation outputs from different stages as well as maintaining
statistical validity, we first approximate the input distribution by an empirical distribution on a finite support that is fixed
over time, and each point in the finite support is called an “input realization”. The central idea is that by breaking down
the entire input distribution into input realizations, the simulation output conducted for each design at a fixed input
realization (called a design-input pair) is i.i.d. over time. More specifically, the fixed finite support allows us to update
the estimated input distribution through probability mass function (pmf) and enables us to define the performance
estimate of a design as the weighted sum of the design-input performance estimates weighted by the empirical pmf over
all input realizations. The estimation error of the performance then can be split into two parts, the error from IU reflected
by the estimation of input pmf and the error from SU reflected by the sample average of the design-input performance.
The convergence of the budget allocation policy relies on the convergence of both the empirical input distribution and
the design-input performance estimate. We note that the design-input pairwise simulation is similar as contextual R&S
where simulation is run on each design-context pair (see [20]. However, our setting with input uncertainty is different
from contextual R&S in nature: the goal of R&S with input uncertainty is to identify one single optimal design with the
best performance measure under the true input distribution, while contextual R&S aims to choose one optimal design
for each possible context and typically considers a fixed input distribution. Another distinction is that [20] applied the
same large deviations rate (LDR) function for i.i.d Gaussian random variables as in [22] to derive the optimal allocation
rule, but we cannot directly apply this result due to our different definition of the performance estimate, which contains
samples under different input realizations. We recalculate the rate function of our performance estimate with input
distribution and derive the optimality conditions for stage-wise budget allocation policy. Based on the stage-wise
optimality conditions, we develop two data-driven procedures for the streaming data setting. We show that the two
allocation policies converge to the optimal allocation policy under the true input distribution as the time stage goes to
infinity.

We summarize the contributions of this paper as follows.

1. This paper along with our earlier conference version, [37], are the first to consider streaming input data in fixed
budget R&S problems and design a data-driven approach. Compared with the conference version, this paper develops a
new procedure IU-OCBA-balance and extends the problem to the more general setting of unknown variance in the
evaluation of design performance.

2. To aggregate simulation outputs generated under heterogeneous input distributions over time, we define a new
performance estimator as the weighted sum of design-input sample means over all input realizations, which contains
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IU in the weights from the input distribution estimate and SU in the design-input sample means. We apply the
Gartner-Ellis theorem (see [13]) to calculate the rate function of this new performance estimator. Unlike many other
works derived from [22] where they directly use the same rate function, we need to recalculate it due to samples from
different distributions in the performance estimator. We formulate a stage-wise rate maximization problem using the
recalculated rate function and derive the corresponding optimality conditions. Compared with optimality conditions in
[22], we obtain an additional “Derivative Balance" condition that characterize the allocation rule among different input
realizations, showing the impact of different input distributions on the budget allocation.

3. We develop two fully sequential procedures, called IU-OCBA-approx and IU-OCBA-balance, based on different
approaches to solve the optimality conditions. IU-OCBA-approx takes an OCBA-type approach to approximate the
optimality conditions and compute the approximately optimal solution in an explicit form; IU-OCBA-balance adapts
the approach in [6] to avoid directly computing the solution but instead try to balance the two sides of the optimality
equations each time. We prove the statistical consistency and asymptotic optimality of both procedures, where the major
analytic challenge is to show that the procedures asymptotically satisfy the additional “Derivative Balance" condition
and the much more complicated “Local Balance" condition (compared to the case without IU). Our proof indicates the
importance of balancing IU and SU, or in other words, having sufficient input data in accordance with the simulation
budget to ensure the convergence of allocation policy.

Next we briefly review the relevant literature with an emphasis on the relation with our work.

1.1 Literature Review

The research on R&S largely falls into two related yet different categories. The fixed confidence R&S procedures aim
to achieve a pre-specified probability of correct selection (PCS) using the least possible amount of simulation effort,
whereas the fixed budget R&S procedures typically tend to attain a PCS as high as possible with a given simulation
budget. For fixed confidence, a large body of literature goes to the indifference zone (IZ) formulation. An IZ procedure
guarantees selecting the best design with at least a pre-specified confidence level, given that the difference between the
top-two designs is sufficiently large. Existing IZ procedures in the R&S literature include but are not limited to the KN
procedure in [28], the KVP and UVP procedures in [25], and the BIZ procedure in [17]. We refer the reader to [29] for
a comprehensive review of IZ formulations. In addition, the Bayesian approaches in [8] and the probably approximately
correct (PAC) selection in [34] have also been studied in this stream of works.

In this paper, we focused on the fixed budget R&S. As discussed in Section 1, OCBA is originally derived under a
normality assumption and an approximate PCS objective. The allocation rule of OCBA can be justified from a rigorous
perspective of the large deviations theory in [22], after which lots of works followed this large deviations formulation.
For instance, [6] designed a fully sequential budget allocation algorithm for general distributions using the optimality
conditions in [22]; [24] and [35] applied the large deviations theory to constrained R&S; [20] and [3] extended the large
deviations approach to contextual R&S; [21] computed the LDR function with respect to a worst-case performance
estimator. In this paper, we compute the LDR function of a performance estimator aggregating samples across different
input distributions. Other well-known fixed budget R&S procedures include the expected value of information (EVI)
approach proposed by [9] and the knowledge-gradient (KG) approach proposed by [16], where EVI is derived by
asympototically minimizing a bound of the expected loss and KG determines the optimal sampling allocation policy by
maximizing the so-called acquisition function. We refer the reader to [23] for a recent overview of the R&S literature.

There is a sophisticated literature on quantifying the impact of IU on simulation output, which includes but is not limited
to the frequentist methods ([1]), the meta-assisted methods such as [2], [42, 43], the empirical likelihood method ([30]),
single-run method ([33]), and bayesian methods ([7, 46, 47, 42]). We refer the reader to [10] for a recent review on the
topic of input uncertainty.

Despite the extensive study on IU quantification and classical R&S, works on R&S with IU have only been studies in
recent years. [11, 12] aimed to eliminate inferior designs as many as possible and return a subset of superior designs
with fixed amount of input data. [39] formulated a fixed budget problem under OCBA framework to simultaneously
allocate the effort to carry out stimulation and the effort to obtain input data; this work is followed by [44], which
proposed a general framework that integrates input data collection and simulation in which the data collection and
simulation costs themselves can be random. [21], [41], [40] took a fixed budget formulation with a robust approach,
aiming to select a design with the best worst-case performance over an uncertainty set of finite distributions that contains
the true input distribution; [15] also used this worst-case criteria but took an IZ formulation. [36] derived confidence
bands to account for both IU and SU in R&S. All of the above works considered a fixed set of input data, but more
recently [38] considered R&S with streaming input data, the same setting as this paper, but used fixed confidence
formulation. They proposed a moving average performance estimator to aggregate simulation outputs from different
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input distributions over time stages and designed sequential elimination procedures to screen out the inferior designs
until one is left to be the optimal one with at least a pre-specified confidence level.

The rest of the paper is organized as follows. We describe the problem setting and present the overall framework of the
proposed data-driven procedures in Section 2. In Section 3 we explicitly solve the stage-wise budget allocation problem
by applying the large deviations theory to calculate the rate function for the performance estimator and characterize
the stage-wise optimal allocation policy. In Section 4 we propose sequential procedures for the R&S problem under
streaming data. We show the statistical consistency and asymptotic optimality of the two procedures in Section 5. We
present numerical results in Section 6 and conclude in Section 7.

2 Problem Statement

We first lay down some basic notations. Suppose we have a set of finite number of designs I = {1, 2, · · · ,K}, and the
goal is to find the design with the highest expected performance. The performance of each design i ∈ I is evaluated
through repeated simulation runs. The simulation budget, which is the total number of simulation replications we can
run on all designs, is often limited by computational time or expense. The core of the fixed budget R&S problem is to
devise procedures that maximize the probability of correct selection (PCS) of the optimal design when exhausting the
simulation budget.

In classical R&S, the input distributions, {Fi}, that capture various sources of system randomness are assumed to
be known. However, in practice the input distributions are seldom known and need to be estimated from input data,
which are a finite amount of real-world observations. Sources of system randomness, such as demand load in an
inventory-production problem, are often shared among all designs. Therefore, throughout the paper we assume that all
the designs share the same input distribution F (thus, dropping the subscript i) and consequently common input data
from these distributions. Note that in addition to the common input distribution, there are possibly other design-specific
distributions that drive the simulation. For example, for a service network where we want to select the best design
(network configuration, service rates), the customer demand is unknown and common to all designs, whereas the service
distribution is known and determined by the design.

Let ζ denote the input random vector, which follows the unknown input distribution F . Let Xi(ζ̃) denote the sample
performance, i.e., the simulation output of design i under the input realization ζ = ζ̃. Denote by εi(ζ̃) the randomness
in simulation output under input realization ζ̃, which is caused by simulating the design-specific distributions, such as
the service distribution mentioned above. We assume Xi(ζ̃) has the following form:

Xi(ζ̃) = µi(ζ̃) + εi(ζ̃),

where εi(ζ̃) has a known distribution with mean 0 and µi(ζ̃) = E[Xi(ζ̃)|ζ̃] is the expected performance of design i
under the input realization ζ̃. Let µ̄i = E[µi(ζ)] denote the expected performance of design i, where the expectation
is taken with respect to (w.r.t.) the input distribution ζ. The goal is to select the design with the largest expected
performance, i.e., the design b (for best) such that

b = arg max
1≤i≤K

µ̄i. (1)

Without loss of generality, we assume design 1 is the unique optimal design, i.e., b = 1.

A common approach of simulating one replication for design i, as in the classical R&S, is to first generate a sample ζ̃ of
ζ and then generate a sample performance Xi(ζ̃). However, a major challenge of taking this approach with streaming
input data is that the estimated input distribution under which the simulation is conducted varies over time. As a result,
the simulation output is no more i.i.d., which makes it analytically difficult to apply methodologies in classical R&S.
Instead of generating samples from different input distributions, we conduct the simulation on each design-input pair,
that is, we simulate a design i under a specific input realization ζ. Then the simulation outputs of the design under
the same input realization are i.i.d. samples. To have a finite number of input realizations, we make the following
assumption on the input distribution.

Assumption 1 The true (unknown) input distribution Fζ has a finite support {ζ1, ζ2, · · · , ζD}, with probability mass
function (pmf) P(ζ = ζj) = pj > 0, j = 1, . . . , D.

Assumption 1 can be satisfied by discretizing the support of the input distribution if its support is continuous. Specifically,
Suppose the input distribution has cumulative distribution function (CDF) F with the support U . We discretize the
support by a partition of U, {Uj}Dj=1, such that U =

⋃D
j=1 Uj . The probability mass function can then be defined as the

probability of each subdomain Uj , i.e., pj = P(ζ ∈ Uj) =
∫
Uj

dF (x).
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Figure 1: Illustration of budget allocation with streaming input data

With this finite support assumption, we simplify the notations of design-input performance, expected performance and
simulation error respectively as Xi,j := Xi(ζj), µi,j := µi(ζj) and εi,j := εi(ζj). Denote by X(l)

i,j the lth replication
for Xi,j . We make the following assumption on the simulation output.

Assumption 2

1. The simulation error εi,j follows a normal distribution N(0, σ2
i,j) where the variance is unknown.

2. The simulation output {X(l)
i,j } are independent for all i, j and l.

Assumption 2.1 models the simulation error as Gaussian noise with both mean and variance being unknown. It is
common in the R&S literature to assume Gaussian randomness with known variance (see, for example, [5], [6]), but
we develop the procedures and analysis in the more general setting of unknown variance. Assumption 2.2 can be
guaranteed since now we simulate on fixed input realization, where the randomness only comes from simulation error,
which is often independent across designs, input realizations, and iterations. It is worth noting here we assume the
simulator can choose a specific input realization to run simulation in finding the best design, while for implementation
on the real system, the decision maker does not know the input realization before making a decision; this is the key
difference from contextual R&S, where the decision maker first observes a realization of the context and then makes a
decision.

Next, we describe the overall framework of our proposed data-driven budget allocation procedures. Recall that our goal
is to select the design b = arg max1≤i≤K µ̄i, where µ̄i =

∑D
j=1 pjµi,j under Assumption 1. The true input distribution

{pj} needs to be estimated sequentially via streaming data. More specifically, at time stage t, new input data of batch
size m(t) can be obtained and used to update the estimate of the input distribution, and then we allocate simulation
budget n(t) to design-input pairs to maximize the PCS with respect to the current estimated input distribution. We
assume both n(t) and m(t) are given. This process is illustrated in Figure 1, where M(t) =

∑t
τ=1m(τ) is the total

amount of input data collected up to stage t. For input data, we make the following assumption.

Assumption 3 The input data, {ξs}∞s=1, are identically and independently distributed.

With Assumption 3, at stage t the input distribution can be estimated by the empirical distribution consisting of the
observed data up to stage t:

p
(t)
j =

∑M(t)
s=1 1{ξs = ζj}

M(t)
.

To find the budget allocation rule for each stage, we apply the large deviations theory to formulate an optimization
problem under the current estimated input distribution and characterize its optimality condition to derive the stage-wise
optimal budget allocation rule in Section 3. Then combined with the updating of estimated input distributions, we
develop two data-driven budget allocation procedures for the multi-stage setting in 4.
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3 Stage-wise Optimal Budget Allocation

In this section, we formulate and solve a static optimal budget allocation problem to guide allocating the stage-wise
budget to design-input pairs under the current estimated input distribution, estimated expected performance, and
estimated simulation variance. Let ni,j denote the simulation budget allocated to design i under input realization ζj .
Let αi = (αi,1, . . . , αi,D)ᵀ be the ratio of budget allocated to design i and input realization j. Denote by

µ̂i,j(αi,jn) =
1

αi,jn

αi,jn∑
s=1

X
(s)
i,j and ˆ̄µi(αi, n) =

D∑
j=1

p
(t)
j µ̂i,j(αi,jn),

the estimated performance for the (i, j) (design-input) pair and the estimated performance for design i, respectively.
Ignoring the minor issue of αi,jn not being an integer, we formulate an optimization problem from the large deviations
perspective as in [22] and define the rate function

Gi(α1, αi) := − lim
n→∞

1

n
logP

(
ˆ̄µ1(α1, n) ≤ ˆ̄µi(αi, n)

)
.

That is, nGi(α1, αi) is the exponential rate of the probability of the event { ˆ̄µ1(α1, n) ≤ ˆ̄µi(αi, n)} going to zero as n
goes to infinity. Since the probability of false selection (PFS), which is defined as

PFS = P

(
ˆ̄µ1(α1, n) ≤ max

2≤i≤K
ˆ̄µi(αi, n)

)
,

can be bounded by

max
2≤i≤K

P
(
ˆ̄µ1(α1, n) ≤ ˆ̄µi(αi, n)

)
≤ PFS ≤ (K − 1) max

2≤i≤K
P
(
ˆ̄µ1(α1, n) ≤ ˆ̄µi(αi, n)

)
,

we have

lim
n→∞

1

n
logPFS = − min

2≤i≤K
Gi(α1, αi). (2)

That is, min2≤i≤K Gi(α1, αi) is the asymptotically exponential decay rate of PFS. To maximize this decay rate of PFS,
we consider the following optimization problem:

max
αi,j ,1≤i≤K,1≤j≤D

z

s.t. Gi(α1, αi)− z ≥ 0 2 ≤ i ≤ K
K∑
i=1

D∑
j=1

αi,j = 1

αi,j ≥ 0 1 ≤ i ≤ K, 1 ≤ j ≤ D,

(3)

To solve (3), we need the true input distribution, the expected performance µ̄i, and the variance of simulation error σ2
i,j ,

all of which are unknown. Therefore, we replace the unknown parameters with their estimates at the current stage and
solve (3) to guide the budget allocation.

Optimizing the large deviations rate of PFS is first studied in [22], where IU is not considered. Formulation without
IU can be seen as a special case of D = 1 in our setting. Our approach is an extension of [22], which incorporates
simulation samples under different input realizations in calculating the rate function. Due to this difference, we cannot
directly apply their result. Instead, we take a similar approach using the Gartner-Ellis Theorem (see [13]), and the
detailed calculation is shown in the next section.

3.1 Calculation of the Rate Function

In this section we give the explicit form of the rate function Gi(α1, αi). The rate function is computed with full
knowledge of involved distributions. That is, all the parameters such as pj , µ̄i and σi,j that will be used are assumed
known in deriving the rate function.
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For a fixed i, let Λi,j(·) denote the log-moment generating function of Xi,j and Λn(·, ·) denote the log-moment
generating function of Zn = (ˆ̄µ1(α1, n), ˆ̄µi(αi, n)). That is,

Λn(λ1, λi) = logE
[
eλ1 ˆ̄µ1(α1,n)+λi ˆ̄µi(αi,n)

]
= logE

exp

λ1

D∑
j=1

pj

nα1,j∑
s=1

X
(s)
1,j

nα1,j
+ λi

D∑
j=1

pj

nαi,j∑
s=1

X
(s)
i,j

nαi,j


=

D∑
j=1

nα1,j logE

[
exp

(
λ1pj
nα1,j

X1,j

)]
+

D∑
j=1

nαi,j logE

[
exp

(
λipj
nαi,j

Xi,j

)]

=

D∑
j=1

nα1,jΛ1,j

(
λ1pj
nα1,j

)
+

D∑
j=1

nαi,jΛi,j

(
λipj
nαi,j

)
.

The third equality follows from Assumption 2.2 that all simulation outputs are independent across designs and simulation
outputs are identically distributed for the same design-input pair. Then, substituting λ1 and λi with nλ1 and nλi,
respectively, we obtain

1

n
Λn(nλ1, nλi) =

D∑
j=1

α1,jΛ1,j

(
λ1pj
α1,j

)
+

D∑
j=1

αi,jΛi,j

(
λipj
αi,j

)
.

Since Xi,j follows a normal distribution with mean µi,j and variance σ2
i,j , Λi,j(λ) = λµi,j + 1

2λ
2σ2
i,j . Let I(x1, xi)

be the Fenchel-Legendre transform of Λn. Then,

I(x1, xi) = sup
λ1,λi

λ1x1 + λixi −
D∑
j=1

α1,jΛ1,j

(
λ1pj
α1,j

)
−

D∑
j=1

αi,jΛi,j

(
λipj
αi,j

)
= sup

λ1

λ1x1 −
D∑
j=1

α1,jΛ1,j

(
λ1pj
α1,j

)+ sup
λi

λixi −
D∑
j=1

αi,jΛi,j

(
λipj
αi,j

)
= sup

λ1

λ1x1 −
D∑
j=1

(
λ1pjµ1,j +

1

2

σ2
1,jλ

2
1p

2
j

α1,j

)+ sup
λi

λixi −
D∑
j=1

(
λipjµi,j +

1

2

σ2
i,jλ

2
i p

2
j

αi,j

)
=

1

2

(x1 − µ̄1)2∑D
j=1

σ2
1,jp

2
j

α1,j︸ ︷︷ ︸
= I1

+
1

2

(xi − µ̄i)2∑D
j=1

σ2
i,jp

2
j

αi,j︸ ︷︷ ︸
= Ii

.

By the Gartner-Ellis Theorem, Gi(α1, αi) = infx1≤xi I(x1, xi). It is easy to see that I1 is decreasing for x1 ≤ µ̄1 and
increasing for x1 ≥ µ̄1, and Ii is decreasing for xi ≤ µ̄i and increasing for xi ≥ µ̄i. Since µ̄1 > µ̄i, we must have

Gi(α1, αi) = inf
µ̄i≤x≤µ̄1

I(x, x) =
(µ̄1 − µ̄i)2

2
(∑D

j=1

σ2
1,jp

2
j

α1,j
+
∑D
j=1

σ2
i,jp

2
j

αi,j

) . (4)

When D = 1, we recover exactly the same rate function as in [22]. The following lemma summarizes some important
properties of Gi(α1, αi).

Lemma 1 Suppose Assumption 2 holds. Then,

1. Gi(α1, αi) is strictly increasing in α1,j and αi,j for α1,j , αi,j > 0, j = 1, 2, . . . , D. Moreover, Gi(α1, αi) =
0 if there exists j0 such that min(α1,j0 , αi,j0) = 0.

2. Gi(α1, αi) is concave in (α1, αi) for (α1, αi) > 0.

Lemma 1.1 implies that any design-input pair must be allocated with a positive ratio of the simulation budget;
otherwise, the rate will be zero. Lemma 1.2 claims the concavity of Gi, which guarantees the optimality with the
Karush–Kuhn–Tucker (KKT) condition for the optimization problem (3) in the following section.
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3.2 Optimal Allocation Policy

In this section we derive the optimality conditions for problem (3), shown in the following theorem.

Theorem 1 Suppose Assumption 2 holds. Let α ≥ 0 be a feasible allocation policy. Then α is the optimal solution to
(3) if and only the following three conditions hold:

1.(Derivative Balance)
∂Gi(α1, αi)

∂αi,j
=
∂Gi(α1, αi)

∂αi,j′
2 ≤ i ≤ K and 1 ≤ j < j′ ≤ D, if pj , pj′ > 0; (5)

2.(Total Balance)
K∑
i=2

∂Gi(α1, αi)/∂α1,j

∂Gi(α1, αi)/∂αi,j
= 1 1 ≤ j ≤ D, if pj > 0; (6)

3.(Local Balance) Gi(α1, αi) = Gi′(α1, αi′) 2 ≤ i < i′ ≤ K. (7)

Or equivalently in the explicit form:

1.
αi,j
σi,jpj

=
αi,j′

σi,j′pj′
2 ≤ i ≤ K, 1 ≤ j ≤ D, (8)

2.

(
α1,j

σ1,j

)2

=

K∑
i=2

(
αi,j
σi,j

)2

1 ≤ j ≤ D, (9)

3.
(µ̄1 − µ̄i)2∑D

j=1

σ2
1,jp

2
j

α1,j
+
∑D
j=1

σ2
i,jp

2
j

αi,j

=
(µ̄1 − µ̄i′)2∑D

j=1

σ2
1,jp

2
j

α1,j
+
∑D
j=1

σ2
i′,jp

2
j

αi′,j

2 ≤ i < i′ ≤ K. (10)

Furthermore, the optimal solution α∗ to (3) is unique.

Proof. We first show the existence of α. The existence follows from the continuity of Gi with respect to α ∈ ∆KB−1,
where ∆n denotes the n-dimensional simplex. Furthermore, by Lemma 1.1, Gi is strictly increasing in α1,j′ and αi,j′ .
Since αi,j = 1

KB ∀i, j is a feasible solution and the corresponding objective value is strictly positive, the optimal
solution α must satisfy αi,j > 0 for all i, j.

Now we show the necessity of the three optimality conditions. By Lemma 1.2, the optimization problem (3) is a concave
maximization problem, and therefore the KKT conditions are both sufficient and necessary for the optimality. With α
strictly positive, the KKT conditions can be written as

1−
K∑
i=1

λi = 0, (11)

λi
∂Gi
∂αi,j

(α1, αi) = γ 2 ≤ i ≤ K, 1 ≤ j ≤ D, (12)

K∑
i=2

λi
∂Gi
∂α1,j

(α1, αi) = γ 1 ≤ j ≤ D, (13)

λi(Gi(α1, αi)− z) = 0 2 ≤ i ≤ K, (14)

for some γ and λi ≥ 0, 2 ≤ i ≤ K. By (11) there exists at least one i0 such that λi0 > 0. Then sinceGi is increasing in
αi,j , we have ∂Gi0

∂αi0,j
(α1, αi0) > 0. This implies γ > 0 by (12). Hence, we must have λi > 0 for all 2 ≤ i ≤ K. Then

we have ∂Gi(α1,αi)
∂αi,j

= γ
λi
, 1 ≤ j ≤ D, 2 ≤ i ≤ K, which proves (5). Since λi > 0, Gi(α1, αi) = z, 2 ≤ i ≤ K by

(14). Hence, (7) holds. To see why (6) holds, solving for λi = γ
∂Gi
∂αi,j

(α1,αi)
in (12) and substituting λi in (13), we get

the desired result.

For sufficiency, first let λi = 1
∂Gi(α1,αi)/∂αi,j

/(
K∑
k=2

1
∂Gk(α1,αk)/∂αk,j

) for i ≥ 2. Notice that λi > 0 and does not

depend on the choice of j by (5). Moreover, {λi}i≥2 satisfy condition (11). Further let γ = (
K∑
k=2

1
∂Gk(α1,αk)/∂αkj

)−1,

which is also independent of j. We can easily verify that both (12) and (13) hold. (11) also holds by setting
z = Gi(α1, αi), which is independent of i by (7).

8
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Now we are only left to show the uniqueness of α. First notice that from (8) and (9), we have

α1,j

σ1,jpj
=

√√√√ D∑
i=2

(
αi,j
σi,jpj

)2 =

√√√√ D∑
i=2

(
αi,j′

σi,j′pj′
)2 =

α1,j′

σ1,j′pj′
1 ≤ j < j′ ≤ D.

Letting βi =
αi,j
σi,jpj

which is independent of j, we can write αi,j = pjσi,jβi for all i = 1, 2, · · · ,K and j = 1, 2, · · · , D.
Since α and β = (β1, · · · , βK) are bijective, it is sufficient to show the uniqueness of β. Plugging αi,j into (10) and
(9), we have

(µ̄1 − µ̄i)2∑D
j=1 σ1,jpj

β1
+

∑D
j=1 σi,jpj

βi

=
(µ̄1 − µ̄i′)2∑D

j=1 σ1,jpj

β1
+

∑D
j=1 σi′,jpj

βi′

2 ≤ i < i′ ≤ K

with β2
1 =

∑K
i=2 β

2
i . Let η = β

β1
. Then η satisfies

(µ̄1 − µ̄i)2∑D
j=1 σ1,jpj +

∑D
j=1 σi,jpj

ηi

=
(µ̄1 − µ̄i′)2∑D

j=1 σ1,jpj +
∑D
j=1 σi′,jpj

ηi′

2 ≤ i < i′ ≤ K (15)

with 1 =
∑K
i=2 η

2
i . If there exists η′ 6= η satisfying these two conditions, then there must be i 6= k 6= 1 such that

ηi < η′i and ηk > η′k. Then, we have

(µ̄1 − µ̄i)2∑D
j=1 σ1,jpj +

∑D
j=1 σi,jpj

ηi

<
(µ̄1 − µ̄i)2∑D

j=1 σ1,jpj +
∑D
j=1 σi,jpj

η′i

=
(µ̄1 − µ̄k)2∑D

j=1 σ1,jpj +
∑D
j=1 σk,jpj

η′k

<
(µ̄1 − µ̄k)2∑D

j=1 σ1,jpj +
∑D
j=1 σk,jpj

ηk

,

which contradicts (15). Hence, η is unique, which implies β = C ∗ η for some constant C. Then if there exists
β′ 6= β and both are optimal, we have β > (<)β′. This implies the corresponding α > (<)α′, which contradicts∑
i,j αi,j =

∑
i,j α

′
i,j = 1. �

Compared with the optimality condition in [22], in addition to the “total balance" that characterizes the relation between
the optimal design and the non-optimal designs and the “local balance" conditions that characterizes the relation
between two non-optimal designs, here we have the additional optimality condition (5), the local “derivative balance"
condition. It states that within the allocation for a certain design i, the partial derivative of the rate function Gi with
respect to αi,j is the same for all j’s. That is, simulation for each fixed input realization should provide the same
improvement to identify that design 1 is better than i. Furthermore, with normally distributed simulation errors, equation
(8) indicates that for a fixed design i the optimal allocation ratio αi,j should be proportional to the input probability
mass pj and the standard deviation σi,j , which quantitatively characterizes how input uncertainty affects the optimal
allocation policy. Also notice for fixed i, (8) only depends on i, which means the relative allocation ratios among
different input realizations for a fixed design do not depend on other designs. On the other hand, (10) indicates that the
relative allocation ratios among designs under the same input realization j are affected by all pj’s, which implies directly
applying OCBA to designs under a fixed input realization j may perform poorly since it does not take information from
other design-input pairs into consideration. Moreover, notice that the three optimality conditions (5)-(7) not only hold
for Gaussian simulation noise but also hold as long as the rate function Gi has the properties shown in Lemma 1.

4 Sequential Procedure with Streaming Input Data

In deriving Theorem 1 above, we assume full knowledge of the input distribution and simulation error distribution. In
this section, by trying to satisfy the optimality conditions in Theorem 1 with the current input distribution estimate
as “plug-in” estimate at each time stage, we develop two fully sequential procedures, named as IU-OCBA-approx
and IU-OCBA-balance, for simulation budget allocation in the multi-stage setting with streaming input data. The two
procedures mainly differ in how to satisfy the optimality conditions: IU-OCBA-approx solves the optimality conditions
approximately, while IU-OCBA-balance tries to balance the two sides of the optimality equations.

A major difficulty of solving the optimality conditions is that the optimality equations (8)-(10) do not have closed-form
solutions, and it is usually computationally expensive to solve them using numerical methods such as gradient decent.
To improve the computational efficiency, we design the two procedures tackling the optimality conditions in different
ways. The IU-OCBA-approx procedure tries to directly solve the optimization problem (3) at each iteration but
approximating (10) by assuming that a weighted ratio of allocation budget assigned to the optimal design is much
larger than that assigned to other designs, which is a similar assumption taken by [5]. This approximation enables us to
compute the solution in a much simpler way. Alternatively, by taking a similar approach in [6] , the IU-OCBA-balance
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procedure avoids directly solving the optimality equations and instead balances the two sides of the equations, i.e.,
reduces the difference between two sides of the equations in each iteration when allocating the budget. Plausibly,
IU-OCBA-approx is expected to converge faster since we solve the equations every time, while IU-OCBA-balance may
converge slower since we only balance instead of solving the equations. However, IU-OCBA-approx approximates the
optimality conditions, meaning that the “optimal solution" we get may not be really optimal in the original problem.
IU-OCBA-balance, instead, targets at the original problem and will eventually converge to the true optimal solution as
more and more data are collected. The empirical comparison of these two methods will be carried out numerically in
Section 6.

4.1 IU-OCBA-approx

In this section we derive the IU-OCBA-approx procedure. Let βi =
αi,j
pjσi,j

, 1 ≤ i ≤ K, which is independent of j by
(8). Plugging αi,j = βiσi,jpj into (10), we have

(µ̄1 − µ̄i)2∑D
j=1 σ1,jpj

β1
+

∑D
j=1 σi,jpj

βi

=
(µ̄1 − µ̄i′)2∑D

j=1 σ1,jpj

β1
+

∑D
j=1 σi′,jpj

βi′

, 2 ≤ i < i′ ≤ K.

Assume β1 � βi, ∀i 6= 1, i.e., α1,j

σ1,j
� αi,j

σi,j
∀i 6= 1,∀j, the simulation budget assigned to the optimal

design-input pair divided by its standard deviation is much larger than that of other designs. Then we have
βi
βi′
≈

∑D
j=1 σi,jpj/(µ̄1−µ̄i)2∑D
j=1 σi′,jpj/(µ̄1−µ̄i′ )2

∀i 6= i′ 6= 1. Plugging βi =
αi,j
pjσi,j

back with this approximation, we have

αi,j
αi′,j′

=
pjσi,j

∑D
k=1 σi,kpk/(µ̄1 − µ̄i)2

pj′ σ̂
(l)
i′,j′

∑D
k=1 σi′,kpk/(µ̄1 − µ̄i′)2

, i, i′ 6= 1. (16)

Furthermore, with (9) and
∑K
i=1

∑K
j=1 αi,j = 1, we can calculate αi,j explicitly.

IU-OCBA-approx

1. Input. Number of designs K, input distribution support {ζ1, ζ2, · · · , ζB}, initial sample size n0, total
simulation budget n, input data batch size {m(t)}∞t=1 and stage-wise simulation budget {n(t)}∞t=1.

2. Initialization. Time stage counter t ← 0, replication counter l ← 0, total input data M(t) ← 0. Collect
n0 initial samples for each design-input pair (i, j). Set N (l)

i,j = n0. Compute the initial sample mean

µ̂
(l)
i,j = 1

N
(l)
i,j

∑N
(l)
i,j

s=1 X
(s)
i,j , and sample standard deviation σ̂(l)

i,j =

√
1

N
(l)
i,j−1

∑N
(l)
i,j

s=1 (X
(s)
i,j − µ̂

(l)
i,j)

2.

3. WHILE
∑K
i=1

∑D
j=1N

(l)
i,j < n DO

4. t ← t + 1, given input data of batch size m(t), let M(t) =
∑t
τ=1m(τ) and update p(t)

j =
∑M(t)
s=1 1{ξs=ζj}

M(t)

for j = 1, 2, · · · , D. Compute ˆ̄µ
(l)
i =

∑D
j=1 p

(t)
j µ̂

(l)
i,j .

5. REPEAT n(t) TIMES

6. b̂(l) ← arg maxi ˆ̄µ
(l)
i .

7. Update α̂(l)
i,j using (16), (9) and

∑
i,j α̂i,j = 1, with pj , µ̄i, σi,j replaced by p(t)

j , ˆ̄µ
(l)
i and σ̂(l)

i,j , respectively.

Calculate N̂ (l)
i,j = α̂

(l)
i,j

(
1 +

K∑
i=1

D∑
j=1

N
(l)
i,j

)
, ∀1 ≤ i ≤ K, 1 ≤ j ≤ D.

8. Find the design-input pair index (I, J) = arg maxi,j

(
N̂

(l)
i,j −N

(l)
i,j

)
. Simulate the pair (I, J) once. Update

µ̂
(l+1)
I,J , σ̂(l)

I,J and ˆ̄µ
(l+1)
I using the new simulation output, and set µ̂(l+1)

ij = µ̂
(l)
ij , σ̂(l+1)

i,j = σ̂
(l)
i,j and ˆ̄µ

(l+1)
i =

ˆ̄µ
(l)
i for i 6= I, j 6= J . Let N (l+1)

I,J = N
(l)
I,J + 1 and N (l+1)

i,j = N
(l)
i,j for all i 6= I, j 6= J .

9. l← l + 1.
10. END REPEAT
11. END WHILE
12. Output: Output ib = arg maxi ˆ̄µ

(l)
i as the best design.

10
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4.2 IU-OCBA-balance

Unlike IU-OCBA-approx where we try to directly solve for the optimal solutions, IU-OCBA-balance only requires to
evaluate both sides of the three optimality equations given the current number of replications for each design-input
pair. The procedures select a design-input pair each time to reduce the difference (balance) of at least one of the
optimality equations. In particular, at each iteration, the procedure will first decide whether to simulate the estimated
best design or one of the non-optimal designs to balance the “total balance" conditions. If the estimated best design is
not selected, then the procedure selects a non-optimal design to balance the “total balance" conditions. After selecting
the design, an input realization is chosen by balancing the “derivative balance" conditions. Notice that although in (8)
the “derivative balance" conditions are only for non-optimal designs, (8) also holds for i = b by (9) with αi,j

σi,j
replaced

by αi,j′

σi,j′

pj
pj′
, ∀j 6= j′. The balancing approach utilizes the monotonicity of both sides of all optimality equations in

terms of the allocation policy αi,j . For example, if we have in one of the equations in (8) violated by
α

(l)
i,j

σi,jpj
<

α
(l)

i,j′

σi,j′pj′
,

then we may want to simulate the design-input pair (i, j) to make the left hand side larger. The IU-OCBA-balance
procedure is presented as follows:

IU-OCBA-balance

1. Input. Number of designs K, input distribution support {ζ1, ζ2, · · · , ζB}, initial sample size n0, total
simulation budget n, input data batch size {m(t)}∞t=1, and stage-wise simulation budget {n(t)}∞t=1.

2. Initialization. Time stage counter t ← 0, replication counter l ← 0, total input data M(t) ← 0. Collect
n0 initial samples for each design-input pair (i, j). Set N (l)

i,j = n0. Compute the initial sample mean

µ̂
(l)
i,j = 1

N
(l)
i,j

∑N
(l)
i,j

s=1 X
(s)
i,j , and sample standard deviation σ̂(l)

i,j =

√
1

N
(l)
i,j−1

∑N
(l)
i,j

s=1 (X
(s)
i,j − µ̂

(l)
i,j)

2.

3. WHILE
∑K
i=1

∑D
j=1N

(l)
i,j < n DO

4. t ← t + 1, given input data of batch size m(t), let M(t) =
∑t
τ=1m(τ) and update p(t)

j =
∑M(t)
s=1 1{ξs=ζj}

M(t)

for j = 1, 2, · · · , D. Compute ˆ̄µ
(l)
i =

∑D
j=1 p

(t)
j µ̂

(l)
i,j .

5. REPEAT n(t) TIMES

6. b̂(l) ← arg maxi ˆ̄µ
(l)
i .

7. Let ĵ∗ = arg minj


(
N

(l)

b̂(l),j

σ̂
(l)

b̂(l),j

)2

−
∑
i 6=b̂(l)

(
N

(l)
i,j

σ̂
(l)
i,j

)2
.

8. IF

(
N

(l)

b̂(l),ĵ∗

σ̂
(l)

b̂(l),ĵ∗

)2

−
∑
i 6=b̂(l)

(
N

(l)

i,ĵ∗

σ̂
(l)

i,ĵ∗

)2

< 0, set Il = b̂(l), Jl = arg minj
N

(l)

b̂(l),j

σ̂
(l)

b̂(l),j
p
(t)
j

.

9. ELSE set Il = arg min
i6=b̂(l)

(ˆ̄µ
(l)

b̂(l)
− ˆ̄µ

(l)
i )2

D∑
j=1

(σ̂
(l)

b̂(l),j
)2(p

(t)
j

)2

N
(l)

b̂(l),j

+
D∑
j=1

(σ̂
(l)
i,j

)2(p
(t)
j

)2

N
(l)
i,j

, Jl = arg minj
N

(l)
Il,j

σ̂
(l)
Il,j

p
(t)
j

.

10. END IF
11. Simulate the pair (I, J) once. Update µ̂(l+1)

I,J , σ̂(l)
I,J and ˆ̄µ

(l+1)
I using the new simulation output, and set

µ̂
(l+1)
ij = µ̂

(l)
ij , σ̂(l+1)

i,j = σ̂
(l)
i,j and ˆ̄µ

(l+1)
i = ˆ̄µ

(l)
i for i 6= I, j 6= J . Let N (l+1)

I,J = N
(l)
I,J + 1 and N (l+1)

i,j = N
(l)
i,j

for all i 6= I, j 6= J .
12. l← l + 1.
13. END REPEAT
14. END WHILE

5 CONSISTENCY AND ASYMPTOTIC OPTIMALITY

In this section we show consistency and asymptotic optimality of IU-OCBA-approx and IU-OCBA-balance. The
consistency of classical R&S procedures, in a nutshell, is usually guaranteed by the Strong Law of Large Number
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(SLLN) as long as we simulate each design infinitely many times. However, here we also need the convergence of input
distribution estimate {p(t)

j }1≤j≤D to ensure we have the correct estimate of the true expected performance. For this
purpose, we make the following assumption about the input data batch size and simulation budget in each stage for the
IU-OCBA-approx procedure.

Assumption 4 At stage t, the input data batch size m(t) and simulation budget n(t) satisfy

lim
T→∞

T∑
t=1

n(t) =∞, lim
T→∞

T∑
t=1

m(t) =∞.

Assumption 4 ensures that both the total amount of input data and total simulation replications go to infinity as time stage
T goes to infinity, which helps guarantee the consistency of both the input estimate and the design-input performance
estimate. Recall that t denotes the time stage and l denotes the amount of simulation budget that has been allocated so
far. The following theorem shows the consistency (with respect to t) and asymptotic optimality (with respect to l) of
IU-OCBA-approx.

Theorem 2 Suppose Assumption 1, 2, 3 and 4 hold and the total simulation budget n =∞. Then,

1. (Consistency) IU-OCBA-approx selects the optimal design almost surely as t→∞.

2. (Asymptotic optimality) liml→∞
N

(l)
i,j

N(l) = α∗i,j almost surely , 1 ≤ i ≤ K, 1 ≤ j ≤ D, where α∗i,j satisfies the
optimality conditions (16) and (9).

Proof Since
∑t
s=1 n(s)→∞ as t→∞, we know the empirical distribution p(t)

j → pj almost surely by Glivenko-

Cantelli Theorem. Hence, if we can show N
(l)
i,j → ∞ almost surely for all i, j, we then have ˆ̄µ

(l)
i → µ̄i and

σ̂
(l)
i,j → σi,j almost surely by the SLLN and the fact that p(t)

j → pj almost surely . Hence, to prove 1 and 2, it suffices

to show N
(l)
i,j →∞ almost surely . Denote by A = {(i, j)|N (l)

i,j →∞}. Clearly A 6= .
Proof of 1. Denote by ω any sample path of one simulation process. We fix a sample path ω in the following proof.
Prove by contradiction. Suppose there exists (i0, j0) 6∈ A. Notice µ̂(l)

i,j and σ̂(l)
i,j will converge almost surely, no matter

whether N (l)
i,j tend to infinity. This is because if N (l)

i,j is at most finite, then µ̂(l)
i,j and σ̂(l)

i,j will remain unchanged after

finite iterations. Since p(t)
j converges almost surely, ˆ̄µ

(l)
i,j will also converge almost surely. Denote by N (l) =

∑
i,j N

(l)
i,j .

Then there exists an allocation policy {α̃i,j} satisfying liml→∞
N̂

(l)
i,j

N(l) = α̃i,j . Since (i0, j0) can be sampled for at most

finitely many times, it must hold for l large enough, N̂ (l)
i0,j0
−N (l)

i0,j0
≤ N̂ (l)

i,j −N
(l)
i,j for any (i, j) ∈ A. Then we have

lim inf
l→∞

N̂
(l)
i0,j0
−N (l)

i0,j0

N (l)
≤ lim inf

l→∞

N̂
(l)
i,j −N

(l)
i,j

N (l)
. (17)

The left hand side (LHS) of (17) = liml→∞
N̂

(l)
i0,j0

N(l) = α̃i0,j0 > 0, where positiveness comes from the fact that αi,j > 0

by proof of Theorem 1, where we replace the true µ̄ with the limit of ˆ̄µ(l) and the true σi,j with the limit of σ̂(l)
i,j . On the

other hand, the right hand side (RHS) of (17) = liml→∞
N̂

(l)
i,j

N(l) − lim supl→∞
N

(l)
i,j

N(l) = α̃i,j − lim sup
N

(l)
i,j

N(l) . Hence, we

have lim supl→∞
N

(l)
i,j

N(l) ≤ α̃i,j − α̃i0,j0 < α̃i,j . Since this holds for all (i, j) ∈ A, we have

1 =
∑
i,j

N
(l)
i,j

N (l)
= lim sup

l→∞

∑
i,j

N
(l)
i,j

N (l)
≤
∑
i,j

lim sup
l→∞

N
(l)
i,j

N (l)
=

∑
(i,j)∈A

lim sup
l→∞

N
(l)
i,j

N (l)
<

∑
(i,j)∈A

α̃i,j ≤ 1− α̃i0,j0 < 1,

a contradiction.
Proof of 2. Again we fix some sample path ω. By Assumption 4, we have l→∞⇐⇒ t→∞. Since N (l)

i,j →∞ and

p
(t)
j →∞ as l→∞, we have α̂(l)

i,j → α∗i,j as l→∞. Then, ∀ε > 0, ∃L̃ such that |α̂(l)
i,j − α∗i,j | < ε and 1

N(l) < ε for

all l ≥ L̃ and i ≥ 1, j ≥ 1. Let L̃i,j = min{l > L̃ : N
(l)
i,j = N

(L̃)
i,j + 1} ∀(i, j) ∈ A, the first time (i, j) is sampled after

L̃. Let L = max(i,j)∈A L̃i,j <∞ by the definition ofA. Then for any l > L, letDl = {(i, j) : α̂
(l)
i,j−

N
(l)
i,j

N(l) < 0}. Then

12
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if (i, j) ∈ Dl, let Li,j = max{s < l : N
(s)
i,j = N

(l)
i,j − 1}. Then we have Li,j ≥ L̃ by the definition of L. Furthermore,

α̂
(l)
i,j −

N
(l)
i,j

N (l)
≥ α̂(l)

i,j −
N

(Li,j+1)
i,j

N (Li,j+1)
=

[
α̂

(Li,j)
i,j −

N
(Li,j)
i,j

N (Li,j)

]
︸ ︷︷ ︸

= E1

+
[
α̂

(l)
i,j − α̂

(Li,j)
i,j

]
︸ ︷︷ ︸

= E2

+

[
N

(Li,j)
i,j

N (Li,j)
−
N

(Li,j+1)
i,j

N (Li,j+1)

]
︸ ︷︷ ︸

= E3

, (18)

where the second inequality follows fromN
(l)
i,j = N

(Li,j+1)
i,j andN (Li,j+1) < N (l) by the definition of Li,j . Since (i, j)

is sampled at Li,j , we must have E1 ≥ 0. Further since l, Li,j ≥ L̃, we have E2 ≥ −|α∗i,j − α̂
(l)
i,j | − |α∗i,j − α̂

(Li,j)
i,j | >

−2ε and E3 =
N

(Li,j)

i,j

N(Li,j)
− N

(Li,j)

i,j +1

N(Li,j)+1
=

N
(Li,j)

i,j −N(Li,j)

N(Li,j)(N(Li,j)+1)
> −N(Li,j)

N(Li,j)(N(Li,j)+1)
= −1

N(Li,j)+1
> −ε. Hence, we have

α̂
(l)
i,j −

N
(l)
i,j

N(l) ≥ −3ε. As a result,

0 =
∑
i,j

α̂
(l)
i,j−

∑
i,j

N
(l)
i,j

N (l)
=

∑
(i,j)∈Dl

(
α̂

(l)
i,j −

N
(l)
i,j

N (l)

)
+

∑
(i,j)∈Dcl

(
α̂

(l)
i,j −

N
(l)
i,j

N (l)

)
≥ −3|Dl|ε+

∑
(i,j)∈Dcl

(
α̂

(l)
i,j −

N
(l)
i,j

N (l)

)

Hence, 0 ≤ maxi,j

{
α̂

(l)
i,j −

N
(l)
i,j

N(l)

}
≤
∑

(i,j)∈Dcl

(
α̂

(l)
i,j −

N
(l)
i,j

N(l)

)
≤ 3|Dl|ε ≤ 3KBε. By arbitrary ε > 0, we get

liml→∞maxi,j

(
α̂

(l)
i,j −

N
(l)
i,j

N(l)

)
= 0. Since for any (i0, j0) we have

max
i,j

{
α̂

(l)
i,j −

N
(l)
i,j

N (l)

}
≥ α̂(l)

i0,j0
−
N

(l)
i0,j0

N (l)
= −

∑
i 6=i0,j 6=j0

(
α̂

(l)
i,j −

N
(l)
i,j

N (l)

)
≥ −(KB − 1) max

i,j

{
α̂

(l)
i,j −

N
(l)
i,j

N (l)

}
,

we obtain liml→∞ α̂
(l)
i0,j0
−

N
(l)
i0,j0

N(l) = 0 = α∗i0,j0 − liml→∞
N

(l)
i0,j0

N(l) as desired. �

For the IU-OCBA-balance procedure, we need more regularity conditions on the input data batch size and stage-wise
simulation budget to obtain the asymptotic optimality, as shown in the following assumption.

Assumption 5 At stage t, the input data batch size m(t) and simulation budget n(t) satisfy

lim
T→∞

1

T

T∑
t=1

n(t) = n̄, lim
T→∞

1

T

T∑
t=1

m(t) = m̄

for some n̄, m̄ > 0.

Assumption 5 ensures that both the total amount of input data and total simulation replications go to infinity at the same
rate O(T ) as time stage T goes to infinity. The same linear increasing rate allows the usage of law of iterated logarithm
(LII) on both the design-input performance estimator {µ̂(l)

i,j}i,j and empirical input pmf {p(t)
j }j and obtain almost sure

concentration bounds of order O
(√

log log l
l

)
, O
(√

log log t
t

)
. The convergence of the allocation policy relies on this

uniform bound on errors from IU and SU. The following theorem shows the consistency and asymptotic optimality of
IU-OCBA-balance.

Theorem 3 Suppose Assumption 1, 2, 3 and 5 hold and the total simulation budget n =∞. Then,

1. (Consistency) IU-OCBA-balance selects the optimal design almost surely as t→∞.

13
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2. (Asymptotic optimality) Define α(l)
ij =

N
(l)
i,j

N(l) ∀i, j. Then α(l)
ij asymptotically satisfies the optimality condition

(8), (9) and (10). That is, as l→∞,

i.

∣∣∣∣∣ α
(l)
i,j

σi,jpj
−

α
(l)
i,j′

σi,j′pj′

∣∣∣∣∣ −→ 0 a.s. 2 ≤ i ≤ K, 1 ≤ j < j′ ≤ D, (19)

ii.

∣∣∣∣∣∣
(
α

(l)
1,j

σ1,j

)2

−
D∑
i=2

(
α

(l)
i,j

σi,j

)2
∣∣∣∣∣∣ −→ 0 a.s. 1 ≤ j ≤ D, (20)

iii.

∣∣∣∣∣∣∣∣
(µ̄1 − µ̄i)2∑D

j=1

σ2
1,jp

2
j

α
(l)
1,j

+
∑D
j=1

σ2
i,jp

2
j

α
(l)
i,j

− (µ̄1 − µ̄i′)2∑D
j=1

σ2
1,jp

2
j

α
(l)
1,j

+
∑D
j=1

σ2
i′,jp

2
j

α
(l)

i′,j

∣∣∣∣∣∣∣∣ −→ 0 a.s. 2 ≤ i < i′ ≤ K. (21)

Proof of 1. Again denote by ω any sample path of one simulation process and A = {(i, j)|N (l)
i,j → ∞}. Fix the

sample path ω. We first prove (b̂, j) ∈ A for some j, where b̂ = liml→∞ b̂(l). We prove by contradiction. Suppose
(b̂, j) 6∈ A, ∀j. Then there exists L > 0, such that b̂ will not be sampled after Lth sample. Take any (i′, j′) ∈ A,

then

N (l)

b̂,j′

σ̂
(l)

b̂,j′

2

−
∑
i 6=b̂

(
N

(l)
i,j′

σ̂
(l)
i,j′

)2

≤

N (L)

b̂,j′

σ
(L)

b̂,j′

2

−

(
N

(l)
i′,j′

σ̂
(l)
i′,j′

)2

< 0 for l large enough, contradicting to b̂(l) = b̂

will not be sampled for l > L. Hence, there exists j0 such that (b̂, j0) ∈ A. Second, We prove (b̂, j) ∈ A,∀j. Since
N

(l)

b̂,j0

σ̂
(l)

b̂,j0
p

(t)
j0

→∞ as l→∞, then by Line 8 in IU-OCBA-balance, we have for each j,
N

(l)

b̂,j

σ̂
(l)

b̂,j
p

(t)
j

→∞ as l→∞. Then,

since p(t)
j → pj > 0, and the fact that σ(l)

b̂,j
converges almost surely, no matter whether N (l)

b̂,j
goes to infinity, we have

N
(l)

b̂,j
→∞, ∀j. The third step is to prove for each j, there exists an i 6= b̂ such that N (l)

i,j →∞. Otherwise if for some

j, all (i, j) pairs, i 6= b̂ will only be simulated finitely many times, then

N (l)

b̂j

σ̂
(l)

b̂,j

2

−
∑
i6=b̂(l)

(
N

(l)
i,j

σ̂
(l)
i,j

)2

> 0 for all l

large enough, a contradiction to (b̂, j) will be sampled infinitely many times. Consequently, fix any j0, there exists
i0 6= b̂ such that N (l)

i0,j0
→ ∞. For this specific i0, by Line 9 in IU-OCBA-balance, we have (i0, j) ∈ A ∀j, since

N
(l)
i0,j0

σ̂
(l)
i0,j0

p
(t)
j

→ ∞. Finally, we show N
(l)
i,j → ∞, ∀i 6= b̂,∀j. Since

(ˆ̄µ
(l)

b̂(l)
− ˆ̄µ

(l)
i0

)2

D∑
j=1

(σ̂
(l)

b̂(l),j
)2(p

(t)
j )2

N
b̂(l),j

+
D∑
j=1

(σ̂
(l)
i0,j

)2(p
(t)
j )2

N
(l)
i0,j

→ ∞, we

must have ∀i 6= b̂,
(ˆ̄µ

(l)

b̂(l)
− ˆ̄µ

(l)
i )2

D∑
j=1

(σ̂
(l)

b̂(l),j
)2(p

(t)
j )2

N
b̂(l),j

+
D∑
j=1

(σ̂
(l)
i,j)

2(p
(t)
j )2

N
(l)
i,j

→∞. This implies that N (l)
i,j →∞, ∀i, j.

Sketch of proof of 2. The proof of the asymptotic optimality of IU-OCBA-balance is quite technical. So, we only
give a ketch of the proof here and leave the formal proof in the appendix. The proof takes a similar approach as [14] and
[6]. We will show that between any two successive samples of a certain design-input pair, the number of replications
that can be assigned to any other design isO(

√
l log log l), where l is the iteration at which the first of the two successive

samples is sampled. Furthermore, for each sample, the fluctuation of both terms in (19), (20) and (21) is O( 1
l ). Then,

we can bound (19), (20) and (21) by O
(√

log log l
l

)
, which proves the result. �

6 NUMERICAL EXPERIMENT

We test the performance of IU-OCBA-approx and IU-OCBA-balance by comparing with (i) Equal Allocation, which
allocates equal simulation budget to all design-input pairs; (ii) Equal-OCBA-approx/Equal-OCBA-balance, which

14
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assigns equal budget to input realizations and but uses OCBA-approx or OCBA-balance to allocate budget to different
designs for each fixed input realization. We test the procedures on two different problems: a simple quadratic problem
with Gaussian simulation error, and a portfolio optimization problem with non-Gaussian simulation noise.

6.1 Quadratic Problem

In the quadratic problem, we want to minimize the expected value of a quadratic function Xi = (−0.5 + 0.5 ∗ i− ζ)2 +
εi(ζ), where i ∈ I = [0, 10] ∩ Z, ζ takes value in {0, 1, · · · , 4} with probability pj , j = 0, 1, . . . , 4, and εi,j follows
the normal distribution with mean 0 and stand deviation σi,j . We set pj ∝ j + 5, and σi,j = 1 + 1

i+j+1 . The true best

design is b = arg mini∈I
∑5
j=0(−0.5 + 0.5 ∗ i− j)2pj = 5.

Experiment Results

We first test with constant data batch size with different initial number of replications, n(0), which affect the initial
estimation of parameter {µ̄i}i and {σi,j}i,j . We also test different stage-wise simulation budgets, n(t), which together
with m(t) affect the impact from SU and IU on the empirical PCS. We set the batch size of input data m(t) = 50, initial
input data batch size m(0) = 50, and total simulation budget

∑T
t=1 n(t) = 20000. For different choices of n(0), we

set n(t) = 50; for different choices of n(t), we set n(0) = 200. In each scenario, we run 200 macro-replications to
compute the empirical PCS, i.e., the ratio of macro-replications where the best design is correctly selected. Figure 2
and 3 show the empirical PCS with respect to the total simulation budget.

(a) n(0) = 50 (b) n(0) = 100

(c) n(0) = 200 (d) n(0) = 500

Figure 2: Quadratic example with constant batch size and different choices of n(0)

The observations from Figure 2 and 3 are be summarized as follows:

1. For all choices of n(0) and n(t), the two proposed procedures IU-OCBA-approx and IU-OCBA-balance
outperform the other three procedures, showing great efficiency in achieving much higher PCS with the same
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(a) n(t) = 20 (b) n(t) = 50

(c) n(t) = 100 (d) n(t) = 500

Figure 3: Quadratic example with constant batch size and different choices of n(t)

simulation budget. In addition, IU-OCBA-balance and IU-OCBA-approx have similar performance, implying
that (16) is a proper approximation of local balance condition (10) in this example.

2. For the different choices of n(0), Figure 2 indicates both of the “balance" procedures perform worse than
the corresponding “approx" procedures when n(0) is small. The reason is that IU-OCBA-balance and Equal-
OCBA-balance are more sensitive to the estimation error, especially the estimation error in variance, which
affects how fast it will converge to the optimal policy.

3. For the different choices of n(t), we see the performance of five procedures become more and more similar
as the stage-wise budget n(t) becomes larger. The reason is that as n(t) becomes larger, SU reduces and IU
becomes dominant in the estimation error. Figure 3d indicates all five procedures perform poorly to achieve a
high PCS, which implies balancing the effort on reducing IU and SU is important to achieve a high PCS.

4. It may be surprising that the Equal Allocation procedure outperforms Equal-OCBA-balance and Equal-OCBA-
approx in most scenarios, even though it is the simplest one and does not utilize any information from the
simulation outputs. The reason is that ranking of the design performances conditioned on an input realization
can be drastically different from ranking of the unconditional expected performances. Both Equal-OCBA-
approx and Equal-OCBA-balance tend to allocate more simulation budget to the design-input pair (i, j) where
i is optimal under the input realization ζj but can be suboptimal when averaging with respect to the entire
input distribution. These simulations contribute little to finding the optimal design, making these procedures
even worse than equal allocation since they prohibit the chance of simulating the best design b under the same
input realization ζj .

The previous experiments are carried out with data constant batch size in each stage, and next we test with random
batch sizes, where the stage-wise budget and input data batch size are taken as m(t) = m̃ ∗Z and n(t) = ñ ∗Z with Z
being a random variable equally distributed among {1, 2, 3, 4, 5}. We set m̃ = 20 for testing different ñ and n(0). The
results of empirical PCS with respect to the total number of simulation replications are shown in Figure 4 and 5.
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(a) n(0) = 50 (b) n(0) = 100 (c) n(0) = 200

Figure 4: Quadratic example with random batch size: different choices of n(0)

(a) ñ = 10 (b) ñ = 20 (c) ñ = 30

Figure 5: Quadratic example with random batch size: different choices of ñ

Figure 4 and 5 show that both our proposed procedures work well in every scenario with random batch sizes. Other
similar observations can be drawn as in the case of constant batch size.

6.2 Portfolio Optimization

We also demonstrate the performance of our proposed procedures on a more general problem of portfolio optimization,
where the simulation error does not follow a normal distribution. Although the procedures are derived under the normal
assumption, the numerical results show they still perform well in this example. We consider a portfolio optimization
problem where an investor invests a certain amount of capital in a riskless asset with interest rate r and a risky asset,
whose price per share at time t is denoted as St. Suppose {St} follows a Geometric Brownian motion with initial price
S0, which admits the following expression for any fixed t:

St = S0 exp

[(
µ− σ2

2

)
t+ σB(t)

]
,

where σ is the volatility parameter, µ is the drift, and {B(t) : t ≥ 0} is a standard Brownian motion. At time 0, the
investor makes a one-time decision x ∈ [0, 1], which is the proportion of investment in the risky asset. Then, the total
wealth at time t, denoted by Wt, is

Wt = xW0 exp

[(
µ− σ2

2

)
t+ σB(t)

]
+ (1− x)W0ert.

A risk-averse investor aims to maximize the mean-variance of the total asset after T length of time with a risk-averse
parameter ρ, as follows:

F (x) = E

{
xW0 exp

[(
µ− σ2

2

)
T + σB(T )

]
+ (1− x)W0erT

}
− ρx2W 2

0 e2(µ−σ22 )T (eσ
2T − 1)eσ

2T .

Here the variance term is calculated explicitly using the distribution of log-normal random variable, and the expectation
term needs to be estimated. We set the volatility parameter σ = 0.1, time length T = 5, interest rate of riskless
asset r = 0.1, risk-averse parameter ρ = 0.2, and initial asset price S0 = 1. The drift µ takes values randomly in
J = {0.2 + 0.1 ∗ j : j = 0, 1, . . . , 8} with unknown pmf pj ∝ j + |J|/2, which needs to be estimated via streaming
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i.i.d. input data. The ith candidate design xi = 0.1 ∗ i, i = 0, 1, . . . , 10. For simulation under (xi, µj), we generate a
sample z of B(t), (i.e., from a normal distribution with mean 0 and variance t) and compute

Xi,j = xiS0 exp

[(
µj −

σ2

2

)
t+ σz

]
+ (1− xi)S0ert − ρx2

iS
2
0e2(µj−σ

2

2 )t(eσ
2t − 1)eσ

2t

as a single simulation output on design-input pair i-j.

Experiment Result

As in the quadratic example, we also test with both constant batch size and random batch size, and vary initial number
of samples n(0) and stage-wise budget n(t). We set the initial input data batch size m(0) = 50, constant input data
batch size m(t) = 50, random input data batch size m̃ = 20 and m(t) = m̃ ∗ Z, n(t) = ñ ∗ Z, where Z is uniformly
distribution in {1, 2, 3, 4, 5}. For varying n(0), we set n(t) = 50 for constant batch size and ñ = 20 for random batch
size. For varying n(t) (or equivalently, ñ), we set n(0) = 300. Figure 6-9 show the results of empirical PCS with
respect to total simulation budget allocated.

(a) n(0) = 100 (b) n(0) = 200 (c) n(0) = 500

Figure 6: Portfolio example with constant batch size and different choices of n(0)

(a) n(t) = 50 (b) n(t) = 100 (c) n(t) = 150

Figure 7: Portfolio example with constant batch size and different choices of n(t)

We have the following observations from Figure 6-9.

1. In scenarios with constant batch sizes, even with non-Gaussian simulation error, the two proposed procedures
still achieve the best two performance among all. This demonstrates the practical value of the two procedures
since they can be applied to problems with general simulation error and still gain robust performance. However,
they do not outperform the other three procedures as much as in the case of Gaussian simulation error, since
the optimality conditions (8) - (10) do not hold for non-Gaussian noise.

2. Comparing IU-OCBA-balance and IU-OCBA-approx, IU-OCBA-balance gradually catches up or even out-
performs IU-OCBA-approx as n(0) becomes larger, which is seen in the quadratic example as well. This
phenomenon is more evident in the portfolio optimization problem, since the true variance here is larger and
leads to a larger estimation error.

For the scenarios with random batch size, we obtain similar results as for those with constant batch size and our
proposed procedures still achieve the highest empirical PCS. The numerical results are shown in Figure 8 and 9.
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(a) n(0) = 100 (b) n(0) = 200 (c) n(0) = 300

Figure 8: Portfolio example with random batch size: different choices of n(0)

(a) ñ = 10 (b) ñ = 20 (c) ñ = 30

Figure 9: Portfolio example with random batch size and different choices of ñ

7 Conclusion

In this paper we consider a fixed budget ranking and selection (R&S) problem, where the common input distribution
across designs is unknown but can be estimated with streaming input data that come sequentially in time. As the input
distribution estimate is updated with the new batch of data at each time stage, the stage-wise simulation budget needs to
be allocated to carry out new simulations for evaluating design performances. We apply the large deviations theory to
obtain the optimal stage-wise budget allocation policy for design-input pairs. Then, combined with the updating of the
input distribution estimate, we design two fully sequential procedures for the streaming data setting. Both procedures
are shown to have consistency (i.e., select the best design with probability 1 as times goes to infinity) and asymptotic
optimality (i.e., converge to the optimal budget allocation policy under the true input distribution). Our numerical
experiments demonstrate that the proposed procedures have a great advantage over the equal allocation rule and two
extensions of OCBA, when dealing with unknown input distributions with streaming input data.
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Technical Proof

Proof of Lemma 1 Lemma 1.1 is easily seen from (4). To prove Lemma 1.2, it suffices to show the concavity of the
function for x > 0 with form f(x) = 1/(

∑n
i=1

ai
xi

), where ai > 0 for i = 1, 2, . . . , n. We prove the concavity of the
multivariate function by proving the concavity along all lines. For any y ∈ Rn, let g(t) = f(x+ ty) where t ∈ R such
that x+ ty > 0. We have

g′′(t) =
2

(
∑n
i=1

ai
xi+tyi

)3


[

n∑
i=1

aiyi
(xi + tyi)2

]2

−
n∑
i=1

aiy
2
i

(xi + tyi)3

n∑
i=1

f
ai

xi + tyi

 ≤ 0,

where the inequality uses the Cauchy inequality. Hence, f is concave in x > 0. �
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Proof of Theorem 3.2 Let tl be the time stage s.t.
∑tl
t=1 n(t) < l ≤

∑tl+1
t=1 n(t). Denote by plj = p

(tl)
j . Let 1(l)

(i,j) be

the indicator function that 1(l)
(i,j) = 1 if (i, j) is sampled at iteration l. Several lemmas are needed to complete the proof.

The first Lemma 2 ensures the convergence rate of estimated input distribution.

Lemma 2 |plj − pj | = O(
√

log log l
l ) almost surely .

Proof By assumption 3, the input data {ξs}∞s=1 are i.i.d., which means {1{ξs = ζj}}∞s=1 are also i.i.d.. Hence, we have

lim supt→∞
|p(t)j −pj |√
log logM(t)

M(t)

= lim supt→∞
|
∑M
s=1(t)1{ξs=ζj}−pj |√
M(t) log logM(t)

= pj(1 − pj) by law of the iterated logarithm (LIL).

Hence, |p(t)
j − pj | = O(

√
log logM(t)

M(t) ). By Assumption 5, limt→∞
M(t)
t = m̄ almost surely .

|plj − pj | = |p
(tl)
j − pj | = O(

√
log logM(tl)

M(tl)
) = O(

√
log log tl

tl
) almost surely .

Further since

lim
l→∞

1

tl

tl∑
t=1

n(t) < lim
l→∞

l

tl
≤= lim

l→∞

1

tl

tl+1∑
t=1

n(t) almost surely ,

by Assumption 5 we get liml→∞
l
tl

= n̄ almost surely . Hence |plj − pj | = O(
√

log log tl
tl

) =

O(
√

log log l
l ) almost surely . �

Lemma 3-6 ensure that a positive ratio of budget will be assigned to all design-input pairs.

Lemma 3

lim inf l→∞
α

(l)
i,j

α
(l)

i,j′
> 0, ∀i,∀j 6= j′ almost surely.

Proof Prove by contradiction. Suppose lim inf l→∞
α

(l)
i,j

α
(l)

i,j′
= 0, then there exists a subsequence {lk}∞k=1 such that

α
(lk)

i,j

α
(lk)

i,j′
→ 0. Further more since

α
(l)
i,j

α
(l)

i,j′
increases only if (i, j) is sampled at l and decreases only if (i, j′) is sampled at l.

The subsequence {lk} can be chosen such that (i, j′) is sampled at lk ∀k. Then since p(l)
j → pj and σ̂(l)

i,j → σ
(l)
i,j , ∀i, j,

we have
α

(lk)

i,j

σ̂
(lk)

i,j p
(l)
j

α
(lk)

i,j′

σ̂
(lk)

i,j′ p
(l)

j′

=
α

(lk)
i,j

α
(lk)
i,j′

σ̂
(lk)
i,j′ p

(l)
j′

σ̂
(lk)
i,j p

(l)
j

→ 0 as l→∞.

Hence for k large enough, (i, j′) cannot be sampled at lk, a contradiction. �

Lemma 4

lim inf l→∞
α

(l)
i,j

α
(l)

i′,j

> 0, ∀i 6= i′ 6= b,∀j almost surely.

Proof Prove by contradiction. Suppose there exists j0 such that lim inf l→∞
α

(l)
i,j

α
(l)

i′,j

= 0. By similar arguments as in the

proof of Lemma 3, for any positive constant ε > 0, we can find a sufficiently large l such that (i′, j0) is sampled at l and
α

(l)
i,j0

α
(l)

i′,j0

≤ ε. By Lemma 2 and Theorem 3.1, we have plj → pj and N (l)
i,j → ∞ almost surely ∀i, j. Hence, ¯̂µ

(l)
b ,

¯̂µ
(l)
i

and ¯̂µ
(l)
i′ all will converge to the true value a.s. and b̂(l) = b for l sufficiently large. Then there exists constants a, e

and U > L > 0, such that for l sufficiently large, 0 < a < plj < e, 0 < r ≤ σ̂
(l)
i,j ≤ h and U > (¯̂µ

(l)
b − ¯̂µ

(l)
i )2 and

22



A PREPRINT - SEPTEMBER 27, 2022

L < (¯̂µ
(l)
b − ¯̂µ

(l)
i′ )2. Then

(ˆ̄µ
(l)
b − ˆ̄µ

(l)
i )2

D∑
j=1

(σ̂
(l)
b,j)

2(plj)
2

α
(l)
b,j

+
D∑
j=1

(σ̂
(l)
i,j)

2(plj)
2

α
(l)
i,j

−
(ˆ̄µ

(l)
b − ˆ̄µ

(l)
i′ )2

D∑
j=1

(σ̂
(l)
b,j)

2(plj)
2

α
(l)
b,j

+
D∑
j=1

(σ̂
(l)

i′,j)
2(plj)

2

α
(l)

i′,j

<
U

D∑
j=1

(σ̂
(l)
b,j)

2(plj)
2

α
(l)
b,j

+
D∑
j=1

(σ̂
(l)
i,j)

2(plj)
2

α
(l)
i,j

− L
D∑
j=1

(σ̂
(l)
b,j)

2(plj)
2

α
(l)
b,j

+
D∑
j=1

(σ̂
(l)

i′,j)
2(plj)

2

α
(l)

i′,j

=

D∑
j=1

(σ̂
(l)
b,j)

2(plj)
2

α
(l)
b,j

(U − L) + U
D∑
j=1

(σ̂
(l)

i′,j)
2(plj)

2

α
(l)

i′,j

− L
D∑
j=1

(σ̂
(l)
i,j)

2(plj)
2

α
(l)
i,j

(
D∑
j=1

(σ̂
(l)
b,j)

2(plj)
2

α
(l)
b,j

+
D∑
j=1

(σ̂
(l)
i,j)

2(plj)
2

α
(l)
i,j

)(
D∑
j=1

(σb,j)2(plj)
2

α
(l)
b,j

+
D∑
j=1

(σ̂
(l)

i′,j)
2(plj)

2

α
(l)

i′,j

)

(22)

By Lemma 3, there exist c1, c2 such that α(l)
i,j ≤ 1

c1
α

(l)
i,j0

and α(l)
i′,j ≥

1
c2
α

(l)
i′,j0

. Then, the numerator of (22) is upper
bounded by

D∑
j=1

(σ̂
(l)
b,j)

2e2

α
(l)
b,j

(U − L) +
U

α
(l)
i′,j0

c2

D∑
j=1

h2e2 − L

α
(l)
i,j0

c1

D∑
j=1

r2a2

≤
D∑
j=1

σ̂
(l)
b,j σ̂

(l)
i′,je

2

α
(l)
i′,j

(U − L) +
U

α
(l)
i′,j0

c2

D∑
j=1

h2e2 − L

α
(l)
i,j0

c1

D∑
j=1

r2a2 (23)

≤ (U − L)

α
(l)
i′,j0

c2Dh
2e2 +

U

α
(l)
i′,j0

c2D
2h2e2 − L

εα
(l)
i′,j0

c1Br
2a2

=
1

α
(l)
i′,j0

{
D

[
c2h

2e2(U − L) + c2Uh
2e2 − L

ε
c1Br

2a2

]}
(24)

(23) holds because a non-best design is sampled at l which implies
(
α

(l)
b,j

σb,j

)2

≥
∑
i

(
α

(l)
i,j

σi,j

)2

≥
(
α

(l)

i′,j
σi′,j

)2

∀j. Then if

we choose ε that makes (24) < 0. We obtain
(ˆ̄µ

(l)
b − ˆ̄µ

(l)
i )2

D∑
j=1

(σ̂
(l)
b,j)

2(plj)
2

α
(l)
b,j

+
D∑
j=1

(σ̂
(l)
i,j)

2(plj)
2

α
(l)
i,j

−
(ˆ̄µ

(l)
b − ˆ̄µ

(l)
i′ )2

D∑
j=1

(σ̂
(l)
b,j)

2(plj)
2

α
(l)
b,j

+
D∑
j=1

(σ̂
(l)

i′,j)
2(plj)

2

α
(l)

i′,j

<

0, which implies (i′, j0) cannot be sampled at l, a contradiction.

Lemma 5 (i) lim inf l→∞
α

(l)
b,j

α
(l)
i,j

> 0 ∀i 6= b,∀j almost surely ; (ii) lim inf l→∞
α

(l)
i,j

α
(l)
b,j

> 0, ∀i 6= b,∀j almost surely.

proof of (i) Prove by contradiction. By Lemma 4, there exists a positive constant c > 0 such that
α

(l)
k,j

α
(l)
i,j

≥ c for all k 6= b

and l sufficiently large. Since lim inf l→∞
α

(l)
b,j

α
(l)
i,j

= 0, there exists a sufficiently large l such that (i, j) is sampled at l and

1
2σi,j ≤ σ̂

(l)
i,j ≤ 2σi,j ∀i, j and

α
(l)
b,j

α
(l)
i,j

≤ d, where d satisfies d2

σ2
b,j

< 1
16c(

∑
k 6=b

1
σ2
k,j

). Then we have

(
α

(l)
b,j

σ̂
(l)
b,j

)2

∑
k 6=b

(
α

(l)
k,j

σ̂
(l)
k,j

)2

≤
(
α

(l)
b,j

σ̂
(l)
b,j

)2

c(α
(l)
i,j)

2
∑
k 6=b

( 1

σ̂
(l)
i,j

)2
≤ d2

(σb,j)2

16

c
∑
k 6=b

1
(σk,j)2

< 1.

Hence we have (i, j) cannot be sampled at l, a contradiction.

Proof of (ii) (ii) can be proved in a similar way. �

Lemma 6 (i)lim inf l→∞
α

(l)
i1,j1

α
(l)
i2,j2

> 0 ∀i1, i2, j1, j2 almost surely ; (ii) lim inf l→∞ α
(l)
i,j > 0, ∀i, j almost surely.
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Proof of (i) By Lemma 3, there exists c1 > 0 such that α(l)
i1,j1
≥ c1α(l)

i1,j2
. If b 6∈ {i1, i2}, then by Lemma 4 there exists

c2 > 0 such that α(l)
i1,j2
≥ c2α(l)

i2,j2
. Else if b ∈ {i1, i2}, by Lemma 5 there exists c3 > 0 such that α(l)

i1,j2
≥ c3α(l)

i2,j2
. In

both cases there exists c4 > 0 such that
α

(l)
i1,j1

α
(l)
i2,j2

≥ c4 > 0, which proves (i).

Proof of (ii) This is a direct result of (i). By (i), for any fixed (i, j) there exists c > 0 such that α(l)
i,j > cα

(l)
i′,j′∀i′, j′.

Hence α(l)
i,j =

α
(l)
i,j∑

i′,j′
α

(l)

i′,j′
> c

KB > 0. �

Lemma 7 and 8 guarantee the convergence rate of the estimated expected performance and estimated variance,
respectively.

Lemma 7 | ˆ̄µ(l)
i − µ̄i| = O(

√
log log l

l ) almost surely.

Proof Notice that ˆ̄µ
(l)
i − µ̄i =

∑D
j=1(plj µ̂

(l)
i,j − pjµi,j). It is sufficient to show

|pljµ̂i,j − pjµi,j | = O(

√
log log l

l
), j = 1, 2 . . . , D.

By Lemma 6, there exists Ci,j > 0, such that N (l)
i,j ≥ Ci,j l. By LIL, |µ̂(l)

i,j − µi,j | = O(

√
log logN

(l)
i,j

N
(l)
i,j

) = O(
√

log log l
l ).

Then by Lemma 2,

|pljµ̂
(l)
i,j − pjµi,j | = |p

l
j(µ̂

(l)
i,j − µi,j) + (plj − pj)µi,j | ≤ plj |µ̂

(l)
i,j − µi,j |+ |p

l
j − pj ||µi,j | = O(

√
log log l

l
).

�

Lemma 8 |(σ̂(l)
i,j)

2 − (σi,j)
2| = O(

√
log log l

l ) almost surely. As a result, |σ̂(l)
i,j − σi,j | = O(

√
log log l

l ) almost surely.

Proof Since

N
(l)
i,j∑

s=1

(X
(s)
i,j − µ̂

(l)
i,j)

2 =

N
(l)
i,j∑

s=1

(X
(s)
i,j − µi,j)

2 −N (l)
i,j (µ̂

(l)
i,j − µi,j)

2,

We have

(σ̂
(l)
i,j)

2 − (σi,j)
2 =

1

N
(l)
i,j − 1

N
(l)
i,j∑

s=1

[(X
(s)
i,j − µi,j)

2 − σ2
i,j ]−

N
(l)
i,j

N
(l)
i,j − 1

(µ̂
(l)
i,j − µi,j)

2 +
σ2
i,j

N
(l)
i,j − 1

.

Since (X
(s)
i,j − µi,j)2 − σ2

i,j are i.i.d. with mean 0, by LIL, we have with probability 1,∣∣∣∣∣∣∣
1

N
(l)
i,j − 1

N
(l)
i,j∑

s=1

[(X
(s)
i,j − µi,j)

2 − σ2
i,j

∣∣∣∣∣∣∣ = O


√√√√ log logN

(l)
i,j

N
(l)
i,j

 = O

(√
log log l

l

)
,

where the second equality comes from Lemma 6. Further since
∣∣∣µ̂(l)
i,j − µi,j

∣∣∣ = O

(√
log log l

l

)
and

∣∣∣∣ σ2
i,j

N
(l)
i,j−1

∣∣∣∣ =

O

(√
log log l

l

)
, we get the desired result. �

Lemma 9 is a simple but useful result which we will use frequently in the following proof.

Lemma 9 Let (i, j) be a fixed design-input pair. Suppose (i, j) is sampled at iteration r. Let tr = inf{l > 0 : 1
(r+l)
(i,j) =

1}. Hence r + tr is the next iteration (i, j) will be sampled after r. Then we have r < r + tr = O(r) almost surely .
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Proof Prove by contradiction. Suppose ∀C0 > 0, there exists an iteration r such that tr > C0r. We have

α
(r+tr)
i,j =

N
(r+tr)
i,j

N (r+tr)
=

N
(r)
i,j + 1

N (r) + tr
<

2(n0 + r)

KBn0 + (C0 + 1)r
<

3

C0

for large r. The first inequality holds since N(r) = KBn0 + r and N (0)
i,j = n0. By the arbitrariness of C0 and the fact

that if C0 →∞, the iteration r that satisfy tr > C0r must also go to∞. We have lim inf l→∞ α
(l)
i,j = 0, contradicting

Lemma 6.(ii). �

The following Lemma 10 bounds the amount of budget allocated to design-input pair (i, j) between two successive
samples of another design-input pair (i, j′) with the same design but different input realizations.

Lemma 10 Let i denote any fixed design and j a fixed input realization. Suppose (i, j) is sampled at iteration r and
tr := inf{l > 0 : 1

(r+l)
(i,j) = 1}. r + tr is the next iteration where (i, j) will be sampled again. Then between the two

samples of (i, j), the number of samples that can be allocated to (i, j′), j′ 6= j is O(
√
r log log r) almost surely .

Proof For any j′ 6= j, let sr = sup{l < tr : 1
(l)
(i,j′) = 1}. r + sr is the last time before r + tr that (i, j′) is sampled.

If sr < 0, then the lemma holds true, otherwise we assume sr > 0. Then at iteration r + sr, we have ∃C1, C2, C3

independent of r,

N
(r+sr)
i,j′

σ
(r+sr)
i,j′ p

(sr+r)
j′

≤
N

(r+sr)
i,j

σ
(r+sr)
i,j pr+srj

=
N

(r)
i,j + 1

σ
(r)
i,j p

r+sr
j

≤
N

(r)
i,j

σ
(r+sr)
i,j pr+srj

+ C1

≤
N

(r)
i,j

σ
(r)
i,j p

r
j

+ C2

√
r log log r (25)

≤
N

(r)
i,j′

σ
(r)
i,j′p

r
j′

+ C2

√
r log log r (26)

≤
N

(r)
i,j′

σ
(sr+r)
i,j′ psr+r

j′

+ C3

√
r log log r (27)

where (25) and (27) are by Lemma 2 and Lemma 8 and (26) is because (i, j) is sampled at r. Hence, we obtain
N

(r+tr)
i,j′ − 1−N (r)

i,j′ = N
(r+sr)
i,j′ −N (r)

i,j′ ≤ C3σ
(r+sr)
i,j′ pr+srj′

√
r log log r ≤ C4

√
r log log r for some C4 independent

of r. The proof is complete. �

The following Lemma 11 proved the “Derivative Balance" optimality condition.

Lemma 11
∣∣∣∣ N(r)

i,j

σ
(r)
i,j p

r
j

−
N

(r)

i,j′

σ
(r)

i,j′p
r
j′

∣∣∣∣ = O(
√
r log log r), ∀i,∀j 6= j′ almost surely .

Proof Without loss of generality, suppose
N

(r)
i,j

σ
(r)
i,j p

r
j

≤
N

(r)

i,j′

σ
(r)

i,j′p
r
j′

. Let u := inf{l > r : 1
(l)
(i,j′) = 1} be the next

iteration at which (i, j′) is sampled. Then by Lemma 10 we have N (u)
i,j −N

(r)
i,j = O(

√
r log log r). Then there exists

C1, C2, C
′
2, C3 > 0 such that

N
(u)
i,j

σ
(u)
i,j p

u
j

≤
N

(r)
i,j + C1

√
r log log r

(σ
(r)
i,j − C ′2

√
log log r

r )(prj − C2

√
log log r

r )
≤

N
(r)
i,j

σ
(r)
i,j p

r
j

+ C3

√
r log log r.
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Furthermore, since N (u)
i,j′ = N

(r)
i,j′ + 1, ∃C4, C5 > 0, such that

N
(u)
i,j′

σ
(u)
i,j′p

u
j

=
N

(r)
i,j′ + 1

σ
(u)
i,j′p

u
j

≤
N

(r)
i,j′

σ
(u)
i,j′p

u
j

+ C4 ≤
N

(r)
i,j′

σ
(r)
i,j′p

r
j

+ C5

√
r log log r.

Then,

0 ≤
N

(r)
i,j

σ
(r)
i,j p

r
j

−
N

(r)
i,j′

σ
(r)
i,j′p

r
j′

≤
N

(u)
i,j

σ
(u)
i,j p

u
j

−
N

(u)
i,j′

σ
(u)
i,j′p

u
j′

+ (C3 + C5)
√
r log log r

≤ (C3 + C5)
√
r log log r.

This implies | N
(r)
i,j

σ
(r)
i,j p

r
j

−
N

(r)

i,j′

σ
(r)

i,j′p
r
j′
| = O(

√
r log log r).

Proof of (19) in Theorem 3 Proof The result follows from Lemma 11. Since N (l) = l + KBn0. We have almost
surely, ∣∣∣∣∣ α

(l)
i,j

σi,jpj
−

α
(l)
i,j′

σi,j′pj′

∣∣∣∣∣
=

∣∣∣∣∣ α
(l)
i,j

σ̂
(l)
i,jp

l
j

−
α

(l)
i,j′

σ̂
(l)
i,j′p

l
j′

∣∣∣∣∣+O(

√
log log l

l
)

=

∣∣∣∣∣N
(l)
i,j /N

(l)

σ̂
(l)
i,jp

l
j

−
N

(l)
i,j′/N

(l)

σ̂
(l)
i,j′p

l
j′

∣∣∣∣∣+O(

√
log log l

l
)

=O(

√
log log l

l
)→ 0 as l→∞.

Hence, we obtain
∣∣∣∣ α(l)

i,j

σi,jpj
−

α
(l)

i,j′

σi,j′pj′

∣∣∣∣→ 0. �

The following Lemma 10 bounds the amount of budget allocated to a non-optimal design-input pair (i, j) between two
successive samples of the best design-input pair (b, j) under the same input realization.

Lemma 12 Under a fixed input realization j, Suppose (b, j) is sampled at iteration r. Let tr = inf{l > 0 : 1
(r+l)
(b,j) = 1}.

r + tr is the next iteration at which (b, j) is sampled. Then between the two samples of (b, j), the number of samples
that can be allocated to (i, j), i 6= b is at most O(

√
r log log r) almost surely .

Proof Fix a non-optimal design i. Let sr = sup{l < tr : 1
(r+l)
(i,j) = 1}. r + sr is the last time before r + tr at

which (i, j) is sampled. If sr < 0, then the lemma holds true, otherwise assume sr > 0. Since (b, j) is sampled

at r, there exists j0 such that
(

N
(r)
b,j0

σ
(r)
b,j0

prj0

)2

≤
∑
k 6=b

(
N

(r)
k,j0

σ
(r)
k,j0

prj0

)2

. By Lemma 11, there exists C1 > 0 such that

| N
(r)
i,j

σ
(r)
i,j p

r
j

−
N

(r)

i,j′

σ
(r)

i,j′p
r
j′
| ≤ C1

√
r log log r,∀i. Then

∣∣∣∣∣∣
(
N

(r)
i,j

σ
(r)
i,j p

r
j

)2

−

(
N

(r)
i,j′

σ
(r)
i,j′p

r
j′

)2
∣∣∣∣∣∣ =

∣∣∣∣∣ N
(r)
i,j

σ
(r)
i,j p

r
j

−
N

(r)
i,j′

σ
(r)
i,j′p

r
j′

∣∣∣∣∣
(
N

(r)
i,j

σ
(r)
i,j p

r
j

+
N

(r)
i,j′

σ
(r)
i,j′p

r
j′

)
≤ C1C2r

√
r log log r. (28)
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The last inequality holds for some C2 > 0 since | N
(r)
i,j

σ
(r)
i,j p

r
j

| = O(r), ∀i, j. Hence, there exist C3, C4 > 0 independent of
r,

0 ≤

(
N

(r+sr)
b,j

σ
(r+sr)
b,j pr+srj

)2

−
∑
k 6=b

(
N

(r+sr)
k,j

σ
(r+sr)
k,j pr+srj

)2

=

(
N

(r)
b,j + 1

σ
(r+sr)
b,j pr+srj

)2

−
∑
k 6=b

(
N

(r+sr)
k,j

σ
(r+sr)
k,j pr+srj

)2

≤

(
N

(r)
b,j

σ
(r+sr)
b,j pr+srj

)2

−
∑
k 6=b

(
N

(r+sr)
k,j

σ
(r+sr)
k,j pr+srj

)2

+ C3r

≤

(
N

(r)
b,j0

σ
(r+sr)
b,j0

pr+srj0

)2

−
∑
k 6=b

(
N

(r+sr)
k,j

σ
(r+sr)
k,j pr+srj

)2

+ C3r + C1C2r
√
r log log r (29)

≤
∑
k 6=b

(
N

(r)
k,j0

σ
(r)
k,j0

prj0

)2

−
∑
k 6=b

(
N

(r+sr)
k,j

σ
(r+sr)
k,j pr+srj

)2

+ C3r + C1C2r
√
r log log r

≤
∑
k 6=b

(
N

(r)
k,j

σ
(r)
k,jp

r
j

)2

−
∑
k 6=b

(
N

(r+sr)
k,j

σ
(r+sr)
k,j pr+srj

)2

+ C3r +KC1C2r
√
r log log r (30)

≤
∑
k 6=b

(
N

(r)
k,j

σ
(r)
k,jp

r
j

)2

−
∑
k 6=b

(
N

(r+sr)
k,j

σ
(r)
k,jp

r
j

)2

+ C4r
√
r log log r (31)

(29) and (30) hold by (28). (31) holds for some C4 > C3 + KC1C2. Then, since for each k 6= b,
(
N

(r+sr)
k,j

σ
(r)
k,jp

r
j

)2

−(
N

(r)
k,j

σ
(r)
k,jp

r
j

)2

≥ 0. We obtain (
N

(r+sr)
i,j

σ
(r)
i,j p

r
j

)2

−

(
N

(r)
i,j

σ
(r)
i,j p

r
j

)2

≤ C4r
√
r log log r.

Since there exists C5 > C4σ
(r)
k,jp

r
j ∀k, r, we obtain

C5r
√
r log log r ≥ (N

(r+sr)
i,j )2 − (N

(r)
i,j )2 = (N

(r+sr)
i,j −N (r)

i,j )(N
(r+sr)
i,j +N

(r)
i,j ) ≥ 2N

(r)
i,j (N

(r+sr)
i,j −N (r)

i,j ) (32)

By Lemma 6.(ii), there exists C6 > 0, such that α(r)
i,j > C6 for r sufficiently large. This implies N (r)

i,j > C6r.

Then (32) ≥ 2C6r(N
(r+sr)
i,j −N (r)

i,j ), which implies N (r+sr)
i,j −N (r)

i,j ≤
C5

2C6

√
r log log r. Hence N (r+tr)

i,j −N (r)
i,j =

O(
√
r log log r). �

Conversely, the following Lemma 10 bounds the amount of budget allocated to the optimal design-input pair (b, j)
between two successive samples of any two non-optimal design-input pair under the same input realization.

Lemma 13 Under a fixed input realization j = 1, 2, . . . , D, Suppose at iteration r a non-optimal design i1 is sampled.
Let tr = inf{l > 0 : ∃i 6= b,1

(r+l)
(i,j) = 1}. r + tr is the next iteration at which a non-optimal design is sampled. Then

between iteration r and r + tr, the number of samples that can be allocated to (b, j) is O(
√
r log log r) almost surely .

Proof Define sr = sup{l < tr : 1(b,j) = 1}. r + sr is the last time before r + tr the optimal design is sampled. If
sr < 0, then the lemma holds. Otherwise assume sr > 0. Since (b, j) is sampled at r + sr, there exists j0 such that

0 ≥
(

N
(r+sr)
b,j0

σ
(r+sr)
b,j0

pr+srj0

)2

−
∑
k 6=b

(
N

(r+sr)
k,j0

σ
(r+sr)
k,j0

pr+srj0

)2

. Further by Lemma 9, we have

sr < tr = O(r). (33)
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Then, there exists C1, C2, C3 > 0, such that

0 ≥

(
N

(r+sr)
b,j0

σ
(r+sr)
b,j0

pr+srj0

)2

−
∑
k 6=b

(
N

(r+sr)
k,j0

σ
(r+sr)
k,j0

pr+srj0

)2

≥

(
N

(r+sr)
b,j

σ
(r+sr)
b,j pr+srj

)2

−
∑
k 6=b

(
N

(r+sr)
k,j

σ
(r+sr)
k,j pr+srj

)2

− C1r
√
r log log r (34)

=

(
N

(r+sr)
b,j

σ
(r+sr)
b,j pr+srj

)2

−
∑

k 6=i1 6=b

(
N

(r)
k,j

σ
(r+sr)
k,j pr+srj

)2

−

(
N

(r)
i1,j

+ 1

σ
(r+sr)
i1,j

pr+srj0

)2

− C1r
√
r log log r

≥

(
N

(r+sr)
b,j

σ
(r+sr)
b,j pr+srj

)2

−
∑

k 6=i1 6=b

(
N

(r)
k,j

σ
(r+sr)
k,j pr+srj

)2

−

(
N

(r)
i1,j

σ
(r+sr)
i1,j

pr+srj

)2

− C2r
√
r log log r

≥

(
N

(r+sr)
b,j

σ
(r)
b,j p

r
j

)2

−
∑
k 6=b

(
N

(r)
k,j

σ
(r)
k,jp

r
j

)2

− C3r
√
r log log r (35)

≥

(
N

(r+sr)
b,j

σ
(r)
b,j p

r
j

)2

−

(
N

(r)
b,j

σ
(r)
b,j p

r
j

)2

− C3r
√
r log log r (36)

(34) holds because of Lemma 11 and (33); (35) holds due to Lemma 2, Lemma 8 and (33); (36) is because at iteration r
(i1, j) is sampled. Hence, there exists C4 > 0, such that

0 ≤
(
N

(r+sr)
b,j

)2

−
(
N

(r)
b,j

)2

=
(
N

(r+sr)
b,j −N (r)

b,j

)(
N

(r+sr)
b,j +N

(r)
b,j

)
≤ C3σ

(r)
b,j p

r
jr
√
r log log r ≤ C4r

√
r log log r.

By Lemma 6, there exists C5 > 0, such that N (r)
b,j ≥ C5r. Then

N
(r+sr)
b,j −N (r)

b,j ≤
C4r
√
r log log r(

N
(r+sr)
b,j +N

(r)
b,j

) ≤ C4

√
r log log r

2C5
.

The proof is complete. �

We prove the “Total Balance" condition in the following Lemma 14.

Lemma 14

∣∣∣∣∣
(
α

(r)
1,j

σ
(r)
1,j

)2

−
∑
i 6=b

(
α

(r)
i,j

σ
(r)
i,j

)2
∣∣∣∣∣ = O

(√
log log r

r

)
∀j a.s..

Proof Let {lk}∞k=1 denote the subsequence where input realization ζj is sampled. We first show |∆(k)
j | :=∣∣∣∣∣

(
α

(lk)

b,j

σ̂
(lk)

b,j

)2

−
∑
i 6=b

(
α

(lk)

i,j

σ̂
(lk)

i,j

)2
∣∣∣∣∣ = O(

√
log log lk

lk
). Fix an iteration k0.

Case 1. ∆
(k0)
j < 0, let s = sup{k < k0 : ∃i 6= b, 1

(lk)
(i,j) = 1}. Then ls the last time before lk that a non-optimal

design, denote by i0, is sampled under input realization ζj . Then, there exists C1 > 0,

0 >

N (lk0 )

b,j

σ
(lk0 )

b,j

2

−
∑
i 6=b

N (lk0 )

i,j

σ
(lk0 )

i,j

2

≥

N
(ls)
b,j

σ
(lk0 )

b,j

2

−
∑

i 6=i0 6=b

N
(ls)
i,j

σ
(lk0 )

i,j

2

−

N (ls)
i0,j

+ 1

σ
(lk0 )

i,j

2

≥

N
(ls)
b,j

σ
(lk0 )

b,j

2

−
∑
i 6=i0

N
(ls)
i,j

σ
(lk0 )

i,j

2

− C1ls
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Divide both sides by (N (ls))2 and notice that by Lemma 9 there exists C2 > 0 independent of k0, s, such that
lk0 < C2ls. We obtain

0 >

 α
(ls)
b,j

σ
(lk0 )

b,j

2

−
∑
i6=i0

 α
(ls)
i,j

σ
(lk0 )

i,j

2

− C1

ls

≥

 α
(ls)
b,j

σ
(lk0 )

b,j

2

−
∑
i6=i0

 α
(ls)
i,j

σ
(lk0 )

i,j

2

− C1C2

lk0

≥

(
α

(ls)
b,j

σ
(ls)
b,j

)2

−
∑
i6=i0

(
α

(ls)
i,j

σ
(ls)
i,j

)2

− C3

√
log log lk0

lk0

for some C3 by Lemma 8.

Case 2. ∆
(k0)
j ≥ 0. Let s′ = sup{k < k0 : 1

(lk)
(b,j) = 1}. ls′ is the last time before lk0 at which (b, j) is sampled. Then

there exists j′ such that ∆
(ls)
j′ ≤ 0. Furthermore by Lemma 9, lk0 = O(ls) since (b, j) is not sampled between ls and

lk0 ; by Lemma 12, N (lk)
i,j −N

(ls)
i,j = O(

√
ls log log ls), ∀i 6= b. Then, there exists C3, C4 and C5 > 0,

0 ≤

 N
(lk0 )

b,j

σ(lk0 )b, j

2

−
∑
i 6=i0

N (lk0 )

i,j

σ
(lk0 )

i,j

2

≤

N (ls)
b,j + 1

σ
(lk0 )

b,j

2

−
∑
i6=i0

N
(ls)
i,j

σ
(lk0 )

i,j

2

+ C3lk0
√
lk0 log log lk0

≤

(
N

(ls)
b,j

σ
(ls)
b,j

)2

−
∑
i 6=i0

(
N

(ls)
i,j

σ
(ls)
i,j

)2

+ C4lk0
√
lk0 log log lk0

≤

(
N

(ls)
b,j′

σ
(ls)
b,j′

)2

−
∑
i 6=i0

(
N

(ls)
i,j′

σ
(ls)
i,j′

)2

+ C5lk0
√
lk0 log log lk0 (37)

≤ C5lk0
√
lk0 log log lk0

(37) holds because of Lemma 11. Divide both sides by (N (lk))2, we obtain 0 ≤ ∆
(k0)
j ≤ C5

√
log log lk0

lk0
.

We now show for ∀r, the lemma holds. Let lk ≤ r < lk+1. Then∣∣∣∣∣∣
(
α

(r)
b,j

σ
(r)
b,j

)2

−
∑
i6=b

(
α

(r)
i,j

σ
(r)
i,j

)2
∣∣∣∣∣∣

=

(
N (lk)

N (r)

)2
∣∣∣∣∣∣
(
α

(lk)
b,j

σ̂
(lk)
b,j

)2

−
∑
i 6=b

(
α

(lk)
i,j

σ̂
(lk)
i,j

)2

+O

(√
log log lk

lk

)∣∣∣∣∣∣
=

(
N (lk)

N (r)

)2

O

(√
log log lk

lk

)

=O

(√
log log r

r

)
,

where the last equality holds since r = O(lk) by Lemma 9. �

Proof of (20) in Theorem 3

By Lemma 8 and Lemma 14,
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∣∣∣∣∣∣
(
α

(r)
1,j

σ1,j

)2

−
∑
i 6=b

(
α

(r)
i,j

σi,j

)2
∣∣∣∣∣∣ =

∣∣∣∣∣∣
(
α

(r)
1,j

σ
(r)
1,j

)2

−
∑
i 6=b

(
α

(r)
i,j

σ
(r)
i,j

)2
∣∣∣∣∣∣+O

(√
log log r

r

)

=O

(√
log log r

r

)
�

The next Lemma 15 is a little technical, which is used to bound the amount of budget allocated to a non-optimal
design-input pair (b, j) between two successive samples of a non-optimal design-input pair (i, j) under the same input
realization, as shown in Lemma 16.

Lemma 15 Under a fixed input realization j, suppose a non-optimal design (k, j) is sampled at iteration r. Define

tr := inf
l
{l > 0 : 1

(r+l)
(k,j) = 1}

s′r := sup
l
{l < tr : 1

(r+l)
(b.j) = 1}

sr := sup
l
{l < s′r : 1

(l)
(i,j) = 1 for some i 6= b}

d
(r,q)
i,j = N

(r+q)
i,j −N (r)

i,j

For all C1 > 0, if there exists C2 sufficiently large (depend on C1 but not on r), such that C2

√
r log log r ≤ d

(r,sr)
b,j

holds for infinitely many r’s, then for such sufficiently large r, there exists another sub-optimal design i 6= k 6= b and a
u ≤ sr, i is sampled at r + u and(

1 + C1

√
log log r

r

)
N

(r)
i,j

N
(l)
b,j

≤
N

(r+u)
i,j

N
(r+sr)
b,j

≤
N

(r+u)
i,j

N
(r+u)
b,j

(38)

holds almost surely .

Proof By Lemma 9, tr = O(r), which implies there exists C0 > 0, d(r.sr)
b,j ≤ C0r. Hence, for any fixed C1, there

exists C2 such that for infinitely many r’s C2

√
r log log r ≤ d(r,sr)

b,j ≤ C0r. Let ∆
(r)
j =

(
α

(r)
b,j

σ
(r)
b,j

)2

−
∑
i6=b

(
α

(lk)

i,j

σ
(r)
i,j

)2

. By

the definition of sr, ∆
(r+sr)
j ≥ 0 and ∆

(r+sr+1)
j = ∆

(r+s′r)
j +O

(√
log log(r+sr)

r+sr

)
. Since (b, j) is sampled at r + s′r,

there exists j′ such that ∆
(r+s′r)
j′ < 0. By lemma 11, there exists C3, C

′
3, C

′′
3 > 0,

∆
(r+sr+1)
j ≤ ∆

(r+s′r)
j +C ′′3

√
log log(r + sr)

r + sr
≤ ∆

(r+s′r)
j′ +C ′3

√
log log(r + s′r)

r + s′r
≤ C ′3

√
log log(r + s′r)

r + s′r
≤ C3

√
log log r

r
.

The last inequality holds since s′r ≤ tr = O(r). Then one can choose C4 > C3,

0 ≤ ∆
(r+sr)
j ≤ C4

√
log log r

r
(39)

Since N (r+sr)
k,j −N (r)

k,j = 1, (39) can be expressed as(
N

(r+sr)
b,j /σ

(r+sr)
b,j

N (r+sr)

)2

−
∑
i 6=b 6=k

(
N

(r+sr)
i,j /σ

(r+sr)
i,j

N (r+sr)

)2

−

(
(N

(r)
k,j + 1)/σ

(r+sr)
k,j

N (r+sr)

)2

≤ C4

√
log log r

r
.

By some simple algebraic calculation we get

∑
i6=b 6=k

(
N

(r+sr)
i,j /σ

(r+sr)
i,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

+

(
(N

(r)
k,j + 1)/σ

(r+sr)
k,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

+ C4

√
log log r

r

(
N (r+sr)

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

≥ 1.
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By Lemma 5, there exists C5 > 0, C5N
(r)
b,j /σ

(r)
b,j > N (r) for all large r. Hence,

∑
i 6=b6=k

(
N

(r+sr)
i,j /σ

(r+sr)
i,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

≥ 1−

(
(N

(r)+1
k,j )/σ

(r+sr)
k,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

− C4C
2
5

√
log log r

r

Furthermore, there exists C6, C7 > 0, such that

∑
i 6=b6=k

(
N

(r+sr)
i,j /σ

(r+sr)
i,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

−
∑
i 6=b6=k

(
N

(r)
i,j /σ

(r+sr)
i,j

N
(r)
b,j /σ

(r+sr)
b,j

)2

≥1−
∑
i 6=b 6=k

(
N

(r)
i,j /σ

(r+sr)
i,j

N
(r)
b,j /σ

(r+sr)
b,j

)2

−

(
(N

(r)
k,j + 1)/σ

(r+sr)
k,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

− C4C
2
5

√
log log r

r

≥1−
∑
i 6=b 6=k

(
N

(r)
i,j /σ

(r)
i,j

N
(r)
b,j /σ

(r)
b,j

)2

−

(
(N

(r)
k,j + 1)/σ

(r+sr)
k,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

− (C4C
2
5 + C6)

√
log log r

r

≥

(
(N

(r)
k,j )/σ

(r)
k,j

N
(r)
b,j /σ

(r)
b,j

)2

−

(
(N

(r)
k,j + 1)/σ

(r+sr)
k,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

− (C4C
2
5 + C6)

√
log log r

r
(40)

≥

(
(N

(r)
k,j )/σ

(r+sr)
k,j

N
(r)
b,j /σ

(r+sr)
b,j

)2

−

(
(N

(r)
k,j + 1)/σ

(r+sr)
k,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

− (C4C
2
5 + C7)

√
log log r

r

=

(
σ

(r+sr)
b,j

σ
(r+sr)
k,j

)2 [
(N

(r)
k,j )2(N

(r+sr)
b,j )2 − (N

(r)
k,j + 1)2(N

(r)
b,j )2

(N
(r)
b,j )2(N

(r+sr)
b,j )2

]
− (C4C

2
5 + C7)

√
log log r

r

=

(
σ

(r+sr)
b,j

σ
(r+sr)
k,j

)2 [
(N

(r)
k,j )2(N

(r)
b,j + d

(r,sr)
b,j )2 − (N

(r)
k,j + 1)2(N

(r)
b,j )2

(N
(r)
b,j )2(N

(r+sr)
b,j )2

]
− (C4C

2
5 + C7)

√
log log r

r

=

(
σ

(r+sr)
b,j

σ
(r+sr)
k,j

)2 [
(2N

(r)
b,j N

(r)
k,j +N

(r)
k,j d

(r,sr)
b,j +N

(r)
b,j )(N

(r)
k,j d

(r,sr)
b,j −N (r)

b,j )

(N
(r)
b,j )2(N

(r+sr)
b,j )2

]
− (C4C

2
5 + C7)

√
log log r

r
. (41)

(40) holds since (k, j) is sampled at r. By Lemma 5 and sr = O(r), there exists C8, C9, C10 > 0,
N

(r)
k,j

N
(r)
b,j

≥ C8,

N
(r)
b,j ≥ C9r and N (r+sr)

b,j ≤ C10r. We have (41) is lower bounded by

(
σ

(r+sr)
b,j

σ
(r+sr)
k,j

)2 [
C2

8 (2C9r + d
(r,sr)
b,j + 1/C8)(d

(r,sr)
b,j − 1/C8)

C2
10r

2

]
− (C4C

2
5 + C7)

√
log log r

r

=

(
σ

(r+sr)
b,j

σ
(r+sr)
k,j

)2(
C8

C10

)2
2C9d

(r,sr)
b,j

r
+

(
d

(r,sr)
b,j

r

)2

− 2C9

C8r
− 1

C2
8r

2

− (C4C
2
5 + C7)

√
log log r

r

≥

(
σ

(r+sr)
b,j

σ
(r+sr)
k,j

)2(
C8

C10

)2

2C9

[
d

(r,sr)
b,j

r
− 1

C8r
− 1

2C9C2
8r

2

]
− (C4C

2
5 + C7)

√
log log r

r
(42)
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There exists C11 > 0, 1
C8r

+ 1
2C9C2

8r
2 ≤ C11

√
log log r

r . Choose 0 < C12 ≤
(
σ
(r+sr)
b,j

σ
(r+sr)
k,j

)2 (
C8

C10

)2

2C9 for all large r.

Furthermore since d(r,sr)
b,j ≥ C2

√
r log log r, there exists C13 > 0

(42) ≥ C12

[
(C2 − C11)

√
log log r

r

]
− (C4C

2
5 + C7)

√
log log r

r

= [C12(C2 − C11)− (C4C
2
5 + C7)]

√
log log r

r

≥ C13C2

√
log log r

r
(43)

(43) holds for C2 large enough (but not depends on r). For example, we can choose C13 = C12/2 and then (43) holds
for all C2 ≥ 2C11 +

2C4C
2
5+C7

C12
. Since C3, C4, . . . , C13 are all independent of r, the C2 here is also independent of r.

Then,

∑
i 6=b 6=k

(
N

(r+sr)
i,j /σ

(r+sr)
i,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

−
∑
i 6=b 6=k

(
N

(r)
i,j /σ

(r+sr)
i,j

N
(r)
b,j /σ

(r+sr)
b,j

)2

≥ C13C2

√
log log r

r

There exists a non-optimal design h 6= k 6= b, such that

(
N

(r+sr)
h,j /σ

(r+sr)
h,j

N
(r+sr)
b,j /σ

(r+sr)
b,j

)2

−

(
N

(r)
h,j/σ

(r+sr)
h,j

N
(r)
b,j /σ

(r+sr)
b,j

)2

≥ 1

K − 2
C13C2

√
log log r

r
.

Or equivalently,

(
N

(r+sr)
h,j /N

(r+sr)
b,j

N
(r)
h,j/N

(r)
b,j

)2

≥ 1 +
C13C2

K − 2

(
σ

(r+sr)
h,j

σ
(r+sr)
b,j

)2(
N

(r)
b,j

N
(r)
h,j

)2√
log log r

r
.

By Lemma 5 and the convergence of the sample variance, there exists 0 < C14 <
C13

K−2

(
σ
(r+sr)
h,j

σ
(r+sr)
b,j

)2(
N

(r)
b,j

N
(r)
h,j

)2

for all

large r. We obtain

(
N

(r+sr)
h,j /N

(r+sr)
b,j

N
(r)
h,j/N

(r)
b,j

)2

≥ 1 + C14C2

√
log log r

r

Hence,

N
(r+sr)
h,j

N
(r+sr)
b,j

≥

√
1 + C14C2

√
log log r

r

N
(r)
h,j

N
(r)
b,j

≥ (1 +
C14C2

4

√
log log r

r
)
N

(r)
h,j

N
(r)
b,j

(44)
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for all large r by Taylor Expansion. Let v = sup{l ≤ sr : 1
(r+l)
h,j = 1}. r + v is the last time before r + sr at which h

is sampled. We then have

N
(r+v)
h,j

N
(r+v)
b,j

≥
N

(r+v)
h,j

N
(r+sr)
b,j

=
N

(r+sr)
h,j − 1

N
(r+sr)
b,j

= (1− 1

N
(r+sr)
b,j

)
N

(r+sr)
h,j

N
(r+sr)
b,j

≥ (1− 1

N
(r)
b,j

)(1 +
C14C2

4

√
log log r

r
)
N

(r)
h,j

N
(r)
b,j

≥ (1− 1

C9r
)(1 +

C14C2

4

√
log log r

r
)
N

(r)
h,j

N
(r)
b,j

≥ (1 +
C14C2

8

√
log log r

r
)
N

(r)
h,j

N
(r)
b,j

for all large r. Then, given any C1, there exists C2 ≥ max{ 8C1

C14
, 2C11 +

2C4C
2
5+C7

C12
}. The Lemma holds for true for

the C1, C2. �

Lemma 16 For a fixed input realization j0 and sub-optimal design k, between two samples of (k, j0). Suppose (k, j0)
is sampled at r and let tr = inf{l > 0 : 1(k,j0) = 1}. r+ tr is the next time (k, j0) being sampled. Then the number of
samples that can be allocated to (b, j0) between r and r + tr is O(

√
r log log r) almost surely .

Proof We use the same notation of s′r, sr, d
(r,q)
i,j as in Lemma 15. Since d(r,tr)

b,j0
− d(r,sr)

b,j0
= d

(r,s′r)
b,j0

− d(r,sr)
b,j0

+ 1 =

O(
√
r log log r) by Lemma 13, it is sufficient to prove d(r,sr)

b,j0
= O(

√
r log log r). Prove by contradiction. Suppose the

statement does not hold. Then ∀C2 > 0, there exists r such that d(r,sr)
b,j0

≥ C2

√
r log log r. By Lemma 15, ∀C1 > 0

(remain to be specified), there exists a iteration r at which (k, j0) is sampled, an another non-optimal design h 6= k and
a iteration v < sr, such that (h, j0) is sampled at v and

α
(r+v)
h,j0

α
(r+sr)
b,j0

≥ (1 + C1

√
log log r

r
)
α

(r)
h,j0

α
(r)
b,j0

holds. We aim to show (h, j0) cannot be sampled at r + v for a contradiction. It is sufficient to show

(ˆ̄µ
(r+v)
b − ˆ̄µ

(r+v)
h )2

D∑
j=1

(σ
(r+v)
b,j )2(pr+vj )2

α
(r+v)
b,j

+
D∑
j=1

(σ
(r+v)
h,j )2(pr+vj )2

α
(r+v)
h,j

>
(ˆ̄µ

(r+v)
b − ˆ̄µ

(r+v)
k )2

D∑
j=1

(σ
(r+v)
b,j )2(pr+vj )2

α
(r+v)
b,j

+
D∑
j=1

(σ
(r+v)
k,j )2(pr+vj )2

α
(r+v)
k,j

. (45)

Denote by δ(l)
i = (ˆ̄µ

(l)
b − ˆ̄µ

(l)
i )2. It is equivalent to show

δ
(r+v)
h

 D∑
j=1

(σ
(r+v)
b,j )2(pr+vj )2

α
(r+v)
b,j

+

D∑
j=1

(σ
(r+v)
k,j )2(pr+vj )2

α
(r+v)
k,j

 > δ
(r+v)
k

 D∑
j=1

(σ
(r+v)
b,j )2(pr+vj )2

α
(r+v)
b,j

+

D∑
j=1

(σ
(r+v)
h,j )2(pr+vj )2

α
(r+v)
h,j


(46)

By Lemma 11, we have
∣∣∣∣ α(r)

i,j

σ
(r)
i,j p

r
j

−
α

(r)

i,j′

σ
(r)

i,j′p
r
j′

∣∣∣∣ = O(
√

log log r
r ). Hence,

∣∣∣∣σ(r)
i,j p

r
j

αri,j
−

σ
(r)

i,j′p
r
j′

αr
i,j′

∣∣∣∣ = O(
√

log log r
r ). Then, there

exist C3 > 0

LHS of (46) ≥ δ(r+v)
h

(
σ

(r+v)
b,j pr+vj

α
(r+v)
b,j

D∑
q=1

σ
(r+v)
b,q pr+vq +

σ
(r+v)
k,j pr+vj

α
(r+v)
k,j

D∑
q=1

σ
(r+v)
k,q pr+vq

)
− C3

√
log log r

r
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RHS of (46) ≤ δ(r+v)
k

(
σ

(r+v)
b,j pr+vj

α
(r+v)
b,j

D∑
q=1

σ
(r+v)
b,q pr+vq +

σ
(r+v)
h,j pr+vj

α
(r+v)
k,j

D∑
q=1

σ
(r+v)
h,q pr+vq

)
+ C3

√
log log r

r

Denote by γ(l)
i =

D∑
q=1

σ̂
(l)
i,qp

l
q . It is equivalent to show

δ
(r+v)
h

(
σ

(r+v)
b,j pr+vj

α
(r+v)
b,j

γ
(r+v)
b +

σ
(r+v)
k,j pr+vj

α
(r+v)
k,j

γ
(r+v)
k

)
− C3

√
log log r

r

>δ
(r+v)
k

(
σ

(r+v)
b,j pr+vj

α
(r+v)
b,j

γ
(r+v)
b +

σ
(r+v)
h,j pr+vj

α
(r+v)
k,j

γ
(r+v)
h

)
+ C3

√
log log r

r

(47)

Since (k, j0) is sampled at r,

δ
(r)
h

 D∑
j=1

(σ
(r)
b,j )2(prj)

2

α
(r)
b,j

+
D∑
j=1

(σ
(r)
k,j)

2(prj)
2

α
(r)
k,j

 ≥ δ(r)
k

 D∑
j=1

(σ
(r)
b,j )2(prj)

2

α
(r)
b,j

+
D∑
j=1

(σ
(r)
h,j)

2(prj)
2

α
(r)
h,j

 .

Again by Lemma 11, there exists C4 > 0, such that

δ
(r)
h

(
σ

(r)
b,j0

prj0

α
(r)
b,j0

γ
(r)
b +

σ
(r)
k,j0

prj0

α
(r)
k,j0

γ
(r)
k

)
+ C4

√
log log r

r
≥ δ(r)

k

(
σ

(r)
b,j0

prj0

α
(r)
b,j0

γ
(r)
b +

σ
(r)
h,j0

prj0

α
(r)
k,j0

γ
(r)
h

)
− C4

√
log log r

r
.

(48)
Then,

LHS of (47) =δ
(r)
h

σ
(r)
b,j0

prj0

α
(r)
b,j0

γ
(r)
b ·

δ
(r+v)
h

δ
(r)
h

σ
(r+v)
b,j0

σ
(r)
b,j0

α
(r)
b,j0

α
(r+v)
b,j0

γ
(r+v)
b

γ
(r)
b
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prj0

+ δ
(r)
h

σ
(r)
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α
(r)
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γ
(r)
k ·

δ
(r+v)
h

δ
(r)
h

σ
(r+v)
k,j0

σ
(r)
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α
(r)
k,j0

α
(r+v)
k,j0

γ
(r+v)
k

γ
(r)
k

pr+vj0

prj0
− C3

√
log log r

r
.

(49)

and

RHS of (47) =δ
(r)
k

σ
(r)
b,j0

prj0

α
(r)
b,j0

γ
(r)
b ·

δ
(r+v)
k

δ
(r)
k

σ
(r+v)
b,j0

σ
(r)
b,j0

α
(r)
b,j0

α
(r+v)
b,j0

γ
(r+v)
b

γ
(r)
b

pr+vj0

prj0

+ δ
(r)
k

σ
(r)
h,j0

prj0

α
(r)
h,j0

γ
(r)
h ·

δ
(r+v)
k

δ
(r)
k

σ
(r+v)
h,j0

σ
(r)
h,j0

α
(r)
h,j0

α
(r+v)
h,j0

γ
(r+v)
h

γ
(r)
h

pr+vj0

prj0
+ C3

√
log log r

r
.

(50)

∀1 ≤ i ≤ K, by Lemma 7, δ
(r+v)
i

δ
(r)
i

= 1 + O(
√

log log r
r ); by Lemma 2 and 8,

pr+vj0

prj0
= 1 + O(

√
log log r

r ),
σ
(r+v)
i,j0

σ
(r)
i,j0

=

1 + O(
√

log log r
r ) and γ

(r+v)
i

γ
(r)
i

= 1 + O(
√

log log r
r ) ; Furthermore N (r+v)

k,j0
= N

(r)
k,j0

+ 1. Hence, there exist C5 > 0,

such that

(49) ≥δ(r)
h

σ
(r)
b,j0

prj0

α
(r)
b,j0

γ
(r)
b

α
(r)
b,j0

α
(r+v)
b,j0

(1− C5

√
log log r

r
) + δ

(r)
h

σ
(r)
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prj0

α
(r)
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γ
(r)
h (1− C5

√
log log r

r
)− C3

√
log log r

r
(51)

and

(50) ≤ δ(r)
k

σ
(r)
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prj0

α
(r)
b,j0

γ
(r)
b

α
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b,j0

α
(r+v)
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√
log log r
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) + δ
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k

σ
(r)
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α
(r)
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h

α
(r)
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α
(r+v)
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√
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√
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Divide by
α

(r)
b,j0

α
(r+v)
b,j0

by both sides and notice 1 ≤
α

(r+v)
b,j0

α
(r)
b,j0

≤ 1

α
(r)
b,j0

≤ C7 for some C7 > 0 by Lemma 6. Then (51) > (52)

can be implied by

δ
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h
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α
(r)
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√
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(r)
b + δ

(r)
k

σ
(r)
h,j0

prj0
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α
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b,j0

)
(1 + C5

√
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√
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for some C8 independent of r. Since
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α
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α
(r)
b,j0
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α
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α
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b,j0

)
< 1
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√
log log r

r

< 1− C1

2

√
log log r

r for all large r’s, (53) can

be further implied by

δ
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Let C9, C10 be two constants such that C9 ≤ δ(r)
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Since C3, C4, . . . , C10 are all independent of r, we can choose C1 to be large enough such that (54) holds, which gives
us the contradiction that (h, j0) cannot be sampled at r + v.

We can now finally prove the “Local Balance" optimality condition.
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Since by Lemma 6, all
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By Lemma (7), δ(r)
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By Lemma 16, N (r)
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By Lemma 6 and l = O(u), lim infr→
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which proves the desired result. �
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