
Software and System Modeling manuscript No.
(will be inserted by the editor)

Real-time Collaborative Multi-Level Modeling by
Conflict-Free Replicated Data Types

Istvan David ⋅ Eugene Syriani

Received: date / Accepted: date

Abstract The need for real-time collaborative solu-
tions in model-driven engineering has been increasing
over the past years. Conflict-free replicated data types
(CRDT) provide scalable and robust replication mecha-
nisms that align well with the requirements of real-time
collaborative environments. In this paper, we propose a
real-time collaborative multi-level modeling framework
to support advanced modeling scenarios, built on a col-
lection of custom CRDTs, specifically tailored for the
needs of modeling environments. We demonstrate the
benefits of the framework through an illustrative mod-
eling case and compare it with other state-of-the-art
modeling frameworks.

Keywords Collaborative modeling, Real-time collab-
oration, Multi-level modeling, Conflict-free replicated
data types, Model-driven engineering

1 Introduction

Collaborative Model-Driven Software Engineering (MDSE)
[38] aims to establish a sound interplay between phys-
ically distanced stakeholders by combining the tech-
niques of collaborative software engineering [60] and
model-driven techniques [44]. Recent systematic studies
[14, 13, 23] report a substantial shift towards real-time
collaboration in MDSE. While real-time collaborative
MDSE opens up many opportunities, it also gives rise
to unique challenges, primarily: ensuring appropriate
convergence of distributed data, while still guarantee-
ing timely execution [49].

Optimistic replication has been suggested by Saito
and Shapiro [43] as a possible treatment, in which the

DIRO – Université de Montréal, Canada, E-mail: ist-
van.david@umontreal.ca, syriani@iro.umontreal.ca

local replicas of stakeholders are allowed to diverge tem-
porarily. This divergence is admissible due to eventual
consistency mechanisms [59] ensuring that each remote
change will be observed by every stakeholder eventu-
ally; thus, enabling the converge of replicas in the long
run. Strong eventual consistency (SEC) [39] augments
eventual consistency with the safety guarantee that two
elements that have received the same set of change up-
dates will be in the same state, regardless of the order
of updates. Although SEC aligns well with the require-
ments of real-time collaborative MDSE settings, it is
not trivial to implement correctly [18].

Conflict-free Replicated Data Types (CRDT) have
been suggested by Shapiro et al [46] as a scalable im-
plementation of SEC. CRDTs have been traditionally
geared to support linear data, such as text. Since tradi-
tional software engineering relies on textual artifacts to
persist source code, mechanisms of real-time collabora-
tive textual editors can address the main challenges of
real-time collaborative source code development. How-
ever, MDSE relies on richer data types, such as multi-
graphs, that are also potentially disconnected. Thus,
CRDT cannot efficiently accommodate models as first-
class citizens. Existing solutions either (i) focus exclu-
sively on textual modeling and reduce collaboration to
textual primitives which are well-supported by current
CRDT frameworks [42]; or (ii) work on models of lim-
ited complexity and do not support proper graph se-
mantics at the data level [20]. As a consequence, current
CRDT-based techniques fall short of supporting intri-
cate modeling scenarios, such as multi-level modeling
[3].

Augmenting multi-level modeling with real-time col-
laboration capabilities enables teamwork between stake-
holders acting (i) at different levels of abstraction, or (ii)
at different levels of decision making. Typical examples

ar
X

iv
:2

20
5.

11
30

3v
1

 [
cs

.S
E

]
 2

3
M

ay
 2

02
2

2 I. David and E. Syriani

include (i) changing a modeling language during oper-
ation to incorporate language elements required by the
technical stakeholders [28]; and (ii) restricting values of
attributes at higher levels of decision making and en-
forcing these values through the notion of potency [55].

The main contribution of our work is a novel real-
time collaborative multi-level modeling framework, called
lowkey1. The framework supports a wide range of mod-
eling scenarios across an arbitrary number of model-
ing and linguistic meta-levels. We achieve this flexi-
bility by separating the linguistic metamodel(s) from
the physical metamodel. In this setting, domain-specific
models always conform to their linguistic metamod-
els, and they both (models and metamodels) conform
to the uniform physical metamodel provided by the
framework. Real-time synchronization between collab-
orating stakeholders is achieved by persisting the phys-
ical metamodel in CRDTs that ensure the consistency
of domain-specific models in a domain-agnostic fash-
ion. This makes lowkey especially suitable for support-
ing approaches such as multi-view modeling [40]. Fur-
thermore, lowkey subsumes traditional modeling frame-
works, such as UML [22] and EMF [48], offering a promis-
ing integration potential with existing model editors.

2 Illustrative case

We rely on an illustrative case of developing a collab-
orative editor for modeling Mind maps [10]. The case
highlights multiple structural facets of (meta)modeling,
such as typing, inheritance, and various forms of well-
formedness through the collaborative modeling of mind
maps. We show how an editor built on top of lowkey
would enable this.

The metamodel of the case is shown in Figure 1.
MindMap serves as the root element, containing the
various types of Topics, and the Markers that can be
associated with specific Topics. The mindmap is hier-
archical: the single CentralTopic further contains an ar-
bitrary number of MainTopics, each containing an ar-
bitrary number of SubTopics. Finally, SubTopics can
contain SubTopics to arbitrary depths.

Based on the metamodel, the language engineer must
provide an editor that enables real-time collaborative
modeling of a MindMap instance. This entails the fol-
lowing operations: creating, editing, and deleting in-
stances of metamodel concepts; creating, editing, and
deleting links between elements. In addition, a mecha-
nism for reading the state of the local model is required.
Here are some modeling scenarios that may occur as a
result of applying these CRUD operations.

1 https://github.com/geodes-sms/lowkey

MindMap

name : EString

Topic

name : EString

CentralTopic MainTopic SubTopic

Marker

symbol : EString

[0..1] marker[0..*] markers

[1..1] topic

[0..*] maintopics [0..*] subtopics

[0..*] subsubtopics

Fig. 1 The metamodel of the Mind maps.

Cooperation. User A creates aMindMap instance and
User B sets its title.

Cooperation with of linguistic inconsistencies.
User A creates a CentralTopic instance, but does
not link it to the MindMap instance. User B links
the CentralTopic instance to the MindMap via a
composition reference.

Conflict. User B removes the CentralTopic instance;
in parallel, however, User A creates a MainTopic
instance and links it to the CentralTopic instance.

Multi-level cooperation. Users A and B have cre-
ated multiple Markers, and would like to categorize
them (e.g., as textual and graphical). The Language
Designer, who works one metalevel above Users A
and B, sets the potency of the Marker type from
one to two; thus, allowing a templating mechanism
for A and B.

3 Background

We discuss the existing work related to collaborative
modeling.

3.1 Collaborative MDSE

Collaborative software engineering enables effective co-
operation among stakeholders [60], often in distributed
settings [27]. Distributed teams introduce challenges
to collaboration in terms of processes, project man-
agement, artifact sharing, and consistency [36]. These
challenges are further exacerbated in the engineering
of complex software-intensive systems, such as cyber-
physical systems, that require collaboration between
stakeholders of highly diverse expertise. MDSE [44] pro-
vides stakeholders with techniques for reasoning about
the system at higher levels of abstraction than source
code. As the combination of collaborative software en-
gineering and MDSE, collaborative MDSE exhibits the
traits of both disciplines. Collaborative MDSE has be-
come a prominent feature of nowadays’ software engi-
neering practice [8]. Version control for modeling arti-
facts has been extensively employed to facilitate col-
laboration. Such approaches rely either on lock mecha-

https://github.com/geodes-sms/lowkey

Real-time Collaborative Multi-Level Modeling by Conflict-Free Replicated Data Types 3

nisms [30] or manual conflict resolution [53]. As a con-
sequence, they are not suitable for real-time collabora-
tion.

3.2 Real-time collaboration

Recent studies by David et al [13] and Franzago et al
[23] show a strong shift towards real-time collaboration
in MDSE. The main challenge in such a shift is ensuring
appropriate convergence of distributed replicas, while
still guaranteeing timely execution [49]. Convergence
of replicas is ensured by the consistency model a dis-
tributed setting chooses. Strict consistency is a theoreti-
cal model for guaranteeing deterministic consistency by
the total order of change updates that are exchanged in-
stantaneously. However, due to its limited usability, var-
ious relaxations have been provided, such as sequential
consistency [31], causal consistency [21], and eventual
consistency [59]. Strong eventual consistency (SEC) [39]
augments the liveness property of eventual consistency
(all change updates will be observed eventually) with
a safety guarantee: two nodes that have received the
same set of change updates will be in the same state,
regardless of the order of updates. SEC is an efficient
resolution of the CAP theorem by Brewer [9], suggest-
ing that distributed systems cannot provide more than
two out of the three properties of strong consistency,
availability, and partition tolerance. SEC removes the
problem of conflict resolution on local replicas by intro-
ducing rules to ensure a unique outcome for concurrent
changes, deterministically resolving any conflict. There
is no need for a consensus or synchronization since any
kind of change is allowed and conflicts are removed alto-
gether. As such, this consistency model is especially ap-
propriate for real-time collaboration. Nevertheless, SEC
may be challenging or even impossible to implement for
certain data types.

3.3 Conflict-free replicated data types

CRDTs eliminate conflicts between the distributed stake-
holders’ operations; thus avoiding the complexity of
conflict resolution and roll-back. As a result, CRDTs
exhibit promising fault tolerance and reliability prop-
erties.

CRDTs come in two flavors. State-based CRDTs are
structured in a way that they adhere to a monotonic
semi-lattice. Shapiro et al [46] show that state-based
objects that satisfy this property are SEC, hence they
converge to a consistent state. Operation-based CRDTs
require that concurrent operations are commutative.
Independently from the order of the received change

updates, the state of the local copy converges to the
same state. To achieve such a behavior, the supporting
communication protocol has to provide a causal order-
ing mechanism, such as global timestamps. In our ap-
proach, we have opted for the operation-based CRDT
scheme because of its reduced costs when exchanging
model changes between replicas.

Operation-based model representation [32] has been
proposed for reasoning about streams of model opera-
tions. The C-Praxis approach [35] defines six CRUD
model operations and defines how these operations in-
teract. The CRDTs of lowkey are geared towards the
more complex semantics of graphs and, thus, they pro-
vide a superset of these operations. Additionally, lowkey
enables working with multigraphs, hypergraphs, and
disconnected graphs, allowing for more flexibility in mod-
eling. Traditional operation-based approaches, such as
C-Praxis are built on MOF. Consequently, they fall
short of supporting arbitrary meta-levels of modeling.

3.3.1 The Last-Writer-Wins (LWW) paradigm

To ensure the convergence of local replicas, their dif-
ferences have to be resolved in an automated fashion.
Such a resolution mechanism can be implemented ei-
ther in the application or at the data level [34]. The
LWW paradigm [29] has been widely adopted as a data-
level implementation of operation-based conflict resolu-
tion [54, 41]. Conflicting operations are resolved using
a global ordering operator, e.g., a timestamp. Given
two changes, it is the more recent one that will prevail
[45]. To avoid potential data loss, each change update
is stored locally and the resolution of conflicts is carried
out by the local replica.

Figure 2 shows an example resolution scenario under
LWW. User A (top blue) and User B (bottom green)
initially have their local replicas in identical states: the
value of x and its timestamp t. At t = 1, User A exe-
cutes the update x = 15 on his local copy. A message
with this updated value and the timestamp is sent to
User B. However, before the message arrives, User A
executes another update: x = 20, at time t = 2. Again,
an update message is composed and sent to User B.
Due to network delays, the second update arrives to
User B earlier than the first. Upon receiving the up-
date message, User B will reconcile this new value with
his local replica. As it stands, User B has x = 10 times-
tamped with t = 0; and an update that says x = 20

timestamped with t = 2. Under the LWW paradigm,
the latter value prevails, due to the more recent times-
tamp. Eventually, the first message arrives. User B has
x = 20 timestamped with t = 2; and an update of x = 15

timestamped with t = 1. Under the LWW paradigm,

4 I. David and E. Syriani

x = 10
t = 0

t = 0 t = 1 t = 2

update(x=15, t=1)
update(x=20, t=2)

x = 10
t = 0

x = 15
t = 1

x = 20
t = 2

x = 20
t = 2

x = 20
t = 2

Fig. 2 Total order of updates in the LWW paradigm.

the former value should prevail. Thus, the update is
not performed on the local copy. Eventually, the repli-
cas are in identical states: x = 20.

Despite the omitted update after receiving x = 15, t =

1, the message can still be stored in User B’s local repli-
cas. It is the responsibility of the CRDT implementa-
tion to decide whether to store outdated data or not.
Some use-cases might require such behavior; but the
performance of CRDTs is proportional with the data
they store [51], and often requires implementing com-
plex garbage collection mechanisms [6].

The LWW paradigm satisfies the requirements for
real-time collaboration defined by Sun et al [49]: (i)
convergence, i.e., every stakeholder’s local data must
exhibit the same state after updates have been applied;
(ii) user intention preservation, i.e., the original user’s
intention must be preserved; (iii) causality preservation,
i.e., updates must be ordered in the same causal way
by each stakeholder; and (iv) timely execution, i.e., op-
erations must propagate and the system must reconcile
within a deadline that provides a smooth user experi-
ence.

3.3.2 CRDT frameworks

Yjs2 is an open-source framework for peer-to-peer shared
editing of structured data, such as rich-text, or XML.
Operations are stored in a linked list, resulting in a total
order of operations, thus implementing CRDTs. Tele-
type3 provides string-wise sequence CRDTs for peer-to-
peer collaborative editing in the Teletype for Atom4 co-
operative source code development environment. Auto-
Couch [25] is a JSON framework combining the benefits
of the Automerge CRDT library5 and the CouchDB6

database engine. Conflict-free JSON documents are repli-
cated both on the server side and client side, while en-
suring a responsive real-time user experience for web-
based applications.

2 https://github.com/yjs/yjs
3 https://github.com/atom/teletype-crdt
4 https://teletype.atom.io/
5 https://github.com/automerge/automerge
6 http://couchdb.apache.org/

These frameworks are similar to lowkey in their aim
to augment engineering tools with a CRDT-based col-
laboration service. However, they are primarily geared
towards linear data types, whereas the CRDT layer of
lowkey is primarily aimed at supporting a wide range
of modeling scenarios. Currently, no other modeling
framework implements support for graph CRDTs as
first-class citizens. Shapiro et al [46] formalize graph
CRDT but provide no implementation. SyncMeta [20]
(built on top of Yjs) provides support for modeling
graph-like data structures. However, graphs are em-
ulated by linked lists and string comparisons at the
CRDT level.

3.4 Multi-level modeling

A formal framework of modeling at arbitrary meta-
levels has been developed by Atkinson and Kühne [2],
introducing the core concepts of deep instantiation [4]
and deep characterization [5]. Deep instantiation ex-
tends the traditional two-level instantiation and allows
classes to be instantiated transitively. This is achieved
by the notion of potency that defines how many levels
of instantiation the class supports. Deep characteriza-
tion allows meta-types to influence the characteristics
of their instances beyond those in the level immediately
below. Our framework embraces these concepts to pro-
vide collaborative support in a highly generalized fash-
ion. As shown by Atkinson and Kühne [4], deep meta-
modeling can naturally accommodate traditional mod-
eling frameworks built on shallow instantiation, such
as UML and EMF. Consequently, our framework is a
good fit with modeling tools supporting UML and EMF
modeling, but lacking collaborative features. The feasi-
bility of multi-level modeling has been demonstrated in
tools such as MetaDepth [16] and Melanee [1].

4 A framework for real-time collaborative
metamodeling

We present the different components of lowkey, our real-
time collaborative modeling framework.

4.1 Architecture

Figure 3 outlines the architecture of the framework.
In a typical modeling setting, users are provided with
(domain-specific) Editors that enable interacting with
the (meta)models of the Linguistic layer, through a gen-
erated Domain-specific API. The Linguistic layer en-
forces well-formedness rules defined by the static se-
mantics of the language. Each element at the Linguistic

https://github.com/yjs/yjs
https://github.com/atom/teletype-crdt
https://teletype.atom.io/
https://github.com/automerge/automerge
http://couchdb.apache.org/

Real-time Collaborative Multi-Level Modeling by Conflict-Free Replicated Data Types 5

CRDT

Editor

Linguistic well-formedness rules

Uniform object representation

Collaboration / persistence

C
om

m
.

la
ng

u
ag

e

Pull

Router

Network interface
Sub

Dealer

generated

Client Network Server

Linguistic modeling layer
Domain-specific API

Pub

Push
Physical

modeling layer server

Physical
metamodel

Fig. 3 Overview of the architecture and the roles of each layer

Model

-potency: Union(Integer, ∞)
1 0..*

typed_by

1

1

0..*

Association

-from_min: Integer

-from_max: Union(Integer, ∞)

-from_port: String

-to_min: Integer

-to_max: Union(Integer, ∞)

-to_port: String

Inherits

LWWMap

C
R

D
T

Ph
ys

ic
a

l m
et

am
o

de
l persisted as

LWWVertex LWWEdgeLWWGraph

persisted as

persisted as
persisted as

Composition Aggregation

Node

-id: UUID

-name: String

Attribute

-default: Any

-type: Type

-potency: Union(Integer, ∞)

Clabject

-is_abstract: Boolean

-potency: Union(Integer, ∞)

-id_field: String

Fig. 4 The Physical metamodel and CRDT layers

layer conforms to a Physical metamodel, as described by
Van Mierlo et al [55]. The Physical layer is responsible
for the uniform representation of objects of the linguis-
tic models and metamodels. Instances of the Physical
metamodel are serialized and propagated to the col-
laborating stakeholders through their Network interface
which communicates with the server. Other clients re-
ceive these instances from the server and merge them
into the local working data represented in CRDTs. The
Command language of the Physical layer enables a uni-
form treatment of local updates (from the Linguistic
layer), and remote updates (from the Network inter-
face).

4.2 Linguistic modeling layer

The Linguistic modeling layer provides mechanisms for
modeling at arbitrary levels of abstraction. As a con-
sequence, this layer contains every domain model and
its metamodels the Editor manipulates. To this end, a
Domain-specific API is generated for the metamodels.
In the illustrative case, the MindMap class and its in-
stance(s) are situated at this modeling layer; and meth-
ods for CRUD operations are generated.

The main responsibility of this layer is to enforce
the language-specific well-formedness rules defined by

the meta-model and static semantics. Typical exam-
ples of language-specific well-formedness rules include
multiplicities, transitive containment by compositions,
and uniqueness of marker names.

4.3 Physical modeling layer

The main responsibility of the Physical modeling layer
is to provide a metamodel that every linguistic concept
can conform to, regardless of which linguistic meta-
level they are situated at. For example, the Physical
metamodel has to accommodate both the MindMap
class; its instance mindmap_0 ; and the Class class the
MindMap class corresponds to. In addition, the Phys-
ical modeling layer may impose language-independent
well-formedness rules, such as each model having to ex-
hibit a graph structure.

4.3.1 Physical metamodel

We adopt the Physical metamodel from previous work
[55], as shown at the bottom of Figure 4.

Node is the foundational concept of the metamodel,
which can be organized into Models. Models, in turn,
are Nodes themselves, allowing for the hierarchical com-
position of Models.

6 I. David and E. Syriani

A consequence of metamodeling—and multi-level
modeling in particular—is that instantiable model ele-
ments can play the role of both instances and types [2].
To accommodate this dichotomy, Clabjects serve as the
physical metatype for every linguistic class and instance.
For example, in the mindmap metamodel, both the
CentralTopic class and its instance(s) are mapped onto
the Clabject physical type.

Associations link Clabjects to each other. The Asso-
ciation inherits from the Clabject, and transitively from
the Node. Due to the latter, Associations can be typed
by other Nodes. Due to the former, Associations can be
abstract and link other Associations. We allow this flex-
ibility to accommodate the models of various modeling
frameworks and formalisms that typically implement
a subset of these modeling options. UML, for exam-
ple, restricts Associations from being abstract, and only
allows linking Clabjects. Composition and Aggregation
are specialized types of Association with conventional
semantics.

Attributes store information of specificNodes. Specif-
ically, in Attributes, the type property maintains in-
formation about the linguistic type the Attribute cor-
responds to. For example, storing textual information
(such as the name of a Topic in the illustrative case)
in the Eclipse Modeling Framework (EMF) would mean
the type of the Attribute is EString. The typed_by rela-
tionship inherited from the Node provides a mechanism
for typing an Attribute at the physical level.

4.3.2 Need for an explicit Physical metamodel

Instantiation mechanisms of current modeling frame-
works typically consider two levels: classes and their in-
stances (objects). Although this covers the majority of
practical use cases, some scenarios might require mul-
tiple levels of type-instance relationships [17]. Such a
type-instance hierarchy enables various beneficial mech-
anisms, such as deep instantiation and deep characteri-
zation [4]. The role of a physical metamodel is to repre-
sent the objects of such a type-instance hierarchy uni-
formly, irrespective of what metalevel a specific object
is situated at; and to provide services such as the serial-
ization of these objects. By this separation of concerns,
objects of the type-instance hierarchy become indepen-
dent of their physical representation, and their roles are
determined by purely linguistic concepts, such as being
metatypes or instances of each other. Therefore, we re-
fer to this level of objects as the Linguistic metamodel.

The physical metamodel of traditional modeling frame-
works is typically coupled with the topmost meta-level
of their linguistic metamodels. For example, Ecore serves
as the core metamodel of EMF and also defines the

rules governing the serialization of EMF models into
XMI files.

By providing mechanisms for multi-level metamod-
eling, and clearly separating the Physical metamodel
from the Linguistic metamodel, our framework is able
to (i) support advanced metamodeling scenarios; and
(ii) accommodate traditional modeling frameworks, for
example, by restricting the flexibility of the Physical
metamodel. Similar avenues have been explored by mul-
tiple modern modeling frameworks, such as Melanee [1],
metaDepth [16], and the Modelverse [56].

4.3.3 Command language

The Physical metamodel can be accessed and interacted
with through a command language. The brief definition
of the language is shown in Listing 1. The command lan-
guage defines four CRUD operations. Therefore, inte-
grating an editor with the Physical metamodel requires
the appropriate facility that translates domain-specific
modeling operations to the operations of the command
language. We have opted for providing an external tex-
tual DSL because such languages are more trivially se-
rialized and propagated through standard network pro-
tocols than binary data.

4.4 CRDT layer

The CRDT layer is responsible for persisting instances
of the Physical metamodel. As shown in Figure 4, each
element of the Physical metamodel is associated with
exactly one CRDT. At run-time, as the classes of the
Physical metamodel get instantiated, a corresponding
CRDT is instantiated as well. The model element main-
tains a reference to its persisting CRDT instance dur-
ing execution. Our CRDT implementations follow the
LWW paradigm and have been mainly implemented by
following the specifications outlined by Shapiro et al
[45]. In the following, we briefly elaborate on these types.

4.4.1 Timestamps for total order

To ensure the commutativity of operation-based CRDT,
an operator for total order is required. The most natural
choice in a distributed setting is a global timestamping
mechanism, as it makes the fewest assumptions about
the system. Another useful operator could be the prior-
ity of messages, e.g., to define hierarchical stakeholder
roles in which higher ranked roles can overwrite the
changes of lower-ranked roles. An important difference
between timestamps and priorities is the level of gran-
ularity. Timestamps (e.g., at the level of nanoseconds)

Real-time Collaborative Multi-Level Modeling by Conflict-Free Replicated Data Types 7

1 CREATE -name {name} -typedBy {type} [-attributeName {value}]*
2 LINK -from {fromClabject}.{associationName} -to {toClabject} [-attributeName {value}]*
3 UPDATE (-name {name} | -id {id}) [-attributeName {newValue}]*
4 DELETE (-name {name} | -id {id})

Listing 1 Command language for interacting with the Physical metamodel

provide better chances to unambiguously order two op-
erations, as compared to priorities (e.g., assigned from
a range between 1-5). Therefore, the ordering operator
should be carefully designed to ensure the total order.
Furthermore, compound ordering operators can be used
as well. For example, the shortcomings of the prior-
ity operator can be circumvented by combining it with
timestamps. Such compound operators are best defined
by linking them through the absorption identity over
the lattice of change operations [12] to ensure a valid
and sound composition.

In the remainder of the paper, we showcase the use
of timestamps to define a total order. lowkey uses the
Unix epoch time in nanoseconds to timestamp model
updates with. As an alternative, Lamport clocks [31] or
vector clocks [47] can be used as suggested by Shapiro et
al. [45]. Timestamped model updates are subsequently
forwarded to the collaborating stakeholders. The global
nature of the timestamp ensures that each local replica
sorts the updates in the same order, ensuring the safety
property of SEC (c.f. Section 3.3).

The appropriate granularity of timestamps is par-
amount in supporting complex CRDTs. Consider the
underlying data structure in the illustrative example
in Figure 2 being a graph, in which vertices represent
entities with associated attributes. Assigning a times-
tamp to the whole graph would not allow indepen-
dent changes at finer-grained levels, such as vertices.
Thus, we assign a timestamp to each instance of the
elements of the Physical metamodel, and update it on
each CRUD operation.

4.4.2 LWWRegister

The LWWRegister is the simplest CRDT in lowkey, con-
taining a single value. To implement LWW semantics,
its value v is equipped with a timestamp t. Thus, an
LWWRegister r is defined as r = (v, t).

update The update operation permits to modify the
value of the register. Given a new timestamped value
(v′, t′), it is defined as r.v ≔ v

′ iff t
′
> r.t, and NOP

otherwise.

4.4.3 LWWSet

The LWWSet S contains an arbitrary number of times-
tamped values (v, t) under set semantics. That is, for
S = ⟨(v, t)⟩, it holds that ∀si, sj ∈ S ∶ si.v ≠ sj .v. We
have implemented the LWWSet as an LWW-element-Set
[45], in which the LWWSet is partitioned into two dis-
joint subsets A,R ⊆ S. A is the add-set containing the
values added to S and B is the remove-set containing
the values removed from S. This structure ensures the
commutativity of add and remove operations: add(v,
t) ◦ remove(v, t’) ≡ remove(v, t’) ◦ add(v, t).

lookup The lookup operation indicates if an element is
in the set. A value is considered to be in the LWWSet iff
it can be found in the add-set, and it cannot be found
in the remove-set with a higher timestamp. It is defined
as lookup(v) = ∃v, t∄t′ ∶ (v, t) ∈ A ∧ (v, t′) ∈ R, t′ > t.

add The add operation inserts new values in the add-
set. It is defined as add(v, t) ∶ S.A→ S.A ∪ {(v, t)}.

remove The remove operation deletes values from the
set by adding them to the remove-set. It is defined as
remove(v, t): S.R → S.R ∪ {(v, t)}.

4.4.4 LWWMap

The LWWMap is defined as an extension of the LWWSet.
The data is stored as a key/value pair ((k, v), t).

lookup, query The lookup operation is modified so
that it looks up the key instead of the value. That is,
lookup(k) = ∃k, t,∄t′ ∶ ((k, v), t) ∈ A ∧ ((k, v), t′) ∈
R, t

′
> t. The query(k) method returns the value for a

key k.

add, remove Analogously to the add and remove of
the LWWSet: add((k, v), t): S.A → S.A ∪ {((k, v), t)};
and remove((k, v), t): S.R → S.R ∪ {((k, v), t)}.

update This operation is the only substantial differ-
ence the LWWMap introduces to the LWWSet. Updating a
key ((k, v), t) entry with a value v′ timestamped with
t
′ is defined as update(k, v, v′, t, t′) = add((k, v′), t′) ◦
remove((k, v), t′ − ε). First, the entry with key k is re-

8 I. David and E. Syriani

moved, and the time of removal is timestamped with a
value that is older than the new timestamp t

′ by the
minimal time interval ε the system is able to detect. In
lowkey ε = 1 ns. Subsequently, the entry with key k and
the new value v′ is added with the timestamp t′.

4.4.5 LWWGraph

The LWWGraph G is the extension of the LWWMap that
enables persisting attributes of the graph. This mech-
anism is used for storing the vertices and edges of the
graph. Vertices are stored in an LWWSet, denoted by V .
Each element of V is an LWWVertex. To enable storing
attributes and metadata of vertices, each LWWVertex is
an extension of the LWWMap. Analogously, the edge set E
is an LWWSet, containing LWWEdge instances. Formally:
G = (V,E), where
– V,E ⊢ LWWSet;
– V = ⟨(v, t)⟩, where v ⊢ LWWVertex and t is a times-

tamp;
– E = ⟨(e, t)⟩, where e ⊢ LWWEdge and t is a times-

tamp;
– ∀e ∈ E ∶ e.query(“source”), e.query(“target”) ∈ V

(denoted e.source and e.target).
– LWWGraph, LWWVertex, LWWEdge ⊢ LWWMap.

Due to the invariant property of E ⊆ V × V , opera-
tions on V and E are not independent. Shapiro et al [45]
suggest multiple ways to manage this issue. In lowkey,
we chose prioritizing the removeVertex operation to en-
sure CRDT behavior. That is, the operation is only al-
lowed to be executed if it does not leave a dangling edge
behind.

lookup and query Since both the LWWVertex and the
LWWEdge extend the LWWMap, their lookup and query
methods are identical to the ones discussed in Section 4.4.4.

addEdge, addVertex These operations reuse the API
of the LWWSet directly. Adding an edge is achieved by
adding the edge to the add-set A of the edge set E
of graph G. Thus, addEdge(e, t) ∶ G.E.A → G.E.A ∪
{(e, t)}; and addVertex(v, t) ∶ G.V.A→ G.V.A∪{(v, t)}.

removeEdge, removeVertex These operations reuse the
API of the LWWSet directly. Removing an edge is achieved
by adding the edge to the remove-set R of the edge
set E of graph G. Thus, removeEdge(e, t) ∶ G.E.R →
G.E.R ∪ {(e, t)}; and removeVertex(v, t) ∶ G.V.R →
G.V.R∪{(v, t)}. Furthermore, to ensure the CRDT be-
havior: removeVertex(v, t) ⇒ /∃ e ∈ E ∶ e.source=v ∨
e.target=v.

Additional methods of the LWWGraph are defined for
querying various properties of the graph; and for adding
and removing vertices and edges by name and identi-
fier. Additional methods of the LWWEdge and LWWVertex
types are defined, e.g., for querying incoming and out-
going edges of a vertex, cascading the removal of dan-
gling edges upon a vertex removal, and assigning direc-
tion to edges.

4.5 Network architecture

lowkey follows a client-server network architecture with
multiple clients connecting to the same server, as out-
lined already in Section 4.1. The network architecture
is built on top of the ZeroMQ7 asynchronous messaging
library. It offers efficient scalability and latency prop-
erties; thus it aligns well with the requirements of real-
time collaboration.

4.5.1 Server and Client components

Our framework provides two network components for
connecting remote collaborating stakeholders. The server
component is responsible for two tasks: (i) collecting
from, and distributing updates among clients; and (ii)
providing newly joined clients with the snapshot of the
system so they have an initial local replica.

The client component is responsible for providing
networking capabilities to modeling tools and editors.
The Client interface is accessible from the API of the
framework and it is the tool builder’s responsibility to
properly implement its required functionality. Specifi-
cally, the Client interface is properly implemented by
defining the action the Sub socket executes periodically
during its polling loop.

4.5.2 Communication patterns

Different responsibilities of the server are implemented
with different communication patterns, as summarized
in Figure 3.

Exchanging updates. To receive updates, a client must
first subscribe to the updates by connecting to the Pub
(publisher) socket of the server with its own Sub (sub-
scriber) socket. The Pub-Sub pattern establishes a one-
way asynchronous communication channel with the client
receiving and processing messages in a polling loop. The
Pub socket broadcasts messages to every client con-
nected to the server. To send updates, a client must first
connect to the Pull socket of the server with its Push

7 https://zeromq.org/

https://zeromq.org/

Real-time Collaborative Multi-Level Modeling by Conflict-Free Replicated Data Types 9

socket. Similar to the Pub-Sub pattern, the Pull-Push
pattern establishes a one-way connection. Note that the
Push socket is geared towards supporting pipelining
mechanisms, hence it does not broadcast messages.

Distributing system snapshots. Upon connecting to the
server, the client needs to obtain a snapshot of the
system. This is achieved by connecting to the Router
socket of the server via the Dealer socket of the client.
The Router-Dealer pattern implements a request-reply
mechanism with both ends acting asynchronously. As
opposed to the patterns used for exchanging updates,
this pattern does not maintain a connection after the
request-reply pair of messages has been exchanged.

To provide a snapshot to its clients, the server is
equipped with a memory that stores the history of pre-
viously exchanged messages (model updates). Once the
newly connected client requests the snapshot, the his-
tory of messages is replayed to it. The state of the sys-
tem is then built up locally by the client. We opted for
this mechanism to keep it aligned with our choice of
operation-based CRDT semantics (Section 3.3), and to
shift the workload to the client instead of the server.
Since operation-based and state-based CRDTs are able
to emulate each other, it would be possible to commu-
nicate the whole state at once, but this would come at
the price of increased network traffic.

4.5.3 Update messages

Every update message has the following signature:
⟨clientId, command, timestamp⟩, where the clientId is
a UUID assigned to the client upon its creation, used
for avoiding double delivery problems; command corre-
sponds to the command language of the Physical meta-
model shown in Listing 1; and timestamp is the times-
tamp of creation, as discussed in Section 4.4.1. Messages
are serialized as text and sent through the TCP/IP
stack.

5 Feasibility evaluation

Based on the case study, we evaluate the feasibility of
lowkey from two points of view. In both cases, our ob-
jective is to assess whether lowkey can accommodate
the challenges outlined in the case study. First, in Sec-
tion 5.1, we provide a language engineer’s view by pre-
senting the process of metamodeling in lowkey. Then,
in Section 5.2, we provide a domain expert’s view by
demonstrating four collaborative modeling scenarios.

5.1 Language engineer’s view: metamodeling in lowkey

Figure 5 shows how the metamodel of the illustrative
case (Figure 1) is defined within the lowkey framework
in relation to the Physical model (Figure 4). The Lin-
guistic metamodel represents the same domain as the
metamodel in Figure 1, but instead of using UML to
express it, here, we use the Physical metamodel of the
lowkey framework.8 The color coding shows how every
concept physically conforms to the Clabject. This is due
to the Linguistic metamodel being an instance of the
Physical metamodel. In addition, the Linguistic meta-
model linguistically conforms to the Linguistic meta-
metamodel. The latter is another instance of the Physi-
cal metamodel ; thus, its elements physically conform to
the specific elements of the Physical metamodel (shown
by color-coding). Specific Mind map instances are cre-
ated in the Linguistic instance model that linguistically
conforms to the Linguistic metamodel, and physically
conforms to the Physical metamodel. As emphasized by
the arrow notation, the mindmap_0 object is a linguis-
tic instance of the MindMap class; which is, in turn, a
linguistic instance of the Class class. Each of these are
physical instances of the Clabject class. Similarly, the
title of the mindmap "Improve publication record" is
a linguistic instance of title: String = "" ; which is, in
turn, a linguistic instance of the Attribute class.

Thanks to the clear physical conformance relation-
ships, every element at the Physical instance level will
be persisted as a CRDT, irrespectively of their linguistic
meta-level. Therefore, stakeholders can safely collabo-
rate by editing any of the three linguistic metamodels.

Generating a domain-specific API.To enable interacting
with the Linguistic metamodel, an API has to be pro-
duced. This process is fully automated with a template-
based code generator that produces a Python class for
every Clabject, and generates the appropriate acces-
sors (e.g., get, set, add, remove) for attributes and ref-
erences. Listing 2 shows the method signatures of the
Python code generated for the MindMap class.9

1 class MindMap(Clabject):
2 # Attribute: title, Type: String,
3 # Multiplicity: 1
4 def getTitle(self)
5 def setTitle(self, title)

8 We remark, that multi-level modeling approaches tradition-
ally rely on the orthogonal linguistic and ontological dimensions,
and do not consider the physical dimension. In this paper, we only
consider the linguistic and physical dimensions to allow an easier
discussion. Our approach can be safely extended with ontological
aspects, similarly to the work of [55].

9 The full example is available at https://github.com/
geodes-sms/lowkey.

https://github.com/geodes-sms/lowkey
https://github.com/geodes-sms/lowkey

10 I. David and E. Syriani

LWWMap

LWWVertex LWWEdgeLWWGraph

1 0..*

typed_by

1

1

0..*

Inherits

marker

subTopics

subsubTopics

topic_0: topic

mainTopics_0: mainTopics

mainTopics_1: mainTopics

LINGUISTIC DIMENSION

P
H

Y
SI

C
A

L
D

IM
E

N
SI

O
N

C
R

D
T

P
h

ys
ic

a
l m

et
am

o
d

el
P

h
ys

ic
a

l i
n

st
a

n
ce

 m
o

d
el

s

Linguistic instance modelLinguistic metamodelLinguistic meta-metamodel

markers

-from_min: 1

-from_max: 1

-from_port: topic

-to_min: 0

-to_max: 1

-to_port: mindmap

topic

mainTopics

-from_min: 1

-from_max: 1

-from_port: marker

-to_min: 0

-to_max: 1

-to_port: topic

-from_min: Integer

-from_max: Union(Integer,∞)

-from_port: String

-to_min: Integer

-to_max: Union(Integer,∞)

-to_port: String

1
0..*

mindmap_0: MindMap

title: “todolist”

name: “tasks”

maintopic_0: MainTopic

name: “Read paper”

maintopic_1: MainTopic

name: “Write case study”

CentralTopic

-is_abstract: False

SubTopic

-is_abstract: False

MainTopic

-is_abstract: False

MindMap

-is_abstract: False

-title: String = “”

Marker

-is_abstract: False

-symbol: String = “”

Topic

-is_abstract: True

-name: String = “”

Clabject

-is_abstract: Boolean

-potency: Union(Integer, ∞)

-id_field: String

Attribute

-default: Any

-type: Type

-potency: Union(Integer, ∞)

centraltopic_0: CentralTopic

Association

-from_min: Integer

-from_max: Union(Integer, ∞)

-from_port: String

-to_min: Integer

-to_max: Union(Integer, ∞)

-to_port: String

persisted as persisted as

persisted as

persisted as

linguistic conformance

physical conformance

Model

-potency: Union(Integer, ∞)

Node

-id: UUID

-name: String

Composition Aggregation

Attribute

Class

-name: String

-is_abstract: Boolean

-potency: Union(Integer, ∞)

-id_field: String

-name: String

-default: Any

-type: Type

-potency: Union(Integer, ∞)

Fig. 5 The three-level hierarchy of linguistic models corresponding to the Physical metamodel in the mindmap case

7 # Reference: topic, Type: CentralTopic
8 # MultiplicityFrom: 1..1, MultiplicityTo: 1..1
9 # IsComposition: True

10 def getTopic(self)
11 def setTopic(self, topic: CentralTopic)
12 def removeTopic(self)

14 # Reference: markers, Type: Marker
15 # MultiplicityFrom: 0..1, MultiplicityTo: 0..*
16 # IsComposition: True
17 def getMarkers(self)
18 def addMarker(self, marker)
19 def removeMarker(self, marker)

Listing 2 Excerpt of the generated model API.

5.2 Domain expert’s view: collaboration in lowkey

After the Linguistic metamodel has been defined,
the domain experts can build the Linguistic instance
model in a collaborative fashion. Figure 6 illustrates
this collaboration by showing the objects of the Lin-
guistic metamodel and the CRDTs at the local repli-
cas. For space considerations, we omit the technical de-
tails, such as clients connecting to the server; and only
show the CRDTs for Client A. For testing, evaluation,
and demonstration purposes, we implemented a simple
Mind map editor via the command line. The commands
of the editor are shown in Listing 3. In the following,

we outline typical collaboration scenarios based on our
experiments with the editor.

1. Cooperation

– Client A creates a MindMap instance by issuing the
CREATE MindMap mindmap_0 command. As shown in
Figure 3, the command is parsed into Python source
code that uses the Domain-specific API (Listing 2)
of the linguistic level. The role of the linguistic level
is to enforce linguistic well-formedness rules. Since
the model with the single mindmap_0 object is well-
formed, the command is further translated to the
command language of the physical layer (Listing 1).

– The client sends this command to the Server, using
their respective Push-Pull sockets. The message is
stored in the list of updates at the Server.

– At the CRDT level, an LWWVertex is instantiated
to store the local data at the client side. The key-
value pairs of the LWWVertex store every informa-
tion required to reconstruct the linguistic object, i.e.,
(type, MindMap); (name, mindmap_0); and (title,
mindmap_0). In the current implementation of lowkey,
an LWWGraph is automatically instantiated to accom-
modate the LWWVertex and LWWEdge instances cre-
ated throughout the collaboration.

Real-time Collaborative Multi-Level Modeling by Conflict-Free Replicated Data Types 11

1 READ -- Returns the mindmap model in a readable form
2 OBJECTS -- Lists every object in the local session
3 CREATE {type} {name} -- Creates an instance with name of the domain-specific type
4 LINK {source}.{port} TO {target} -- Links object target to object source via port
5 UPDATE {name} {attribute} {newValue} -- Updates attribute with name to newValue
6 DELETE {name} -- Deletes object name

Listing 3 MindMap DSL of the Editor

User A Server User B

CREATE MindMap mindmap_0
CREATE -typedBy MindMap

-name mindmap_0
-title mindmap_0

CREATE -typedBy MindMap
-name mindmap_0
-title mindmap_0

UPDATE mindmap_0 title todolist

UPDATE -name mindmap_0
-title todolistUPDATE -name mindmap_0

-title todolist

mindmap_0: MindMap

title: “mindmap_0”

mindmap_0: MindMap

title: “mindmap_0”

mindmap_0: MindMap

title: “todolist”

mindmap_0: MindMap

title: “todolist”

CREATE CentralTopic tasks
CREATE -typedBy

CentralTopic -name
tasks

mindmap_0: MindMap

title: “todolist”

centraltopic_0: CentralTopic

name: “tasks”

CREATE -typedBy
CentralTopic -name

tasks

mindmap_0: MindMap

title: “todolist”

centraltopic_0: CentralTopic

name: “tasks”

LINK todolist.topic to tasks

LINK -from mindmap_0 -
to centraltopic_0LINK -from mindmap_0 -

to centraltopic_0

mindmap_0: MindMap

title: “todolist”

centraltopic_0: CentralTopic

name: “tasks”

mindmap_0: MindMap

title: “todolist”

centraltopic_0: CentralTopic

name: “tasks”

1

2

4

topic_0: topic topic_0: topic

CREATE MainTopic read_paper
LINK tasks.mainTopics read_paper

mindmap_0: MindMap

title: “todolist”

centraltopic_0: CentralTopic

name: “tasks”

topic_0: topic

maintopic_0: MainTopic

name: “read_paper”

mainTopics_0: mainTopics

mindmap_0: MindMap

title: “todolist”

DELETE centraltopic_0

CREATE -typedBy
MainTopic -name

read_paper

LINK -from
centraltopic_0 -to

maintopic_0

DELETE centraltopic_0

centraltopic_0: CentralTopic

name: “tasks”

topic_0: topic

DELETE centraltopic_0

mindmap_0: MindMap

title: “todolist”

centraltopic_0: CentralTopic

name: “tasks”

topic_0: topic

maintopic_0: MainTopic

name: “read_paper”

mainTopics_0: mainTopics

3

CREATE -typedBy
MainTopic -name

read_paper

LINK -from
centraltopic_0 -to

maintopic_0

LWWVertex

type: CentralTopic

name: centraltopic_0

title: tasks

LWWVertex

type: MindMap

name: mindmap_0

title: todolist

LWWVertex

type: MindMap

name: mindmap_0

title: todolist

LWWEdge

type: topic

name: topic_0

LWWVertex

type: MainTopic

name: maintopic_0

title: read_paper

LWWEdge

type: mainTopics

name: mainTopics_0

+

#

+

+

+

+

Language designer

UPDATE -name Marker
-potency 2

Marker: Class @2

potency: 2

TextMarker: Marker @1

marker_0: TextMarker @0

LWWVertex

type: Marker

name: TextMarker

potency: 1

LWWVertex

type: TextMarker

symbol: “x”

potency: 0

#

+

Fig. 6 Collaboration in lowkey outlining changes in the CRDTs shown for Client A

– The Server broadcasts the change to the collabora-
tors, i.e., Client B. Subsequently, an object from the
MindMap class is instantiated with the same ID as
the one at User A’s side.

– Client B changes the title attribute of the mindmap_0
object by issuing the UPDATE command. The change
is applied locally and forwarded to the Server after
the required conversion to the command language.
Client A receives the change from the Server and
updates its local replica.

– At the CRDT level, the LWWVertex is updated by
changing the title from mindmap_0 to todolist, re-
flecting the changes by Client B. As explained in Sec-
tion 4.4, the previous and current values are stored
in the Add-set of the LWWVertex (inherited from the
LWWMap). Querying the CRDT instance yields todolist
as the value with the latest timestamp.

12 I. David and E. Syriani

2. Cooperation with linguistic inconsistencies

– Client A creates a CentralTopic instance by the name
tasks. The centraltopic_0 object is not linked to the
mindmap_0 object, violating the 1-1 relationship
between theMindMap and CentralTopic classes, pre-
scribed by the static semantics of the metamodel
(Figure 1). In this example, we assume a less restric-
tive linguistic layer, in which static semantics are
not enforced. The physical layer, however, enforces
physical well-formedness rules, e.g., the model has to
correspond to a graph, which is allowed to be dis-
connected. (This rule is defined by the aggregation
between the Model and Node types in Figure 4.) The
editor-level user operation, thus, is propagated to
the physical layer, translated into the command lan-
guage: CREATE -typedBy CentralTopic -name tasks.
Because of the valid physical model, the message is
forwareded to the server and distributed to Client B.

– At the CRDT level, a new LWWVertex is created to
store the CentralTopic instance.

– Client B links the CentralTopic instance to the MindMap
instance. The distribution of the tasks of object cre-
ation (Step 5) and linking (Step 6) creates a truly
collaborative setting, demonstrating cases in which
stakeholders of specialized expertise take care of par-
tial tasks, not necessarily resulting in a valid linguis-
tic model on every atomic operation. Client B cre-
ates an association of type topic between the two
objects, named topic_0. The operation results in a
valid linguistic model, the changes are propagated in
the usual way, and eventually, the change is reflected
in the replica of Client A.

– At the CRDT level, a new LWWEdge is created to
store the association. The LWWEdge is added to the
LWWGraph with the previous two LWWVertex as its
source and destination.

3. Conflict

– Client A works on objects that Client B has deleted.
First, Client B deletes the centraltopic_0 object, and
as a consequence, the object is marked deleted in
the local replica. As explained in Section 4.4, CRDTs
use soft delete to be able to restore data if needed.
The update message is sent to the server. In the
meantime, Client A creates an instance of the Main-
Topic class and links it to the centraltopic_0 ob-
ject via the mainTopics_0 reference. The two up-
date messages are propagated to the server. Client A
started its changes before the updates about Client
B’s changes have reached him. Subsequently, both
clients’ updates are sent to the other client, causing

inconsistency in the local replicas. However, both in-
consistencies are resolved immediately by the LWW
semantics of CRDTs. Since Client A’s updates have
been created later, the timestamping mechanism will
resolve the inconsistencies by (i) leaving Client A’s
replica intact and (ii) re-adding the centraltopic_0
object to Client B’s replica.

– At the CRDT level, the local replica of Client B re-
moves the LWWVertex storing the CentralTopic in-
stance: the vertex is removed from the vertex set of
the LWWGraph. This is achieved by adding the ver-
tex to the Remove-set of the graph, as explained in
Section 4.4.4. Before this information is propagated,
Client A performs editing operations resulting in a
new LWWVertex and a new LWWEdge. The source of
the newly created LWWEdge is the LWWVertex removed
by Client B, hence the conflict. However, due to the
more recently created (and timestamped) LWWEdge,
the LWWVertex is not removed in the local replica of
Client A. After Client B is notified about the opera-
tions of Client A, the LWWVertex storing the Central-
Topic instance is re-added to its local replica, restor-
ing the consistency between the clients.

4. Multi-level cooperation

– Users A and B have created multiple instances of the
Marker class and would like to categorize them into
textual and graphical markers. One way to achieve
this is by allowing a templating mechanism to these
users so that they can create specific sub-classes of
the Marker class. These classes can be then instan-
tiated with a specific symbol.

– The Language designer increases the potency of the
Marker class from 1 to 2. The change is distributed
to the users.

– User A creates a new instance of the Marker class
by the name TextMarker. The potency of the newly
created clabject is set to 1, allowing one more in-
stantiation. Subsequently, he modifies the previous
marker_0 in a way that it is typed by the newly cre-
ated TextMarker class. The potency of marker_0 is
set to 0, preventing any further instantiation.

5.3 Summary

In this example, we have demonstrated the usage of
lowkey in advanced modeling scenarios, such as meta-
modeling at arbitrary levels of abstraction and seamless
collaboration in the presence of inconsistencies and non-
conformance. The language engineer’s point of view

Real-time Collaborative Multi-Level Modeling by Conflict-Free Replicated Data Types 13

Table 1 Comparison of related modeling frameworks

Framework Metamodeling
Multi-level
modeling

Real-time
collaboration

Consistency
model

Conflict mgmt/
Resolution

AToMPM [52] Strong Manual resolution
Modelverse [56] N/A N/A
MetaDepth [16] N/A N/A
Melanee [1] N/A N/A
WebGME [33] Eventual Manual resolution
SpacEclipse [24] Strong Manual resolution
FlexiSketch [61] Strong Prevention
SyncMeta [20] SEC Prevention (CRDT)
MetaEdit+ [30] Strong Pessimistic locking
TGRL [42] SEC Prevention (CRDT)
MONDO [19] Strong Pessimistic locking

lowkey SEC Prevention (CRDT)

(Section 5.1) has shown the development of domain-
specific modeling languages with multi-level modeling
capabilities. lowkey enabled reusing the metamodel of
the case (Figure 1) that was previously defined in an
external tool. The domain expert’s point of view (Sec-
tion 5.2) has demonstrated how real-time collaboration
is achieved by CRDTs, irrespectively of the level of lin-
guistic abstraction. In addition, we have highlighted
how the combination of CRDTs and the Phyical meta-
model allows for seamless collaboration in the presence
of linguistic inconsistencies.

6 Discussion

In this section, we assess how lowkey compares to other
modeling and collaborative frameworks. Then, we re-
flect on various aspects of the approach.

6.1 Comparison

We compare lowkey with frameworks that are closest in
their aim and feature set, shown in Table 1. These are
typically either modeling tools with multi-level model-
ing capabilities or tools with real-time collaborative fea-
tures. Our objective is to assess how lowkey compares in
terms of the key functionality of (i) metamodeling, (ii)
multi-level modeling, and (iii) real-time collaboration.
We find that some tools partially overlap with lowkey
in terms of functionality; however, the combination of
the three key features is unique to lowkey.

Metamodeling, i.e., the ability to construct new
metamodels and modeling languages, is supported by
the majority of the sampled tools. MetaEdit+ [30] is
a widely adopted metamodeling framework. Locking at
the class level (not attributes) is the primary collabo-
rative mechanism, but there is no support for real-time

collaboration. MetaEdit+ represents a class of model-
ing tools that gained substantial industrial adoption,
and could benefit from a real-time collaborative frame-
work such as lowkey. The two exceptions are TGRL [42]
and the MONDO framework [19]. TGRL is a tool for
requirements modeling in a collaborative way. MONDO
provides collaborative mechanisms for domain-specific
modeling.

Multi-level modeling, i.e., the ability to define
metamodels at an arbitrary number of meta-levels, is
supported by the mechanisms of deep characterization
[5] and deep instantiation [4]. AToMPM [52] is a web-
based multi-view modeling tool that allows for defin-
ing metamodels at arbitrary number of levels and in-
stantiating them by bootstrapping mechanisms. How-
ever, deep characterization and deep instantiation are
not supported. The Modelverse [56] is a modelware
back-end for storing and simulating models. It achieves
multi-level modeling by using a physical metamodel
similar to lowkey [55]. The same approach has been used
by deep metamodeling frameworks MetaDepth [16] and
Melanee [1]. Similar to lowkey, these tools use graphs
at the meta-circular level, i.e., the topmost linguistic
meta-level.

Real-time collaboration is becoming increasingly
adopted in model editors [13]. Tools such as WebGME
[33], SpacEclipse [24], FlexiSketch [61], and to some
extent SyncMeta [20] support metamodeling by shal-
low instantiation, augmented with real-time collabora-
tion capabilities. As a consequence of shallow instanti-
ation, these tools are restricted to a three-level meta-
hierarchy, such as OMG’s MOF or EMF [48]. A variety
of consistency models are employed in these tools to
support collaboration. Strong consistency, employed in
AToMPM, SpacEclipse, and FlexiSketch, ensures that
all participating nodes hold the exact same state of
the model at all times. However, due to its underlying

14 I. David and E. Syriani

mechanisms, it significantly hinders the scalability and
user experience of collaborative modeling tools [31]. In
AToMPM, real-time collaboration is supported in two
ways: at the levels of the abstract and concrete syn-
tax. In both cases, changes in the abstract syntax are
shared; in the latter case, changes in the representa-
tion are shared as well. Collaboration in SpacEclipse
and AToMPM requires manual conflict resolution,
while FlexiSketch uses preventive conflict management
techniques. WebGME relies on eventual consistency,
that provides the weaker guarantee that changes will
be eventually observed across each node [59]. However,
conflict resolution is not automated. Novel types of real-
time collaborative tools, such as TGRL and SyncMeta
employ strong eventual consistency (SEC) that com-
bines the benefits of strong and eventual models [45]
and avoids conflicts altogether. TGRL and SyncMeta
implement real-time collaboration using the Teletype
and Yjs CRDT frameworks, respectively.
Summary. As shown in Table 1, lowkey provides a
unique combination of features for real-time collabo-
rative multi-level modeling. Typically, modeling frame-
works either provide multi-level modeling capabilities
without support for real-time collaboration (e.g., Mod-
elverse, MetaDepth); or provide real-time collaboration
capabilities without support for multi-level modeling
(e.g., WebGME, FlexiSketch). Closest to our work is
AToMPM, which provides limited facilities for multi-
level modeling, and supports real-time collaboration by
conservative consistency model and without automated
conflict resolution.

6.2 Physical metamodel

One of the main benefits of the Physical metamodel
is the uniform representation of objects and models,
irrespective of the linguistic meta-level they are situ-
ated at. This mechanism allows for the co-existence of
models with different syntaxes and semantics. As a con-
sequence, the collaboration between different modeling
tools becomes a more manageable endeavor.

We have chosen graphs as the meta-circular level.
That is, the Physical metamodel corresponds to graphs,
and all linguistic models correspond to graphs as well.
As discussed in Section 6.1, graphs have been shown
to be an appropriate and versatile choice for such pur-
poses. We have implemented a directed multigraph for-
malism, i.e., edges have an unambiguous source and
target vertex, and multiple edges are allowed between
vertices. Directed edges enable navigability of associa-
tions in linguistic models, and the multigraph nature
enables defining multiple different associations between

the same pair of classes. Additionally, the Physical meta-
model supports disconnected graphs. We found this prop-
erty useful in enabling the temporal tolerance of linguis-
tic inconsistencies. Additional graph properties can be
implemented and enforced, depending on the use-cases
to be supported by the framework.

6.3 Temporal tolerance of linguistic inconsistencies

The separated Physical metamodel allows for collabora-
tion in the presence of linguistic non-conformance (ver-
tical inconsistencies), enabling advanced collaboration
scenarios. For example, ensuring the consistency of a
model during the collaboration of stakeholders with dif-
ferent expertise might require tolerating linguistic non-
conformance. This has been demonstrated in Steps 5
and 6 of Figure 6. Here, the expertise of Client A is
the instantiation of objects and the expertise of Client
B is organizing dangling objects into models. Already
in this simple example, we were able to introduce a
non-conformance between the instance model and the
metamodel when Client A did not link the newly cre-
ated instance to the root object immediately. In practi-
cal applications, this issue is vastly exacerbated, as the
number of stakeholders, domains, formalisms, and tools
increases. The CRDTs persisting the Physical meta-
model ensure horizontal consistency [58], i.e., stake-
holders have a consistent view of the system, even if
these views are linguistically incorrect. This enables a
smooth collaboration in the presence of linguistic non-
conformance.

The separation of physical and linguistic concerns
enables well-formedness and consistency rules to be cap-
tured at the most appropriate levels of abstraction. For
example, one might constrain their models at the phys-
ical level by enforcing conformance to graphs and at
the linguistic level to class diagrams. Other examples
of inconsistencies can also be tolerated. lowkey provides
mechanisms to handle violated constraints on multi-
plicities, potency, and OCL rules. Advanced synchro-
nization mechanisms might make use of these layered
rules, for example by suppressing the propagation of
updates until the desired level of horizontal consistency
is achieved, and then propagating atomic updates in a
batch fashion.

6.4 Support for complex modeling operations

Throughout this paper, we have assumed atomic change
operations (e.g., CRUD operations in the running ex-
ample). In practical modeling scenarios, more complex

Real-time Collaborative Multi-Level Modeling by Conflict-Free Replicated Data Types 15

domain-specific operations are often required to be sup-
ported, e.g., in the automation of large refactoring on
the model(s). In the running example, a promote op-
eration could be defined to move a subtopic with all
its children directly under the central topic, convert-
ing the subtopic into a maintopic automatically. In our
prototype editor, the same effect is achieved by multi-
ple atomic CRUD operations. Such complex modeling
operations could be supported by the presented CRDT
mechanisms, e.g., by accumulating atomic operations
at the client-side until the desired effect is achieved.

However, complex modeling operations are not com-
patible with the point semantics of LWW and require
reasoning based on interval semantics [26]. Questions
such as how to timestamp complex modeling operations
to ensure user intention preservation and how to merge
complex modeling operations into local CRDT replicas
are still open research challenges. Constructing opera-
tions is mainly an editor-level concern, i.e., it is the tool
builder, in collaboration with the language engineer,
who has to define these complex modeling operations.
However, making these operations first-class citizens at
the level of the CRDT API improves the safety of ap-
plications built on top of the framework.

6.5 Opportunities in multi-view modeling

We anticipate multi-view modeling (MVM) [40] being
one of the main application areas of our approach. Views
are projections of one or multiple underlying models
[11], presenting stakeholders with only the essential in-
formation they require for their work. Views typically
pertain to domains and expertise (e.g., the mechanical
and the electrical views in the design of a mechatronic
system), but they can pertain to specific use cases (e.g.,
electro-mechanic view) or expertise (e.g., chassis de-
sign). The architecture and services of lowkey align well
with the requirements of MVM. It is able to accom-
modate multiple different metamodels, their instances,
and their views in a uniform fashion; thus allowing for
change propagation between linguistically and seman-
tically different views. Model- and screen sharing [57]
are straightforward to implement, as tool builders can
outsource the data layer of their tools to lowkey.

Other approaches relying on an ensemble of multi-
ple models—such as multi-paradigm modeling (MPM)
[37], multi-modeling [7] and blended modeling [15]—
can benefit from this approach as well. MPM advocates
modeling every aspect of the system at the most appro-
priate level(s) of abstraction using the most appropriate
formalism(s). The Physical metamodel provides a basis
for synchronization among stakeholders, while different
formalisms can be implemented at the Linguistic level.

Similar techniques have been employed in the MPM
tool Modelverse [56].

6.6 Accommodating mainstream modeling frameworks

As demonstrated by Atkinson and Kühne [4], multi-
level modeling frameworks can emulate traditional mod-
eling frameworks using the notion of potency. Potency
is a constraint that specifies how many times a class
can be instantiated transitively. As shown in Figure 4,
the Physical metamodel of lowkey defines a potency to
its Clabject element. By that, lowkey subsumes tradi-
tional modeling frameworks that operate on the mecha-
nism of shallow instantiation. We see an opportunity in
developing libraries for lowkey implementing the meta-
facilities of these traditional frameworks. The process
of adopting lowkey in already existing modeling tools
relying on such frameworks, e.g., MOF or EMF, can be
vastly improved and automated.

6.7 Limitations

Performance. The performance of CRDTs is subject
to the number of objects present in the specific ap-
plication [50]. lowkey CRDTs implement a soft delete
mechanism, i.e., objects are never removed from the
specific CRDT, but rather, “marked” as removed. The
LWWSet, for example, contains the removed elements in
its remove-set (see Section 4.4). As a consequence, the
performance of the CRDT layer will gradually decrease
as the number of objects increases. Our preliminary
measurements show linear degradation. Garbage col-
lection mechanisms have been suggested for managing
such limitations of CRDT-based applications [6].
Intention preservation [49] plays a key role in achiev-
ing an intuitive human-computer interaction and a smooth
user experience in collaborative settings. While the LWW
paradigm usually preserves the user’s intention, some
corner cases might result in model changes that are
less intuitive. The user makes decisions on changing
the model based on the model’s materialized view in
the modeling tool or browser. However, there might be
change updates from other collaborators on their way
that might arrive after the user carried out his changes.
These updates retroactively change the model in a way
that affects the user’s reasoning. Since there is no way
to account for such messages, the user’s intention in
such corner cases cannot be guaranteed. While manual
conflict resolution would solve this issue, it would also
render real-time collaboration infeasible.
Timestamping mechanism. The current prototype
implementation of lowkey uses the time.time_ns() Python

16 I. David and E. Syriani

function for timestamping changes. This function re-
turns time as an integer number of nanoseconds. How-
ever, this approach is prone to clock drift, which could
render CRDT inconsistent. Our working assumption is
that nanosecond-level drift does not affect the dynam-
ics of collaborative modeling between humans, as the
interactions in such settings are at the level of sec-
onds. Nonetheless, lowkey can be extended by addi-
tional mechanisms to regularly synchronize clocks using
the Network Time Protocol (NTP)10 and other mech-
anisms described in Section 4.4.1.

7 Conclusion

In this paper, we have presented a real-time collabora-
tive framework for a wide range of advanced modeling
scenarios, supported by techniques of multi-level mod-
eling. Our framework provides a unique combination of
modeling capabilities and real-time collaboration. It is
built on a custom implementation of CRDTs, geared
towards graph models, providing promising real-time
capabilities and scalability. We have defined a mapping
of physical metamodels onto CRDTs and demonstrated
the approach through an illustrative case.

We have identified multiple lines of future work. We
are planning to develop state-of-the-art collaborative
multi-view modeling mechanisms based on the frame-
work. To enable easier integration with legacy mod-
els, we will provide profiles for UML and EMF mod-
els, effectively reproducing the respective meta-levels of
the OMG superstructure and Ecore. We plan to build
a family of modeling editors integrated with existing
modeling frameworks to augment them with real-time
collaborative capabilities. In more technical terms, we
are looking to improve the performance of the frame-
work by implementing advanced garbage collection mech-
anisms and a network stack with less overhead. We will
develop a benchmark for collaborative MDSE frame-
works to evaluate their scalability (with respect to con-
nected clients and messages exchanged), performance
(response time of a local operation being propagated to
each remote client), and usability in typical modeling
scenarios.

References

1. Atkinson C, Gerbig R (2016) Flexible Deep Mod-
eling with Melanee. In: Modellierung, GI, LNI, vol
255, pp 117–122

10 http://www.ntp.org/

2. Atkinson C, Kühne T (2000) Meta-level inde-
pendent modelling. In: European Conference on
Object-Oriented Programming, vol 12, p 16

3. Atkinson C, Kühne T (2001) The essence of multi-
level metamodeling. In: The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools,
Springer, LNCS, vol 2185, pp 19–33

4. Atkinson C, Kühne T (2002) Rearchitecting the
UML infrastructure. ACM Trans Model Comput
Simul 12(4):290–321

5. Atkinson C, Kühne T (2008) Reducing accidental
complexity in domain models. Software & Systems
Modeling 7(3):345–359

6. Bauwens J, Boix EG (2019) Memory efficient
CRDTs in dynamic environments. In: International
Workshop on Virtual Machines and Intermediate
Languages, ACM, pp 48–57

7. Boronat A, Knapp A, Meseguer J, Wirsing M
(2008) What is a multi-modeling language? In: Re-
cent Trends in Algebraic Development Techniques,
19th International Workshop, Springer, LNCS, vol
5486, pp 71–87

8. Brambilla M, Cabot J, Wimmer M (2017) Model-
Driven Software Engineering in Practice, Second
Edition. Morgan & Claypool Publishers

9. Brewer E (2012) CAP twelve years later: How the
"rules" have changed. Computer 45(2):23–29

10. Buzan T (2006) The ultimate book of mind maps:
unlock your creativity, boost your memory, change
your life. HarperCollins UK

11. Corley J, Syriani E, Ergin H, Van Mierlo S (2016)
Modern Software Engineering Methodologies for
Mobile and Cloud Environments, IGI Global, chap
Cloud-based Multi-View Modeling Environments,
pp 120–139. 7

12. Davey BA, Priestley HA (2002) Introduction to
Lattices and Order, Second Edition. Cambridge
University Press

13. David I, Aslam K, Faridmoayer S, Malavolta I, Syr-
iani E, Lago P (2021) Collaborative Model-Driven
Software Engineering: A Systematic Update. In:
Model Driven Engineering Languages and Systems,
ACM, pp 273–284

14. David I, Aslam K, Malavolta I, Lago P (2022)
Collaborative Model-Driven Software Engineering:
Practices and Needs in Industry. To appear.

15. David I, Latifaj M, Pietron J, Zhang W, Ciccozzi
F, Malavolta I, Raschke A, Steghöfer JP, Hebig R
(2022) Blended Modeling in Commercial and Open-
source Model-Driven Software Engineering Tools:
A Systematic Study. Software & Systems Modeling
To appear.

http://www.ntp.org/

Real-time Collaborative Multi-Level Modeling by Conflict-Free Replicated Data Types 17

16. de Lara J, Guerra E (2010) Deep Meta-modelling
with MetaDepth. In: Objects, Models, Compo-
nents, Patterns, Springer, LNCS, vol 6141, pp 1–20

17. de Lara J, Guerra E, Cuadrado JS (2014) When
and How to Use Multilevel Modelling. ACM Trans
Softw Eng Methodol 24(2):12:1–12:46

18. De Porre K, Myter F, Troyer CD, Scholliers C,
Meuter WD, Boix EG (2019) Putting Order in
Strong Eventual Consistency. In: International Fed-
erated Conference on Distributed Computing Tech-
niques, Springer, Lecture Notes in Computer Sci-
ence, pp 36–56

19. Debreceni C, Bergmann G, Búr M, Ráth I, Varró
D (2017) The MONDO collaboration framework:
secure collaborative modeling over existing version
control systems. In: Foundations of Software Engi-
neering, ACM, pp 984–988

20. Derntl M, Nicolaescu P, Erdtmann S, Klamma R,
Jarke M (2015) Near Real-Time Collaborative Con-
ceptual Modeling on the Web. In: Conceptual Mod-
eling, Springer, LNCS, vol 9381, pp 344–357

21. Du J, Iorgulescu C, Roy A, Zwaenepoel W (2014)
GentleRain: Cheap and Scalable Causal Consis-
tency with Physical Clocks. In: Symposium on
Cloud Computing, ACM, pp 4:1–4:13

22. Fowler M, Scott K (2000) UML distilled - A brief
guide to the Standard Object Modeling Language
(2. ed.). Addison-Wesley-Longman

23. Franzago M, Ruscio DD, Malavolta I, Muc-
cini H (2018) Collaborative Model-Driven Soft-
ware Engineering: A Classification Framework
and a Research Map. IEEE Trans Software Eng
44(12):1146–1175

24. Gallardo J, Bravo C, Redondo MA (2012) A model-
driven development method for collaborative mod-
eling tools. J Netw Comput Appl 35(3):1086–1105

25. Grosch P, Krafft R, Wölki M, Bieniusa A (2020)
Autocouch: a JSON CRDT framework. In: Work-
shop on Principles and Practice of Consistency for
Distributed Data, ACM, pp 6:1–6:7

26. Halpern JY, Shoham Y (1991) A propositional
modal logic of time intervals. J ACM 38(4):935–962

27. Herbsleb JD (2007) Global Software Engineering:
The Future of Socio-technical Coordination. In: In-
ternational Conference on Software Engineering,
IEEE, pp 188–198

28. Izquierdo JLC, Cabot J (2016) Collaboro: a collab-
orative (meta) modeling tool. PeerJ Comput Sci
2:e84

29. Johnson PR, Thomas R (1975) Maintenance of du-
plicate databases. RFC 677:1–10

30. Kelly S (2017) Collaborative modelling with ver-
sion control. In: Software Technologies: Applica-

tions and Foundations, Springer, LNCS, pp 20–29
31. Lamport L (1978) Time, Clocks, and the Ordering

of Events in a Distributed System. Commun ACM
21(7):558–565

32. Le Noir J, Delande O, Exertier D, da Silva MAA,
Blanc X (2011) Operation based model represen-
tation: Experiences on inconsistency detection. In:
Modelling Foundations and Applications – 7th Eu-
ropean Conference, Springer, LNCS, vol 6698, pp
85–96

33. Maróti M, Kecskés T, Kereskényi R, Broll B, Völ-
gyesi P, Jurácz L, Levendovszky T, Lédeczi Á
(2014) Next Generation (Meta)Modeling: Web- and
Cloud-based Collaborative Tool Infrastructure. In:
Multi-Paradigm Modeling, CEUR-WS, pp 41–60

34. Meiklejohn C, Van Roy P (2015) Lasp: a language
for distributed, coordination-free programming. In:
Principles and Practice of Declarative Prog., ACM,
pp 184–195

35. Michaux J, Blanc X, Shapiro M, Sutra P (2011) A
semantically rich approach for collaborative model
edition. In: Proceedings of the 2011 ACM Sym-
posium on Applied Computing (SAC), ACM, pp
1470–1475

36. Mistrík I, Grundy J, van der Hoek A, Whitehead J
(2010) Collaborative Software Engineering: Chal-
lenges and Prospects. In: Collaborative Software
Engineering, Springer, pp 389–403

37. Mosterman PJ, Vangheluwe H (2004) Computer
Automated Multi-Paradigm Modeling: An Intro-
duction. Simulation 80(9):433–450

38. Muccini H, Bosch J, van der Hoek A (2018) Col-
laborative Modeling in Software Engineering. IEEE
Software 35(6):20–24

39. Preguiça NM, Marquès JM, Shapiro M, Letia M
(2009) A Commutative Replicated Data Type for
Cooperative Editing. In: International Conference
on Distributed Computing Systems, IEEE, pp 395–
403

40. Reineke J, Tripakis S (2014) Basic Problems in
Multi-View Modeling. In: Tools and Algorithms
for the Construction and Analysis of Systems,
Springer, LNCS, pp 217–232

41. Roh H, Jeon M, Kim J, Lee J (2011) Replicated
abstract data types: Building blocks for collabo-
rative applications. J Parallel Distributed Comput
71(3):354–368

42. Saini R, Mussbacher G (2021) Towards Conflict-
Free Collaborative Modelling using VS Code Ex-
tensions. In: Model-Driven Engineering Languages
and Systems: Companion Proceedings, ACM, pp
35–44

18 I. David and E. Syriani

43. Saito Y, Shapiro M (2005) Optimistic replication.
ACM Comput Surv 37(1):42–81

44. Schmidt DC (2006) Model-Driven Engineering.
IEEE Computer 39(2):25–31

45. Shapiro M, Preguiça N, Baquero C, Zawirski M
(2011) A comprehensive study of convergent and
commutative replicated data types. Tech. rep.,
Inria–Centre Paris-Rocquencourt; INRIA

46. Shapiro M, Preguiça NM, Baquero C, Zawirski M
(2011) Conflict-Free Replicated Data Types. In:
Stabilization, Safety, and Security of Distributed
Systems - 13th Int. Symposium, Springer, Lecture
Notes in Computer Science, vol 6976, pp 386–400

47. Singhal M, Kshemkalyani AD (1992) An efficient
implementation of vector clocks. Inf Process Lett
43(1):47–52

48. Steinberg D, Budinsky F, Merks E, Paternostro M
(2008) EMF: Eclipse Modeling Framework. Pearson
Education

49. Sun C, Jia X, Zhang Y, Yang Y, Chen D (1998)
Achieving Convergence, Causality Preservation,
and Intention Preservation in Real-Time Cooper-
ative Editing Systems. ACM Trans Comput-Hum
Interact 5(1):63–108

50. Sun D, Sun C (2006) Operation Context and
Context-based Operational Transformation. In:
Conference on Computer Supported Cooperative
Work, ACM, pp 279–288

51. Sun D, Sun C, Ng A, Cai W (2020) Real Differences
between OT and CRDT in Correctness and Com-
plexity for Consistency Maintenance in Co-Editors.
Proc ACM Hum-Comput Interact 4

52. Syriani E, Vangheluwe H, Mannadiar R, Hansen C,
Mierlo SV, Ergin H (2013) AToMPM: AWeb-based
Modeling Environment. In: Model-Driven Engi-
neering Languages and Systems, CEUR-WS.org,
vol 1115, pp 21–25

53. Taentzer G, Ermel C, Langer P, Wimmer M (2010)
Conflict detection for model versioning based on
graph modifications. In: Graph Transformations
– 5th International Conference, ICGT, Springer,
LNCS, vol 6372, pp 171–186

54. Thomas RH (1979) A majority consensus approach
to concurrency control for multiple copy databases.
ACM Transactions on Database Systems (TODS)
4(2):180–209

55. Van Mierlo S, Barroca B, Vangheluwe H, Syriani E,
Kühne T (2014) Multi-level modelling in the mod-
elverse. In: Workshop on Multi-Level Modelling,
CEUR-WS, pp 83–92

56. Van Tendeloo Y, Vangheluwe H (2017) The Mod-
elverse: A tool for Multi-Paradigm Modelling
and simulation. In: Winter Simulation Conference,

IEEE, pp 944–955
57. Van Tendeloo Y, Vangheluwe H (2018) Unifying

model- and screen sharing. In: Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises,
IEEE, pp 127–132

58. Vanherpen K, Denil J, David I, Meulenaere
PD, Mosterman PJ, Törngren M, Qamar A,
Vangheluwe H (2016) Ontological reasoning for
consistency in the design of cyber-physical systems.
In: Int. Workshop on Cyber-Physical Production
Systems, IEEE, pp 1–8

59. Vogels W (2009) Eventually Consistent. Communi-
cations of the ACM 52(1):40–44

60. Whitehead J (2007) Collaboration in Software En-
gineering: A Roadmap. In: International Confer-
ence on Software Engineering, IEEE, pp 214–225

61. Wüest D, Seyff N, Glinz M (2012) FlexiSketch:
A Mobile Sketching Tool for Software Modeling.
In: Mobile Computing, Applications, and Services,
Springer, Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommu-
nications Engineering, vol 110, pp 225–244

	1 Introduction
	2 Illustrative case
	3 Background
	4 A framework for real-time collaborative metamodeling
	5 Feasibility evaluation
	6 Discussion
	7 Conclusion

