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Abstract
Heterogeneous cellular networks are a viable solution in response to the growing demand for broadband services in the

new-generation wireless networks. The dense deployment of small cell networks is a key feature of next-generation

heterogeneous networks aimed at providing the necessary capacity increase. However, the approach to apply green

networks is very important especially in the downlink because uncontrolled deployment of too many small-cells may

increase operational costs and emit more carbon dioxide. In addition, given the novel services and resource limitation of the

user layer, energy efficiency and fairness assurance are critical issues in the uplink. Considering the uplink fairness

criterion, this paper proposes a dynamic optimization model which maximizes the total uplink/downlink energy efficiency

in addition to providing the essential coverage and capacity of heterogeneous cellular networks. Based on the non-convex

characteristics of the energy efficiency maximization model, the mathematical model can be formulated to two sub-

problems, i.e., resource optimization and user association. So that, a subgradient method is applied for fair resource

management and also successive convex approximation and dual decomposition methods are adopted to solve the pro-

portional fairness problem. The simulation results exhibit considerable throughput increase by 30% and 22% on average

for random and hotspot user distributions, respectively. It also proved that the proposed approach managed to significantly

improve the total network energy efficiency by up to 35%.

Keywords Green heterogeneous networks � Hierarchical resource management � Proportional fairness � Uplink/Downlink
NOMA � User association

1 Introduction

1.1 Background and related works

In recent years, heterogeneous networks (HetNets) have

become very popular among active key technologies

employed for exponentially growing traffic requirements in

the next-generation mobile networks [1–3]. The deploy-

ment of ultra-dense small-cells will probably be a major

component of next-generation wireless networks, to man-

age the increasing traffic of mobile networks and to offload

the traffic of high-utilized macro cells in order to improve

users’ quality of service (QoS) [4–6]. One of the most

considerable criteria in small-cell deployment is the

backhauling technology applied to connect small-cells to

the wireless core system, Millimeter-wave backhauling can

speed up the deployment of new generation small-cell

networks by mitigating deployment costs [7, 8]. Nonethe-

less, it is impossible to ignore the multihop technology in

mesh backhauling communications because of applying

directional beams and avoiding the severe fading effects of

long-range backhauls. This approach needs impressive

radio resource management (RRM) and effective routing

strategies [9] in order to obtain optimal power utilization

and decrease delay.

The hierarchical resource management relies on coal-

location algorithm that jointly allocate computing and

networking resources considering both data execution and

data transfer times. The total energy consumption might

also be very high in the access layer of HetNets due to the

vast number of deployed small-cells and ineffective
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millimeter-wave boosters. Therefore, many researchers

have tried to reduce the total energy consumed by small-

cell networks through different methods such as inten-

tionally turning off some of the network nodes. For

instance, the authors in [10] suggested turning off macro

cells or small-cells heuristically or changing the size of

small-cells. In [11], the authors investigated the simple

resource allocation (RA) problem with an assumption of

perfect channel state information (CSI), for a single

antenna scenario in Internet-of-Things (IoT) networks. The

authors in [12] studied backhaul-aware joint user associa-

tion (UA) and RA to obtain network utility reflecting

proportional fairness in simultaneous wireless information

and power transfer (SWIPT) with the total energy con-

straint. Considering the fairness index, the UA problem can

be formulated as a utility maximization function. Most of

the current research on UA for HetNets have focused on

throughput maximization [13] assuming successive inter-

ference cancellation (SIC) capability, in such a way that the

optimal capacity and throughput are achievable via jointly

UA optimization and carrier scheduling (CS) within each

cluster. Applying difference of convex functions

(DC) programming, [14] presented a joint cell association

and CS algorithm to find the maximum logarithmic net-

work’s data rate to obtain acceptable proportional fairness.

Accordingly, joint resource allocation and data flow

scheduling were analyzed in energy harvesting (EH)

empowered sensor networks [15]. The authors of [16]

integrated EH-empowered SWIPT with multihop HetNets

to increase the network’s throughput and efficiency, but the

computational complexity of the scheme is considerably

high. In [17], a precise EH-enabled model for hierarchical

non-orthogonal multiple access (NOMA) HetNets is for-

mulated as joint global power optimization and carrier

allocation (CA) problems, which this model is transformed

into a mixed-integer nonconvex problem to guarantee QoS

constraints applying successive codebook ordering

assignment (SOCA). The main target of this approach is

the minimization of power consumption with lower time

complexity which outperforms OFDMA from the EE per-

spective. The authors in [18] applied the NOMA technique

in the cellular HetNets and studied the trade-off between

the EH, proportional fairness, EE, and network throughput.

In order to guarantee QoS requirements in service-ori-

ented hierarchical networks, fairness assurance is one of

the most critical design criteria in heterogeneous networks

[19]. As various services are provided on the platform of

the next-generation mobile networks, the fairness issue in

HetNets has drawn considerable attention. In [20], a fair

user association scheme was proposed with load balancing

capability for HetNets, and a logarithmic utility maxi-

mization problem was formulated at the network level to

improve the resource allocation efficiency using successive

convex approximation (SCA) method. In [21], the

researchers designed a scheme for user association and

power allocation under different levels of load and trans-

mission power limitations with respect to imperfect chan-

nel state information and proportional fairness in order to

improve spectral efficiency. In [22], considering enhanced

inter-cell interference coordination (eICIC), the authors

formulated and solved a power allocation problem based

on proportional fairness and sub-channel assignment for

uplink multi-tier HetNets with the internetwork radio

resource control capability. In [23] the authors analyzed the

effects of user distribution patterns on the fair EE devel-

opment for resource allocation and subcarrier scheduling in

HetNets based on power domain-NOMA (PD-NOMA).

The authors in [24] suggested an efficient intercellular

algorithm with distributed interference coordination to

improve EE and load balancing in ultra-dense HetNets. In

[25], the authors formulated fair resource allocation and

subcarrier scheduling with the CSI assumption for the

uplink of heterogeneous backhauls considering internet-

work interactions. Also, two EE-enhanced ICIC approa-

ches were introduced for ultra-dense HetNets in [26] with

respect to some applicable features of NGMN such as

beamforming and carrier aggregation. In many of the

previous studies, the researchers only analyzed the UA

issue for guaranteeing proportional fairness but practically

disregarded energy-aware hierarchical resource manage-

ment [27]. Moreover, a few authors focused only on the

wireless downlink heterogeneous networks without con-

sidering the adaptability of the proposed scheme to the

reliability conditions and user fairness requirements of

green heterogeneous cellular networks [28–30].

1.2 Motivations

To this end, most researchers who worked on energy effi-

ciency (EE) and multi-layer resource management in

heterogeneous systems have merely focused on joint UA

and RA or EH and backhaul traffic analysis without con-

sidering user fairness criteria in uplink and reliability

requirements of the practical networks. They fail to provide

the necessary capability to control unstable transmission

links and reliable strategies to simultaneously determine

the ON/OFF switching frequency of small-cells for power-

saving. Lack of backhaul traffic optimization compatible

with ultra-dense networks is another drawback of most

existing works. In the proposed backhauling model, each

NOMA relay is able to be applied for dual-hop as well as

multi-hop simultaneously. Most studies on backhaul traffic

optimization have particularly assumed line of sight (LoS)

connections for mmWave backhaul links without blockage

handling strategy but such system assumptions are not

feasible for areas with obstacles such as ultra-dense zones.
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Unlike the conventional EE studies, which have not well

considered the system reliability, we implemented the

Crosswave propagation model with the optimized mor-

phology indexes for accurate loss estimating and compat-

ibility with the real ultra-dense urban areas which supports

concurrent LoS and NLoS backhaul communications. This

model also performs routing in the multi-hop mesh back-

haul to efficiently use the existing infrastructure of small-

cell networks for simultaneous dual-hop/multi-hop trans-

missions considering both uniform and hotspot user

equipment (UE) distribution patterns. In practice, as small-

cells interconnect to form a mesh topology, determination

of the transmission strategy becomes one of the most

effective aspects of the multi-hop networks’ performance

management, which should be taken into account in addi-

tion to determining the best cell for every user. These

mentioned capabilities of the proposed approach verify the

feasibility of the system assumptions and increase its

reliability.

In this paper, the energy efficiency index is modeled as

the total network EE maximization. The EE model is then

formulated as maximization of the worse EE with respect

to the uplink fairness index. The network KPI indices and

optimal UE transmission power are guaranteed simultane-

ously based on the proportional fairness criteria. In addi-

tion, the dual decomposition method and the SCA method

were applied to find the optimal solution for user associa-

tion and resource allocation, respectively. According to the

numerical analyses, the introduced optimal fairness

approach yielded better energy efficiency results compared

to the other existing algorithms. According to the literature

review, the proposed approach is the first attempt to joint

user association, fair power optimization, and dynamic UL/

DL transmission control in dual-hop/multi-hop backhaul

configuration of reliable HetNets with energy harvesting

capability.

1.3 Paper organization

The paper is organized as follows: after briefly summa-

rizing the related works and mentioning the motivation in

the introduction part, Sect. 2 describes the system/signaling

model and problem formulation for different fair resource

allocation strategies. In Sect. 3, solutions and algorithms to

solve the proposed optimization problems for carrier

scheduling & resource allocation are investigated. Also,

Sect. 4 introduced the fairness-based power optimization

approach. In Sect. 5, simulation results are presented and

interpreted in order to exhibit the effectiveness of different

optimization algorithms. In this section, we described the

simulation scenarios and environments and we tried to

evaluate the performance of the proposed algorithms

accurately. Finally, the concluding remarks are mentioned

in Sect. 6. Note that, the investigation on the different

transmission strategies and the proposed backhauling

method are presented in the appendix with focusing on the

NOMA-based hybrid Dual-hop/multi-hop model for

backhaul communications. Also, the main applied nota-

tions and symbols are presented in Table 1.

2 System model and problem formulation

2.1 System model

As shown in Fig. 1, in this NOMA-based hierarchical

network, there is a single macro base station and K small-

cells located in each cluster in such a way that each small-

cell is empowered with the energy harvesting facilities

[31]. All of the macro and small-cells are demonstrated by

k 2 1; 2; . . .;K þ 1f g, so that cell k ¼ K þ 1 is the macro

cell. Mk 2 M1;M2; . . .;MKþ1f g denotes the number of

associated UE to cell k. BW indicates the bandwidth which

is divided to N carriers, n 2 1; 2; . . .:;Nf g, and each car-

rier’s bandwidth is equal to Bsc ¼ BW=N. In this notation,

hk;j;m;n indicates carrier gain of UE m of BS k to BS j on

subcarrier n where m 2 1; 2; . . .;MKf g. Also, sk;m;n is a

validity factor of the carrier allocation process so that

sk;m;n ¼ 1 if UE m is associated with cell k on subcarrier n,

otherwise, sk;m;n ¼ 0. pk;m;n indicates the transmission

power of UE m associated with cell k on carrier n.

according to the presented notations, the carriers’ vector

and the set of allocated resources are denoted by S ¼
sk;m;n
� �

and P ¼ ½pk;m;n� respectively. Based on the Shan-

non’s ergodic capacity theorem as the upper bound of the

capacity on the statistics channel (i.e. time-varying chan-

nel) which can be evaluated by averaging the capacity is

obtained at a particular time instance on a fading channel

over an infinite time interval, the maximum data rate of UE

m associated with cell k on carrier n is obtained as

rk;m;n ¼ BSClog2 1þ SINRk;m;n

� �
: ð1Þ

In which SINRk;m;n indicates SINR of cell k on the nth

carrier of UE m. In NOMA, a distinct carrier can be allo-

cated to multiple UEs at the same time, so the demodula-

tion and decoding should be done at the receiver’s side by

utilizing the SIC method, in which SIC removes the

interference’s effect based on the UEs’ power level so that

each UE can be distinctly distinguished by the base station

(BS).

In this scenario, it is assumed that a distinct carrier can

be dedicated to two different UEs, and each receiver first

decodes the UE with the higher power level on the identical

carrier. So, the received signal to noise/interference ratio of

UE m relevant to carrier n of cell k can be expressed as
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SINRk;m;n ¼
sk;m;npk;m;n hk;k;m;n

�� ��2

hk;k;m;n
�� ��2PMk

r¼mþ1 sk;r;npk;r;n þ
PKþ1

j¼1;j6¼k pj;n hk;j;m;n
�� ��2þr2

ð2Þ

In which r2 denotes white noise and pj;n ¼
PMj

r¼1

sj;r;npj;r;n
represents the total resource of cell j on the carrier n. sk;m;n
represents the subchannel allocation index. Actually, sk;m;n
determines an exponent to the channel allocation. If UE n

is allocated to BS k on the channel n, sk;m;n is equal to 1,

otherwise, sk;m;n can be considered equal to zero. hk;k;m;n
also indicates channel gain of UE m of BSk to BSj on

channel n, in which m 2 1; 2; . . .;MKf g.

Table 1 The summary of

notations
Notations Descriptions

K & Mk; Number of small-cells & Associated UEs

S ¼ sk;m;n
� �

Carriers’ vector

P ¼ ½pk;m;n� Set of allocated resources

r2 & i White noise & number of iterations

pj;n Total power of cell j on carrier n

hk;k;m;n Channel gain of UE m of BS k to BS j on carrier n

rk;m;n Throughput of UE m on carrier n

Q S;Pð Þ&Hk;m;n Transmission power & harvested energy

kj;n Energy harvesting factor

P S;Pð Þ Circuit power consumption

Rk;min; QoS threshold of cell k’s data rate

bk;m;n; ak;m;n Suxiliary variables of convex transformation

R̂ S;Pð Þ & U S;Pð Þ Modified total sum rate & total power consumption

Zk nð Þ Set of UEs dedicated to carrier n associated to cell k

l; v; n; an Lagrangian coefficients

D l; m; nð Þ Dual function

d1 ið Þ The i0th iteration’s step-size

yRj
Received signal at jth intermediate relay

ai Resource allocation coefficient

cxjRj
Signal to noise ratio for xj and x0 at Rj

f& ggSjRj
SIC perfection index & remaining interference

Oxj & fCxj
Outage probability of xj & ergodic capacity for xj

Ik;m0
Total interference from the other UEs

Ym0
The received signal vector

rk PPP-based initial position pattern of UEs

n Uplink energy consumption coefficient

dk;m0
Distance between UE m0 and the kth BS

Emax Upper bound of the number of iterations

/blocking Obstacle distribution pattern

Fig. 1 Heterogeneous System model with multiple backhauls

connections
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2.2 Signal model

This section describes the network and signaling model.

According to Fig. 2, the proposed scenarios include a two-

tier uplink MIMO-enabled HetNet consisting of certain

clusters with a macro cell and several scattered small-cells.

The relevant BSs of different tiers operate on orthogonal

frequency bands to eliminate the effect of cross-tier inter-

ference. In this scheme, the operational bandwidth of a

macrocell is assumed to be equal to those of small-cells; in

other words,Bm ¼ Bs ¼ B. In this paper, the user distribu-

tion pattern is a combination of random and hotspot, and

the random walk mobility model is used for moving UEs.

The initial positions of UEs are determined with densities

of rk, through the Poisson point process. According to the

proposed system model, UE m0 is assumed to be connected

to the kth BS with Nk antenna. If sm0
is the signal trans-

mitted to the kth BS from the UE m0, the received signal

vector Ym0
in this BS can be expressed as below:

Ym0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT
m0
d�a
k;m0

q
hk;m0

sm0
þ
X

i 6¼m0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PT
i d

�a
k;i

q
hk;isi þ n ð3Þ

where E = sm0
½ � ¼ 0 and E = sm0

k k2
h i

¼ 1. In this sce-

nario, dk;m0
indicates the distance between UE m0 and the

kth BS, whereas a refers to the power reduction of the path

loss. Moreover, the value of a is always greater than 2.

During the uplink transmission stage, all UEs send the

orthogonal pilot sequences corresponding to gm0
¼ hHk;m0

through maximal ratio combining (MRC) simultaneously

in the BS for channel estimation. In this case, the received

signal of the kth base station from user m0 is achievable as

below:

Zm0
¼ hHk;m0

Ym0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT
m0
d�a
k;m0

q
hk;m0

�� ��2sm0
þ
X

i 6¼m0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PT
i d

�a
k;i

q
hHk;m0

hHk;i;si

þ hHk;m0
m

ð4Þ

Therefore, the uplink signal to noise/interference ratio of

the mth UE associated to the kth base station is modified as

follows:

ck;m0
¼

PT
m0
d�a
k;m0

hk;m0

�� ��2

Ik;m0
þ r2

; ð5Þ

where Ik;m0
¼

PMj j

i¼1;i 6¼m0

PT
i

hHk;m0
hHk;i

hH
k;m0

����

����

2

d�a
k;i refers to the total

interference from the other UEs connected to the BSs of a

similar tier, and Mj j denotes the number of all users allo-

cated to the set of macrocells or small-cells.

2.3 Uplink energy consumption model

In this uplink power optimization approach, the energy

consumption model of every user equipment consists of 2

major portions: static and dynamic. In other words, the

static portion pertains to the functions of the hardware

elements like convertors, amplifiers, and processor units.

However, the dynamic portion is referred to as the neces-

sary energy for transmission. In this scenario, the static

energy model of the user equipment is considered PCU,

whereas the transmission energy consumption of the mth

user is denoted as PT
m. The total energy consumption (Psum

m )

of the mth UE can be defined as below: Psum
m ¼ PCU þ nPT

m,

which n denotes the energy utilization index. As discussed

earlier, EE (bit/joule) pertains to the relationship between

the mth UE and the kth BS. It is defined as (6):

ð6Þ

where rk;m refers to the accessible throughput of the mth

user connected to the kth base station. Based on the

Shannon theory, rk;m is calculated through the following

equation:

rk;m ¼ B log 2ð1þ ck;mÞ ð7Þ

2.4 Problem formulation

In this section, the model is formulated jointly to solve user

association and fair resource allocation with respect to the

proportional fairness index. we try to maximize the entire

network’s energy efficiency and power utility by formu-

lating the correlation between the network’s throughput

and total power consumption. So, the goal function can be
Fig. 2 Multi-tier NOMA based heterogeneous system
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formulated based on obtaining the maximum data rate

without violating the total power constraints. During the

carrier and resource allocation process, base stations are

empowered by energy harvesting capability. With these

assumptions, the network’s total sum rate is formulated as:

R S;Pð Þ ¼
XKþ1

k¼1

XMk

m¼1

XN

n¼1

rk;m;n ð8Þ

We can formulate the overall transmission power as

Q S;Pð Þ ¼
XKþ1

k¼1

XMk

m¼1

XN

n¼1

sk;m;npk;m;n: ð9Þ

We can also calculate the harvested energy of user m

from cell k via Eq. (10). Which n indicates the carrier.

Hk;m;n ¼
XKþ1

j¼1;j 6¼k

kj;nsk;m;npk;m;n hk;j;m;n
�� ��2 ð10Þ

In this equation, kj;n is a constant indicator of power

harvesting efficiency. Considering the circumstances of the

scenario and Eq. (10), the overall power harvested by

network is calculated via Eq. (11)

H S;Pð Þ ¼
XKþ1

k¼1

XMk

m¼1

XN

n¼1

XKþ1

j¼1;j6¼k

kj;nsk;m;npk;m;n hk;j;m;n
�� ��2: ð11Þ

In accordance that the circuit resource consumption of

the cell is significantly less than the overall harvested

power, hence, the final consumed resources can be exhib-

ited as

U S; Pð Þ ¼ Q S; Pð Þ� P S; Pð Þ ¼
XKþ1

k¼1

XMk

m¼1

XN

n¼1

sk;m;npk;m;n 1�
XKþ1

j¼1;j6¼k

kj;n hk;j;m;n
�� ��2

 !

ð12Þ

The power efficiency index is computed by Eq. (13)

EE S;Pð Þ ¼ R S;Pð Þ
Q S;Pð Þ � P S;Pð Þ ¼

R S;Pð Þ
U S;Pð Þ : ð13Þ

So, based on the defined variables, the target optimiza-

tion function can be mentioned as

P1 : max
S;P

EE S;Pð Þ ¼ max
S;P

R S;Pð Þ
U S;Pð Þ

s:t: C1 :
XMk

m¼1

XN

n¼1

sk;m;npk;m;n �Pk;max; 8k

C2 : pk;m;n � 0; 8k;m; n
C3 : sk;m;n 2 0; 1f g; 8k;m; n

C4 :
XMk

m¼1

sk;m;n � 2; 8k; n

C5 :
XMk

m¼1

XN

n¼1

sk;m;nrk;m;n �Rk;min; 8k

C6 :
XK

k¼1

XMk

m¼1

XN

n¼1

sk;m;npk;m;n hk;kþ1;n

�� ��2 � Imax

ð14Þ

In which C1 and C2 are resource allocation constraints

guaranteeing that the UE’s resource is not negative and is

less than the cell’s total energy; the restrictions C3 and C4

ensure that the maximum number of UEs with the capa-

bility of using a special subchannel at the same time is 2;

C5 represents QoS and data rate constraints; and C6 is

related to cross-tier interference restriction in which

hk;kþ1;n

�� ��2 denotes UE’s gain from a small cell to the macro

cell.

In addition to ensuring power utility, the goal is to

guarantee proportional fairness for the maximization of the

minimum EE in uplink communications of all users.

Because the logarithmic goal function is nonconvex, it is

effectively employed to develop the cost function based on

the fairness criterion. The accessible efficiency value of the

mth user equipment is obtained as the logarithmic form of

EE, which is expressed as lnRk;m=P
sum
k . In this problem,

power optimization is aimed at achieving the highest level

of the total utility function for users. It is defined as

Eq. (15).

XM

m¼1

ln
XK

k¼1

rk;m=P
sum
m

 !

¼
XM

m¼1

XK

k¼1

xk;mln rk;m=P
sum
m

� �
:

ð15Þ

The goal function of this optimization problem can be

formulated as below by defining lm as the auxiliary with

the value of lm ¼ rk;m=P
sum
m

� �
. So, The second target

function as the proportional fairness problem is formulated

as P2:
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P2 : max
X;P

XM

m¼1

XK

k¼1

xk;mlk;m:

s: t:C1 : 0�PT
m �PTMAX

m ; m ¼ 1; 2; :::;M;

C2 :
X

k

xk;mck;m � cth; k ¼ 1; 2; :::;K; m ¼ 1; 2; :::;M;

C3 : xk;m 2 0; 1f g; k ¼ 1; 2; :::;K; m ¼ 1; 2; :::;M;

C4 :
X

k

xk;m ¼ 1; m ¼ 1; 2; :::;M:

ð16Þ

In the uplink goal function, C1 denotes that the trans-

mission power of every user equipment cannot be more

than the maximum allowed transmission power, Also, C2

guarantees the requirements of QoS indices for every user

in a way that the minimum predefined SINRcth is guaran-

teed. Moreover, C3–C4 constraints help ensure that every

UE can be connected only to one base station at a specific

time.

3 Fairness-guaranteed carrier allocation
and power optimization in NOMA HetNets

This section describes the proposed solution and then

presents the process of solving the formulated optimization

problems of the EE proportional fairness index. In this

scenario, the energy-efficient problem is not a convex

problem, and the described goal function (14) is a non-

linear fraction. To find the optimal solution for this prob-

lem, we have to modify the formulation. At the beginning,

the model presented in [32] was applied to estimate the

convex alteration to find the lower bound of the UE’s

throughput.

r̂k;m;n ¼ BSCak;m;nlog2 SINRk;m;n

� �
þ bk;m;n ð17Þ

where,

ak;m;n ¼
SINRk;m;n

SINRk;m;n þ 1
ð18Þ

bk;m;n ¼ log2 1þ SINRk;m;n

� �

� SINRk;m;n

1þ SINRk;m;n

log2 SINRk;m;n

� �
ð19Þ

In which, SINRk;m;n shows the value of the final itera-

tion’s signal to noise/interference ratio.

So, with considering the problem restrictions, the goal

function was expressed as Eq. (14) will be reformulated as

the following

max
S;P

EE S;Pð Þ ¼ max
S;P

R̂ S;Pð Þ
U S;Pð Þ ð20Þ

s:t: C50 :
XMk

m¼1

XN

n¼1

sk;m;nr̂k;m;n �Rk;min; 8k

C1�C4; C6:

ð21Þ

However, because the goal function is not linear, its

fractional formulation is altered to a subtraction form to

reduce the computational complexity. Here, a parameter t,

as the power efficiency index, is needed, which is defined

as the following

t� ¼ max
S;P

R̂ S;Pð Þ
U S;Pð Þ ¼

R̂ðS�;P�Þ
U S�;P�ð Þ ð22Þ

Hence,

R̂ðS�;P�Þ � t�U S�;P�ð Þ ¼ 0 ð23Þ

So, the goal function was formulated as (14) in addition

to its six restrictions can be re-defined as below

max
S;P

R̂ S;Pð Þ � tU S;Pð Þ

s:t: C1� C4; C50; C6:
ð24Þ

3.1 Carrier allocation algorithm

Based on the baseline idea of NOMA which is to serve

multiple users using the same resource in terms of time,

frequency, and space the carrier allocation process, UEs,

cells, and carriers should be associated. In accordance with

[33], a non-complex effective carrier matching algorithm

has been presented for determining matrix S using DC

programming and the multi-sided matching method [34].

The algorithm has two major stages. The first of which the

UEs will be dedicated to the carriers based on the carriers’

quality, such that the UE with the best carrier quality is

dedicated to the corresponding carrier. During the second

stage, two UEs that are able to minimize power utilization

are selected to achieve the goal, which is energy efficiency

maximization. This procedure of the carrier matching is

summarized step by step in Algorithm 1.

We consider ZkðnÞ as the set of UEs dedicated to carrier

n associated to cell k and ZkðnÞ as the UEs which have not

been assigned to carriers on cell k. The EE of cell k and

carrier n can be represented by the following

EEk;n ¼
PMk

m¼1 rk;m;nPMk

m¼1 sk;m;npk;m;n �
PMk

m¼1

PKþ1
j¼1;j6¼k kj;nsk;m;npk;m;n hk;j;m;n

�� ��2
:

ð25Þ

3.2 Power optimization algorithm

Considering the presented carrier allocation strategy, in this

part of the paper we propose the power optimization

approach to maximize the energy efficiency of the
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problem. In this framework, we can assume sk;m;n as a

constant parameter during the optimization process. So, if

we consider ~Pk;m;n ¼ sk;m;npk;m;n, the new form of the goal

function can be defined as (26)

max
~P�0

R̂ ~P
� �

� tU ~P
� �

s: t: C1 :
XMk

m¼1

XN

n¼1

~pk;m;n �Pk;max; 8k

C2 :
XMk

m¼1

XN

n¼1

~rk;m;n �Rk;min; 8k

C3 :
XK

k¼1

XMk

m¼1

XN

n¼1

~pk;m;n hk;kþ1;n

�� ��2 � Imax:

ð26Þ

Therefore, the goal function and signal to noise/inter-

ference ratio are represented as the following

R̂ ~P
� �

� tU ~P
� �

¼
XKþ1

k¼1

XMk

m¼1

XN

n¼1

~rk;m;n � t 1�
XKþ1

j¼1;j6¼k

kj;n hk;j;m;n
�� ��2

 !

~pk;m;n

" #

ð27Þ

gSINRk;m;n ¼
~pk;m;n hk;k;m;n

�� ��2

hk;k;m;n
�� ��2PMk

r¼mþ1 ~pk;r;n þ
PKþ1

j¼1;j 6¼k ~pj;n hk;j;m;n
�� ��2þr2

where ~pj;n ¼
XMj

r¼1

~pj;r;n:

ð28Þ

One of the best methods for solving this problem is the

Lagrangian subgradient method in which the optimal

solution of the primary problem is obtainable with solving

its dual problem. The Lagrange equation of the goal

function is formulated as the following in which

l ¼ l1; l2; . . .; lkþ1

� �
, v ¼ v1; v2; . . .; vkþ1½ � and n repre-

sent the Lagrangian coefficients.

L ~P; l; m; n
� �

¼
XKþ1

k¼1

XMk

m¼1

XN

n¼1

~rk;m;n � t 1�
XKþ1

j¼1;j 6¼k

kj;n hk;j;m;n
�� ��2

 !

~pk;m;n

" #

þ
XKþ1

k¼1

lk Pk;max �
XMk

m¼1

XN

n¼1

~Pk;m;n

 !

þ
XKþ1

k¼1

mk
XMk

m¼1

XN

n¼1

~rk;m;n � Rk;min

 !

þ n

Imax �
XK

k¼1

XMk

m¼1

XN

n¼1

~Pk;m;n hk;kþ1;n

�� ��2
 !

ð29Þ

Hence, the dual function is demonstrated as

D l; m; nð Þ ¼ max
~P�0

L ~P; l; m; n
� �

ð30Þ

The dual function may also be indicated as

min
l;m;n

D l; m; nð Þ: ð31Þ

The optimal solution for the power allocation algorithm

ð ~Pk;m;nÞ is achievable via derivatives of Eq. (30).We can also

ignore the sixth constraint of the main problem when

k 6¼ K þ 1, because this constraint is relevant to the small

cell to macro cell interference. Hence, in the condition that

k 6¼ K þ 1, Eq. (33) and subsequently Eq. (34) are used.

Where, f ~pk;r;n
� �

¼ BSCak;r;n 1þmkð ÞgSINRk;r;n

~pk;r;n
:

oL ~P; l; m; n
� �

o ~Pk;m;n

¼ BSCak;m;n 1þ mkð Þ
~Pk;m;nln2

�
Xm�1

r¼1

BSCak;r;n 1þ mkð ÞSINRk;r;n

~Pk;r;nln2

�
XKþ1

j¼1;j6¼k

XMj

t

BSCaj;t;n 1þ mj
� �

SINRj;t;n

~Pj;t;nln2

hj;k;t;n
�� ��2

hj;j;t;n
�� ��2

� t

1�
XKþ1

j¼1;j 6¼k

kj;n hk;j;m;n
�� ��2

 !

� lk � n hk;kþ1;n

�� ��2¼ 0

ð32Þ

On the contrary, when k ¼ K þ 1 we have Eq. (34).

~Pk;m;n ¼
BSCak;m;n 1þ mkð Þ

ln2 t 1�
PKþ1

j¼1;j 6¼k kj;n hk;j;m;n
�� ��2

	 

þ lk þ n hk;kþ1;n

�� ��2
h i

þ
Pm�1

r¼1 f ~pk;r;n
� �

þ
PKþ1

j¼1;j 6¼k

PMj

t f ~pj;t;n
� � hj;k;t;nj j2

hj;j;t;nj j2
ð33Þ

~Pk;m;n ¼
BSCak;m;n 1þ mkð Þ

ln2 t 1�
PKþ1

j¼1;j 6¼k kj;n hk;j;m;n
�� ��2

	 

þ lk

h i
þ
Pm�1

r¼1 f ~pk;r;n
� �

þ
PKþ1

j¼1;j 6¼k

PMj

t f ~pj;t;n
� � hj;k;t;nj j2

hj;j;t;nj j2
ð34Þ

Wireless Networks

123



After determining the resource allocation framework,

the iterative sub-gradient method can be applied to update

the Lagrange coefficients; during each iteration, the upda-

ted Lagrange coefficients are achievable as

lk iþ 1ð Þ ¼ lk ið Þ � d1 ið Þ Pk;max �
XMk

m¼1

XN

n¼1

~pk;m;n ið Þ
 !

ð35Þ

vk iþ 1ð Þ ¼ vk ið Þ � d2 ið Þ
XMk

m¼1

XN

n¼1

~rk;m;n ið Þ � Rk;min

 !

ð36Þ

n iþ 1ð Þ ¼ n ið Þ

� d3 ið Þ Imax �
XK

k¼1

XMk

m¼1

XN

n¼1

~pk;m;n ið Þ hk;kþ1;n

�� ��2
 !

ð37Þ

In which, i represents the iteration number, and

d1 ið Þ; d2 ið Þ; and d3 ið Þ demonstrate the i0th iteration’s

step-size. The step-by-step procedure of the resource

allocation approach is exhibited as Algorithm 2.

4 Uplink EE based on proportional fairness

This section presents an optimal solution for the formulated

optimal proportional fairness problem through fractional

programming and Lagrangian dual decomposition meth-

ods. According to P2, it will evidently not be possible to

obtain the optimal value of the utility function by solving

either the UA or PC problems. In EE problems, the inter-

action between UA and PC should be taken into account.

Hence, the final model is developed with respect to the

non-convex mixed-integer framework. Also, achieving the

global solution to this model is a NP-hard problem; thus, an

alternative method is employed to provide a sub-optimal

solution. Our proposed solution for solving the main

problem is dividing P2 to some sub-problems. In the UA

sub-problem, a Lagrangian subgradient approach is adop-

ted to create the UA matrix with respect to the constant

transmission power of every user equipment. The opti-

mized transmission power by Newton’s method is then

determined through the constant UA matrix for the PC sub-

problem using the dual decomposition method. Subse-

quently, the UA(X) and transmission power (P) are con-

tinuously updated in each iteration until convergence is

achieved. Given the proposed dual decomposition, the
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main problem (P2) can be decomposed and rewritten as

two sub-problems, i.e., UA (P2.1) and PC (P2.2):

P2:1 : max
X

XM

m¼1

XK

k¼1

xk;mlk;m ð38Þ

P2:2 : max
P

XM

m¼1

XK

k¼1

xk;mlk;m

s:t: C1:

ð39Þ

Considering the primal–dual decomposition concept, in

the analysis of P2.1, the iterative subgradient method was

applied to achieve the optimal value of the logarithmic

utility function for UE under the constant transmission

power. Given the nature of the log function, the following

equation is employed to develop the objective function:

XM

m¼1

XK

k¼1

xk;mlk;m ¼
XM

m¼1

XK

k¼1

xk;m ln rk;m
� �

�
XM

m¼1

XK

k¼1

xk;m ln Psum
m

� �
ð40Þ

Therefore, the Lagrangian function is defined as below:

L1 ¼ð xk;m
� �

; Psum
m

� �
; aÞ ¼

XM

m¼1

XK

k¼1

xk;m ln rk;m
� �

�
XM

m¼1

XK

k¼1

xk;m ln Psum
m

� �

þ
XM

m¼1

am
XK

k¼1

xk;mck;m � cth

 !

;

ð41Þ

where a ¼ a1; a2; :::; aM½ �, and am is the positive Lagran-

gian coefficients. After that, the dual function and dual

problem are formulated as Eqs. (42) and (43) respectively.

g1 að Þ ¼ max
x

L1 ð xk;m
� �

; Psumm

� �
; aÞ; ð42Þ

min
a

g1 að Þ;

s: t: a� 0
ð43Þ

The dual problem is then solved to obtain the best

connection strategy of the BS to the mth UE:

k� ¼ argmax
k

ln rk;m
� �

þ am t1ð Þck;m � ln Psum
m

� �� �
: ð44Þ

In other words, the strategy for connecting mth user

equipment to the kth base station is determined as:

xk;m ¼
1; if k ¼ k�

0 if k 6¼ k�

(

ð45Þ

When using primal–dual decomposition method, since

the dual isn’t a differentiable function, it is impossible to

obtain a closed-form expression based on the parameter a.

Moreover, the sub-gradient method is employed through

Eq. (46) to update the Lagrangian coefficients

a = a1; a2; :::; aM½ �:

am t1 þ 1ð Þ ¼ am t1ð Þ � da t1ð Þ
XK

k¼1

xk;m t1ð Þck;m � cth

 !

;

8m;
ð46Þ

where da t1ð Þ denotes the step size of the updating process

in every iteration. The optimal transmission power of every

UE is obtained by solving P2.2 and creating the constant

user association matrix. In P2.2, it is difficult to obtain an

accurate value of p, and the following Newton’s method is

employed to find the sub-optimal points [35]. Moreover,

the objective function is written as f(PT
m):

f ðPT
mÞ ¼

XM

m¼1

XK

k¼1

xk;m ln

log2 1þ PT
m hk;mk k2

d�a
k;m

Ik;mþr2

 �

PCU þ ePT
m

: ð47Þ

In order to solve Problem (47), the value of SINR ck; �m
for a non-objective application can be obtained from (48)

according to the derivation of f ðPT
mÞ.

ck; �m ¼
PT

�md
�a
k; �m hk; �m
�� ��2

Ik; �m þ r2
; ð48Þ

where Ik; �m is defined as below:

Ik; �m ¼ PT
m

hHk; �mhk;m

hk; �m
�� ��

�����

�����

2

d�a
k;m þ

XMj j

i 6¼m; �m

PT
i

hHk; �mhk;i

hk; �m
�� ��

�����

�����

2

d�a
k;i : ð49Þ

Accordingly, the 1th and 2th derivatives of the function f

based on PT
m d can be obtained from Eqs. (50) and (51) to

determine the optimal power transmission direction

strategy.

of að Þ
oPT

n

¼
XM

m¼1

1

rm;nln2

cm;n
1þ cm;n

xm;n
PT
n

�
XM

m¼1

X

�n6¼n

xm; �n
rm; �nln2

1

1þ cm; �n
c2m; �n

hH
m; �n

hm;n

hm; �nk k

����

����

2

d�a
m;n

ðPT
�n d

�a
m; �n hm; �n
�� ��2

�
XM

m¼1

xm;nn
PCU þ nPT

n

ð50Þ
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o2f

o2PT
n

¼�
XM

m¼1

xm;n

ln2PT
�n

� �2
c2m;n þ ln2c2m;nrm;n

rm;n 1þ cm;n
� �� �2

�
XM

m¼1

X

�n6¼n

xm; �n
ln2

C
2cm; �nrm; �n þ c2m; �nrm; �n � 1=ln2ð Þc2m; �n
h i

�cm; �n

rm; �n 1þ cm; �n
� �� �2

þ
XK

k¼1

xk;mn
2

PCU þ nPT
m

� �2

ð51Þ

In this formulation, parameters C and �cm; �n can be

expressed as below:

C ¼
hHk; �mhk;m

hk; �m
�� ��

�����

�����

2

d�a
k;m

0

@

1

A= PT
�md

�a
k; �m hk; �m
�� ��2

	 

and ck; �m

¼ �c2k; �m 	 C

In this computational framework, a linear search method

is utilized to update P ¼ ½PT
1 ;P

T
2 ; :::;P

T
m�. This method

depends on DPT
m and dP(t); therefore, PT

m t þ 1ð Þ can be

calculated via Eq. (52):

PT
m t þ 1ð Þ ¼ PT

m tð Þ þ dP tð ÞDPT
m ð52Þ

The back-tracking method is also employed in order to

determine dP(t). In this formulation, the step size is con-

sidered as DPT
m ¼ of

oPT
m

	 

= o2f

o2PT
m

���
���

	 

to update the incremen-

tal Newton’s step. Thus, the power control (PC) sub-

problem can be solved by calculating the step size and

direction in the algorithm. After that, an effective iterative

method is employed to integrate UA with PC in order to

find the optimal solution for the proportional fairness

power utility model. This algorithm gives a brief overview

of steps in this method. Dual decomposition and Newton’s

method can be employed to solve P2.1 and P2.2 alterna-

tively until the convergence.

The sub-gradient method converges to the optimal value

of the dual problem g1 :ð Þ by the determination of the

constant power transmission vector. The first-order

derivative of g1 :ð Þ with respect to am is defined as below:

og1 að Þ
oam

¼
XM

m¼1

XK

k¼1

xk;m amð Þck;m � cth; ð53Þ

where
PM

m¼1

PK

k¼1

xk;m amð Þ can be considered bounded and will

be converged because xk;m 2 0; 1f g; therefore, Eq. (54) is
obtained:

Sup
og1 að Þ
oam

����

����

� �
� s; ð54Þ

where S is a scalar. The convergence of this problem is

proven through the above analysis based on the conver-

gence conditions.

In this algorithm, the convergence of the UA with the

constant transmission power p can be proven, whereas

convergence is obvious for the power control sub-problem.

Since P2.1 and P2.2 are aimed at obtaining optimal values

Table 2 The main simulation

parameters
Parameter Value

HetNet Configuration Hexagonal network, 3-sectored BSs

Small cell distribution pattern uniform (U) and hotspot (Hs),

Operational BW (MHz) 2*20 Megahertz

Power backoff 3 dB

Max transmit power of macro-BS 43 dBm

Codec configuration Adaptive multi-rate

Inter site spacing 250 m

Hopping method Synthesized frequency hopping (RF)

Rx loss & Tx loss 5 dB

Propagation model Standard propagation model

Scheduler Fair

Maximum allowed iteration 500

Lm arg in 13 dBm

Operational FREQ of BH link 6 GHz

Maximum weighting factor xmax 0.95

Minimum weighting factor xmin 0.55

Power consumption of macro-BS Po
m 60 w

Power consumption of small-BS Po
s 1.5 w

Small cell radius 150 m

Antenna Type APE4517R0-0698X_CO-P45_03T
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of the goal function
PM

m¼1

PK

k¼1

xk;mlk;m, the convergence of the

algorithm is guaranteed in accordance with [36].

5 Numerical results

In this section, the proposed EE algorithms are evaluated

through different simulations. The simulation scenarios are

implemented on a two-tier Uplink–Downlink decoupled

NOMA HetNet in which the spatial distribution of macro

and small-cells follow the Poisson process with various

density patterns. In this regard, some of the main key

performance indicators like total energy consumption,

energy efficiency and network data rate are assessed under

different scenarios.

5.1 Simulation scenarios

The simulation scenarios were implemented in Python so

that the optimal solution can be achieved by applying

CPLEX as a powerful flexible optimizer for high-perfor-

mance mathematical programming. In the simulation sce-

narios, the macro base station was placed in the center of

the macro cell, the radius of which was set to 700 m,

whereas the radius of every small-cell was considered

150 m. The total network bandwidth was considered

2*20 MHz; therefore, the operational frequency was set to

2, 3.5, and 6 GHz, and the system consisted of 25 inde-

pendent carriers. The small-cells were also randomly dis-

tributed in a 10 9 10 grid within the macro-cell range with

a 250 m inter-site distance.

Table 2 illustrates the simulation characteristics in

which all of the parameters are based on the 3GPP standard

[37]. The user throughput threshold (RThreshold) was defined

considering Pi 0ð Þ ¼ Pmax
P , whereas bi 0ð Þ ¼ 0 and b ¼ 1

were considered for ease of use. Although RThreshold can be

relevant to the SCs’ positions and user distribution, it is

applied only to test the sensitivity of the proposed algo-

rithm to the UE throughput limitations. The threshold can

also be adjusted based on the circumstances.

To verify the proposed subchannel matching and power

optimization algorithms in terms of EE, the simulations

were done based on a HetNet layout comprising numerous

small-cells, one macro base station, and 500 pieces of user

equipment in addition to several backhaul links (for con-

necting baseband unit (BBU) and the core network) in line-

of-sight communications. The length of every backhaul

link ranges between 200 and 300 m. The small-cells were

scattered in a 10 9 10 grid with a 250-m inter-site dis-

tance. In this model, small-cells were able to apply mul-

tiple-orthogonal carriers to avoid cross-tier interference,

although this presumption cannot be very precise consid-

ering the limited number of existing carriers in a dense

environment with numerous small-cells. The frequency-

reuse technique will be analyzed in future works, in which

the cross-tier interference among small-cells can be cal-

culated based on the on/off status of the cells. The users are

distributed based on two distinct distribution patterns

within the macro cell coverage area, 1- uniform (U) and 2-

hotpot (Hs), in which 80% of the user equipment is con-

centrated within a 150-m radius surrounding the two ran-

dom small-cells. In addition, regardless of the distribution

pattern, 10 random drops are assumed for each scenario,

without any severe blockage probability.

In this paper, the channel gain included line-of-sight

path loss, log-normal shadowing, and fast Rayleigh fading.

The propagation model is crosswave which is compatible

with a dense urban profile. The Rayleigh fading model is

appropriate for cellular radio propagation due to the exis-

tence of many reflection points of multipath connections.

The channel gain is considered as an independent variable

with unit-mean and exponential distribution. The required

users’ data rate ranged between 2.5 and 6 MB/s, whereas

the bandwidth of every backhaul communication is 6 GHz.

Other variables were initialized as:Rxloss¼Txloss¼ 5dB;

GTX¼GRX¼ V�band :18dBi;E�band :20dBi½ �; Lmargin¼
11dB and NF¼½V�band :5dB;E�band :5:5dB�. In this

scenario, the full beam width of each macro antenna is also

assumed to be 60 degrees. Table 2 shows the rest of the

simulation variables. The outcomes show the average

results of less than 500 independent simulations. The per-

formance indices used in these analyses include the sys-

tem’s EE, the total system’s energy consumption, and the

average user throughput. In addition, all of the assessment

indexes have been analyzed under the maximum-trans-

mission-power conditions.

The proposed approach called ‘‘Energy-Efficient hier-

archical power optimization in Uplink–Downlink decou-

pled NOMA HetNets (NOMA-UD/EEHPO) was compared

with some other energy-efficient flow control and resource

optimization algorithms which we briefly introduce as the

following:

Random Allocation (RA)- which is a discrete resource

allocation scheme without any optimality in which the

resource allocation is done merely based on the received

demands [38]. Fixed Power Allocation (FPA)- in this

scheme, all base stations equally share their maximum

transmission power to all the associated user equipment

and backhaul links and subsequently, each user equipment

and backhaul link applies all the allocated resources [39].

User grouping and fractional transmit power control (UG-

FTPC)- This algorithm acts upon user grouping and frac-

tional MTP control. Based on the UG-FTPC scheme, the
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UEs are categorized as dm groups in accordance with their

channel gains, and each UE can only share subchannels

with the UEs which are not in the same group with it. In

this power allocation scheme, more power can be assigned

to the UEs with poor channel quality to guarantee fairness

consideration [40]. Successive Codebook Ordering

Assignment (SCOA)- to better evaluate the performance of

our proposed algorithms, the functionality of NOMA-UD/

EEHPO was also compared to SCOA. The hybrid power

domain sparse code NOMA (PD-SCMA) applies both

power domain NOMA (PD-NOMA) and sparse code MA

(SCMA) for an uplink hierarchical heterogeneous network.

The functionality of SCOA is based on channel quality

ordering criterion includes opportunistic MUE-SUE pair-

ing (OMSP) for UE pairing (UP), and a QoS-aware

resource allocation (QARA) for resource management

(RM) [41].

5.2 Results and discussion

Figure 3 demonstrates the energy consumption level for

different energy-efficient algorithms. In this figure, FPA

has the worst possible performance, because every base

station uses maximum-transmission-power for backhaul

and access network. For this model, no significant saving

was recorded in power optimization; it was implemented

only to aim at flow control without finding an optimal

solution for any EE function. Considering users’ data rate

constraints, UG-FTPC and NOMA-UD/EEHPO algorithms

use the lowest level of energy, whereas NOMA-UD/

EEHPO outperforms UG-FTPC by a small margin, it’s why

that UG-FTPC algorithm only minimizes the energy con-

sumption and controls the flow; however, NOMA- UD/

EEHPO algorithm also maximizes the users’ data rate

applying an effective carrier-matching algorithm with

respect to the total resource allocation limitations.

Figure 4 illustrates the system’s energy efficiency for

different network configurations with 10 to 100 numbers of

small-cells. The upper-bound transmission power of each

macro base station was 40 dBm and 30 UEs were con-

sidered for every small-cell.

The energy efficiency of the proposed approach is

compared with the User grouping and fractional power

control algorithm, Random Power Allocation and the

Successive Codebook Ordering Assignment algorithm

simultaneously. In UG-FTPC and the Random Resource

Allocation, the carriers are dedicated to UEs as random

without considering the carrier status or the other channel

quality conditions. So, we cannot expect acceptable energy

efficiency for these two schemes. According to this figure,

the proposed carrier matching power-optimized

scheme (UD/EEHPO) has significantly premier energy

efficiency compared to the random carrier allocation and

PD-SCMA algorithms. This superiority is evident espe-

cially with the increase in the number of small-cells.
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Figure 5 demonstrates the energy efficiency perfor-

mance of UG-FTPC, NOMA-UD/EEHPO and SCOA

combined with OMSP and QARA algorithms considering

different numbers of users. Accordingly, better energy

efficiency performance was obtainable within broader

constraint ranges due to an increase in the feasible range of

solutions. This gives the model more freedom to not only

guarantee the user throughput constraints but also simul-

taneously minimize the total energy consumption. As

mentioned before, the UG-FTPC algorithm only minimizes

the energy consumption and controls the data flow; how-

ever, SCOA and NOMA-UD/EEHPO algorithms also

maximize the users’ data rate to provide the required local

capacity for UE demands in addition to maximizing the

entire network’s energy efficiency. Actually, QARA and

UD/EEHPO try to minimize the network power utilization

by formulating the correlation between the network’s

throughput and total power utilization.

If the upper bound of the demand rate is decreased, the

feasible range becomes stricter, and energy efficiency is

degraded. If the upper bound is decreased in a way that

ymin ¼ ymax ¼ CUE (in which CUE is the critical level of

user demand that should be met under any circumstances),

both PD-SCMA and UD/EEHPO algorithms have similar

behavior and both obtain almost the identical energy effi-

ciency level. Nonetheless, in general, UD/EEHPO with a

variable user’s data rate demand outperformed the PD-

SCMA algorithm considering the different densities of user

equipment regardless of the kind of the UE distribution

pattern. As Fig. 6 exhibits, NOMA-UD/EEHPO can stably

enhance the performance of cell-edge UEs and provide a

satisfactory data rate for the network regardless of the UE

density as compared to the UG-FTPC, RPA and PD-

SCMA. For example, with N = 18, for the uniform distri-

bution pattern, the overall throughput is raised by 59%

from 7.2 bps/Hz (by RPA) to 11.5 bps/Hz (by UG-FTPC)

for cell-edge UEs and roughly 20% from 23 bps/Hz (by

PD-SCMA) to 27 bps/Hz (by NOMA-UD/EEHPO) for

cell-center UEs. For non-uniform user distribution pattern

which includes ordinary mobile UEs and hotspot UEs,

when N = 18, the total throughput is enhanced approxi-

mately 60% from 8.1 bps/Hz (by RPA ? DPA) to 13 bps/

Hz (by UG-FTPC) for cell-edge UEs and about 19% from

21 bps/Hz (by PD-SCMA) to 25 bps/Hz (by UD/EEHPO)

for cell-center UEs.

The achieved results demonstrate the effectiveness of

utilizing UD/EEHPO in increasing the capacity over the

hierarchical HetNet. It is notable that we can even achieve

somehow higher data rates by a combination of discrete

power control and random resource allocation.

5.3 Overall effectiveness of the optimization
approaches

Table 3 indicates an overall comparison among different

optimization algorithms, from the sum rate, energy effi-

ciency and service fairness viewpoints. As it is obvious, the

UD/EEHPO approach provides the best possible energy

efficiency among all of the investigated algorithms. Better

fairness is also obtained by applying this algorithm com-

pared to UG-FTPC and PD-SCMA. Based on the NOMA-

UD/EEHPO approach, UEs with different channel quality

are assigned to a subchannel and higher transmission power

can be allocated to the UEs with worse channel quality.

Also, for guaranteeing UE throughput demands, PD-

SCMA and UD/EEHPO outperform UG-FTPC and the

fixed resource allocation why that with these two schemes

more than one UE can be allocated to a carrier with limited

interference which improves the spectral efficiency in

addition to applying an effective carrier-matching algo-

rithm while UG-FTPC only minimizes the energy con-

sumption and controls the flow.
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Table 3 Comparison among

different optimization

algorithms

Optimization Algorithms Sum Data Rate Energy Efficiency (EE) Fairness Index

UG-FTPC Medium High Low

UD/EEHPO High Superlative Medium

PD-SCMA High High Low

RPA ? DPA Medium Medium Low
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6 Conclusion

This paper proposes a dynamic optimization model which

maximizes the total UL/DL energy efficiency in addition to

providing the essential coverage and capacity of hetero-

geneous cellular networks considering the uplink fairness

requirements. Based on the non-convex characteristics of

the EE maximization model. The proposed model was

divided to two sub-problems, UA and RA. So that, a sub-

gradient approach was applied for the fair EE resource

allocation and also successive convex approximation and

dual composition are adopted to solve the proportional

fairness problem. The cell selection process is also done

according to the utmost average value of reference signal

received power (RSRP) in which joint carrier allocation

and power optimization criteria are considered for assign-

ing UEs to each cell. The simulation results exhibit con-

siderable energy efficiency improvement for various traffic

models in addition to guaranteeing the fairness require-

ments. It also proved that the proposed approach managed

to significantly improve the total network throughput. The

simulation results exhibit considerable throughput increase

by 30% and 22% on average for random and hotspot user

distributions, respectively. It also proved that the proposed

approach managed to significantly improve the total net-

work energy efficiency by up to 35%. Furthermore, some

other important aspects were introduced as the future

works to develop this model. For example, online heuris-

tics can be deployed to compute estimated solutions.

However, there are still many challenges and open issues in

energy-efficient 5G NOMA networks. NOMA with

MIMO: Not only user scheduling and power allocation, but

also beamforming can be considered in the energy efficient

resource allocation. Also, the traffic pattern variations with

respect to time and delay constraints can be modeled in the

second step. The model is also expected to include dif-

ferent energy efficiency aspects for small-cells that can

provide guidance on turning cells on or off when the

demands’ patterns change. Finally, the goal is to develop a

robust model which can successfully cope with the incor-

rectly formulated parameters and link capacity fluctuations

caused by backhaul link changes due to fast fading,

atmospheric conditions, or temporal failures of links and

nodes.

Supplementary Information

The online version contains supplementary material available at

https://doi.org/10.1007/s11276-022-02987-x.

References
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