
State-based Modeling and Simulation of Discrete-Event Systems
using Graphical and Tabular Specifications

ABSTRACT
�ere have been many simulation packages that support the state-
basedmodeling formalisms formodeling and simulation of a discrete-
event system. However, most of them require a programming task
to de�ne the dynamic behavior of the system so that the model-
ers who are not experts in the programming have di�culty in the
learning and use. �is paper presents a state-based modeling and
simulation toolkit, which is named state graph simulator, to provide
all the functionalities of the model development process with the
graphical and tabular modeling, interactive simulation, output anal-
ysis, and model veri�cation capabilities. �e state graph simulator
aims to support the rapid model building of a state graph, one of
state-based modeling formalism, which will be illustrated with a
signalized urban tra�c system.

CCS CONCEPTS
•Computingmethodologies→Discrete-event simulation; Sim-
ulation tools;

KEYWORDS
State Graph; State Transition Table; Discrete-Event System; Tabular
Speci�cation
ACM Reference format:
. 2017. State-based Modeling and Simulation of Discrete-Event Systems
using Graphical and Tabular Speci�cations. In Proceedings of ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation, Singapore, May
2017 (PADS’17), 4 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A state-basedmodeling formalism (SBMF) describes the dynamics of
a discrete-event system (DES) in terms of the states of the resources
that reside in the system. �e SBMF is originated from the classical
�nite state machine (FSM) that was used for modeling the behavior
of sequential circuits [9]. Since then, there have been a number of
SBMFs proposed in the literature, as well as a number of simulation
packages that follow the SBMFs developed. Among the SBMFs,
DEVS [15] and timed automata [1] are regarded as important parts
of the theory of modeling, and each forms an independent research
community. Timed automata is a FSM extended with a �nite set of
real-valued clocks where two types of clock constraints (guard and
invariant) are placed on a state transition and a state node [4]. Also,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
PADS’17, Singapore
© 2017 ACM. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

DEVS (Discrete Event System Speci�cation) is a FSM extended with
a lifepan for each state in order to accommodate the timing and
hierarchical modeling concept [15]. �ese SBMFs allow to build
hierarchical and modular models for the components that compose
of a system where the atomic model captures the actual behavior
of a component and the coupled model contains other components.

A number of simulation packages have been introduced to sup-
port the state-based modeling and simulation of a DES. Especially,
DEVS-based simulation packages have been widely developed, such
as ADEVS[11], CD++ [14], PythonPDEVS[13], and so on. �ese
simulation packages require the users to program in order to de�ne
the simulation models, which is a di�cult task for the modelers
who are not programming experts. To mitigate this di�culty, a few
simulation packages are introduced with the graphical modeling
capability: CoSMos [6] and CD++ Builder[2], and MS4 ME [12].

In the SBMFs, the state transition diagram is widely used to
specify the atomic models graphically. However, it has a di�culty
in having a concise and readable representation when it deals with
the dynamic and complex behavior that results in quite a number of
states and state transitions. �erefore, another speci�cation, state
transition table, is more suitable to specify the behavior in a tabular
form showing which state will move to, based on the current state
and the inputs. No simulation package among the aforementioned
simulation packages fully supports the tabular speci�cation.

�is paper will present a state-based modeling and simulation
environment, which is named state graph simulator (SGS) that
supports both graphical and tabular modeling so that the user can
specify the models in a concise and readable way. In the following
sections, Section 2 describes a state-basedmodeling formalism, state
graph. Section 3 introduces the SGS brie�y. �en, Sections 4 and 5
illustrate the state-based modeling and simulation using the SGS,
respectively. At last, Section 6 has the summary and discussion.

2 STATE GRAPH
�e state graph is one of state-based modeling formalism that pro-
vides a well-de�ned set of graphical conventions with a formal
syntax for unambiguous understanding among the modeling ex-
perts and the simulation algorithm for executing the state graph
models [5]. Figure 1 presents the state graph model of a single
server system. In general, the single server system consists of a
Buffer and a Machine, but a Job Generator is introduced to sup-
ply the job entities into the system. �e state graph model consists
of a composite state graph model represented in the object interaction
diagram and a set of atomic state graph models represented in the
state transition diagrams.

Located in the upper part of Figure 1 is the object interaction
diagram that describes the interactions between the resources as
message exchanges. Located in the lower part of Figure 1 are the
state transition diagrams that describe the state transitions of each
resource based on the interactions with other resources using the

PADS’17, May 2017, Singapore

Figure 1: State graph model of a single server system [5]

graphical notations, where each node represents a state that the
resource can have and each edge indicates the transition to a state
upon the receipt of a message or upon a time constraint.

Job Generator sends out an Arrive message {!(a)} every ta
time units in a Gen state. Buffer has three states of Backlog, Empty,
and Stock, and a state variable J that represents the number of
jobs waiting at Buffer. Initially, Buffer is set to Backlog state and
its state variable J is set to zero. When Buffer receives an Enter
message {?(e)}, it moves onto Empty state while sending out a
Withdraw message {!(w)}. Upon receiving another Enter message
in Empty state {?(e)}, it increases the number of waiting jobs by
one (J++) and moves onto Stock state. Machine starts with Idle
state. Upon receiving a Send message {?(s)}, Machinemoves onto
Run state. A�er staying at Run state for ts time units, it changes to
Idle state while sending out a Request message {!(r)}.

As a modeling formalism for a DES, state graph supports not only
the graphical speci�cation as presented in Figure 1, but also tabular
and algebraic speci�cations. However, the algebraic speci�cation
with a detailed description of the transition function is both tedious
and di�cult; thus graphical and tabular speci�cation are preferred
[7]. Tables 1 presents a state transition table of Buffer atomic state
graph model given in Figure 1.

Table 1: State transition table: Buffer atomic model

State Input Transition
Name Action Event Action Condition Action

Next
State

Backlog - ?(e) - True !(w) Empty
?(e) J++ True - StockEmpty - ?(r) - True - Backlog
?(e) J++ True - Stock

J ≡ 0 - EmptyStock - ?(r) J--; !(w) J >0 - Stock

�e graphical and tabular speci�cations contain all the infor-
mation for the atomic state graph models. �erefore, they are
interchangeable. However, as a target system becomes larger and
more complex, the number of graphical elements in the state transi-
tion diagram also increases, which runs into di�culties in building
and understanding the models. Furthermore, di�erent types of ac-
tions (e.g. entry action, input action, transition action) supported in
the atomic state graph model may have di�culty in specifying the

state transitions including the actions and conditions with the state
transition diagram. On the other hand, the state transition table is
more suitable for capturing the complex behvaiors by providing
a concise and readable representation. Table 2 presents an object
interaction table of the composite state graph model given in Figure
1 where each row represents the interaction from a source object
to a receiving object.

Table 2: Object interaction table

Source Object Output Message Receiving Object Input Message
Job Generator Arrive Bu�er Enter
Bu�er Withdraw Machine Send
Machine Request Bu�er Request

3 STATE GRAPH SIMULATOR
State graph simulator (SGS) is a state-based modeling and simula-
tion toolkit that supports the state graph modeling formalism. As
depicted in Figure 2, SGS provides a modeling capability of state
graph models in both graphical and tabular speci�cations with ob-
ject interaction diagram editor for specifying the composite state
graph model in both graphical and tabular speci�cations and state
transition table editor for specifying the atomic state graph model
in the tabular speci�cation. SGS provides a simulation capability
of state graph models: simulation window for scaled real-time and
as-fast-as simulation executions and simple model veri�cation with
graphical elements, output window for viewing the simulation out-
puts with state-time charts for each atomic model, sequence diagram
window for the model veri�cation regarding the state transitions
along with the message exchanges.

Figure 2: System architecture of state graph simulator

SGS supports the rapid development of a domain-speci�c simu-
lator by providing the code generator and the state graph simulation
library. Once the state graph model is constructed and veri�ed in
SGS, the code generator will produce the source code of the state
graph model in Java or C#. �en, the so�ware developer can build a
domain-speci�c simulator with customized input editor and output
viewer. �e state graph simulation library consists of a simulation
engine and supportive classes for the data collection.

4 STATE GRAPH MODELING USING SGS
In this section, state graph modeling in the SGS will be illustrated
with the signalized urban tra�c system. �e basic modeling concept
of the signalized urban tra�c system using state graph is �rst
introduced in [8], and then it is elaborated in [10]. �e signalized
urban tra�c system is a physical road network with the tra�c

State-based M&S of DES using Graphical and Tabular Specifications PADS’17, May 2017, Singapore

Figure 3: ConveyPart and StorePart atomic models

controllers at each intersection, which can be represented as a
directed graph. A link in the directed graph represents a road lane
where in�ow occurs only at the start point of a link and out�ow
occurs only at the end point of a link. A node in the directed
graph connects the incoming and outgoing links and indicates the
stopping point at each incoming lane of an intersection (Gate and
End nodes), spli�ing and merging of lanes (Split and Merge nodes),
or the vehicle generation and disposal (Source and Sink nodes).

In [10], each link is represented by a pair of two atomic state
graph models: ConveyPart for moving the vehicles from the link’s
start point to its end point and StorePart for storing the vehicles
arriving at the end point and passing them to the out-�ow links
according to the tra�c signal. Each type of nodes is represented by
a respective atomic state graph model, e.g. Source and Sink atomic
state graph models for Source and Sink nodes and Diverter and
Merge Controller for Split and Merge nodes.

Figure 3 depicts the state trandition diagrams of ConveyPart
and StorePart atomic state graph models that compose a link.
Presented in Figure 4 is the state transition table (STT) editor with
ConveyPart atomic state graph model in SGS. STT Editor con-
sists of windows: STT window for editing the state transition table
and data table window for de�ning state variables, parameters, in-
put/ouptut messages, and states in a spreadsheet style. In STT
window, the user can interactively manipulate the state transition
table using the tools located at the top of the window, such as
adding/removing a state transition, or adding/removing an input.

Presented in Figure 5 is the composite state graph model of a
tra�c network with four intersections where each road consists
of one lane in the object interaction diagram editor. Located at
the le� of Figure 5 is the atomic graph model window where the
atomic models are stored for the model reuse. Each atomic model
can be instantiated as an atomic object into the object interaction
diagram by a drag-and-drop way. �e top-right of Figure 5 is the
object interaction diagram editor having 514 atomic objects and 1464
messages connecting the atomic objects. �e object interaction table
window located at the bo�om-le� of Figure 5 presents the object
interaction table of the composite state graph model. Located at
the bo�om-right of Figure 5 is the spreadsheet window where the

Figure 4: State transition table editor

user can change the values of parameters and state variables of
the atomic objects having the same type of the atomic model. �e
object interaction diagram shown in Figure 5 only represents the
road network system where the tra�c controls at four intersections
are distributed in other four layers located next to the layer, named
Road Network System. �e layers are useful in modeling a large
and complex system. More details on the state graph model of the
signalized urban tra�c system can be found in [10].

Figure 5: Object interaction diagram editor

5 STATE GRAPH SIMULATION USING SGS
5.1 Simulation
As a modeling formalism for a DES, the state graph provides a
simulation algorithm, named synchronization algorithm, which syn-
chronizes the simulation clock and exchanges the messages among
the atomic simulators where each atomic simulator is constructed
for each atomic object and takes care of simulation of the atomic
object [5]. As presented in Figure 6, a simulation window takes care
of the simulation execution of the state graph model with visual

PADS’17, May 2017, Singapore

elements, such as Label, Picture Set, and Gauge. Each visual element
represents the value of a state variable or the state of an atomic
object that changes as the simulation proceeds. In Figure 6, two
labels are placed to track the number of cars entered from the west
and exited to the west, which project the state variables In and Out
of Counter W atomic object, respectively.

Figure 6: Simulation window

5.2 Output Analysis and Model Veri�cation
�e output analysis and model veri�cation are based on the au-
tomatic data collection to provide the system trajectories and the
sequence diagram. As presented in Figure 7-(a), SGS provides the
Output Windows for each atomic object, each of which consists of
three outputs: (1) total output for displaying the value changes of
state and state variables over time, (2) state output for displaying the
state changes over time and time percentage of each distinct state,
(3) state variable output for displaying the value changes of each
state variable over time with its minimum, mean, and maximum
values. �e state output and state variable output can be used to
collect performance measures, such as machine utilization, average
queue length, average waiting time, and so on.

To minimize the errors in the simulation execution, SGS pro-
vides the syntactical model validation to �nd out the syntax er-
rors in the state transition tables and object interaction diagram.
However, the logical errors in a state graph model cannot easily be
found before the simulation run. �erefore, SGS provides the model
veri�cation using the sequence diagram of the Uni�ed Modeling
Language (UML), which is suitable to specify the dynamic behav-
iors of so�ware components. �e sequence diagram is a graphical
speci�cation language to show the interactions between so�ware
components in the sequential order that hose interactions occur [3].
As presented in Figure 7-(b), the sequence diagram window of SGS
provides the sequence diagram to illustrate the state transitions of
selected atomic objects along with the message exchanges among
the atomic objects within speci�c time periods.

6 CONCLUSION
�e state graph simulator provides all the functionalities for the
modeling and simulation development process of state graph mod-
eling formalism with the support of graphical and tabular modeling,

Figure 7: Output window and Sequence diagram window

interactive simulation and output analysis, and model veri�cation.
the tabular modeling takes advantage of having a concise and clear
representation and faciliates the rapid model development without
the expertise in the programming language.

Further research should extend the SGS so as to cope with a
large-scale DES, including the dual view of atomic modeling, and
enhanced visual and automatic model veri�cation. Also, modeling
templates will be introduced to help the reuse of atomic models
and to provide some primitives for the advanced data collection.

REFERENCES
[1] R. Alur and D. L. Dill. 1994. A �eory of Timed Automata. �eoretical Computer

Science 126, 2 (1994), 183–235.
[2] M. Bonaventura, G. A. Wainer, and R. Castro. 2011. Graphical Modeling and

Simulation of Discrete-Event Systems with CD++ Builder. SIMULATION 89, 1
(2011), 4–27.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. 2005. Uni�ed Modeling Language User
Guide. Addison-Wesley.

[4] C.G. Cassandras and S. Lafortune. 2010. Introduction to Discrete Event Systems
(2nd ed.). Springer.

[5] Byoung K. Choi and D. Kang. 2013. Modeling and Simulation of Discrete Event
Systems. John Wiley & Sons.

[6] M. D. Fard and H. S. Sarjoughian. 2015. Visual and Persistence Behavior Modeling
for DEVS in CoSMoS. In Proceedings of the 2015 Symposium on�eory of Modeling
& Simulation-DEVS Integrative M&S Symposium.

[7] J. E. Hopcro�, R. Motwani, and J. D. Ullman. 2006. Introduction to Automata
�eory, Languages, and Computation (3rd ed.). Addison Wesley.

[8] D. Kang, J. Kong, and Byoung K. Choi. 2012. DEVSModeling of Urban Tra�c Sys-
tem. In Proceedings of the 2012 Symposium on �eory of Modeling and Simulation.
Article No. 16.

[9] G. H. Mealy. 1955. A method to synthesizing sequential circuits. Bell System
Technical Journal 34, 5 (1955), 1045–1079.

[10] M. Myung, D. Kang, and B. K. Choi. 2014. State-based Modeling and Simulation
of Urban Tra�c Systems Including Signalized Intersections. In Proceedings of �e
15th Asia Paci�c Industrial Engineering and Management Systems Conference.

[11] J. Nutaro. 2017. ADEVS (A Discrete EVent System simulator) C++ library. ac-
cessed 1 February 2017. (February 2017). h�p://web.ornl.gov/∼1qn/adevs/

[12] C. Seo, B. P. Zeigler, R. Coop, and D. Kim. 2013. DEVS Modeling and Simulation
Methodology with MS4 Me So�ware Tool. In Proceedings of the 2013 Symposium
on �eory of Modeling & Simulation-DEVS Integrative M&S Symposium.

[13] Y. V Tendeloo and H. Vangheluwe. 2017. An evaluation of DEVS simula-
tion tools. SIMULATION 93, 2 (2017), 103–121. DOI:h�p://dx.doi.org/10.1177/
0037549716678330

[14] G. A. Wainer. 2002. CD++: a toolkit to develop DEVS models. So�ware: Practice
and Experience 32, 13 (2002), 1261–1306.

[15] B. P. Zeigler. 1976. �eory of Modeling and Simulation. John Wiley & Sons.

http://web.ornl.gov/~1qn/adevs/
http://dx.doi.org/10.1177/0037549716678330
http://dx.doi.org/10.1177/0037549716678330

	Abstract
	1 Introduction
	2 State Graph
	3 State Graph Simulator
	4 State Graph Modeling using SGS
	5 State Graph Simulation using SGS
	5.1 Simulation
	5.2 Output Analysis and Model Verification

	6 CONCLUSION
	References

