
Reproducible Simulation Experiments in Agent-Based
Demography

ABSTRACT
The number of agent-based models is steadily increasing.
Not only in areas as demography, in which traditional data-
driven, statistical approaches prevail, the hypothesis-driven
design of agent-based models leads to questioning validity of
these models. Consequently, suitable means to increase the
confidence into models and simulation results are required.
Here explicit, reproducible simulation experiments play a
central role. However, more complex models often require
diverse experimentation methods, and thus a flexible simu-
lation environment. With a binding between SESSL – an
internal domain-specific language for simulation experiments
– and ML3 – a simulator for linked lives in demography – we
provide a powerful simulation tool that can serve as a founda-
tion for current efforts of employing advanced and statistical
model analysis of agent-based demographic models. We
demonstrate the benefit in specifying and executing different
experiments with a health care model, and in documenting
and reproducing simulation experiments.

CCS Concepts
•General and reference → Experimentation; Design;
•Computing methodologies → Modeling methodolo-
gies; Model verification and validation; Agent / discrete
models; •Software and its engineering → Domain spe-
cific languages;

Keywords
reproducibility; demography; agent-based modeling; experi-
mentation

1. INTRODUCTION
The use of agent-based computational models in demogra-

phy dates back to the seminal 2003 book edited by Francesco
Billari and Alexia Prskawetz [6]. This research area has
gained momentum especially over the past few years, with
some of the most recent advances in the field reported in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PADS ’17 May 24–26, 2017, Singapore
c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

[34]. Still, there remain tensions between the micro-level
explanations of demographic phenomena and the macro-level
population patterns that are of interest to most demographers
(see [7] for an excellent overview). One way of reconciling the
tensions between these two levels is to carry out computer
experiments, driven by the principles of statistical design of
experiments, in order to systematically study the macro-level
outcomes of micro-level processes. A lot of work in this
area has focused on the statistical aspects of the analysis of
experiments, including the use of polynomial [22] or interval
[17] regression meta-models for this purpose, and the use
of Minimum Simulated Distance approaches for calibration
[12]. The techniques of [20] based on Gaussian Processes
have been applied to demographic questions, for example in
[4] and [16].

The existing software for simulation experiment design
and execution typically either require specialist knowledge
and programming skills, or have very limited functionality.
Hence, the aim of this paper is to present a flexible and effi-
cient environment for supporting computational experiments,
which also aids the reproducibility of the results. Here, we
refer to flexibility in terms of being able to conduct a broad
range of simulation experiments with diverse characteristics,
and to efficiency in terms of clear and concise communication
of experiment specifications.

The existing practice with respect to experimenting with
and validating agent-based models in demography is varied,
and summarized in Table 1. The table categorizes a selection
of existing agent-based demographic models according to a
rough typography, describing various approaches to experi-
mentation, calibration, validation, and documentation. The
survey is not comprehensive, and exact classification of any
given model on all dimensions is not possible, so the cate-
gories given are somewhat fuzzy. More detailed descriptions
of the approaches taken are given in the following paragraphs.

The relative youth of the approach within the discipline
and the fact that it is not yet an accepted mainstream tool
means that no one single approach to these tasks exist, and,
given that the suitability of methods depends on the model
and the research questions to be asked, is likely to remain
this way. Early, pathbreaking approaches were understand-
ably rather ad-hoc - for instance, in [5], a model of marriage
and social pressure, results are reported at a set of default
parameters, and are also provided for a small number of
additional scenarios. Similarly, the simulation in [15] models
partnership formation as a search and match process where
agents aim to find agents similar to themselves, but relaxed
their criteria as to what constitute a good match over time.

10.475/123_4

Stylized
Type

Experimentation Calibration Validation Documentation Examples

Ad-hoc Small number of sce-
narios tested. No sys-
tematic attempt to
explore the spaces

Ad-hoc methods of
finding suitable pa-
rameters

Qualitative match
with observed data

Textual description of
model parameters

[5] [15]

Systematic
variation

One-parameter-at-
a-time variation or
grid-based design

Optimization over a
grid of points

Quantitative match
with observed data

Parameters provided
and ODD description
of model

[1] [11] [21]
[4]

Model-based Central Composite
Design or Latin
Hypercube Sample
design

Model-based e.g.
parametric or semi-
parametric regression
meta-models

Match to hold-back
or unseen data

Code and executable
experiment scripts
provided (e.g. R
or NetLogo Behav-
iorSpace)

[18] [14] [16]

Gold
standard

Flexible / Optimal /
Sequential designs

Model-based - fully
accounting for uncer-
tainty

Hold-back or unseen
micro-data / different
contexts

Succinct, integrated,
and readable experi-
mentation and execu-
tion code

*Some articles are difficult to classify. For example, [21] provides all necessary code and scripts for the running experiments,
but for experimentation and calibration criteria falls in the ’systematic variation’ category. Likewise, [4] used grid-based
design for experiments, but fitted Gaussian process emulators to analyze the model uncertainty. On the other hand, in the
fully stochastic [16] there is no systematic validation attempt.

Table 1: Survey of Existing Practice in Demographic ABM

Their experiments aimed at examining the theoretical con-
sequences of greater population heterogeneity and cultural
diversity on the matching process by varying the relevant
parameters one at a time. They are able to qualitatively
match US marriage curves (although no detail as to how this
was achieved is given), and they also recreated the divorce
rate using the same parameter settings as an attempt at
model validation.

Later examples are more systematic in their approaches to
experimenting with simulations. Most often, the parameter
set which minimizes some distance to observed quantities
is sought. For instance the model in [1] examines the effect
of social network pressure on transition to first birth in
Austria, and replicate changes in the timing of first birth
seen in Austria in the 2000s. A metric measuring the distance
between simulated and real Age-Specific Fertility Rates is
used to assess model performance. A larger set of experiments
are attempted in this work, with combinations of parameters
evaluated over a grid, and a ’null’ model in which the network
effects are turned off is also investigated. Presumably, the
stated default parameters are those on the grid for which
this distance is minimized. However, because of the practice
of varying two parameters while keeping the others fixed,
large areas of the parameter space were left unexplored.

Other work [11] advances this agenda by examining the
effect of social networks on the success of family policies. The
authors modeled preferred family size as dependent on opin-
ions of social network members. This time, social network
growth is endogenous and dependent on agent similarity, de-
gree of relatedness, and number of shared network contacts.
A grid search over 6 parameters leads to a total of 741,312
simulations. More recently, [18] examines sex-selective abor-
tion within the analytical framework of ’ready, willing, and
able’ [9], showing the dynamic relationship between son pref-

erence, social pressure relating to family size, and diffusion
of abortion technologies. The model is calibrated by fitting
a regression meta-model to a Latin Hypercube sample of
points, and then use these predictions to minimize the pre-
dicted root-mean-squared error of their model relative to
observations.

Other papers have also examined the behavior of simula-
tions over a grid of points, including [21], which examined
circular migration between Mexico and the USA, modeling
agents as deciding whether or not to migrate using a discrete
choice framework. Following [39], some parameters of the
model are fixed empirically using Mexican Migration Project
data, whilst others were based on behavior rules, the param-
eters for which were found through a grid search of possible
combinations, with a goodness of fit metric forming the cri-
terion of choice. In contrast, and focusing on phenomena
of assortative mating, [14] develops an agent-based model
examining how increased educational attainment amongst
women has led to changes in the marriage market. This sim-
ulation is calibrated against empirical data using regression
metamodels fit on central composite designs, and validated
against a hold-back set of data from other countries.

The above examples show that experimentation with agent-
based models is important in addressing the sorts of questions
typically of interest to demographers. However, doing so is
often difficult and time-consuming, and often available tools
only support simple combinatorial grid designs by default
(e.g. [40]). Furthermore, agent-based models of demographic
process are not always produced with reproducibility in mind,
and simulation code and descriptions of the experiments con-
ducted is often not provided or incomplete, with notable
exceptions including [14, 21]. In part, this may be because
of the difficulty in easily specifying and sharing sets of ex-
periments of the nature required. Provision of a simple and

flexible way of describing, sharing and running experiments
with agent-based computational models of demographic pro-
cesses would therefore support further development of the
approach within demography.

The remainder of the paper is structured as follows. In
section 2, the documentation needs for experimenting on
agent-based models are outlined, followed by an introduction
of an Scala layer for specifying and executing simulation
experiments (SESSL - Simulation Experiment Specification
via a Scala Layer). The test model, i.e., the linked lives model
[27], which has been translated into ML3 [36] is described in
section 3. Section 4 presents the SESSL binding to the ML3
simulator. As an illustration, experiments with the linked
lives are made. The results are discussed in the concluding
section 5.

2. DOCUMENTATION OF EXPERIMENTS
Supporting a variety of simulation experiments in a flex-

ible manner is central for developing valid agent-based de-
mographic models. Similarly important is an accurate and
complete record of all the conditions that define a simulation
experiment. Having such complete records of a (simulation)
experiment increases its scientific rigor and, consequently,
also its credibility, and is a pre-requisite for its reproducibil-
ity. The review about benefits and limitations of the ODD
protocol (Overview, Design concepts, and Details), which
was published in 2006 to standardize the description of agent-
based models [13], recommends urgently to enhance ODD by
a separate section on simulation experiments. Information
about experiments done with a model facilitates assessing
the range for which a model might be valid, interpreting
and questioning published simulation results, and as such is
essential in valuing and reusing models. Therefore, the basic
information a simulation experiment description should con-
tain needs to be identified. The Minimum Information About
a Simulation Experiment (MIASE) standard proposed by [23]
requires information about (1) the composition of the model
that is simulated together with its configuration parameters,
(2) the simulation methods used (incl. configuration, e.g.,
termination conditions), (3) the collection of tasks performed
in the experiment, and (4) the complete collection of outputs
that is produced. Similar information is required by the
Minimum Simulation Reporting Requirements introduced in
[29]. In addition, due to the focus on stochastic simulation,
information about the pre-processing used to generate in-
put data for the experiment, number of iterations of the
experiment, information on random number generation and
confidence levels used for estimation, and post-processing
performed on the output data shall be included.

These standards set a high bar for reporting requirements
and thus, suitable computational support is needed. The
use of workflow management systems for modeling and sim-
ulation supports the user in creating well structured and
documented experiments. With the use of workflows, the
process of experimentation can be built into the tools by
the system designer, as in [30] or [31], or offered to the
simulationist as a series of templates to be completed, as
in [32]. For specifying the workflows these systems rely on
languages such as BPEL/BPMN [38]. Other domain specific
languages directly aim at specifying and executing simula-
tion experiments by direct bindings to or implementations
within simulation and analysis tools, side stepping the use
of specific workflow management systems. E.g., motivated

by requirements in MIASE the SED-ML Simulation Experi-
ment Description Markup Language has been developed for
exchanging, encoding, and documenting [35] experiments,
SED-ML is supported by a variety of simulation tools in
systems biology. These domain specific languages appear
particularly suitable for specifying simulation experiments
that run in batch mode. One further representative of this
class of domain specific language for simulation experiment
specification and execution is SESSL [10] which is in contrast
to SED-ML an internal domain specific language, and instead
of the community effort SED-ML, which functions also as
an exchange format, takes the form of a simulation system
agnostic layer between user and simulation system.

2.1 Experimentation with SESSL
Due to the number of involved actors, community stan-

dards such as SED-ML typically evolve slower than the
domain they aim at. The Simulation Experiment Specifica-
tion on a Scala Layer (SESSL) [10] has been developed to
mitigate this problem by making the experiment specification
itself executable, allowing users to add code that is executed
during the experiment. Thus, proficient users can directly
add missing features “on-the-fly” instead of requesting their
addition in a future version of the standard. As a domain-
specific language embedded in the programming language
Scala (www.scala-lang.org), SESSL offers many extension
points where user-supplied functionality can be injected.

Although SESSL specifications are valid, executable Scala
code, the resulting experiment specifications do not resem-
ble typical program code. The salient aspects of simulation
experiments, such as the model input parameter configura-
tion or the observation of model outputs, are specified in a
declarative style. But vanilla Scala functions, for example
to post-process the observed output, can still seamlessly be
integrated if needed.

Larger chunks of code can be packaged in a reusable bind-
ing. SESSL bindings are particularly useful to integrate
third-party tools and make their features available in exper-
iment specifications. Bindings to external tools are mostly
translating elements of a SESSL specification to invocations
of external tools. Thus, they are slim and easily implemented.
When setting up an experiment, users can choose from the
available bindings to enrich their experiment with features
and connect it to one or more external tools. SESSL relies
on Apache Maven (maven.apache.org) for the automatic res-
olution of dependencies and download of software artifacts
for bindings and third-party software.

To structure the different methods that might be employed
by concrete simulation experiments, SESSL makes use of
Scala’s traits. Traits can be “mixed in” when creating an
experiment object, making the functionality of the trait
available to the experiment. This makes traits the premier
way to publish features of bindings. For example, a binding to
a simulation package may provide traits for parallel execution,
observation, or report generation; a binding for statistical
model checking may provide a trait that allows specifying
model behavior in a temporal logic formula.

Traits and bindings make the specification of simulation
experiments in SESSL flexible and agile. Due to the au-
tomatic management of software artifacts, executing and
repeating SESSL experiments is straightforward across ma-
chines and platforms. At the same time, SESSL specifications
are succinct and readable, allowing easy sharing and commu-

https://www.scala-lang.org/
https://maven.apache.org/

category careNeedLevel weekly care hours

none 0 0

low 1 8

moderate 2 16

substantial 3 30

critical 4 80

Table 2: The five levels of care need, the according
value of the care need attribute in ML3, and the
amount of required care hours for the purpose of
the calculation of the global care cost. [27]

nication of experiment specifications. This makes SESSL an
excellent tool for experiment specification in domains that
require diverse experiment design methods and non-standard
approaches, such as agent-based computational demography.

3. THE LINKED LIVES MODEL IN ML3
To show our approach we will specify and execute some ex-

periments on the linked lives social care model by Noble et al.
[27], a discrete-time agent-based model of the UK population
implemented in Python, that aims at capturing the effects
of the aging population and changing family structures on
the cost of state-funded social care. It focuses on the demo-
graphic processes that affect the supply and demand of social
care. In the model the population of the UK is represented
by agents with a scaling factor of 1 : 10, 000, i.e. one agent
represents 10, 000 people in the real world. For all agents
life-course transitions that are important for social care, e.g.,
fertility, mortality, partnership formation and internal migra-
tion, are simulated. Agents are born as dependent children
of their parents. With age 17 they reach adulthood. At this
point they enter the workforce and become a taxpayer. They
may marry another agent, move to a different part of the
UK, and get children of their own. When they reach the
retirement age, they retire and leave the workforce. Anytime
during their life their health status might degrade, which
increases their need for social care. Finally, they will die,
which removes them from the population. For the purpose
of internal migration the model divides the UK into a grid of
towns, with consist of multiple houses. Agents may migrate
to a different house in the same town or to a different town
multiple times in their life.

The central output variable of the model is the total cost
of social care per taxpayer. Every agent needs a certain
amount of social care per hour, depending on their care need
category (table 2). A part of this care need can be fulfilled
informally by relatives, the rest needs to be paid for by the
state. Individuals who need no or only little care themself
can provide informal care. However, they will not deliver care
to anybody, but only to persons living in the same household
and to their parents, as long as the parents live in the same
town. Therefore, household structures and mobility affect
the amount of informal social care that is actually delivered.

We reimplemented the model in the Modeling Language
for Linked Lives (ML3), a domain specific modeling language
for continuous-time agent-based demographic models, where
agents interact in a social network. Every ML3 model consists

1 Person(sex:{"m","f"},
2 status:{"child", "adult at home", "independent

adult", "retired"} := "child",
3 careNeedLevel:int := 0,
4 sec:int);
5

6 Couple();
7 couples:Couple[0-] <-> [2]Person:spouses;
8 parents:Couple[1] <-> [0-]Person:children;
9

10 House(sec:int);
11 Town(x:int, y:int);
12 house:House[1] <-> [0-]Person:occupants;
13 town:Town[1] <-> [1-]House:houses;

Figure 1: Declaration of agent types and links.

of three different components. Firstly, all acting entities of
the model are represented as agents. Secondly, relationships
between agents are described by bidirectional links. Finally,
rules describe the agents’ behavior. An in depth description
of ML3 and a first reimplementation of the linked lives model
is already given in [36]. However, as that implementation is
based on a first concept of ML3 that was not yet executable,
some aspects of it have changed. Here we will only show
central ideas and the matchmaking for marriage that had to
be changed significantly.

The primary acting entity of the linked lives model is the
individual person. In our ML3 implementation these are
represented by agents af the agent type Person (figure 1,
line 1-4). Each person is characterized by four attributes:
its sex, its status, its current care need category and its
socio-economic category. Additionally a persons behavior is
influenced by its age. However, the age needs not be declared
as an attribute in ML3. All ML3 agents have an implicit
attribute age, that is zero at the time of the agent’s creation
and changes automatically when time passes. Finally, each
agent is either alive or dead. Agents are alive when they are
created and might die through events.

Married couples are also represented by agents (line 6).
This way, we can model certain decisions, e.g., the decision
to get a child, as a behavior of the couple, and not just as
a behavior of one of the partners. The connection between
a couple and the persons making the couple is done via a
link. As the link declaration (line 7) declares, every couple is
linked to two persons, the spouses. Every person might be
linked to multiple couples. This way a person can not only
access the couple that represents their current marriage, but
also past ones. This is important, as we link the children of
a couple to the couple, not the individual parents (line 8).

Finally, we have agents representing the houses and towns
(line 10-13). Like persons, houses have an associated socio-
economic category, that determines which persons can afford
to live in that house. Each house is linked to the persons
living in it and to the town it belongs to. The towns have
attributes x and y for their position on the town grid.

Until now we have only described how a state of the model
looks like. The dynamics of the model are described by
stochastic rules. Every rule applies to agents of a certain
type that are currently alive. It consists of three parts: the
guard, the rate and the effect. Figure 2 shows one of the

1 Person
2 | ego.careNeedLevel < numCareLevels - 1
3 @ if ego.sex = "f" then femaleCareRate[ego.age]

else maleCareRate[ego.age]
4 -> ego.careNeedLevel := min(ego.careNeedLevel +

careTransition[random()], numCareLevels -
1);

Figure 2: The rule for increasing care need with age.

rules of the model. This rule describes the degradation of
a persons health, that increases their care need. The guard
(line 2) specifies to which agents it applies. In this case it
applies to all persons, who’s current care need level is lower
than the maximum care need level. The keyword ego refers
to the agent the rule is applied to, similar to this in many
object oriented languages. The rate (line 3) describes when
the rule is executed. The rate’s value gives the arrival rate
of an inhomogeneous Poisson process that determines the
times at which the rule is executed. In this case the rate
depends on the agent’s sex and age. It is given by two maps,
femaleCareRate and maleCareRate, a special type of model
parameter ML3 uses mainly for time series data. The maps
define age intervals and rate values for each interval. The
rule effect (line 4) describes what happens, when the rule
is executed. Here it changes the agent’s careNeedLevel by
a random amount. The map careTransition specifies the
distribution of the amount of change.

Similarly, we derived an ML3 rule for every event of the
original model. Given the original Python code we could
translate guard condition and rule effect directly to ML3, as
the rule shall apply to the same agents and have the same
effect as in that model. However, we need to take more care
when it comes to the rate, as the rate determines the timing
of events, and the original model has discrete time while
time in ML3 is continuous. The original yearly transition
probabilities have to be translated to transition rates, so that
our continuous-time model approximates the timing of events
the discrete-time model produces. In the discrete-time model
the timing of an event is determined by a Bernoulli process
with parameter p, the yearly probability of an occurrence of
that event. In the continuous-time ML3 model event timing
is determined by a Poisson process with parameter λ, the
yearly event rate given by the rule’s rate expression. However,
when the step size of the Bernoulli process is sufficiently small,
it can be approximated by a Poisson process with λ = p.
So under the assumption that this is indeed the case we
can simply use the values of the discrete-time transition
probabilities as values for the continuous-time transition
rates of the ML3 model.

While the translation of most of the model behavior was
similarly straightforward as the above example, the match-
making for marriage had to be changed in depth, because the
original approach does not work in continuous time. In the
original discrete time model every individual decides whether
they intend to marry that year every year, with a probability
depending on age and sex. Afterwards the men who intend
to marry get matched to suitable women. Potential spouses
are suitable if they do not have the same parents and are in
a certain age range. However, in ML3 time is continuous,
so the probability that two persons make their decision to

1 MarriageMarket();
2 marriageMarket:MarriageMarket[0-1] <->

[0-]Person:members;
3

4 Person
5 | ego.status != "child", ego.single(),

!ego.hasMarriageMarket()
6 @ if ego.sex = "f" then

femaleMarriageRate[ego.age] else
maleMarriageRate[ego.age]

7 -> MarriageMarket.all.only().addAndMatch(ego);
8

9 MarriageMarket.addAndMatch(?person : Person) ->
10 if (!?candidates.isEmpty()) then
11 ?couple := new Couple(),
12 ?couple.spouses := [?person, ?partner],
13 ego.members -= ?partner
14 else
15 ego.members += ?person
16 end
17 where ?candidates :=

ego.members.filter(?person.canMarry(alter)),
18 ?partner := ?candidates.random();

Figure 3: The marriage market.

marry at exactly the same point in time is zero. Therefore we
introduced a marriage market [41]. When a person decides
to marry, they will look for a suitable spouse at the marriage
market. If they find one, they will marry them. Otherwise
they will join the marriage market as a member and might
get chosen when a suitable spouse decides to marry at a later
time.

Figure 3 shows the implementation of this in ML3. We
represented the marriage market itself as an agent. Therefore
we defined a new agent type MarriageMarket of which exactly
one agent will always exist (line 1-2). Persons are linked to
this agent when they are currently members of the marriage
market. A person’s intention to marry is formed via a rule
(line 4-7). It applies to all agents who are old enough to
marry, currently unmarried and not already linked to the
marriage market. The transition rates are again dependent
on age and sex and were taken from the original model. In
the rule effect the one existing agent of type MarriageMarket
is retrieved and the procedure addAndMatch is called, so that
the marriage market tries to match this person to a suitable
spouse. The procedure itself is defined in line 9-18. The
marriage searches for a suitable partner among its members
(line 17-18). When it finds one, a new couple with the original
person and the partner as spouses is formed and the partner
is removed from the marriage market (line 11-13). Otherwise
the person is added to the marriage market as a member
(line 15).

4. EXPERIMENTATION WITH ML3 AND
SESSL

To conduct simulation experiments with ML3 models we
implemented an ML3 binding for SESSL. The binding covers
the basic features of SESSL experiments, such as choosing
model file and simulation algorithm, setting simulation stop
conditions and replication numbers, and configuring parallel

Scala
main function

SESSL‐Opt4J
Opt4JSetup

Opt4J
Opt4JTask

SESSL‐ML3
Experiment

ML3
Experiment

minimize

execute

initialize

evaluate

execute

initialize

execute

Loop (controlled by Opt4JTask)

ML3
SimulationRun

start

Figure 4: Call hierarchy in a SESSL experiment utilizing Opt4J [25] and ML3 (exemplified by the listing
in figure 8). Both Opt4J and ML3 are proxied by the according SESSL bindings. The SESSL binding for
Opt4J translates the optimization specification to an initialization and execution of the Opt4J package. To
evaluate the target function, the SESSL-Opt4J binding executes the nested SESSL-ML3 experiment. This
triggers the SESSL-ML3 binding, which in turn invokes the ML3 simulation package.

execution. In addition, we added some traits to the binding
to address some experiment aspects that are specific to ML3.
Similar as in other SESSL bindings to simulation packages,
all specifications are translated to API calls of the ML3
package. A sketch of the call hierarchy of an experiment is
shown in figure 4.

For the ML3 binding, we adopted a new concept of model
parametrization. Previous SESSL bindings executed models
with scalar model inputs. However, as ML3 models such as
the linked lives model are aimed at describing demographic
phenomena, many model parameters are maps. For example,
for individuals the risk of dying depends on their age. The
pattern of age-dependent event rates is typical for applica-
tions in demography. Consequently, we implemented a trait
ParameterMaps that allows reading in parameter maps from
.csv files.

To enable experimentation with the linked lives model,
we addressed some model-specific aspects. For instance,
the binding allows specifying an object that constructs the
initial state of the model. The initial state of the linked lives
model is generated by a tailored implementation, which is
specified in the SESSL specification. We also implemented a
trait HealthCareCostObservation that provides the means to
invoke some model-specific observation code. This seamlessly
integrates the domain- and model-specific experimentation
aspects into SESSL.

The software implementations as well as model and ex-
periment files described in this work will be made available
on-line under an open-source license.

4.1 Experiments with the linked lives model
The experiments reported in this paper build on the pre-

liminary work carried out on the original model [27], as
reported in [33]. For the sake of comparability, the focus of
experiments presented here, and thus the key output variable
(Y), is the global cost of social care, expressed in British
pounds, where for simplicity the hourly cost of providing
care is assumed to be constant and equal £20. In [33], the
four key input variables of interest included: the likelihood of
aged parents returning home to live with their children (X1),
the retirement age for agents within the simulation (X2), the
hours of informal care provided by retired individuals to their
family members (X3) and the base probability that an agent
transitions to requiring social care (X4). The aim of the work
as presented in [33] was to assess the uncertainty and global
sensitivity of the simulation model output with respect to
these four inputs based on a meta modeling approach. In
the exercise with combined SESSL-ML3 experiments pre-
sented in this paper, the analysis is restricted to the first
two inputs, X1 and X2 for the sake of transparency. In [33],
Gaussian Process emulators [20] implemented in version 1.1
of the GEM-SA (Gaussian Emulation Machine for Sensitivity
Analysis) software [19] were used to analyze the experiments
statistically based on a meta-model. It is therefore of interest
to see if with SESSL-ML3 we can replicate the effects of
these two inputs reported in [33]. Hence, the key substantive
question addressed in this paper is: what is the response
surface of Y versus X1 and X2? To address that, a full
factorial parameter scan of X1 and X2 is performed, and the
effect of these two inputs on Y is assessed. For the scan, X1

is being swept between 0 and 0.4, with step 0.02, and X3

between 60 and 75 years, with step 0.5.

4.2 Experimentation with SESSL

1 import sessl._, sessl.ml3._

2

3 execute {
4 new Experiment with Observation with ParallelExecution with ParameterMaps {
5 model = "./healthcare.ml3"
6 simulator = NextReactionMethod()
7 parallelThreads = -1
8 replications = 5
9

10 initializeWith(new HealthcareStateBuilder())
11 startTime = 1860
12 stopTime = 2050
13

14 fromFile("mortality.csv")("femaleDeathRate", "maleDeathRate")
15 fromFile("careTransitionRates.csv")("femaleCareRate", "maleCareRate")
16 fromFile("marriage.csv")("femaleMarriageRate", "maleMarriageRate")
17 fromFile("move.csv")("moveOutFromParentsRate", "singleMoveRate", "familyMoveRate")
18 fromFile("divorce.csv")("pastDivorceRate", "presentDivorceRate")
19 fromFile("careTransitionStep.csv")("careTransition")
20

21 set("numCareLevels" <~ 5)
22 set("ageOfAdulthood" <~ 17)
23 set("transitionYear" <~ 1965, "thePresent" <~ 2012)
24 set("minPregnancyAge" <~ 17, "maxPregnancyAge" <~ 42)
25

26 set("growingPopBirthRate" <~ 0.215)
27 set("steadyPopBirthRate" <~ 0.13)
28 set("coupleMovesToExistingHousehold" <~ 0.3)
29 set("moveTogetherRate" <~ 0.3)
30 set("agingParentsMoveInWithKids" <~ 0.1)
31

32 set("variableMoveBack" <~ 0.1)
33 set("ageOfRetirement" <~ 65)
34

35 observeAt(Creation("Couple"))
36 observe("maleMarriageAge" ~ expression("ego.husband().age"))
37 observe("femaleMarriageAge" ~ expression("ego.wife().age"))
38

39 withRunResult(result => CSVFileWriter(result, "variableMoveBack", "ageOfRetirement"))
40 }
41 }

Figure 5: SESSL specification for obtaining the marriage age distribution. In line 1, the SESSL core and
the ML3 binding are imported. Line 4 contains the traits for the experiment to execute: we are interested in
observation, parallel execution and reading in parameter maps. Lines 5 to 8 configure some basic experiment
features, namely which model file, which simulator and how many parallel threads to use as well as how
many replications to execute. The model initialization (using a tailored implementation) and the simulation
start and end time are configured in lines 10 to 12. Lines 14 to 33 specify which parameters to read in as
maps from .csv files, whereas others are set directly. The observation of the ages of women and men when
marrying is configured in lines 35 to 37. Finally, line 39 states that the observed values shall be written to
.csv files.

women − Python

0 20 40 60 80 100

0
20

00
40

00

women − ML3

0 20 40 60 80 100

0
20

00
40

00

men − Python

0 20 40 60 80 100

0
20

00
40

00

men − ML3

0 20 40 60 80 100

0
20

00
40

00

Figure 6: Histogram of the marriage age distribution for women and men in the original Python implemen-
tation and our ML3 implementation of the model. We are able to reproduce the marriage age pattern from
the original Python model sufficiently well with a marriage market in the ML3 implementation.

As a first experiment, we conducted an experiment to
cross-validate the ML3 model against the original Python
implementation. Specifically, we wanted to confirm that our
newly introduced marriage market produces the expected
marriage age distribution. We produced the data with the
listing in figure 5. The specification starts with some basic
settings, such as model file, simulation algorithm, paralleliza-
tion and replication number. After specifying the initial
state construction and the start and stop time, a number of
parameters is read in from files or set directly. Finally, the
observation is specified: Here we are interested in the cre-
ation of new couple agents, particularly in the age of husband
and wife of the newly formed couple. The observed data is
written to a .csv file. In this experiment all parameters are
fixed to the values extracted from the Python model, so there
is only one simulation configuration. This configuration is
executed with the specified number of replications — as the
model did not exhibit a high variance, we chose a replication
number of 5. The results in figure 6 show that the marriage
age distributions indeed match.

In the second experiment, we explored the parameter space
of the model by performing a full factorial parameter scan
over two parameters. The listing in figure 7 shows the specifi-
cation. The specification is largely similar to the previous one,
with three differences. First, instead of setting all parameters
to fixed values, we scan 21× 31 = 651 model configurations.
Second, we mixed in the trait HealthCareCostObservation
into the experiment object, which enables the observation
of the global health care cost. Third, the observation is
configured to start in the year 2000. The gap between the
simulation start time and the beginning of the observation
is used as a warm-up phase of the model (as in the Python
implementation). During this time, a realistic random popu-
lation evolves from a simple initial state, consisting of a set
of couples in the year 1860. The results of the experiment
are visualized in figure 9.

The third experiment specification, depicted in figure 8,

constitutes an optimization experiment. Such an experiment
can be used to calibrate a model by finding a model con-
figuration whose output most closely resembles some given
reference data. Another application is shown here: we try to
find a configuration for which the model output, the health
care cost, becomes minimal. Instead of simply executing
a specified experiment, we embedded the experiment in a
minimize block. This makes the experiment part of the tar-
get function of an optimization algorithm, specified below
the experiment. The optimization itself is performed by a
particle swarm optimization algorithm in the Opt4J pack-
age, addressed through the Opt4J binding. The embedded
experiment is performed repeatedly with parameter settings
set by the optimization algorithm, thus exploring the pa-
rameter space and looking for an optimal parametrization
of the model. Optimization exploits sequential experiment
design, by refocusing the area of search iteratively. In this
case, we are searching for a minimal weekly health care cost
per tax payer in the year 2050. It is found for a maximal age
of retirement of 75 (unsurprisingly) with a value of £85.72.

As most of the lines in the listings overlap, it is also possible
to create a trait that contains these recurring lines. However,
we omitted this additional technical indirection for clarity.

5. DISCUSSION
Whereas we showed in [36] that in principle all features

of the linked lives model [27] can be described in ML3, we
had no means to assess the model beyond a static check of
its structural plausibility [2] at that time. In comparison
to [36], additional efforts went into the model initialization
which, although crucial for demographic models, we skipped
in the earlier publication. In addition, we revised our mar-
riage rules, as marriages between agents in continuous time
require more effort than in discrete time [41]. By realizing a
binding between the ML3 simulator and SESSL and repli-
cating simulation results, we gained confidence that trans-
forming the time-stepped agent model into the ML3 model,

1 import sessl._, sessl.ml3._

2

3 execute {
4 new Experiment with Observation with ParallelExecution with HealthCareCostObservation with

ParameterMaps {
// lines 5 - 30 as in listing 5

31

32 scan("variableMoveBack" <~ range(0, 0.02, 0.4))
33 scan("ageOfRetirement" <~ range(60, 0.5, 75))
34

35 observeAt(range(2000, 1, 2050))
36 observe("Y" ~ healthCareCost)
37

38 withRunResult(result => CSVFileWriter(result, "variableMoveBack", "ageOfRetirement"))
39 }
40 }

Figure 7: SESSL specification for a parameter scan experiment, based on the listing in figure 5. Here, the
trait HealthCareCostObservation is mixed into the experiment object. This enables the observation of the global
health care cost (line 36). In the lines 32 and 33 two model parameters are given as ranges to scan, meaning
that all combinations of both parameter ranges are explored. The resulting data is shown in figure 9.

1 import sessl._, sessl.ml3._, sessl.optimization._, sessl.opt4j._

2

3 minimize {(params, objective) =>
4 execute(new Experiment with Observation with ParallelExecution with HealthCareCostObservation with

ParameterMaps {
// lines 5 - 30 as in listing 5

31

32 set("variableMoveBack" <~ 0.1)
33 set("ageOfRetirement" <~ params("ageOfRetirement"))
34

35 observeAt(range(2000, 1, 2050))
36 observe("Y" ~ healthCareCost)
37

38 withReplicationsResult(result => {
39 val runResults = result("Y").map(_.asInstanceOf[Double])
40 objective <~ runResults.sum / runResults.size
41 })
42 })
43 } using new Opt4JSetup {
44 param("ageOfRetirement", 60, 0.5, 75)
45 optimizer = ParticleSwarmOptimization(iterations = 10, particles = 5)
46 withOptimizationResults { results =>
47 println("Overall results: " + results.head)
48 }
49 }

Figure 8: SESSL specification for an optimization experiment, based on the listing in figure 7. The ML3
experiment is embedded in a minimize block, which makes the experiment part of the target function for an
optimization algorithm. The optimization algorithm sets one of the parameters of the model (line 33) and
receives the mean result of all simulation runs executed with that parametrization (line 40). Lines 44 to 48
contain the configuration of the optimization algorithm.

X1 in [0.0, 0.4] X2
in

[6
0,

 7
5]

Y

75 80 85 90 95 100 105 110

Figure 9: Response surface of the weekly social care
cost per taxpayer in 2050 Y versus the likelihood of
aged parents moving to their children X1 and the
age of retirement X2.

an inhomogeneous CTMC, worked as intended. In the other
direction, our experiments with the full model rather than
an exploration based on statistical meta-modeling tools, such
as Gaussian Process emulators, as was done in the earlier
experiments [4], [33] and [16], confirm the findings that in-
deed the model is sufficiently benevolent for a meta-modeling
approach, e.g., that outputs vary smoothly in response to
changing a model’s inputs. The little variance encountered
in running the model kept us from using more sophisticated
means to determine a suitable number of simulation runs in
our SESSL experiments.

In realizing the SESSL binding to ML3 the observation
required specific attention, as the observation shall not only
be triggered by time but also by individual agents undergoing
specific changes. The easy and clean invocation of custom,
model- or domain-specific observation logic makes SESSL a
powerful interface for diverse experimentation with simula-
tion models. This is in line with current developments in
adaptive collective systems [3], be this to introduce specific
observation modules that consider the connectivity patters
of social networks as proposed in [8] or spatial arrangements
of agents [37] or monitor the spatio-temporal relations of
agents based on definitions in spatio-temporal logic [26]. Sim-
ilar reasoning applies for the initialization of the model. In
agent-based models, diverse methods to create a random, but
controlled initial population of agents exist [24]. Embedded
domain-specific languages such as SESSL naturally support
custom, ad-hoc implementations for the model initialization.

In the long term, model-specific code, for example for
initialization and observation, might turn out to be partly
applicable for other models as well. The corresponding code
fragments can then be bundled into reusable experiment
traits. This upstream movement of extensions enables a
natural growth of SESSL’s code base, as typical for many

open source software projects.
Assessing how SESSL-ML3 helps to achieve the “gold stan-

dard” as defined in table 1, we see that SESSL supports
diverse experimentation methods. In the examples we have
shown a full factorial parameter scan, as well as a heuristically
guided search in the parameter space using an optimization
algorithm. Due to the easy extensibility of SESSL, additional
methods can be integrated straightforwardly. Some advanced
experiment design methods, such as Latin Hypercube sam-
pling, are already available. In a similar fashion, methods to
control the stochasticity of the simulation model during cali-
bration and validation can be employed in experiments. For
example, SESSL provides methods to compute confidence
intervals of observations, whose width can serve as a repli-
cation criterion. Additional data processing steps (be this
as a pre-processing or post-processing) are not that seldom,
and here the concept of an internal domain-specific language
allows an easy extension as well. For example, we integrated
a LOESS smoother to filter out stochastic fluctuations before
applying statistical model checking to an ML-Rules model
of receptors [28].

In general, the number of tools and analysis techniques
for agent-based models is steadily increasing, for some re-
cent additions please consult [3]. Whereas the concept of
internal domain-specific language allows an easy integration
of these emerging and non-standard methods, it opens up
the question whether such tools shall be integrated or rather
loosely coupled with SESSL. Even, if specific cases, e.g. a
pipe-lining of simulation and further analysis steps, suggest a
loose coupling, SESSL would facilitate the setting up experi-
ments and would make the first part of the data generating
process explicit. Based on this, for example a meta-model
can be learned, and as with any learning attempt the basis of
learning is crucial for its success. In this case, the later part
of the data producing process would rely on different means
of documentation, for example on a scientific workflow tool
in which SESSL is integrated. However, many methods can
be seamlessly integrated into SESSL by providing suitable
bindings to the respective tools and effectively be exploited
(and evaluated) by specialized traits.

The thus increasing number of methods that become avail-
able allows to set up various experiments with agent-based
models succinctly and reproducibly and, as SESSL-ML3
shows, to take specific experiment requirements of these type
of models into account.

6. ACKNOWLEDGMENTS

7. REFERENCES
[1] B. Aparicio Diaz, T. Fent, A. Prskawetz, and

L. Bernardi. Transition to parenthood: the role of
social interaction and endogenous networks.
Demography, 48(2):559–79, 2011.

[2] O. Balci. Verification validation and accreditation of
simulation models. In Proceedings of the 29th Winter
Simulation Conference, WSC ’97, pages 135–141,
Washington, DC, USA, 1997. IEEE Computer Society.

[3] M. Bernardo, R. D. Nicola, and J. Hillston, editors.
Formal Methods for the Quantitative Evaluation of
Collective Adaptive Systems - 16th International School
on Formal Methods for the Design of Computer,

Communication, and Software Systems, SFM 2016,
Bertinoro, Italy, June 20-24, 2016, Advanced Lectures,
volume 9700 of Lecture Notes in Computer Science.
Springer, 2016.

[4] J. Bijak, J. Hilton, E. Silverman, and V. D. Cao.
Reforging the wedding ring: Exploring a semi-artificial
model of population for the united kingdom with
gaussian process emulators. Demographic Research,
29(27):729–766, 2013.

[5] F. Billari, T. Fent, A. Prskawetz, and B. Aparicio Diaz.
The ”Wedding-Ring”: An Agent-Based Marriage Model
Based on Social Interactions. Demographic Research,
17:59–82, 2007.

[6] F. Billari and A. Prskawetz, editors. Agent-Based
Computational Demography. Using Simulation to
Improve Our Understanding of Demographic Behaviour.
Springer, Heidelberg, 2003.

[7] F. C. Billari. Integrating macro- and micro-level
approaches in the explanation of population change.
Population Studies, 69(Suppl.):S11–S20, 2015.

[8] L. Birdsey, C. Szabo, and K. Falkner. CASL: A
declarative domain specific language for modeling
complex adaptive systems. In Proceedings of the 2016
Winter Simulation Conference. IEEE Press, 2016.

[9] A. Coale. The demographic transition reconsidered. In
Proceedings of the International Population Conference,
pages 53–72, Liege, 1973. Ordina Editions.

[10] R. Ewald and A. M. Uhrmacher. SESSL: A
domain-specific language for simulation experiments.
ACM Transactions on Modeling and Computer
Simulation, 24(2), 2014.

[11] T. Fent, B. Aparicio Diaz, and A. Prskawetz. Family
policies in the context of low fertility and social
structure. Demographic Research, 29:963–998, 2013.

[12] J. Grazzini and M. G. Richiardi. Consistent Estimation
of Agent-Based Models by Simulated Minimum
Distance. Technical Report 130, Laboratorioa Riccardo
Revelli, 2013.

[13] V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill,
J. Giske, and S. F. Railsback. The {ODD} protocol: A
review and first update. Ecological Modelling,
221(23):2760 – 2768, 2010.

[14] A. Grow and J. Van Bavel. Assortative Mating and the
Reversal of Gender Inequality in Education in Europe:
An Agent-Based Model. PLoS ONE, 10(6), 2015.

[15] T. Hills and P. Todd. Population Heterogeneity and
Individual Differences in an Assortative Agent-Based
Marriage and Divorce Model (MADAM) Using Search
with Relaxing Expectations. Journal of Artificial
Societies and Social Simulation, 11(4 5), 2008.

[16] J. Hilton and J. Bijak. Design and analysis of
demographic simulations. In J. van Bavel and A. Grow,
editors, Agent-Based Modelling in Population Studies:
Concepts, Methods, and Applications, pages 301–340.
Springer, Dordrecht, 2016.

[17] B. Kamiński. Interval metamodels for the analysis of
simulation Input-Output relations. Simulation
Modelling Practice and Theory, 54:86–100, 2015.

[18] R. Kashyap and F. Villavicencio. The Dynamics of Son
Preference, Technology Diffusion, and Fertility Decline
Underlying Distorted Sex Ratios at Birth: A
Simulation Approach. Demography, 53:1261–1281, 2016.

[19] M. Kennedy. Description of the Gaussian process
model used in GEM-SA. software manual, 2004.

[20] M. Kennedy and T. O’Hagan. Bayesian calibration of
computer models. Journal of the Royal Statistical
Society, Series B, 63(3):425–464, 2001.

[21] A. Klabunde. Computational Economic Modeling of
Migration. Technical Report 471, Ruhr University
Bochum, Bochum, 2014.

[22] J. P. Kleijnen. Design and Analysis of Simulation
Experiments. Springer, New York, 2008.

[23] D. Köhn and N. Novère. SED-ML - an XML formate
for the implementation of the MIASE guidelienes. In
M. Heiner and A. Uhrmacher, editors, Proc. of the 6th
International Conference on Computational Methods in
Systems Biology, pages 176–190. Springer, 2008.

[24] M. Lenormand and G. Deffuant. Generating a synthetic
population of individuals in households: Sample-free vs
sample-based methods. Journal of Artificial Societies
and Social Simulation, 16(4):1–16, 2013.

[25] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich.
Opt4J - A Modular Framework for Meta-heuristic
Optimization. In Proceedings of the Genetic and
Evolutionary Computing Conference (GECCO 2011),
pages 1723–1730, Dublin, Ireland, 2011.

[26] L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and
M. Massink. Qualitative and quantitative monitoring of
spatio-temporal properties. In E. Bartocci and
R. Majumdar, editors, Runtime Verification: 6th
International Conference, RV 2015, Vienna, Austria,
September 22-25, 2015. Proceedings, pages 21–37,
Cham, 2015. Springer International Publishing.

[27] J. Noble, E. Silverman, J. Bijak, S. Rossiter,
M. Evandrou, S. Bullock, A. Vlachantoni, and
J. Falkingham. Linked Lives: The Utility of an
Agent-based Approach to Modeling Partnership and
Household Formation in the Context of Social Care. In
Proceedings of the WSC 2012, pages 93:1–93:12, 2012.

[28] D. Peng, T. Warnke, F. Haack, and A. M. Uhrmacher.
Reusing simulation experiment specifications to support
developing models by successive extension. Simulation
Modelling Practice and Theory, 68:33–53, 2016.

[29] H. Rahmandad and J. D. Sterman. Reporting
guidelines for simulation-based research in social
sciences. System Dynamics Review, 28(4):396–411,
2012.

[30] M. Reiter, U. Breitenbucher, O. Kopp, and
D. Karastoyanova. Quality of data driven simulation
workflows. In Conf. on E-Science (e-Science). IEEE,
2012.

[31] J. Ribault and G. A. Wainer. Using workflows and web
services to manage simulation studies (WIP). In 2012
Spring Simulation Multiconference, SpringSim ’12,
Orlando, FL, USA, March 26-29, 2012, Proceedings of
the 2012 Symposium on Theory of Modeling and
Simulation - DEVS Integrative M&S Symposium,
page 50. SCS/ACM, 2012.

[32] S. Rybacki, S. Leye, J. Himmelspach, and A. M.
Uhrmacher. Template and frame based experiment
workflows in modeling and simulation software with
WORMS. In Eighth IEEE World Congress on Services,
SERVICES 2012, Honolulu, HI, USA, June 24-29,
2012, pages 25–32, 2012.

[33] E. Silverman, J. Hilton, J. Noble, and J. Bijak.
Simulating the cost of social care in an ageing
population. In 27th European Conference on Modelling
and Simulation, Aalesund. ECMS, 2013.

[34] J. van Bavel and A. Grow, editors. Agent-Based
Modelling in Population Studies: Concepts, Methods,
and Applications. Springer, Dordrecht, 2016.

[35] D. Waltemath, R. Adams, F. Bergmann, M. Hucka,
F. Kolpakov, A. Miller, I. Moraru, D. Nickerson,
S. Sahle, J. Snoep, and N. Le Novere. Reproducible
computational biology experiments with SED-ML - the
simulation experiment description markup language.
BMC Systems Biology, 5:198, 2011.

[36] T. Warnke, A. Steiniger, A. M. Uhrmacher,
A. Klabunde, and F. Willekens. ML3: A Language for
Compact Modeling of Linked Lives in Computational
Demography. In Proceedings of the 2015 Winter
Simulation Conference, pages 2764–2775. IEEE Press,
2015.

[37] T. Warnke and A. M. Uhrmacher. Spatiotemporal
Pattern Matching in RoboCup. In M. Klusch,
R. Unland, O. Shehory, A. Pokahr, and S. Ahrndt,
editors, MATES, volume 9872 of Lecture Notes in
Computer Science, pages 89–104. Springer, 2016.

[38] M. Weidlich, G. Decker, A. Großkopf, and M. Weske.
BPEL to BPMN: The myth of a straight-forward
mapping. In R. Meersman and Z. Tari, editors, On the
Move to Meaningful Internet Systems: OTM 2008,
volume 5331 of Lecture Notes in Computer Science,
pages 265–282. Springer, Berlin, Heidelberg, 2008.

[39] C. Werker and T. Brenner. Empirical Calibration of
Simulation Models. Technical report, Max Planck
Institute of Economics, 2004.

[40] U. Wilensky. Netlogo, 1999.

[41] S. Zinn. A Mate-Matching Algorithm for
Continuous-Time Microsimulation Models.
International Journal of Microsimulation, 5(1):31–51,
2012.

	Introduction
	Documentation of experiments
	Experimentation with SESSL

	The linked lives model in ML3
	Experimentation with ML3 and SESSL
	Experiments with the linked lives model
	Experimentation with SESSL

	Discussion
	Acknowledgments
	References

