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Abstract:

We present an overview of PythonPDEVS, a family of
DEVS simulation kernels. While a plethora of DEVS
simulation kernels exist nowadays, we believe that there
is a gap between low-level, compiled simulation kernels,
and high-level, interpreted simulation kernels. Python-
PDEVS fills this gap, by providing users with a high-
level, interpreted simulation tool that offers features sim-
ilar to those found in other high-level tools, while offer-
ing comparable performance to the low-level tools. In
this paper, we focus on the three main motivations for the
use of PythonPDEVS: (1) the use of Python as a high-
level, interpreted language, which is also used by mod-
ellers to create their models, (2) a rich feature set, com-
parable to other high-level tools, and (3) decent simula-
tion performance, comparable to other low-level tools.
PythonPDEVS therefore aims at users new to DEVS
modelling and simulation, or programming, while still of-
fering competitive performance.
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1 Introduction

We present an overview of PythonPDEVS, a
family of DEVS simulation kernels. While
a plethora of DEVS simulation kernels exist
nowadays, we feel that there still exists a gap.
Most DEVS simulation kernels, like adevs [1],
vle [2], or CD++ [3], are implemented in low-
level, compiled languages, such as C++. These
languages are a logical choice for the imple-
mentation of a simulation kernel, due to the
resulting efficiency. But while efficient dur-
ing simulation, modellers are required to write
low-level code as well, which often requires
compilation. This results in slower turnaround
than if an interpreted programming language
were used [4]. More feature-rich and high-
level simulation kernels certainly exist, such
as MS4Me [5] and X-S-Y [6]. And while

they have lots of features and are easy to use,
performance is not one of their top priorities.
This results in slow simulations compared to
lightweight, compiled simulation kernels, mak-
ing them unsuited for large-scale DEVS mod-
els. There are thus two groups of simulation
kernels: lightweight, compiled, and efficient on
one hand, and high-level, feature-rich, and in-
efficient on the other hand. We believe that
PythonPDEVS can fill in this gap.

The core characteristics of PythonPDEVS are
presented next. First, it is implemented in
Python, a high-level, interpreted language.
Models are written in the same language, result-
ing in completely interpreted execution, avoid-
ing compilation. This makes it faster to pro-
totype simulation models, as it reduces the
turnaround time. Second, PythonPDEVS offers
a wide set of features, similar to currently avail-
able simulation tools. While PythonPDEVS it-
self is only a simulation kernel, tools like DE-
VSimPy [7] and the AToMPM DEVSDebug-
ger [8] extend on it to provide even more fea-
tures. Most features are supported out-of-the-
box, without any custom code. Third, Python-
PDEVS offers decent performance. Perfor-
mance is not at the level of the lightweight,
compiled simulation kernels, but is significantly
faster than other feature-rich, high-level tools.

We will take a deeper look at the latter two:
supported features, and the performance tweaks
to achieve this performance. Our previous
work [9, 10] investigated some features and
their performance in detail. Here, we present
an overview of our complete feature set.



2 Features

PythonPDEVS supports a wide set of features,
similar to those found in other high-level DEVS
simulation tools. While there is no graphical
front-end, some work has been done on this
by [7, 8, 11]. Many of the features supported by
other tools, and more, become available through
the use of these extensions.

Table 1 presents an overview of the features,
and the cases in which they are supported.
PythonPDEVS supports three modes of ex-
ecution: Sequential As-fast-as-possible (Seq.
AFAP), Sequential Realtime (Seq. RT), and
Distributed As-fast-as-possible (Dist. AFAP).
Note that distributed realtime is not supported at
all. Due to the different characteristics of each
mode of execution, some features are selec-
tively available. For the not implemented fea-
tures, we could not find a useful enough appli-
cation to warrant the significant effort required.

For distributed simulation, Time Warp [12]
is used to provide optimistic synchronization.
With Time Warp, each distributed node will
simulate ahead in time, in the assumption that
no causality errors will occur. Should such an
error occur (i.e., a message from the past ar-
rives), the simulation state is rolled back to the
point in time where the message was supposed
to arrive. This allows for parallelism, as all
nodes can simulate independently, but incurs
two kinds of overhead: a fixed one, to store
each intermediate simulation state, and a vari-
able one, to roll back the simulation state when
a causality error is detected.

In realtime simulation, the simulated time is
coupled with the wall-clock time, as shown in
Figure 1. This means that in a single sec-
ond of wall-clock time, the simulation will also
progress exactly a single second. Scaled vari-
ants of this are possible, for example that each
second in wall-clock time causes a progres-
sion of four seconds in simulated time. This
is in contrast to as-fast-as-possible simulation,
where the simulation simply progresses as fast
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Figure 1: Realtime versus as-fast-as-possible
simulation.

Table 1: Supported features in each situations.
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Classic DEVS

Parallel DEVS

Dynamic Structure DEVS

Tracing

Checkpointing

Nested simulation
Termination condition
Livelock detection
Transfer functions

as the system allows. Realtime simulation is
mainly used when coupling the model with
other realtime components, whereas as-fast-as-
possible simulation is used when only the sim-
ulation results matter.

The remainder of this section will briefly de-
scribe each feature, as well as why it is relevant
for users to have this feature.

Classic DEVS  Classic DEVS refers to the origi-
nal DEVS formalism defined by [13]. Itis still a
viable formalism, and is still preferred by some
people due to its simplicity. There is also not
that much opportunity for parallelism and effi-
cient execution. For performance reasons, most



tools no longer support Classic DEVS, however.
Due to difficulty with global synchronization,
there is also no distributed variant of Classic
DEVS implemented in PythonPDEVS.

Parallel DEVS Parallel DEVS [14] is an exten-
sion of Classic DEVS, which, as the name im-
plies, offers more options for parallel execution.
Apart from the prospect of parallel execution,
there are also some additional optimizations in
place that allow for faster execution, even dur-
ing sequential execution. It is now becoming
the default DEVS formalism implemented by
tools, and is also the default in PythonPDEVS.

Dynamic Structure DEVS Dynamic Structure
DEVS [15] is another extension of DEVS (both
Classic DEVS and Parallel DEVS), where the
model can be reconfigured at runtime. Some
models, such as those where entities are created
and destroyed during simulation, lend them-
selves much better to these cases, and are there-
fore best expressed using Dynamic Structure
DEVS. PythonPDEVS does not support Dy-
namic Structure DEVS during distributed sim-
ulation, since this opens up the possibility for
connections to change as well, which can have
catastrophic results in optimistic synchroniza-
tion if not handled well.

Tracing One of the most important artifacts of
simulation is the simulation trace, which con-
tains the simulation results. Different users
need different traces: some prefer textual traces,
whereas others want visual traces (e.g., plots of
the evolution of a value). In PythonPDEVS,
multiple tracers can be plugged in, which are in-
voked at every transition that needs to be traced.
Several are provided out-of-the-box, with the
most helpful one being a normal textual trace.
Visual tracers are provided as well. Users can
easily define their own tracers, which are in-
voked at every simulation step.

Checkpointing Simulation of big models can
take a long time, even using a fast simula-
tion kernel. The longer a simulation takes, the

higher the chance that it will be abruptly termi-
nated due to hardware failure. Distributed sim-
ulations are even more prone to hardware fail-
ure, as they also introduce network communi-
cation. Especially for such big simulations, it
is important to be able to continue a simulation
after it was abruptly terminated. This is pos-
sible through checkpointing, where the current
simulation state is periodically stored. Should
simulation terminate abruptly, it is possible to
continue simulation, without any loss of infor-
mation, by restoring that snapshot. This feature
is not supported in realtime simulation, as stor-
ing the current simulation state introduces sig-
nificant and unpredictable delays in the simula-
tion. Furthermore, it is difficult to conceive the
semantics of restoring a crashed realtime sim-
ulation: the linear relation between wall-clock
time and simulation time is broken.

Nested simulation In case the execution of the
current model depends on the simulation of an-
other model (possibly an abstracted model of
the current model), it is useful to allow for
nested simulation. The currently running sim-
ulation is suspended, and the nested simulation
is started. After simulation, the result of the
nested simulation is used to define some aspects
of the currently running simulation. Python-
PDEVS supports this feature thanks to a clear
design, which avoids the use of global and static
variables. For distributed simulation, it is possi-
ble to nest a sequential simulation inside a dis-
tributed simulation, but it is not possible to nest
a distributed simulation in another simulation.
While not impossible to implement, synchro-
nization overhead is significant, and would re-
quire seperate synchronization algorithms.

Termination condition While most simulation
kernels nowadays support the use of a termi-
nation time, PythonPDEVS also supports the
use of a termination condition. In this case, a
special function is invoked before each simula-
tion step, which determines whether simulation
should terminate or not. This termination func-
tion has access to the current simulation state



and the current simulation time (to allow for
time-based termination). This causes a signif-
icant overhead in the general case, but offers
more possibilities to the user. For example in
design space exploration, we want to quickly
prune models that don’t fulfill some basic re-
quirements, which is only possible by checking
these conditions at simulation time.

Livelock detection One of the problems that re-
main in the DEVS formalism, is the possibil-
ity of a time advance equal to zero. While
this is not a fundamental problem, and is neces-
sary for some situations, it is possible that they
form a loop. In such a loop, simulation live-
locks as the simulation never progresses in sim-
ulated time. Since simulation time no longer
progresses, simulation of the model will never
terminate, even though models keep being ex-
ecuted. Static analysis is difficult, if not im-
possible, since the time advance depends on the
current simulation state, which is unknown be-
forehand. PythonPDEVS monitors model ex-
ecution, and aborts execution if the simulation
time has not increased after a sufficient number
of transitions. This method sometimes marks
fine models as erroneous (i.e., allows for false
positives), but will certainly terminate a locked
simulation (i.e., no false negatives).

Transfer functions Despite the fact that all vari-
ants of the DEVS formalism define the possi-
bility for transfer functions, only several simu-
lation tools actually implement it. The use of
transfer functions eases the reuse of models in
a different context, where a conversion between
different types needs to happen. Due to the in-
efficiencies caused by a naive implementation,
and the rare use by the community, many sim-
ulation kernels neglect to implement this aspect
of the formalism.

3 Performance

As we try to differentiate ourself from other
feature-rich and high-level DEVS tools, we also
focus on improving simulation performance.

PythonPDEVS therefore contains many inter-
nal optimizations, mainly focused on the use
of “leaky abstraction”. DEVS models are op-
tionally augmented with domain-specific hints,
which offer domain-specific knowledge about
the model to the simulation kernel. Normally,
a DEVS simulation kernel is unaware of the
domain of the model it is simulating, and can
therefore not use more efficient, but less gen-
eral, algorithms.

Due to space restrictions, we did not include
performance results here, but we refer to previ-
ous work [9, 10]. Using intrusive features (e.g.,
tracing, checkpointing) affects performance.

Table 2 shows an overview of our applied opti-
mizations, and when they are applicable. Some
optimizations are not applicable in all modes
of execution, as some focus on the problems
arising from distributed simulation. Again, dis-
tributed realtime simulation is not supported
and thus not shown.

Some of these optimizations are also imple-
mented in other DEVS simulation tools, such
as direct connection [16].

Table 2: Performance optimizations applied in
each situations.

Seq. AFAP
Seq. RT
Dist. AFAP

Direct connect
Single loop
Termination time
No transfers
Scheduler
Migration
Allocation
Memoization
State copy hints
Event copy hints




3.1 General optimizations

We first start with optimizations to the simula-
tion algorithm itself, which are applicable in all
situations. These optimizations are hardcoded
and there is no way for the modeller to influ-
ence them.

At the start of simulation, all
connections are resolved to direct connections
between two atomic models. Instead of hav-
ing intermediate Coupled DEVS models, all
of them are removed and links are made di-
rect, thus reducing all intermediate algorithms
to pass around the events. This process is called
direct connection [17] and effectively reduces
the hierarchy to a single Coupled DEVS model,
with all Atomic DEVS models being its direct
children. While this process might seem sim-
ple, special care must be taken when executed in
combination with several of our features. With
Classic DEVS, the select function reasons about
only a single level, and is defined in terms of
coupled DEVS models. This optimization is an
implementation detail, and should therefore not
be visible to the select function, which should
still reason about the (no longer existing) cou-
pled DEVS models. With Dynamic Structure
DEVS, similar problems occur because runtime
modifications should be applied to the origi-
nal structure, and not to the direct connected
structure. Therefore, after modifications are
made, the direct connect algorithm is ran again
to refresh all connections. In a distributed
simulation, care should also be taken to make
links correct, even between different simulation
nodes. Furthermore, each node should still have
a single Coupled DEVS model, without there
being a single “global” Coupled DEVS model.
Finally, transfer functions should also chain all
calls that would normally be made through the
path the event follows from its source to its des-
tination.

Direct connect

Single loop  Instead of closely following the ab-
stract simulator [18], PythonPDEVS takes a
significantly different approach. In our ap-
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Listing 1: Single loop simulation algorithm

direct connection
initialize event list
while not done:
pop imminent models from event 1list
for each imminent model:
mark model for internal transition
collect output
for each output port in output:
for each connected input port:
append event to model input
mark model for external transition
for each marked model:
if marked for internal and external:
invoke confluent transition
else if marked for internal:
invoke internal transition
else if marked for external:
invoke external transition
compute time advance
push new time on event list

proach, we avoid all hierarchy (through the
use of direct connection) but also all simula-
tion messages, which are instead exchanged for
method calls. During initialization, all mod-
els are gathered, and a single event list is con-
structed. From this event list, imminent mod-
els are popped, which are directly invoked with
the commands to execute, instead of having to
be retrieved from the hierarchy. In combination
with direct connection, this removes hierarchy
completely, as models are directly instructed
from the main simulation loop. This causes a
significant decrease of simulation overhead, as
the loop becomes much tighter and messages
are avoided altogether. Apart from removing
overhead, it simplifies the simulation algorithm,
as there is no need for the processing of simula-
tion messages, nor Coupled DEVS models. In-
stead of a set of decoupled simulation message
processing algorithms, PythonPDEVS uses a
single loop as shown in Listing 1.

Termination time While one of the features of
PythonPDEVS is the use of a termination con-
dition, this is not an efficient solution. In fact,
most of the time, a point in simulated time suf-
fices to determine if a simulation should ter-
minate. Executing a function is rather slow in
Python, so it is more efficient to explicitly in-
line the comparison of the simulation time with




the termination time. Termination conditions
are still supported, but if a termination time is
defined instead, the inlined code is used exclu-
sively. Certainly in distributed simulation, us-
ing a termination time provides vast improve-
ments in simulation time.

No transfers Yet another feature of Python-
PDEVS, which impacts performance, are trans-
fer functions. Again, however, they are seldom
used in practice, despite their implementation
causing a significant overhead due to the fre-
quent invocation of a function, which is most
of the time the identity function. To avoid this
slow path, the connection resolution phase of
direct connection optimizes out identity func-
tions. If a transfer function is detected on the
path, only the explicitly defined functions are
chained, as the implicit ones are again the iden-
tity function.

3.2 Simulation hints

The remainder of the optimizations are focused
on the modeller providing additional informa-
tion to the simulation kernel. DEVS models are
augmented with additional information, but still
remain valid DEVS models nonetheless.

Scheduler Many simulation kernels nowadays
hardcode their event queue implementation, or
scheduler, which determines which models are
imminent at a specific point in time. While
hardcoding this component provides some per-
formance benefits, the ideal data structure
depends on the model being simulated [9].
PythonPDEVS uses modular schedulers, which
allows users to choose the most appropriate data
structure for their model. In distributed simu-
lation, it is even possible to use different data
structures at different nodes. This feature is a
hint to the simulation kernel, telling it how to
efficiently manage its data. There is an activ-
ity extensions for this [19], which provides a
polymorphic data structure: the data structure
monitors accesses to the data structure, and op-
timize itself for the detected pattern.

Migration In distributed simulation, perfor-
mance depends on the distribution of the com-
putational load. While the modeller might have
a good idea of how load is distributed, it might
change throughout simulation. PythonPDEVS
allows users to specify migration strategies as
hints to the simulation kernel. The simulation
kernel uses this strategy to migrate parts of the
model between different nodes, if necessary.
This mechanism is used to equalize the load
over the nodes as simulation progresses. There
are again activity extensions to this [20], which
provide information on the measured load to the
migration strategy. The simulation kernel opti-
mizes for the evolution of the simulation state
(i.e., the future), instead of the past state. Apart
from load measured in CPU time, users can pro-
vide further hints to the kernel on what to mea-
sure, which could even be a domain-specific no-
tion (e.g., amount of cars on a road).

Allocation While migration solves the problem
of load distribution during simulation, it might
not even be possible to find a good initial allo-
cation, or it might be too difficult to set it up
during model initialization. PythonPDEVS al-
lows users to define an allocation strategy [10],
which is invoked on the completely initialized
model. Users can then specify the initial allo-
cation based on the initialized model, instead of
on a partially constructed model. The allocation
strategy can also be extended using activity ex-
tensions [20], which allows for monitoring of
an initial run of the simulation. This initial run
is kind of like a sample run of the first few sim-
ulation steps. Load distribution and exchanged
messages are monitored, and activity values are
passed on to the allocation strategy, which uses
this data to optimize the model distribution for
the remainder of the simulation.

Memoization Optimistic synchronization using
Time Warp incurred a variable overhead, due to
the need to rollback simulation state in case of
causality errors. The main cost is not restor-
ing the simulation state, but repeating the same
(or similar) simulation as before. As only sev-



eral models are influenced by the arrival of an
event, there is no need to recompute all models
the node that was rolled back. With memoiza-
tion, the state of atomic models is stored before
and after execution of the transition function.
When a rollback occurs, these states are not dis-
carded, but placed in a queue. If the model is
executed again, we can potentially reuse these
saved states to avoid the execution of the tran-
sition function. This requires some hints to the
simulation kernel, as the simulation kernel has
no way to know whether or not two simulation
states are equal. The modeler is required to pro-
vide a comparison function between two states.

State copy hints The fixed overhead of opti-
mistic synchronization is caused by saving all
simulation states, in order to be able to restore
them if necessary. General ways of copying
states, such as serialization or built-in deepcopy
functions, have the disadvantage that they have
to handle many corner cases as well, and are
therefore not that efficient. By providing a more
specific copy algorithm, telling the simulation
kernel how to make a copy of the current simu-
lation state, this overhead can be partially miti-
gated.

Event copy hints When an atomic model creates
events, care should be taken not to break mod-
ularity, as these events potentially contain ref-
erences or pointers to the state of other mod-
els. The host language (e.g., Python or C++)
has no way of knowing that this is not allowed
in DEVS, and will therefore allow these oper-
ations. Such tricks, however, are in violation
with the DEVS formalism, and should be con-
sidered abuse of the host language. In Python-
PDEVS, events are therefore copied by default,
such that each model receives a seperate copy
of the event. While this is nice to have for peo-
ple new to DEVS, it causes performance prob-
lems in both time and space. Therefore, there
are three main options in PythonPDEVS: either
the messages are naively copied (default), either
they are not copied at all (for performance), or
a user-specified function is invoked to perform

the copy. This user-defined function is again a
kind of hint to the simulation kernel, which al-
lows it to stay conform to the DEVS formalism
while being relatively efficient.

4 Conclusions and future work

We presented a brief overview of the main fea-
tures of PythonPDEVS, as well as the perfor-
mance improvements which make simulation
sufficiently fast. Through the combination of a
high-level, interpreted programming language,
a feature-rich simulation tool, and decent per-
formance, we believe that PythonPDEVS fills
the gap which currently separates efficient, but
low-level, simulation tools from the high-level,
but inefficient, simulation tools. This makes
PythonPDEVS ideal for people who want a
lightweight and efficient DEVS simulation ker-
nel, with low turnaround times, while still
having access to functionality commonly only
found in heavyweight tools. We achieve this by
having an implementation in Python, which de-
creases development time of both the simula-
tion kernel and the models, but also through the
addition of domain-specific hints, which boosts
simulation performance.

In future work, we will consider usability of
our tool, going further in the direction of the
AToMPM DEVSDebugger [8]. We will focus
our efforts on five aspects: (1) modelling and
simulation environment, allowing for easy cre-
ation and simulation of models, (2) library of
DEVS models, which allows the sharing and
reuse of DEVS models, (3) debugging environ-
ment, which transposes most of the features of
code debugging to the world of model debug-
ging, (4) experiment design environment, al-
lowing the graphical definition of experiments
as well, and (5) efficient simulation, making the
tool applicable in more situations.
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