
Easing the development of HLA Federates: the HLA

Development Kit and its exploitation in the SEE Project
1st Author

1st author's affiliation
1st line of address
2nd line of address

Telephone number, incl. country code

1st author's E-mail address

2nd Author
2nd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

2nd E-mail

3rd Author
3rd author's affiliation

1st line of address
2nd line of address

Telephone number, incl. country code

3rd E-mail

ABSTRACT

The Modeling & Simulation (M&S) of modern cyber-physical

systems is presenting new challenges. New M&S techniques,

methods and tools are emerging that take advantage of distributed

simulation environments. One of the most mature and popular

standard for distributed simulation is the IEEE 1516-2010 - High

Level Architecture (HLA) that, although originally developed for

military applications, is increasingly exploited in a great variety of

application domains due to its capabilities to enable the

interoperability and reusability of distributed simulation

components. However, the development of fully fledged

simulation models, based on the IEEE 1516 standard, is still a

challenging task and requires considerable development effort that

often results not only in an increase in development time but also

in low reliability. In this context, the paper presents a general-

purpose, domain-independent framework that aims to ease the

development of HLA-based simulations. Its effectiveness is

exemplified in the context of the Simulation Exploration

Experience (SEE) project lead by NASA and which involves

several U.S. and European Institutions.

Keywords

Distributed Simulation; High Level Architecture; Agent-based

Simulation.

1. INTRODUCTION
Modeling and Simulation (M&S) represents one of the most

important and effective methods for designing and studying

complex systems in a variety of industrial and scientific domains

ranging from biology to space exploration [20]. M&S methods,

tools, and techniques allow analyzing and evaluated design

alternatives effectively and by avoiding the risk, costs and fails

associated with extensive field experimentation; this opportunity

becomes crucial when complete and actual tests are too expensive

to be performed in terms of cost, time and other primary resources

[2], [19].

Over the years, large-scale systems have increased in complexity

and sophistication since, in general, they are composed of several

components, which are often designed and developed by

organizations belonging to different engineering domains,

including mechanical, electrical, and software. As systems get

increasingly complex, their design and development become more

difficult and therefore new M&S techniques, methods and tools

are emerging also to benefit from distributed simulation

environments [5]. In this context, the IEEE 1516-2010 - High

Level Architecture (HLA) standard [9], [10] attempts to handle

this complexity by providing a specification of a distributed

infrastructure in which each simulation unit can run on an

independent computer (in general, geographically distributed) and

communicate with the others in a common simulation scenario.

The HLA was developed by the U.S. Modeling and Simulation

Coordination Office (M&S CO) [12] to facilitate the integration

of distributed simulation models within a common architecture.

Although it was initially developed to support military

applications, it has been widely used in non-military industries for

its many advantages related to the interoperability and reusability

of distributed simulation components. In the HLA standard a

distributed simulation is called a Federation and it is composed of

several HLA simulation entities, each called a Federate, which

can interact among them by using a Run-Time Infrastructure

(RTI). The RTI represents a backbone of a Federation execution

and provides a set of standard protocols and services to manage

the communications and data exchange among Federates. Each

Federation has a Federation Object Model (FOM) that is created

in accordance with the Object Model Template (OMT) defined by

the standard [9], [10].

Building complex and large distributed simulations systems,

based on the IEEE 1516 standard, is a challenging task and

requires considerable development efforts. Indeed, it requires

expert engineers with deep knowledge and experience in

distributed systems, simulation, middleware and software

programming. The main problem is that the development and

testing of HLA Federates is generally difficult, complex, and

resource-intensive not only because of the complexity of the IEEE

1516 standard [9] but also due to the lack of proper

documentations and ready-to-use examples. Moreover, developers

have to spend a considerable effort to solve common HLA issues,

such as the management of the simulation time, the connection on

the RTI, and the management of common RTI exceptions. As

result, they cannot fully focus on the specific aspects of their own

simulations (the HLA Federates). Thus, it would be desirable to

separate the common HLA issues from those specific of a HLA

Federate by providing a general-purpose, domain-independent

framework that allows achieving these goals.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGSIM-PADS ‘15, June 10–12, 2015, London, UK.

Copyright 2015 ACM x-xxxxx-xxx-x/xx/xxxx …$xx.00.

In this context, the paper presents the HLA Development Kit a

general-purpose, domain-independent toolkit that eases the

development of HLA Federates by providing a software

framework, called the DKF (Development Kit software

Framework), with related documentation, user guide and reference

examples. Specifically, the DKF allows developers to focus on the

specific aspects of their own HLA Federates rather than dealing

with the common HLA issues which are managed by the DKF

core components.

The rest of the paper is organized as follows. In Section 2, the

main issues related to the development of HLA Federates are

discussed. Section 3 presents the HLA Development Kit with

particular focus on the architecture and main services provided by

the HLA Development Kit software Framework (DKF). In Section

4, the development of a HLA Federate from scratch based on the

DKF is exemplified in the context of the Simulation Exploration

Experience (SEE) project. The merits of this approach and main

related works are discussed in Section 5 and 6, respectively.

Finally, conclusions are drawn and future research directions are

presented.

2. DEVELOPING HLA FEDERATES:

MAIN ISSUES
As discussed in Bjorn Moller’s introduction to the HLA [13], a

HLA-based Federation (distributed simulation) consists of a

number of Federates (usually simulations running on different

computers) that interact with each other via software (middleware)

called the Run Time Infrastructure (RTI). The Federates use the

RTI to transfer information about each other and to coordinate

and synchronize with each other.

The “contract” that describes how Federates interact is called the

Federation Agreement. The major part of the agreement is a

description of the information exchanged between Federates. This

is called the Federation Object Model (FOM). A FOM can

contain specifications of Object classes (objects are instances

(entities) of object classes that have attributes that can be

updated), Interaction classes (a message sent between objects that

has parameters) and Data types (the technical specification and

semantics of the attributes and parameters). Predefined HLA data

types can be used to create typical complex data types. A FOM is

divided into “sub-FOMs” or modules that effectively define the

interface to a Federate. A Federate and its FOM can be therefore

produced as a separate component of a Federation, ready to be

composed into the full Federation on-demand. The XML-based

HLA Object Model Template defines the syntax of a FOM and is

part of the HLA standard. “Object-oriented” HLA allows object-

like complex data types that allow an object to be shared between

Federates (e.g. two Federates have local copies of an object

instance and use attribute publishing to “synchronize” the values

of the “shared” object).

There are many services in a HLA RTI. These are divided into

seven service groups loosely split into information exchange

services, synchronization services and coordination services.

Two-way interaction between a Federate and an RTI uses RPC-

like semantics, i.e. a Federate calls an RTI service method and

receives a callback from that method. Information exchange

services use a Publish/Subscribe approach to prevent every

Federate just broadcasting its information to every other Federate

regardless of whether or not that information is relevant to that

Federate. A FOM describes the information that each Federate

will publish and will expect to receive (will subscribe to). The

RTI matches these publishing and subscription requirements to

ensure efficient communication – information published by one

Federate will only be received by those Federates that are

subscribed to that information. Other data distribution

management services build on this model to deliver more efficient

and flexible communication schemes.

Synchronization services handle the synchronization of logical

time across a Federation and the correct ordered delivery of time

stamped data (time management), specification of synchronization

points to allow Federates to coordinate when they have reached a

given state, and state saving to checkpoint where a Federate has

reached in its execution.

Coordination services facilitate the management of Federation

execution and joining of Federates to a Federation, the transfer of

“ownership” of an object from one Federate to another and the

advanced inspection and management of a Federation (via the

Management Object Model).

An RTI typically consists of central and local components. The

central RTI component (CRC) is the middleware that provides

requested services to the Federates (effectively a server).

Federates access those services by interacting with the local RTI

component (LRC) via some module developed for that purpose

(effectively a client). Essentially to “convert” a simulation to a

Federate, a developer must create the module (the Federate

Ambassador) to connect to the local RTI component (the RTI

Ambassador) and then implement the interaction of the simulation

with the wider Federation (captured in the FOM). To join a

Federation, the Federate calls its LRC to connect to the RTI.

Interaction continues by calling the RTI via the LRC and by

receiving callbacks – sometimes this is described as a Federate

using its Federate Ambassador to calling the RTI and to receive

callbacks from the LRC’s RTI Ambassador.

As can be seen from the above, the development of a Federate and

a Federation is extremely complex and there are few tutorial

resources to help educate developers. In order to help new

developers, the HLA Development Kit, which provides high level

functionality to choreograph interaction between Federates and

the RTI and among Federates, has been developed. This is

described in the next section.

3. THE HLA DEVELOPMENT KIT
The HLA Development Kit aims at easing the development of

HLA Federates by providing the following resources: (i) a

software framework (the DKF) for the development in Java of

HLA Federates; (ii) a technical documentation that describes the

DKF; (iii) a user guide to support developers in the use of the

DKF; (iv) a set of reference examples of HLA Federates created

by using the DKF; and, (v) video-tutorials, which show how to

create both the structure and the behavior of a HLA Federate by

using the DKF.

In the following, the attention is focused on the DKF and,

specifically, on its architecture and underlying Federate model-

behavior. Moreover, a domain-specific extension of the DKF is

also presented.

3.1 The HLA Development Kit Framework

(DKF)
The DKF is a general-purpose, domain-independent framework,

released under the open source policy Lesser GNU Public License

(LGPL), which facilitates the development of HLA Federates [9],

[10]. Indeed, the DKF allows developers to focus on the specific

aspects of their own Federates rather than dealing with the

common HLA issues such as the management of the simulation

time; the connection/disconnection on/from the HLA RTI; the

publish, subscribe and updating of ObjectClass and

InteractionClass elements [10]. The DKF is designed and

developed by the SMASH-Lab (System Modeling And

Simulation Hub - Laboratory) of the University of _______ (___)

working in cooperation with the NASA JSC (Johnson Space

Center), Houston (TX, USA).

The DKF is fully implemented in the Java language and is based

on the following three principles: (i) Interoperability, DKF is

fully compliant with the IEEE 1516-2010 specifications; as a

consequence, it is platform-independent and can interoperate with

different HLA RTI implementations (e.g. PITCH [15], VT/MÄK

[11], PoRTIco [16] and CERTI [3]); (ii) Portability and

Uniformity, DKF provides a homogeneous set of APIs that are

independent from the underlying HLA RTI and Java version. In

this way, developers could decide the HLA RTI and the Java run-

time environment at development-time; and (iii) Usability, the

complexity of the features provided by the DKF framework are

hidden behind an intuitive set of APIs.

The design and implementation of the DKF has been centered on

typical Software Engineering methods and, in particular, on an

agile software development process [6]. Furthermore, it has been

developed according to the concept of Object HLA [9], [10], in

this way, the development of HLA Federates could benefit also

from the Object HLA features and functionalities provided by the

Pitch Developer Studio [15] or similar IDE.

To promote the adoption and experimentation of the HLA

Development Kit and its DKF, the Kit has been specialized in the

SEE HLA Starter Kit with the aim to ease the development of

HLA Federates in the context of the Simulation Exploration

Experience (SEE) project [17]. SEE is an event organized by the

Simulation Interoperability Standards Organization (SISO), in

collaboration with NASA and other research and industrial

partners, with the objective to promote the adoption of the HLA

standard and compliant tools by involving university teams in the

distributed simulation of a Moonbase. The SEE-specific features

introduced in both the DKF and the Development Kit (as an

example, the implementation of SEE Dummy and Tester

Federates) aim not only at reducing the development efforts but

also at improving the reliability of SEE Federates and thus

reducing the problems arising during the final integration and

testing phases of the SEE project [17]. Moreover, the SEE

extension allows to prove how, starting from a domain-

independent core of the DKF, conceived for supporting the

development of general-purpose HLA Federate, it is possible to

easily add and integrate application-specific extensions for

supporting the development of domain-specific Federates.

The following subsections are devoted to present both the

architectural and behavioral aspects of the DKF also with

reference to its SEE-specific extension (the SEE-SKF, SEE

Starter Kit Framework).

3.1.1 Architecture of the DKF
The architecture of a DKF-based Federation is composed of three

main layers (see Figure 1): (i) Application Layer, which contains

the Federates that can interact with both the DKF and the HLA

RTI by using their APIs; (ii) DKF Layer, which represents the

core of the architecture and provides a set of domain-independent

APIs that are used to access the DKF capabilities; and (iii) HLA

RTI Infrastructure, which represents the RTI that host the

Federation [9], [10] (e.g. PITCH [15], VT/MÄK [11], PoRTIco

[16] and CERTI [3]). Some application-specific extensions of the

DKF can be also introduced (e.g. the SEE-specific ones).

Figure 1: The architecture of a DKF-based Federation.

The DKF is organized into a hierarchy of packages and sub-

packages; each of which contains a set of Java classes and

interfaces that implement specific functionalities; the main

packages are shown in Figure 2 by using a UML package

diagram. In particular, the DKF is composed of seven main

packages (in yellow) that are independent both of application

domains and HLA RTI implementations.

The core package implements the kernel of the DKF. It includes

the fundamental DKFAbstractFederate and

DKFAbstractFederateAmbassador classes (see Figure 3) that

provide the basic functionalities to manage a Federate. The config

package contains the collection of classes that manage the

configuration parameters provided by a “.json” file. These

parameters include the name of the Federation Execution, the RTI

connection details (e.g. IP address, port, etc.), and details about

the simulation time. The utility package contains several

miscellaneous utility classes, such as time standard conversions

(e.g. JulianDate, RJulianDate, etc.) and Windows Firewall Check.

The logging package defines a set of classes used to track down

any problems or error occurred during the execution of SEE

Federates; this information is stored into the dkf.log file. The

exception package contains some definitions of exceptions that are

used for handling dysfunctional events throughout the DKF

framework.

The model package contains some classes to facilitate publishing,

subscribing and the data updating of both an ObjectClass and an

InteractionClass through Java annotations [9], [10]. Two Java

annotation classes have been created in order to manage an

ObjectModel (ObjectClass and InteractionClass) instance: (i)

ObjectClassAnnotation, which defines the annotations that have

to be used by the programmer so as to create an ObjectClass

instance compatible with the DKF; and (ii)

InteractionClassAnnotation, which specifies the annotations to

create and handle InteractionClass instances.

The coder package contains the classes used to coding and

decoding both ObjectClass and InteractionClass instances.

Finally, the application domain extension see.smackdown package

(in gray), contains some SEE domain-specific classes, which are

used by the core components of the DKF to handle some specific

aspects related to the SEE Federation [17] such as transformations

among SEE Coordinate Reference Frames, the publish and

subscribe of PhysicalEntities, and the management of the SISO

Space FOMs [4], [21].

Figure 2: The DKF architecture.

3.1.2 Federate Behavioral Model
The example architecture of a Federate created by using the

capabilities of both the DKF and its SEE-specific extensions is

shown in Figure 3 by using a UML Class Diagram; in the

following its main classes are briefly described.

The classes SEEAbstractFederate and SEEAbstractAmbassador,

which are in grey, define the behavior of a SEE Federate, while

the classes in yellow belong to the DKF application independent

part (see Figure 2). The SEEAbstractFederate class implements

the methods of the DKFAbstractFederate class. This latter class

provides functionalities to configure and connect/disconnect a

Federate to/from a Federation Execution. Moreover, it is worth

noting that, in the SEE context, all the Federates are time

constrained except the Environment Federate provided by NASA

and which lead the Federation execution that is time regulating

[5]; the DKF has been thus adapted to handle this situation.

Figure 3: The example architecture of a DKF-based Federate.

In particular, the DKFAbstractFederate class provides a concrete

SEE Federate with the management of its life cycle (FLCM), as a

consequence, a SEE working team has only to define the specific

behavior of its SEE Federate without worrying about low-level

implementation details since the DKF manages them. Specifically,

the pro-active part of the behavior of a Federate is specified in the

“processing and update data” composite state, which is accessed

between a TAG and TAR request; whereas, the re-active part of

the behavior of a Federate is specified in the “processing

interaction” composite state so as to indicate how to handle the

RTI callbacks about the interactions/objects that the Federate has

subscribed (see Figure 4).

The SEEAbstractAmbassador class implements the

DKFAbstractFederateAmbassador class in order to interact with

the RTI services.

Finally, the ExecutionThread class handles the execution of a

HLA Federate in the simulation environment.

Figure 4: The example life cycle of a SEE Federate.

The lifecycle of a SEE Federate provided by the

DKFAbstractFederate,
consists of four phases as shown in

Figure 4 through a UML Statechart diagram. Specifically, in the

load configuration state, the DKF loads the configuration

parameters from a .json file. A transition to the startup state

happens if the configuration parameters are valid and during the

state transition a connection to the SEE Federation execution is

performed. If the configuration parameters are invalid a state

transition to the shutdown state is performed. In this latter state,

all the resources engaged by the SEE-SKF classes are de-allocated

and the lifecycle terminates. In the startup state, the connection

status is checked. If the connection is not established the lifecycle

ends with a transition to the shutdown state.

Otherwise, a transition to the initialization state is performed; in

this state, the SEE Federate could perform additional operation

for exchanging initialization objects before entering the running

state (and thus the time advancement loop: waiting for TAG 

processing and update data  make TAR request), as an example,

the Federate could publish and subscribe some SEE information

(e.g. ReferenceFrames, InteractionClasses, etc.). After that, the

time management thread is activated and a transition to the

running state is performed. The running state is composed by two

sub-states operating in an AND-decomposition fashion. The Data

Management sub-state deals with the pro-active part of the

Federate behavior through three states: (i) Waiting for TAG: the

DKF waits for the “TAG (Time Advance Grant) Callback” from

the RTI. When the callback is received a transition to the

processing and update data state is performed; (ii) processing

and update data: the “logical time” is updated, the pro-active

behavior of the specific SEE Federate defined by the SEE

working team is executed, and then a transition to the make TAR

request state is performed; (iii) make TAR (Time Advance

Request) request: the DKF requests to the RTI the grant for the

next “logical time”. The Interaction Management sub-state deals

with the re-active part of the behavior of the Federate: upon

reception of RTI callback related to subscribed elements, a

transition to the processing state is performed where the received

information is handled.

When the simulation ends a transition from the running
state to

the shutdown state is performed and, during the state transition,

the HLA Federate is disconnected from the RTI.

4. EXPLOITING THE (SEE) HLA

STARTER KIT
This section presents a case study concerning the development of

a HLA Federate by using the SEE HLA Starter Kit in the context

of the SEE 2015 project. The architecture and behavior of the

developed and experimented SEE HLA Federate are described

along with the feedback coming from the experimentation.

4.1 The development process based on SEE-

SKF
The process to build a Federate from scratch by using the SEE-

SKF is composed by the following four main steps:

1. Build a model of the Federate that specifies: the objects

that the Federate manages (as specified in the FOM), the

attributes of these objects and the coder to handle such

attributes. It is possible to use the set of basic coder

provided by the SEE-SKF or simply implement new

coders by using the SEE-SKF classes; other available

coders can be also exploited;

2. Build a concrete Federate that specifies the behavior of

the model defined at step 1. It is required to extend the

SEEAbstractFederate abstract class provided by the SEE-

SKF and implement three methods according to the

Federate life-cycle that is provided and completely

managed by the SEE-SKF (see Figure 4), specifically: (i)

a method for initialization operations before entering in

the “running state” (a configureAndStart method); (ii) a

method for specifying the pro-active part of the behavior

of the Federate (doAction method) and that is executed

between a TAG and TAR request; (iii) a method (update

method) that specifies the re-active part of the behavior of

the Federate, i.e. how to handle the RTI callbacks about

the interactions/objects that the Federate has subscribed;

3. Implement the Federate Ambassador. This step requires

extending the SEEAbstractFederateAmbassador;

typically, since no specific implementation is required, the

child class has only to define its constructor which in turn

calls the parent one: all the typical Ambassador’s features

are provided and managed by the SEE-SKF.

4. Implement a main class so as to instantiate and run the

developed Federate.

In the following, after presenting the reference simulation

scenario, the above sketched process will be exemplified with

respect to the development of a Federate in the context of the SEE

Project [17].

4.2 The reference simulation scenario
The reference simulation scenario of the SEE Project (see [4],

[21]) concerns a human settlement called “Moonbase” composed

of scientific equipment, storage buildings, rovers and other

elements to allow astronauts to live and work on the Moon.

The Modelling & Simulation Group (MSG) at _______

University London has participated in the SEE Project since 2013.

The group has investigated issues concerning the development

and standardization of distributed simulation for industry and

healthcare [18], [22] as well as hybrid federations consisting of

real-time, discrete-event and agent-based simulations [1]. The

2013 “entry” involved the development of a lunar factory that 3D

printed building materials using processed lunar regolith. This

was in fact a discrete-event simulation model developed in the

Simul8 simulation software. The 2014 entry expanded the scope

of the factory by developing a new factory in Simul8, a lunar

mining operation in REPAST SIMPHONY (the Recursive Porous

Agent Simulation Toolkit - an agent-based simulation system

from Argonne National Laboratories [14]) and a real-time

simulation of an astronaut. The agent excavators of the mine dug

out the regolith materials and returned these to a stockpile. The

astronaut transported the materials to the factory for processing.

Most (if not all) of the teams in SEE are postgraduate. The aim of

the work at ______ was to see if a small group of Undergraduate

B.Sc. (HONS) Computer Science students could take on the

challenge of developing in hybrid distributed simulation. This

formed their Final Year Projects undertaken during their final year

studies and represents a major part of their degree classification.

All the students had two years of a general computer science

degree. The students had support from the staff and postgraduate

students of the MSG. However, it was the students’ responsibility

to deliver.

The main issue that arose from the 2014 event was the complexity

of the development. The students based their work on previous

code developed by the group. However, the broad knowledge base

of domain specific knowledge, distributed simulation (both

Federate development and RTI interfacing) and the SEE event

scenario still presented a major challenge due to the range of

possible implementation approaches and the lack of clear

development guidelines and tutorials.

In this year’s entry participating was restricted to one

undergraduate student. His task was to develop a new agent-based

mining simulation that simulates one or more small excavators

working across the lunar surface. The simulation is designed to

work with an astronaut federate and a UAV federate. The UAV

federate moved over the area to be mined and takes magnetometer

readings. These update a map of the area and show the

coordinates of areas of interest. The excavator systematically

works across its area and digs out regolith materials from the

surveyed points of interest. Once the excavator is full it returns

the materials to its origin point and deposits them there for the

astronaut to pick up. The excavator then returns to its excavation

task. This section now gives a brief overview of agent-based

simulation with REPAST, the excavator Federate and how the

SEE-SKF was used to simplify implementation.

4.3 Agent-based Modeling & Simulation
Agent-Based Modeling and Simulation (ABMS) historically

originated from Complex Adaptive Systems (CAS), where the

principal area of study is the complex behaviors among individual

and autonomous agents. ABMS is used mainly to model

decentralized, complex systems that consist of many inter-

dependencies [7]. The main components of ABMS are agents -

heterogeneous, adaptive and goal-directed autonomous entities

that have a sort of intelligence in that they can recognize their

environment and other agents and interact with them. Agents have

attributes and methods. Agents represent static or dynamic

elements that describe the current state of the agent. Methods

describe behaviors, the ability to modify these behaviors, and the

ability to update rules and dynamic attributes. Agents have four

essential characteristics:

 Agents are distinguished, independent individuals with

rules that administer their behavior and decision-making

capability. Their nature is discrete, which means that they

have clear boundaries and it can be easily determined

whether a characteristic belongs to a specific agent or is

shared among agents.

 Agents are active components of an environment and

coexist with other agents, and, therefore, can be

characterized as social components. Usually,

communication protocols enable agents to interact with

one another and their environment. Agents can recognize

the behavior of other agents.

 Agents are autonomous and self-directed. They have their

own set of behavioral rules that dictate their decisions and

actions. The degree of sophistication of these behavioral

rules indicates the intelligence of the agent which is

decided according to the scope of the model.

 Agents have a state that varies over the simulation time.

The state of an agent is dictated by its state variables and

can be a set or a subset of its attributes.

The way that agents are connected to each other constitutes the

topology of an agent-based model. Agents can move in a number

of different topologies. Agents also have neighborhoods. Each

agent can hold information about its local neighborhood and the

neighboring agents and communicate with them. For example, a

very common spatial topology for agents is a grid and can be von

Neumann (five cell neighborhood) or Moore (nine cell

neighborhood).

As introduced above REPAST SIMPHONY is a free and open-

source agent-based simulation environment. A REPAST agent-

based simulation is created by using the ContextBuilder interface.

In this class the environment, the initial number of agents (and

types/classes) that are located in the environment, etc. are

specified. The attributes and methods of each agent is specified in

an agent’s class. Each agent interacts with other agents and the

environment via their methods. Time is managed in a REPAST

simulation by the scheduler. A method can be annotated as being

scheduled. This will include the frequency and priority that the

method occurs. When a REPAST simulation runs, the simulation

environment enter a cycle that calls the scheduler. The scheduler

then runs the methods in priority order according to their

frequency, so advancing the simulation until it reaches some

terminating condition.

4.4 The Excavator Agent-based Simulation
The ultimate goal of the excavator agent-based simulation was to

explore how excavator “robots” could self-organize in the

coordination of the extraction of lunar regolith materials and the

degree to which REPAST could facilitate the study of these

algorithms. As this paper focuses on how the SKF was used to

simplify the implementation of a Federate, a simple version of the

agent-based simulation is presented. In this example there is a

single excavator that explores its environment in a simple

“scanning” pattern. It uses a map populated by a UAV with a

magnetometer. The UAV slows “flies” overhead detecting

potentially interesting minerals (modelled by a reading of 0 for

nothing, 1 for something). The UAV periodically broadcasts the

results of its on-going survey to the excavator and the excavator

updates its local map (at an arbitrary ten readings an update).

When the excavator reaches a mineral, it mines it and adds it to its

hopper that carries the excavated regolith. Once the hopper is full

the excavator returns to its origin point and deposits the regolith

material in a pile. The now empty excavator returns to where it

left off and continues mining.

The agent-based simulation consists of the JExcavatorsBuilder,

Excavator and Mineral classes. JExcavatorsBuilder implements

the REPAST ContextBuilder interface to create the simulation

environment. It does this by first creating a continuous space and

then superimposing a grid for the excavators to move around. The

grid is then populated by an Excavator at 0,0. An Excavator has

several variables that specify where it is currently located on the

grid (pt), the amount of regolith carried (cargo), and if it has

decided to return to the origin point to offload its regolith

(returnOrigin). When the simulation begins it calls all step()

methods in its agents. In this example, the single excavator step()

method is called. This first simulates the interaction with the UAV

by generating the next ten magnetometer readings and updating

the map by calling updateMap(). This populates the grid with zero

to ten new Minerals at x,y points ([UavX1, UavY1, MagReading],

etc.) MagReading is either 0 or 1 to indicate the presence of a

mineral deposit. The excavator then reads its own location on the

grid and checks to see if its cargo limit has been reached. If it has,

it sets a Boolean returnOrigin to TRUE. If returnOrigin is

FALSE, the moveLinearly(pt) method moves the excavator along

to the next point, checks the map to determine if there is anything

to mine and, if there is, mines it (adds 1 to the cargo and deletes

the mineral from the map). If returnOrigin is TRUE, then this

method excavator first moves the excavator one point at a time

along its X axis to 0 and then its Y axis to 0 to reach the origin.

The excavator then “dumps” its cargo and retraces its steps back

to where it left off, again one point at a time.

//@ScheduledMethod(start=1, interval = 1)

public void step() {

 updateMap();

 GridPoint pt = grid.getLocation(this);

 checkCargoLimit(cargo);

 moveLinearly(pt);

}

4.5 Using the SKF to Develop the Excavator

Federate
The above description of the simple excavator focuses on a single

excavator agent. The mining operation may be also of interest to

other simulations (e.g. an astronaut who takes away mined

materials for processing). To create a Federate based on the above

introduced agent-based simulation the SEE-SKF main steps have

been followed.

In step (1) a FOM that describes the input and output of the

simulation was defined. In this case the FOM represents the single

Excavator object with ExcavatorX and ExcavatorY representing

the current coordinates of the excavator, and PileNumber,

representing the number of minerals in the regolith pile. All are

HLAinteger32BE datatype. To begin the creation of the Federate,

first annotate the Excavator class to match the FOM has been

annotated as follows:

@ObjectClass(name =

 "PhysicalEntity.Excavator")

public class Excavator{…

To create the I/O from the simulation to the rest of the Federation,

the Excavator class was augmented with attributes and coders. For

example, to enable the sharing of the X,Y coordinates of the

excavator the following attributes and coder to the declarations

have been added:

@Attribute(name = "ExcavatorX", coder =

 HLAinteger32BECoder.class)

private Integer ExcavatorX;

@Attribute(name = "ExcavatorY", coder =

 HLAinteger32BECoder.class)

private Integer ExcavatorY;

At the end of the step() method described above the two calls

setExcavatorX(getPointX());

setExcavatorY(getPointY());

have been added to update the current position of the excavator.

Similar attributes and coders for the other attributes described in

the FOM have been added.

In step (2), the SEEAbstractFederate class has been extended to

create the ExcavatorFederate classes. Within the

ExcavatorFederate class the configureAndStart() method

remained unchanged (i.e. it reaches the JSON config file and

starts the Federation). The doAction() method is shown below.

@Override

protected void doAction() {

try {

 Context<Object> con =

 RunState.getInstance().getMasterContext();

for (Object obj : con) {

 if(obj instanceof Excavator){

 // update the RTI on the excavator

 ((Excavator) obj).step();

 }

 super.updateElement(obj);

}

}

This method advances the agent-based simulation by first

obtaining the current state (context) of the simulation, finding all

agents (objects) and then “manually” running the step() method in

the agents. In this example, the single excavator agent’s step()

method is executed. It then calls updateElement() to output the

new state of the excavator Federate’s attributes.

Step (3) simply extended the SEEAbstractFederateAmbassador

class with as the ExcavatorFederateAmbassador. Step (4) was

unnecessary as the simulation had already been developed. The

only addition to these steps was the addition of the

ExcavatorFederate and ExcavatorFederateAmbassador to the

context (JExcavatorsBuilder) to include them in the scope of the

agent-based simulation. The overall class diagram is shown in

Figure 5.

Figure 5: The architecture of the Excavator Federate.

5. DISCUSSION
The challenge presented to the ______ undergraduate team was

how to create a simulation of a set of self-organizing excavators

and their mining operation. The first task was to build the

simulation in REPAST. The team had never done any kind of

simulation before but had some experience in Java programming.

However, REPAST has reference examples and documentation

that could be used to support the teams’ development. The second

task was to then implement a Federate based on the agent-based

simulation. In 2014’s SEE event this proved to be an extremely

challenging task for the team of that year, despite the support of

the MSG team. The main problem was the lack of support

material that the team could use. Very little existed at the time

apart from Fujimoto’s text book [6], Moller’s introduction to the

HLA [13], and “hints” in key articles on HLA issues (e.g. time

management [5]). The experiences of using the DKF and its

associated process had a great impact on the development time of

the Federate as much of the HLA complexity was hidden away.

The first attempt to understand the DKF and SEE-SKF was to

produce a simple astronaut Federate. This essentially allowed a

user to move a point across a space using a keyboard. The

simulation just produced the coordinates of the astronaut.

Following the SEE-SKF process, the team analyzed the data

produced and required by the simulation to create the FOM

(coordinates) and then used the SEE-SKF attributes and coders to

map the FOM to the input/output in the simulation. The

SEEAbstractFederate class was then implemented with its

methods: The configureAndStart method to run, the doAction

method to move the astronaut, and the update method to send the

current coordinates of the astronaut. Finally, the Federate

Ambassador was implemented and the main class was made

available.

Developing the REPAST Federate proved more challenging as it

was not clear at first how the above mapped to the environment

and agent classes of the simulation. The previous section

presented how this was achieved. The only unsatisfactory aspect

of the implementation was the delegation of REPAST time

management to the Federate Ambassador. REPAST has excellent

time management facilities and this would have been better if the

Federate Ambassador had been coordinated with REPAST time

management. We expect this issue to be resolved in future work.

To test the simplicity of using the SEE-SKF, the Excavator was

linked to the UAV simulation developed by Liverpool University

that hovers over the excavator grid. The UAV is equipped with a

magnetometer that takes readings from the surface to identify

interesting areas for excavation. To add this to the Excavator we

assume that the UAV will produce ten sets of readings each

update. UavX1, UavY1, MagRead1, etc. were then added to the

FOM under a UAV class to allow the Excavator to subscribe to

the attributes. Attributes and coders were added to the Excavator

agent along with a GetMap() method that takes the current UAV

updates and adds these to the excavator’s map. Once the FOM

had been agreed with Liverpool it took the team a remarkably

short time update the agent and get the Excavator/UAV

distributed simulation up and running.

6. RELATED WORK
Several research efforts focused their attention on the creation of

HLA simulation and developing environments, mainly aiming at

providing an integrated toolchain for creating and simulating

complex systems by using specialized modeling tools and

methodologies.

For MATLAB/Simulink different packages and toolboxes are

available for implementing HLA simulators such as the

Forwardsim HLA Toolbox for MATLAB [23], which provides a

user interface that allows developers to fully design and customize

their HLA Federates. Another tool is the HLA/DIS Toolbox for

MATLAB and Simulink [11] that provides a library of Simulink

blocks specifically designed for the integration of High Level

Architecture services into Simulink models. It greatly simplifies

Federation development and model reuse, as well as enables

organizations to more efficiently participate in multinational

simulations or implement distributed simulation models locally.

Another tool that enables developers to effectively manage the

structure and assets of a HLA Federate starting from a FOM file is

the PITCH Developer Studio [15]. This software allows

programmers to reduce the HLA learning curve by providing

functionalities for creating and exporting auto-generate C++/Java

code classes based on the structure of the HLA Federate.

A domain-specific HLA software framework was created by the

Danish Maritime Institute (DMI) [24]. This framework defines a

universe of real-time simulation concepts to support the more

informal concepts available at DMI with a HLA environment. The

simulation framework provides mechanisms to simplify the

development of real-time simulators.

Other HLA frameworks are based on GRID-computing

infrastructure and they have become in recent times a popular way

to model and study complex multi-actor systems by using the

typical characteristics and capabilities of the GRID [25].

The HLA Development Kit and its software framework (DKF)

differ from the above mentioned solutions in several aspects. In

particular, differently from a proprietary and commercial solution

that requires tool-specific knowledge and training, the HLA

Development Kit is an open source project released under the

open source policy Lesser GNU Public License (LGPL) and can

be freely and easily customized and/or extended to cover and deal

with both domain independent and domain-specific aspects (as

was the case with the SEE-specific extension). In addition, the

DKF provides advanced facilities that allow keeping the code

compact, readable and reliable. As an example, Java annotations

are used to directly inject the structure of a HLA Federate in the

Java code. These metadata are used by the core components of the

DKF at run-time to inspect and check a HLA Federate according

to its definition in the FOM. The above sketched capabilities

showed their great benefits not only for expert HLA developers

but also for HLA novice practitioners as were the undergraduates

students involved in the SEE project.

7. CONCLUSION
The IEEE 1516–2010 – Standard for Modeling and Simulation

High Level Architecture (HLA) is undoubtedly one of the most

mature and popular standard for distributed simulation. Due to its

capabilities to enable the interoperability and reusability of

distributed simulation components, it is increasingly exploited in

a great variety of applications in both military and civil domains.

However, the development of full-fledged simulation models,

based on the IEEE 1516 standard, is still a challenging task that

requires both considerable development efforts and advanced

skills and experience in distributed systems, simulation,

middleware and software programming. This is due not only to

the complexity of the IEEE 1516 standard but also to the lack of

proper documentations and easy-to-use development framework.

Indeed, developers have to spend a considerable amount of time

to face with common HLA issues (such as the management of the

simulation time, the connection on the RTI, and the management

of common RTI exceptions), rather than to focus on the specific

aspects of their own HLA Federates. This often results not only in

an increase of the development time but also in a low reliability of

the produced simulators. In this context, the paper has presented

the HLA Development Kit, a general-purpose, domain-

independent toolkit that aims at easing the development of HLA-

based simulations by providing a software framework (the DKF),

with related documentation, user guide and reference examples.

The effectiveness of the DKF has been exemplified in the context

of the Simulation Exploration Experience (SEE), an international

project lead by NASA and which involves several U.S. and

European Institutions in the distributed simulation of a Moonbase.

In particular, the HLA Development Kit and its DKF, has been

specialized for the SEE application domain and exploited in the

development of an Excavator Federate.

In terms of developing educational resources for HLA

development, the DKF presents a solid foundation for future

expansion. The SEE event is exciting in that students can create a

wide variety of simulations and take part in an international

collaboration to create the Moonbase scenario. The SEE-SKF is

therefore an example of how the DKF can be extended to be

domain specific.

Future work on DKF includes the development of extensions to

link DKF to REPAST. Previous work by _______ has included

the development of a hybrid distributed Emergency Medical

Simulation that consisted of different simulation systems that

modelled Emergency Rooms and an ambulance service [1]. The

expansion of DKF into this domain may provide an interesting

education and research resource to easily develop distributed

simulations of civil applications.

8. ACKNOWLEDGMENTS
The authors would like to thank Edwin Z. Crues (NASA JCS) for

his precious advice and suggestions in the development of the

HLA Development Kit. A special note of thanks goes also to all

the NASA staff involved in the SEE Project: Priscilla Elfrey,

Stephen Paglialonga, Michael Conroy, Dan Dexter, Daniel Oneil,

to Björn Möller (PITCH Technologies) and to all the members of

SEE teams.

9. REFERENCES
[1] _________, _________ and _________. 2013. Distributed

Hybrid Agent-based Discrete Event Emergency Medical

Services Simulation. In Proceedings of the Winter

Simulation Conference, ACM Press, NY, 1625-1636.

[2] Banks, J., Carson, J.S., Nelson, B.L. and Nicol, D.M. 2009.

Discrete-Event System Simulation (5th Ed.), Prentice Hall

[3] Certi Project. The simulation toolkit, available from:

http://savannah.nongnu.org/projects/certi, access February

2015.

[4] _________, _________, Longo, F. and Spadafora, F. 2014.

Simulation Exploration Experience: A Communication

System and a 3D Real Time Visualization for a Moon base

simulated scenario. In Proceedings of the 18th IEEE/ACM

International Symposium on Distributed Simulation and

Real Time Applications (ACM/IEEE DS-RT), Toulouse

(France), October 1-3, 2014.

[5] Fujimoto, R.M. 1998. Time Management in the High Level

Architecture. Simulation, Vol. 71, No. 6, pp. 388-400,

1998.

[6] Fujimoto, R.M. 2010. Parallel and distributed simulation

systems. John Wiley & Sons.

[7] _________, Russo, W. 2010. easyABMS: a domain-expert

oriented methodology for Agent Based Modeling and

Simulation. Simulation Modelling Practice and Theory, Vol.

18, pp. 1453-1467, 2010, Elsevier B.V., Amsterdam, The

Netherlands.

[8] Highsmith, J. 2002. Agile Software Development

Ecosystems. The Agile Software Development Series, ed. A.

Cockburn and J. Highsmith, Addison-Wesley.

[9] IEEE Standard for Modeling and Simulation (M&S) High

Level Architecture (HLA) - Federate Interface Specification,

IEEE Standard 1516-2010.

[10] Kuhl, F., Weatherly, R., Dahmann, J. 1999. Creating

Computer Simulation Systems: An Introduction to the High

Level Architecture. Prentice Hall.

[11] MÄK, VR-Forces. The complete simulation toolkit,

available from: http://www.mak.com/products/simulate/vr-

forces.html, accessed February 2015.

[12] Modeling and simulation coordination office, available

from: http://www.msco.mil/, accessed February 2015.

[13] Möller, B. 2013. THE HLA TUTORIAL v1.0. Pitch

Technologies, Sweden.

[14] North, M.J., Collier, N.T., Ozik, J., Tatara, E., Altaweel, M.,

Macal, C.M., Bragen, M. and Sydelko, P. 2013. Complex

Adaptive Systems Modeling with Repast Simphony.

Springer, Heidelberg.

[15] Pitch Technologies. The simulation toolkit, available from:

http://www.pitch.se, accessed February 2015.

[16] Portico Project. The simulation toolkit, available from:

http://www.porticoproject.org/, accessed February 2015.

[17] Simulation Exploration Experience (SEE)

project,
available from:
http://www.exploresim.com/,

accessed February 2015.

[18] Simulation Interoperability Standards Organization 2010.

SISO-STD-006-2010 Standard for COTS Simulation

Package Interoperability Reference Models.

[19] Sokolowski, J.A., Banks, C.M. 2011. Principles of

modeling and simulation: a multidisciplinary approach.

John Wiley & Sons.

[20] _________, Fishwick, P., Fujimoto, R., Page, E.,

Urhmacher, A, Wainer, G. 2012. Panel on Modeling &

Simulation Grand Challenges. In Proceedings of the 2012

Winter Simulation Conference. Association for Computing

Machinery Press, New York, N.Y.

[21] _________, Revagar, N., Chambers, J., Yero, M.,

_________, _________ and _________ 2014. Simulation

Exploration Experience: A Distributed Hybrid Simulation of

a Lunar Mining Operation. In Proceedings of the 18th

IEEE/ACM International Symposium on Distributed

Simulation and Real Time Applications (ACM/IEEE DS-

RT), Toulouse (France), October 1-3, 2014.

[22] Taylor, S.J.E., Turner, S.J., Mustafee, N. and Strassburger,

S. 2012. Bridging the gap: a standards-based approach to

OR/MS distributed simulation. ACM Transactions on

Modeling and Computer Simulation (TOMACS), Vol. 22,

Article 18.

[23] The Forwardsim HLA Toolbox for MATLAB, available

from:
http://www.forwardsim.com/products/hla-toolbox/

accessed February 2015.

[24] Villimann, O. 1999. CTO Project, Documentation, HLA

Framework. Danish Maritime Institute.

[25] Xie, Y., Teo, Y.M., Cai, W., Turner, S.J. 2005. Towards

grid-wide modeling and simulation.

http://savannah.nongnu.org/projects/certi
http://www.mak.com/products/simulate/vr-forces.html
http://www.mak.com/products/simulate/vr-forces.html
http://www.msco.mil/
http://www.pitch.se/
http://www.porticoproject.org/
http://www.exploresim.com/,
http://www.forwardsim.com/products/hla-toolbox/

