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ABSTRACT 

The Modeling & Simulation (M&S) of modern cyber-physical 

systems is presenting new challenges. New M&S techniques, 

methods and tools are emerging that take advantage of distributed 

simulation environments. One of the most mature and popular 

standard for distributed simulation is the IEEE 1516-2010 - High 

Level Architecture (HLA) that, although originally developed for 

military applications, is increasingly exploited in a great variety of 

application domains due to its capabilities to enable the 

interoperability and reusability of distributed simulation 

components. However, the development of fully fledged 

simulation models, based on the IEEE 1516 standard, is still a 

challenging task and requires considerable development effort that 

often results not only in an increase in development time but also 

in low reliability. In this context, the paper presents a general-

purpose, domain-independent framework that aims to ease the 

development of HLA-based simulations. Its effectiveness is 

exemplified in the context of the Simulation Exploration 

Experience (SEE) project lead by NASA and which involves 

several U.S. and European Institutions. 

Keywords 

Distributed Simulation; High Level Architecture; Agent-based 

Simulation. 

1. INTRODUCTION 
Modeling and Simulation (M&S) represents one of the most 

important and effective methods for designing and studying 

complex systems in a variety of industrial and scientific domains 

ranging from biology to space exploration [20]. M&S methods, 

tools, and techniques allow analyzing and evaluated design 

alternatives effectively and by avoiding the risk, costs and fails 

associated with extensive field experimentation; this opportunity 

becomes crucial when complete and actual tests are too expensive 

to be performed in terms of cost, time and other primary resources 

[2], [19]. 

Over the years, large-scale systems have increased in complexity 

and sophistication since, in general, they are composed of several 

components, which are often designed and developed by 

organizations belonging to different engineering domains, 

including mechanical, electrical, and software. As systems get 

increasingly complex, their design and development become more 

difficult and therefore new M&S techniques, methods and tools 

are emerging also to benefit from distributed simulation 

environments [5]. In this context, the IEEE 1516-2010 - High 

Level Architecture (HLA) standard [9], [10] attempts to handle 

this complexity by providing a specification of a distributed 

infrastructure in which each simulation unit can run on an 

independent computer (in general, geographically distributed) and 

communicate with the others in a common simulation scenario. 

The HLA was developed by the U.S. Modeling and Simulation 

Coordination Office (M&S CO) [12] to facilitate the integration 

of distributed simulation models within a common architecture. 

Although it was initially developed to support military 

applications, it has been widely used in non-military industries for 

its many advantages related to the interoperability and reusability 

of distributed simulation components. In the HLA standard a 

distributed simulation is called a Federation and it is composed of 

several HLA simulation entities, each called a Federate, which 

can interact among them by using a Run-Time Infrastructure 

(RTI). The RTI represents a backbone of a Federation execution 

and provides a set of standard protocols and services to manage 

the communications and data exchange among Federates. Each 

Federation has a Federation Object Model (FOM) that is created 

in accordance with the Object Model Template (OMT) defined by 

the standard [9], [10]. 

Building complex and large distributed simulations systems, 

based on the IEEE 1516 standard, is a challenging task and 

requires considerable development efforts. Indeed, it requires 

expert engineers with deep knowledge and experience in 

distributed systems, simulation, middleware and software 

programming. The main problem is that the development and 

testing of HLA Federates is generally difficult, complex, and 

resource-intensive not only because of the complexity of the IEEE 

1516 standard [9] but also due to the lack of proper 

documentations and ready-to-use examples. Moreover, developers 

have to spend a considerable effort to solve common HLA issues, 

such as the management of the simulation time, the connection on 

the RTI, and the management of common RTI exceptions. As 

result, they cannot fully focus on the specific aspects of their own 

simulations (the HLA Federates). Thus, it would be desirable to 

separate the common HLA issues from those specific of a HLA 

Federate by providing a general-purpose, domain-independent 

framework that allows achieving these goals. 
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In this context, the paper presents the HLA Development Kit a 

general-purpose, domain-independent toolkit that eases the 

development of HLA Federates by providing a software 

framework, called the DKF (Development Kit software 

Framework), with related documentation, user guide and reference 

examples. Specifically, the DKF allows developers to focus on the 

specific aspects of their own HLA Federates rather than dealing 

with the common HLA issues which are managed by the DKF 

core components. 

The rest of the paper is organized as follows. In Section 2, the 

main issues related to the development of HLA Federates are 

discussed. Section 3 presents the HLA Development Kit with 

particular focus on the architecture and main services provided by 

the HLA Development Kit software Framework (DKF). In Section 

4, the development of a HLA Federate from scratch based on the 

DKF is exemplified in the context of the Simulation Exploration 

Experience (SEE) project. The merits of this approach and main 

related works are discussed in Section 5 and 6, respectively. 

Finally, conclusions are drawn and future research directions are 

presented. 

2. DEVELOPING HLA FEDERATES: 

MAIN ISSUES 
As discussed in Bjorn Moller’s introduction to the HLA [13], a 

HLA-based Federation (distributed simulation) consists of a 

number of Federates (usually simulations running on different 

computers) that interact with each other via software (middleware) 

called the Run Time Infrastructure (RTI). The Federates use the 

RTI to transfer information about each other and to coordinate 

and synchronize with each other. 

The “contract” that describes how Federates interact is called the 

Federation Agreement. The major part of the agreement is a 

description of the information exchanged between Federates. This 

is called the Federation Object Model (FOM). A FOM can 

contain specifications of Object classes (objects are instances 

(entities) of object classes that have attributes that can be 

updated), Interaction classes (a message sent between objects that 

has parameters) and Data types (the technical specification and 

semantics of the attributes and parameters). Predefined HLA data 

types can be used to create typical complex data types. A FOM is 

divided into “sub-FOMs” or modules that effectively define the 

interface to a Federate. A Federate and its FOM can be therefore 

produced as a separate component of a Federation, ready to be 

composed into the full Federation on-demand. The XML-based 

HLA Object Model Template defines the syntax of a FOM and is 

part of the HLA standard. “Object-oriented” HLA allows object-

like complex data types that allow an object to be shared between 

Federates (e.g. two Federates have local copies of an object 

instance and use attribute publishing to “synchronize” the values 

of the “shared” object). 

There are many services in a HLA RTI. These are divided into 

seven service groups loosely split into information exchange 

services, synchronization services and coordination services. 

Two-way interaction between a Federate and an RTI uses RPC-

like semantics, i.e. a Federate calls an RTI service method and 

receives a callback from that method. Information exchange 

services use a Publish/Subscribe approach to prevent every 

Federate just broadcasting its information to every other Federate 

regardless of whether or not that information is relevant to that 

Federate. A FOM describes the information that each Federate 

will publish and will expect to receive (will subscribe to). The 

RTI matches these publishing and subscription requirements to 

ensure efficient communication – information published by one 

Federate will only be received by those Federates that are 

subscribed to that information. Other data distribution 

management services build on this model to deliver more efficient 

and flexible communication schemes. 

Synchronization services handle the synchronization of logical 

time across a Federation and the correct ordered delivery of time 

stamped data (time management), specification of synchronization 

points to allow Federates to coordinate when they have reached a 

given state, and state saving to checkpoint where a Federate has 

reached in its execution. 

Coordination services facilitate the management of Federation 

execution and joining of Federates to a Federation, the transfer of 

“ownership” of an object from one Federate to another and the 

advanced inspection and management of a Federation (via the 

Management Object Model). 

An RTI typically consists of central and local components. The 

central RTI component (CRC) is the middleware that provides 

requested services to the Federates (effectively a server). 

Federates access those services by interacting with the local RTI 

component (LRC) via some module developed for that purpose 

(effectively a client). Essentially to “convert” a simulation to a 

Federate, a developer must create the module (the Federate 

Ambassador) to connect to the local RTI component (the RTI 

Ambassador) and then implement the interaction of the simulation 

with the wider Federation (captured in the FOM). To join a 

Federation, the Federate calls its LRC to connect to the RTI.  

Interaction continues by calling the RTI via the LRC and by 

receiving callbacks – sometimes this is described as a Federate 

using its Federate Ambassador to calling the RTI and to receive 

callbacks from the LRC’s RTI Ambassador. 

As can be seen from the above, the development of a Federate and 

a Federation is extremely complex and there are few tutorial 

resources to help educate developers. In order to help new 

developers, the HLA Development Kit, which provides high level 

functionality to choreograph interaction between Federates and 

the RTI and among Federates, has been developed. This is 

described in the next section. 

3. THE HLA DEVELOPMENT KIT 
The HLA Development Kit aims at easing the development of 

HLA Federates by providing the following resources: (i) a 

software framework (the DKF) for the development in Java of 

HLA Federates; (ii) a technical documentation that describes the 

DKF; (iii) a user guide to support developers in the use of the 

DKF; (iv) a set of reference examples of HLA Federates created 

by using the DKF; and, (v) video-tutorials, which show how to 

create both the structure and the behavior of a HLA Federate by 

using the DKF. 

In the following, the attention is focused on the DKF and, 

specifically, on its architecture and underlying Federate model-

behavior. Moreover, a domain-specific extension of the DKF is 

also presented. 



3.1 The HLA Development Kit Framework 

(DKF) 
The DKF is a general-purpose, domain-independent framework, 

released under the open source policy Lesser GNU Public License 

(LGPL), which facilitates the development of HLA Federates [9], 

[10]. Indeed, the DKF allows developers to focus on the specific 

aspects of their own Federates rather than dealing with the 

common HLA issues such as the management of the simulation 

time; the connection/disconnection on/from the HLA RTI; the 

publish, subscribe and updating of ObjectClass and 

InteractionClass elements [10]. The DKF is designed and 

developed by the SMASH-Lab (System Modeling And 

Simulation Hub - Laboratory) of the University of _______ (___) 

working in cooperation with the NASA JSC (Johnson Space 

Center), Houston (TX, USA). 

The DKF is fully implemented in the Java language and is based 

on the following three principles: (i) Interoperability, DKF is 

fully compliant with the IEEE 1516-2010 specifications; as a 

consequence, it is platform-independent and can interoperate with 

different HLA RTI implementations (e.g. PITCH [15], VT/MÄK 

[11], PoRTIco [16] and CERTI [3]); (ii) Portability and 

Uniformity, DKF provides a homogeneous set of APIs that are 

independent from the underlying HLA RTI and Java version. In 

this way, developers could decide the HLA RTI and the Java run-

time environment at development-time; and (iii) Usability, the 

complexity of the features provided by the DKF framework are 

hidden behind an intuitive set of APIs. 

The design and implementation of the DKF has been centered on 

typical Software Engineering methods and, in particular, on an 

agile software development process [6]. Furthermore, it has been 

developed according to the concept of Object HLA [9], [10], in 

this way, the development of HLA Federates could benefit also 

from the Object HLA features and functionalities provided by the 

Pitch Developer Studio [15] or similar IDE. 

To promote the adoption and experimentation of the HLA 

Development Kit and its DKF, the Kit has been specialized in the 

SEE HLA Starter Kit with the aim to ease the development of 

HLA Federates in the context of the Simulation Exploration 

Experience (SEE) project [17]. SEE is an event organized by the 

Simulation Interoperability Standards Organization (SISO), in 

collaboration with NASA and other research and industrial 

partners, with the objective to promote the adoption of the HLA 

standard and compliant tools by involving university teams in the 

distributed simulation of a Moonbase. The SEE-specific features 

introduced in both the DKF and the Development Kit (as an 

example, the implementation of SEE Dummy and Tester 

Federates) aim not only at reducing the development efforts but 

also at improving the reliability of SEE Federates and thus 

reducing the problems arising during the final integration and 

testing phases of the SEE project [17]. Moreover, the SEE 

extension allows to prove how, starting from a domain-

independent core of the DKF, conceived for supporting the 

development of general-purpose HLA Federate, it is possible to 

easily add and integrate application-specific extensions for 

supporting the development of domain-specific Federates. 

The following subsections are devoted to present both the 

architectural and behavioral aspects of the DKF also with 

reference to its SEE-specific extension (the SEE-SKF, SEE 

Starter Kit Framework). 

3.1.1 Architecture of the DKF 
The architecture of a DKF-based Federation is composed of three 

main layers (see Figure 1): (i) Application Layer, which contains 

the Federates that can interact with both the DKF and the HLA 

RTI by using their APIs; (ii) DKF Layer, which represents the 

core of the architecture and provides a set of domain-independent 

APIs that are used to access the DKF capabilities; and (iii) HLA 

RTI Infrastructure, which represents the RTI that host the 

Federation [9], [10] (e.g. PITCH [15], VT/MÄK [11], PoRTIco 

[16] and CERTI [3]). Some application-specific extensions of the 

DKF can be also introduced (e.g. the SEE-specific ones). 

 

Figure 1: The architecture of a DKF-based Federation. 

The DKF is organized into a hierarchy of packages and sub-

packages; each of which contains a set of Java classes and 

interfaces that implement specific functionalities; the main 

packages are shown in Figure 2 by using a UML package 

diagram. In particular, the DKF is composed of seven main 

packages (in yellow) that are independent both of application 

domains and HLA RTI implementations. 

The core package implements the kernel of the DKF. It includes 

the fundamental DKFAbstractFederate and 

DKFAbstractFederateAmbassador classes (see Figure 3) that 

provide the basic functionalities to manage a Federate. The config 

package contains the collection of classes that manage the 

configuration parameters provided by a “.json” file. These 

parameters include the name of the Federation Execution, the RTI 

connection details (e.g. IP address, port, etc.), and details about 

the simulation time. The utility package contains several 

miscellaneous utility classes, such as time standard conversions 

(e.g. JulianDate, RJulianDate, etc.) and Windows Firewall Check. 

The logging package defines a set of classes used to track down 

any problems or error occurred during the execution of SEE 

Federates; this information is stored into the dkf.log file. The 

exception package contains some definitions of exceptions that are 

used for handling dysfunctional events throughout the DKF 

framework. 

The model package contains some classes to facilitate publishing, 

subscribing and the data updating of both an ObjectClass and an 

InteractionClass through Java annotations [9], [10]. Two Java 

annotation classes have been created in order to manage an 

ObjectModel (ObjectClass and InteractionClass) instance: (i) 

ObjectClassAnnotation, which defines the annotations that have 

to be used by the programmer so as to create an ObjectClass 

instance compatible with the DKF; and (ii) 

InteractionClassAnnotation, which specifies the annotations to 

create and handle InteractionClass instances. 

The coder package contains the classes used to coding and 

decoding both ObjectClass and InteractionClass instances. 



Finally, the application domain extension see.smackdown package 

(in gray), contains some SEE domain-specific classes, which are 

used by the core components of the DKF to handle some specific 

aspects related to the SEE Federation [17] such as transformations 

among SEE Coordinate Reference Frames, the publish and 

subscribe of PhysicalEntities, and the management of the SISO 

Space FOMs [4], [21]. 

 

Figure 2: The DKF architecture. 

3.1.2 Federate Behavioral Model 
The example architecture of a Federate created by using the 

capabilities of both the DKF and its SEE-specific extensions is 

shown in Figure 3 by using a UML Class Diagram; in the 

following its main classes are briefly described. 

The classes SEEAbstractFederate and SEEAbstractAmbassador, 

which are in grey, define the behavior of a SEE Federate, while 

the classes in yellow belong to the DKF application independent 

part (see Figure 2). The SEEAbstractFederate class implements 

the methods of the DKFAbstractFederate class. This latter class 

provides functionalities to configure and connect/disconnect a 

Federate to/from a Federation Execution. Moreover, it is worth 

noting that, in the SEE context, all the Federates are time 

constrained except the Environment Federate provided by NASA 

and which lead the Federation execution that is time regulating 

[5]; the DKF has been thus adapted to handle this situation. 

 
Figure 3: The example architecture of a DKF-based Federate. 

In particular, the DKFAbstractFederate class provides a concrete 

SEE Federate with the management of its life cycle (FLCM), as a 

consequence, a SEE working team has only to define the specific 

behavior of its SEE Federate without worrying about low-level 

implementation details since the DKF manages them. Specifically, 

the pro-active part of the behavior of a Federate is specified in the 

“processing and update data” composite state, which is accessed 

between a TAG and TAR request; whereas, the re-active part of 

the behavior of a Federate is specified in the “processing 

interaction” composite state so as to indicate how to handle the 

RTI callbacks about the interactions/objects that the Federate has 

subscribed (see Figure 4). 

The SEEAbstractAmbassador class implements the 

DKFAbstractFederateAmbassador class in order to interact with 

the RTI services. 

Finally, the ExecutionThread class handles the execution of a 

HLA Federate in the simulation environment. 

 

Figure 4: The example life cycle of a SEE Federate. 

The lifecycle of a SEE Federate provided by the 

DKFAbstractFederate,
consists of four phases as shown in 

Figure 4 through a UML Statechart diagram. Specifically, in the 

load configuration state, the DKF loads the configuration 

parameters from a .json file. A transition to the startup state 

happens if the configuration parameters are valid and during the 

state transition a connection to the SEE Federation execution is 

performed. If the configuration parameters are invalid a state 

transition to the shutdown state is performed. In this latter state, 

all the resources engaged by the SEE-SKF classes are de-allocated 

and the lifecycle terminates. In the startup state, the connection 

status is checked. If the connection is not established the lifecycle 

ends with a transition to the shutdown state. 

Otherwise, a transition to the initialization state is performed; in 

this state, the SEE Federate could perform additional operation 

for exchanging initialization objects before entering the running 

state (and thus the time advancement loop: waiting for TAG  

processing and update data  make TAR request), as an example, 

the Federate could publish and subscribe some SEE information 

(e.g. ReferenceFrames, InteractionClasses, etc.). After that, the 

time management thread is activated and a transition to the 

running state is performed. The running state is composed by two 

sub-states operating in an AND-decomposition fashion. The Data 

Management sub-state deals with the pro-active part of the 

Federate behavior through three states: (i) Waiting for TAG: the 

DKF waits for the “TAG (Time Advance Grant) Callback” from 

the RTI. When the callback is received a transition to the 

processing and update data state is performed; (ii) processing 

and update data: the “logical time” is updated, the pro-active 



behavior of the specific SEE Federate defined by the SEE 

working team is executed, and then a transition to the make TAR 

request state is performed; (iii) make TAR (Time Advance 

Request) request: the DKF requests to the RTI the grant for the 

next “logical time”. The Interaction Management sub-state deals 

with the re-active part of the behavior of the Federate: upon 

reception of RTI callback related to subscribed elements, a 

transition to the processing state is performed where the received 

information is handled. 

When the simulation ends a transition from the running
state to 

the shutdown state is performed and, during the state transition, 

the HLA Federate is disconnected from the RTI. 

4. EXPLOITING THE (SEE) HLA 

STARTER KIT 
This section presents a case study concerning the development of 

a HLA Federate by using the SEE HLA Starter Kit in the context 

of the SEE 2015 project. The architecture and behavior of the 

developed and experimented SEE HLA Federate are described 

along with the feedback coming from the experimentation. 

4.1 The development process based on SEE-

SKF 
The process to build a Federate from scratch by using the SEE-

SKF is composed by the following four main steps: 

1. Build a model of the Federate that specifies: the objects 

that the Federate manages (as specified in the FOM), the 

attributes of these objects and the coder to handle such 

attributes. It is possible to use the set of basic coder 

provided by the SEE-SKF or simply implement new 

coders by using the SEE-SKF classes; other available 

coders can be also exploited; 

2. Build a concrete Federate that specifies the behavior of 

the model defined at step 1. It is required to extend the 

SEEAbstractFederate abstract class provided by the SEE-

SKF and implement three methods according to the 

Federate life-cycle that is provided and completely 

managed by the SEE-SKF (see Figure 4), specifically: (i) 

a method for initialization operations before entering in 

the “running state” (a configureAndStart method); (ii) a 

method for specifying the pro-active part of the behavior 

of the Federate (doAction method) and that is executed 

between a TAG and TAR request; (iii) a method (update 

method) that specifies the re-active part of the behavior of 

the Federate, i.e. how to handle the RTI callbacks about 

the interactions/objects that the Federate has subscribed; 

3. Implement the Federate Ambassador. This step requires 

extending the SEEAbstractFederateAmbassador; 

typically, since no specific implementation is required, the 

child class has only to define its constructor which in turn 

calls the parent one: all the typical Ambassador’s features 

are provided and managed by the SEE-SKF. 

4. Implement a main class so as to instantiate and run the 

developed Federate. 

In the following, after presenting the reference simulation 

scenario, the above sketched process will be exemplified with 

respect to the development of a Federate in the context of the SEE 

Project [17]. 

4.2 The reference simulation scenario 
The reference simulation scenario of the SEE Project (see [4], 

[21]) concerns a human settlement called “Moonbase” composed 

of scientific equipment, storage buildings, rovers and other 

elements to allow astronauts to live and work on the Moon. 

The Modelling & Simulation Group (MSG) at _______ 

University London has participated in the SEE Project since 2013. 

The group has investigated issues concerning the development 

and standardization of distributed simulation for industry and 

healthcare [18], [22] as well as hybrid federations consisting of 

real-time, discrete-event and agent-based simulations [1]. The 

2013 “entry” involved the development of a lunar factory that 3D 

printed building materials using processed lunar regolith. This 

was in fact a discrete-event simulation model developed in the 

Simul8 simulation software. The 2014 entry expanded the scope 

of the factory by developing a new factory in Simul8, a lunar 

mining operation in REPAST SIMPHONY (the Recursive Porous 

Agent Simulation Toolkit - an agent-based simulation system 

from Argonne National Laboratories [14]) and a real-time 

simulation of an astronaut. The agent excavators of the mine dug 

out the regolith materials and returned these to a stockpile. The 

astronaut transported the materials to the factory for processing. 

Most (if not all) of the teams in SEE are postgraduate. The aim of 

the work at ______ was to see if a small group of Undergraduate 

B.Sc. (HONS) Computer Science students could take on the 

challenge of developing in hybrid distributed simulation. This 

formed their Final Year Projects undertaken during their final year 

studies and represents a major part of their degree classification. 

All the students had two years of a general computer science 

degree. The students had support from the staff and postgraduate 

students of the MSG. However, it was the students’ responsibility 

to deliver. 

The main issue that arose from the 2014 event was the complexity 

of the development. The students based their work on previous 

code developed by the group. However, the broad knowledge base 

of domain specific knowledge, distributed simulation (both 

Federate development and RTI interfacing) and the SEE event 

scenario still presented a major challenge due to the range of 

possible implementation approaches and the lack of clear 

development guidelines and tutorials. 

In this year’s entry participating was restricted to one 

undergraduate student. His task was to develop a new agent-based 

mining simulation that simulates one or more small excavators 

working across the lunar surface. The simulation is designed to 

work with an astronaut federate and a UAV federate. The UAV 

federate moved over the area to be mined and takes magnetometer 

readings. These update a map of the area and show the 

coordinates of areas of interest. The excavator systematically 

works across its area and digs out regolith materials from the 

surveyed points of interest. Once the excavator is full it returns 

the materials to its origin point and deposits them there for the 

astronaut to pick up. The excavator then returns to its excavation 

task. This section now gives a brief overview of agent-based 

simulation with REPAST, the excavator Federate and how the 

SEE-SKF was used to simplify implementation. 

4.3 Agent-based Modeling & Simulation 
Agent-Based Modeling and Simulation (ABMS) historically 

originated from Complex Adaptive Systems (CAS), where the 

principal area of study is the complex behaviors among individual 



and autonomous agents. ABMS is used mainly to model 

decentralized, complex systems that consist of many inter-

dependencies [7]. The main components of ABMS are agents - 

heterogeneous, adaptive and goal-directed autonomous entities 

that have a sort of intelligence in that they can recognize their 

environment and other agents and interact with them. Agents have 

attributes and methods. Agents represent static or dynamic 

elements that describe the current state of the agent. Methods 

describe behaviors, the ability to modify these behaviors, and the 

ability to update rules and dynamic attributes. Agents have four 

essential characteristics: 

 Agents are distinguished, independent individuals with 

rules that administer their behavior and decision-making 

capability. Their nature is discrete, which means that they 

have clear boundaries and it can be easily determined 

whether a characteristic belongs to a specific agent or is 

shared among agents. 

 Agents are active components of an environment and 

coexist with other agents, and, therefore, can be 

characterized as social components. Usually, 

communication protocols enable agents to interact with 

one another and their environment. Agents can recognize 

the behavior of other agents. 

 Agents are autonomous and self-directed. They have their 

own set of behavioral rules that dictate their decisions and 

actions. The degree of sophistication of these behavioral 

rules indicates the intelligence of the agent which is 

decided according to the scope of the model. 

 Agents have a state that varies over the simulation time. 

The state of an agent is dictated by its state variables and 

can be a set or a subset of its attributes. 

The way that agents are connected to each other constitutes the 

topology of an agent-based model. Agents can move in a number 

of different topologies. Agents also have neighborhoods. Each 

agent can hold information about its local neighborhood and the 

neighboring agents and communicate with them. For example, a 

very common spatial topology for agents is a grid and can be von 

Neumann (five cell neighborhood) or Moore (nine cell 

neighborhood). 

As introduced above REPAST SIMPHONY is a free and open-

source agent-based simulation environment. A REPAST agent-

based simulation is created by using the ContextBuilder interface. 

In this class the environment, the initial number of agents (and 

types/classes) that are located in the environment, etc. are 

specified. The attributes and methods of each agent is specified in 

an agent’s class. Each agent interacts with other agents and the 

environment via their methods. Time is managed in a REPAST 

simulation by the scheduler. A method can be annotated as being 

scheduled. This will include the frequency and priority that the 

method occurs. When a REPAST simulation runs, the simulation 

environment enter a cycle that calls the scheduler. The scheduler 

then runs the methods in priority order according to their 

frequency, so advancing the simulation until it reaches some 

terminating condition. 

4.4 The Excavator Agent-based Simulation 
The ultimate goal of the excavator agent-based simulation was to 

explore how excavator “robots” could self-organize in the 

coordination of the extraction of lunar regolith materials and the 

degree to which REPAST could facilitate the study of these 

algorithms. As this paper focuses on how the SKF was used to 

simplify the implementation of a Federate, a simple version of the 

agent-based simulation is presented. In this example there is a 

single excavator that explores its environment in a simple 

“scanning” pattern. It uses a map populated by a UAV with a 

magnetometer. The UAV slows “flies” overhead detecting 

potentially interesting minerals (modelled by a reading of 0 for 

nothing, 1 for something). The UAV periodically broadcasts the 

results of its on-going survey to the excavator and the excavator 

updates its local map (at an arbitrary ten readings an update). 

When the excavator reaches a mineral, it mines it and adds it to its 

hopper that carries the excavated regolith. Once the hopper is full 

the excavator returns to its origin point and deposits the regolith 

material in a pile. The now empty excavator returns to where it 

left off and continues mining. 

The agent-based simulation consists of the JExcavatorsBuilder, 

Excavator and Mineral classes. JExcavatorsBuilder implements 

the REPAST ContextBuilder interface to create the simulation 

environment. It does this by first creating a continuous space and 

then superimposing a grid for the excavators to move around. The 

grid is then populated by an Excavator at 0,0. An Excavator has 

several variables that specify where it is currently located on the 

grid (pt), the amount of regolith carried (cargo), and if it has 

decided to return to the origin point to offload its regolith 

(returnOrigin). When the simulation begins it calls all step() 

methods in its agents. In this example, the single excavator step() 

method is called. This first simulates the interaction with the UAV 

by generating the next ten magnetometer readings and updating 

the map by calling updateMap(). This populates the grid with zero 

to ten new Minerals at x,y points ([UavX1, UavY1, MagReading], 

etc.) MagReading is either 0 or 1 to indicate the presence of a 

mineral deposit. The excavator then reads its own location on the 

grid and checks to see if its cargo limit has been reached. If it has, 

it sets a Boolean returnOrigin to TRUE. If returnOrigin is 

FALSE, the moveLinearly(pt) method moves the excavator along 

to the next point, checks the map to determine if there is anything 

to mine and, if there is, mines it (adds 1 to the cargo and deletes 

the mineral from the map). If returnOrigin is TRUE, then this 

method excavator first moves the excavator one point at a time 

along its X axis to 0 and then its Y axis to 0 to reach the origin. 

The excavator then “dumps” its cargo and retraces its steps back 

to where it left off, again one point at a time. 

 
//@ScheduledMethod(start=1, interval = 1) 

public void step() { 

  updateMap(); 

  GridPoint pt = grid.getLocation(this); 

  checkCargoLimit(cargo); 

  moveLinearly(pt);  

} 

 

4.5 Using the SKF to Develop the Excavator 

Federate 
The above description of the simple excavator focuses on a single 

excavator agent. The mining operation may be also of interest to 

other simulations (e.g. an astronaut who takes away mined 

materials for processing). To create a Federate based on the above 

introduced agent-based simulation the SEE-SKF main steps have 

been followed. 



In step (1) a FOM that describes the input and output of the 

simulation was defined. In this case the FOM represents the single 

Excavator object with ExcavatorX and ExcavatorY representing 

the current coordinates of the excavator, and PileNumber, 

representing the number of minerals in the regolith pile. All are 

HLAinteger32BE datatype. To begin the creation of the Federate, 

first annotate the Excavator class to match the FOM has been 

annotated as follows: 

 
@ObjectClass(name = 

  "PhysicalEntity.Excavator") 

public class Excavator{… 

 

To create the I/O from the simulation to the rest of the Federation, 

the Excavator class was augmented with attributes and coders. For 

example, to enable the sharing of the X,Y coordinates of the 

excavator the following attributes and coder to the declarations 

have been added: 

 
@Attribute(name = "ExcavatorX", coder = 

 HLAinteger32BECoder.class)  

private Integer ExcavatorX; 

@Attribute(name = "ExcavatorY", coder = 

 HLAinteger32BECoder.class)  

private Integer ExcavatorY; 

 

At the end of the step() method described above the two calls 

 
setExcavatorX(getPointX()); 

setExcavatorY(getPointY()); 

 

have been added to update the current position of the excavator. 

Similar attributes and coders for the other attributes described in 

the FOM have been added. 

In step (2), the SEEAbstractFederate class has been extended to 

create the ExcavatorFederate classes. Within the 

ExcavatorFederate class the configureAndStart() method 

remained unchanged (i.e. it reaches the JSON config file and 

starts the Federation). The doAction() method is shown below. 

 
@Override 

protected void doAction() { 

try { 

 Context<Object> con =  

  RunState.getInstance().getMasterContext(); 

for (Object obj : con) { 

  if(obj instanceof Excavator){  

 // update the RTI on the excavator 

 ((Excavator) obj).step(); 

 } 

  super.updateElement(obj); 

} 

} 

 

This method advances the agent-based simulation by first 

obtaining the current state (context) of the simulation, finding all 

agents (objects) and then “manually” running the step() method in 

the agents. In this example, the single excavator agent’s step() 

method is executed. It then calls updateElement() to output the 

new state of the excavator Federate’s attributes. 

Step (3) simply extended the SEEAbstractFederateAmbassador 

class with as the ExcavatorFederateAmbassador. Step (4) was 

unnecessary as the simulation had already been developed. The 

only addition to these steps was the addition of the 

ExcavatorFederate and ExcavatorFederateAmbassador to the 

context (JExcavatorsBuilder) to include them in the scope of the 

agent-based simulation. The overall class diagram is shown in 

Figure 5. 

 
Figure 5: The architecture of the Excavator Federate. 

5. DISCUSSION 
The challenge presented to the ______ undergraduate team was 

how to create a simulation of a set of self-organizing excavators 

and their mining operation. The first task was to build the 

simulation in REPAST. The team had never done any kind of 

simulation before but had some experience in Java programming. 

However, REPAST has reference examples and documentation 

that could be used to support the teams’ development. The second 

task was to then implement a Federate based on the agent-based 

simulation. In 2014’s SEE event this proved to be an extremely 

challenging task for the team of that year, despite the support of 

the MSG team. The main problem was the lack of support 

material that the team could use. Very little existed at the time 

apart from Fujimoto’s text book [6], Moller’s introduction to the 

HLA [13], and “hints” in key articles on HLA issues (e.g. time 

management [5]). The experiences of using the DKF and its 

associated process had a great impact on the development time of 

the Federate as much of the HLA complexity was hidden away. 

The first attempt to understand the DKF and SEE-SKF was to 

produce a simple astronaut Federate. This essentially allowed a 

user to move a point across a space using a keyboard. The 

simulation just produced the coordinates of the astronaut. 

Following the SEE-SKF process, the team analyzed the data 

produced and required by the simulation to create the FOM 

(coordinates) and then used the SEE-SKF attributes and coders to 

map the FOM to the input/output in the simulation. The 

SEEAbstractFederate class was then implemented with its 

methods: The configureAndStart method to run, the doAction 

method to move the astronaut, and the update method to send the 

current coordinates of the astronaut. Finally, the Federate 

Ambassador was implemented and the main class was made 

available. 



Developing the REPAST Federate proved more challenging as it 

was not clear at first how the above mapped to the environment 

and agent classes of the simulation. The previous section 

presented how this was achieved. The only unsatisfactory aspect 

of the implementation was the delegation of REPAST time 

management to the Federate Ambassador. REPAST has excellent 

time management facilities and this would have been better if the 

Federate Ambassador had been coordinated with REPAST time 

management. We expect this issue to be resolved in future work. 

To test the simplicity of using the SEE-SKF, the Excavator was 

linked to the UAV simulation developed by Liverpool University 

that hovers over the excavator grid. The UAV is equipped with a 

magnetometer that takes readings from the surface to identify 

interesting areas for excavation. To add this to the Excavator we 

assume that the UAV will produce ten sets of readings each 

update. UavX1, UavY1, MagRead1, etc. were then added to the 

FOM under a UAV class to allow the Excavator to subscribe to 

the attributes. Attributes and coders were added to the Excavator 

agent along with a GetMap() method that takes the current UAV 

updates and adds these to the excavator’s map. Once the FOM 

had been agreed with Liverpool it took the team a remarkably 

short time update the agent and get the Excavator/UAV 

distributed simulation up and running. 

6. RELATED WORK 
Several research efforts focused their attention on the creation of 

HLA simulation and developing environments, mainly aiming at 

providing an integrated toolchain for creating and simulating 

complex systems by using specialized modeling tools and 

methodologies. 

For MATLAB/Simulink different packages and toolboxes are 

available for implementing HLA simulators such as the 

Forwardsim HLA Toolbox for MATLAB [23], which provides a 

user interface that allows developers to fully design and customize 

their HLA Federates. Another tool is the HLA/DIS Toolbox for 

MATLAB and Simulink [11] that provides a library of Simulink 

blocks specifically designed for the integration of High Level 

Architecture services into Simulink models. It greatly simplifies 

Federation development and model reuse, as well as enables 

organizations to more efficiently participate in multinational 

simulations or implement distributed simulation models locally. 

Another tool that enables developers to effectively manage the 

structure and assets of a HLA Federate starting from a FOM file is 

the PITCH Developer Studio [15]. This software allows 

programmers to reduce the HLA learning curve by providing 

functionalities for creating and exporting auto-generate C++/Java 

code classes based on the structure of the HLA Federate. 

A domain-specific HLA software framework was created by the 

Danish Maritime Institute (DMI) [24]. This framework defines a 

universe of real-time simulation concepts to support the more 

informal concepts available at DMI with a HLA environment. The 

simulation framework provides mechanisms to simplify the 

development of real-time simulators. 

Other HLA frameworks are based on GRID-computing 

infrastructure and they have become in recent times a popular way 

to model and study complex multi-actor systems by using the 

typical characteristics and capabilities of the GRID [25]. 

The HLA Development Kit and its software framework (DKF) 

differ from the above mentioned solutions in several aspects. In 

particular, differently from a proprietary and commercial solution 

that requires tool-specific knowledge and training, the HLA 

Development Kit is an open source project released under the 

open source policy Lesser GNU Public License (LGPL) and can 

be freely and easily customized and/or extended to cover and deal 

with both domain independent and domain-specific aspects (as 

was the case with the SEE-specific extension). In addition, the 

DKF provides advanced facilities that allow keeping the code 

compact, readable and reliable. As an example, Java annotations 

are used to directly inject the structure of a HLA Federate in the 

Java code. These metadata are used by the core components of the 

DKF at run-time to inspect and check a HLA Federate according 

to its definition in the FOM. The above sketched capabilities 

showed their great benefits not only for expert HLA developers 

but also for HLA novice practitioners as were the undergraduates 

students involved in the SEE project. 

7. CONCLUSION 
The IEEE 1516–2010 – Standard for Modeling and Simulation 

High Level Architecture (HLA) is undoubtedly one of the most 

mature and popular standard for distributed simulation. Due to its 

capabilities to enable the interoperability and reusability of 

distributed simulation components, it is increasingly exploited in 

a great variety of applications in both military and civil domains. 

However, the development of full-fledged simulation models, 

based on the IEEE 1516 standard, is still a challenging task that 

requires both considerable development efforts and advanced 

skills and experience in distributed systems, simulation, 

middleware and software programming. This is due not only to 

the complexity of the IEEE 1516 standard but also to the lack of 

proper documentations and easy-to-use development framework. 

Indeed, developers have to spend a considerable amount of time 

to face with common HLA issues (such as the management of the 

simulation time, the connection on the RTI, and the management 

of common RTI exceptions), rather than to focus on the specific 

aspects of their own HLA Federates. This often results not only in 

an increase of the development time but also in a low reliability of 

the produced simulators. In this context, the paper has presented 

the HLA Development Kit, a general-purpose, domain-

independent toolkit that aims at easing the development of HLA-

based simulations by providing a software framework (the DKF), 

with related documentation, user guide and reference examples. 

The effectiveness of the DKF has been exemplified in the context 

of the Simulation Exploration Experience (SEE), an international 

project lead by NASA and which involves several U.S. and 

European Institutions in the distributed simulation of a Moonbase. 

In particular, the HLA Development Kit and its DKF, has been 

specialized for the SEE application domain and exploited in the 

development of an Excavator Federate. 

In terms of developing educational resources for HLA 

development, the DKF presents a solid foundation for future 

expansion. The SEE event is exciting in that students can create a 

wide variety of simulations and take part in an international 

collaboration to create the Moonbase scenario. The SEE-SKF is 

therefore an example of how the DKF can be extended to be 

domain specific. 

Future work on DKF includes the development of extensions to 

link DKF to REPAST. Previous work by _______ has included 

the development of a hybrid distributed Emergency Medical 

Simulation that consisted of different simulation systems that 

modelled Emergency Rooms and an ambulance service [1]. The 

expansion of DKF into this domain may provide an interesting 



education and research resource to easily develop distributed 

simulations of civil applications. 

8. ACKNOWLEDGMENTS 
The authors would like to thank Edwin Z. Crues (NASA JCS) for 

his precious advice and suggestions in the development of the 

HLA Development Kit. A special note of thanks goes also to all 

the NASA staff involved in the SEE Project: Priscilla Elfrey, 

Stephen Paglialonga, Michael Conroy, Dan Dexter, Daniel Oneil, 

to Björn Möller (PITCH Technologies) and to all the members of 

SEE teams. 

9. REFERENCES 
[1] _________, _________ and _________. 2013. Distributed 

Hybrid Agent-based Discrete Event Emergency Medical 

Services Simulation. In Proceedings of the Winter 

Simulation Conference, ACM Press, NY, 1625-1636. 

[2] Banks, J., Carson, J.S., Nelson, B.L. and Nicol, D.M. 2009. 

Discrete-Event System Simulation (5th Ed.), Prentice Hall 

[3] Certi Project. The simulation toolkit, available from: 

http://savannah.nongnu.org/projects/certi, access February 

2015. 

[4] _________, _________, Longo, F. and Spadafora, F. 2014. 

Simulation Exploration Experience: A Communication 

System and a 3D Real Time Visualization for a Moon base 

simulated scenario. In Proceedings of the 18th IEEE/ACM 

International Symposium on Distributed Simulation and 

Real Time Applications (ACM/IEEE DS-RT), Toulouse 

(France), October 1-3, 2014. 

[5] Fujimoto, R.M. 1998. Time Management in the High Level 

Architecture. Simulation, Vol. 71, No. 6, pp. 388-400, 

1998. 

[6] Fujimoto, R.M. 2010. Parallel and distributed simulation 

systems. John Wiley & Sons. 

[7] _________, Russo, W. 2010. easyABMS: a domain-expert 

oriented methodology for Agent Based Modeling and 

Simulation. Simulation Modelling Practice and Theory, Vol. 

18, pp. 1453-1467, 2010, Elsevier B.V., Amsterdam, The 

Netherlands. 

[8] Highsmith, J. 2002. Agile Software Development 

Ecosystems. The Agile Software Development Series, ed. A. 

Cockburn and J. Highsmith, Addison-Wesley. 

[9] IEEE Standard for Modeling and Simulation (M&S) High 

Level Architecture (HLA) - Federate Interface Specification, 

IEEE Standard 1516-2010. 

[10] Kuhl, F., Weatherly, R., Dahmann, J. 1999. Creating 

Computer Simulation Systems: An Introduction to the High 

Level Architecture. Prentice Hall. 

[11] MÄK, VR-Forces. The complete simulation toolkit, 

available from: http://www.mak.com/products/simulate/vr-

forces.html, accessed February 2015. 

[12] Modeling and simulation coordination office, available 

from: http://www.msco.mil/, accessed February 2015. 

[13] Möller, B. 2013. THE HLA TUTORIAL v1.0. Pitch 

Technologies, Sweden. 

[14] North, M.J., Collier, N.T., Ozik, J., Tatara, E., Altaweel, M., 

Macal, C.M., Bragen, M. and Sydelko, P. 2013. Complex 

Adaptive Systems Modeling with Repast Simphony. 

Springer, Heidelberg. 

[15] Pitch Technologies. The simulation toolkit, available from: 

http://www.pitch.se, accessed February 2015. 

[16] Portico Project. The simulation toolkit, available from: 

http://www.porticoproject.org/, accessed February 2015. 

[17] Simulation Exploration Experience (SEE) 

project,
available from:
http://www.exploresim.com/, 

accessed February 2015. 

[18] Simulation Interoperability Standards Organization 2010. 

SISO-STD-006-2010 Standard for COTS Simulation 

Package Interoperability Reference Models. 

[19] Sokolowski, J.A., Banks, C.M. 2011. Principles of 

modeling and simulation: a multidisciplinary approach. 

John Wiley & Sons. 

[20] _________, Fishwick, P., Fujimoto, R., Page, E., 

Urhmacher, A, Wainer, G. 2012. Panel on Modeling & 

Simulation Grand Challenges. In Proceedings of the 2012 

Winter Simulation Conference. Association for Computing 

Machinery Press, New York, N.Y. 

[21] _________, Revagar, N., Chambers, J., Yero, M., 

_________, _________ and _________ 2014. Simulation 

Exploration Experience: A Distributed Hybrid Simulation of 

a Lunar Mining Operation. In Proceedings of the 18th 

IEEE/ACM International Symposium on Distributed 

Simulation and Real Time Applications (ACM/IEEE DS-

RT), Toulouse (France), October 1-3, 2014. 

[22] Taylor, S.J.E., Turner, S.J., Mustafee, N. and Strassburger, 

S. 2012. Bridging the gap: a standards-based approach to 

OR/MS distributed simulation. ACM Transactions on 

Modeling and Computer Simulation (TOMACS), Vol. 22, 

Article 18. 

[23] The Forwardsim HLA Toolbox for MATLAB, available 

from:
http://www.forwardsim.com/products/hla-toolbox/ 

accessed February 2015. 

[24] Villimann, O. 1999. CTO Project, Documentation, HLA 

Framework. Danish Maritime Institute. 

[25] Xie, Y., Teo, Y.M., Cai, W., Turner, S.J. 2005. Towards 

grid-wide modeling and simulation. 

 

 

http://savannah.nongnu.org/projects/certi
http://www.mak.com/products/simulate/vr-forces.html
http://www.mak.com/products/simulate/vr-forces.html
http://www.msco.mil/
http://www.pitch.se/
http://www.porticoproject.org/
http://www.exploresim.com/,
http://www.forwardsim.com/products/hla-toolbox/

