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ABSTRACT
We present a new technique for controlling optimism in Par-
allel Discrete Event Simulation. It is designed to be suitable
for simulating models, in which the time intervals between
successive events between different processes are highly vari-
able, and have no lower bounds. The basic idea of our
technique, called Dynamic Local Time Window Estimates
(DLTWE), is that each processor communicates time es-
timates of its next inter-processor event to its neighbors,
which use the estimates as bounds for their local simula-
tion time. We have implemented our technique in a parallel
simulator for spatial stochastic simulation, and present an
evaluation of its performance. We show that the DLTWE
technique drastically reduces the frequency of rollbacks and
enables speedups which is superior to that obtained by other
works. We also show that the DLTWE technique signifi-
cantly improves performance over other existing techniques
for optimism control that attempt to predict arrival of inter-
process events by statistical techniques.

1. INTRODUCTION
Discrete Event Simulation (DES) is an increasingly impor-
tant tool for evaluating system models in all fields of sci-
ence and engineering. To improve the capacity and per-
formance of DES simulators, several techniques for Paral-
lel DES (PDES) were developed in the 90’s [21, 15, 20,
11]. Parallelization made it possible to simulate large sys-
tem models, but it was challenging to achieve good speedup
corresponding to the number of employed processors. A
major difficulty for increasing efficiency through paralleliza-
tion was that PDES requires fine-grained synchronization
between processing elements, which was not easy to realize
efficiently on multiprocessors at that time, given the compar-
atively long communication delays between processing ele-
ments. With the current advent of chip multicore processors,
these delays have decreased, triggering the development of
new techniques for PDES targeting multicores (e.g., [4, 23,
22, 31, 32]).

In PDES, the simulation model is partitioned onto logical
processes (LPs), each of which evolves its sub-model along
a local simulation time axis. LPs exchange timestamped
events to incorporate inter-LP dependencies. Each LP must
ensure that the processing of incoming events is correctly
interleaved with local events. The problem with incoming
events that violate an LP’s local timestamp ordering (so-
called stragglers) can in principle be handled in two ways:
conservative approaches allow an LP to process an event
only when it is guaranteed that no straggler will later ar-
rive [21]; optimistic approaches allow stragglers by invoking
suitable corrective action (rollback) [15, 20]. In purely con-
servative approaches, local execution of LPs may be blocked
excessively unless inter-LP events can always be predicted
long in advance (e.g., when simulating networks with long
communication latencies), which most often is not possible.
On the other hand, in optimistic approaches, performance
may be damaged by excessive numbers of rollbacks. Many
approaches to PDES therefore allow stragglers, but control
the optimism by various heuristic techniques, based on, e.g.,
observed frequency of rollbacks [25, 5], patterns of past inter-
LP messages [10], etc.

In this paper we present a new technique for controlling
optimism in PDES. It is particularly designed for high effi-
ciency when simulating models in which the time intervals
between successive inter-LP events are highly variable and
have no lower bounds. Such models pose severe difficulties
for both conservative and existing variants of optimistic ap-
proaches. Our technique, called Dynamic Local Time Win-
dow Estimates (DLTWE), increases efficiency by exploiting
the opportunities for fast multicore inter-LP communica-
tion. DLTWE assumes that an LP can reasonably estimate
timestamps of its next k outgoing inter-LP events, where
k is a tuneable parameter of our technique. Each LP con-
tinuously communicates these estimates to its correspond-
ing neighboring LPs, which use the estimates as bounds for
advancing their local simulation time. Since the communi-
cated timestamps are merely estimates, DLTWE does not
rule out the occurrence of stragglers, meaning that each LP
must perform rollbacks when needed. If the estimates are
sufficiently accurate, then the number of rollbacks should be
small, allowing the simulator to operate with high efficiency.

We have developed the DLTWE technique in the context
of stochastic spatial simulation of models governed by the
mesoscopic reaction-diffusion master equation (RDME) [12,
2]. Here the model’s geometry is discretized into small sub-



volumes (a.k.a. voxels), each of which contains a discrete
number of species (e.g., molecules). In each subvolume the
species obey prescribed stochastic reaction laws and the
species may move (by diffusion) to other neighboring sub-
volumes. When simulating an RDME model using PDES,
the subvolumes are partitioned onto LPs. Hence, a diffu-
sion event between two boundary subvolumes causes inter-
LP communication. By the Markovian nature of the model,
the waiting time of any event is an exponentially distributed
random variable; thus the waiting time has a significant vari-
ance and no lower bound.

In the present paper we show that the DLTWE technique
has small overhead when implemented on a shared-memory
multicore processor. In our simulator, each LP maintains a
list of future events, whose occurrence times have already
been sampled; this is already a component of our technique
for simulating RDME models [Anonymous, 2015].We show
how the DLTWE technique can be tuned by limiting how far
into the future DLTWE estimates will be provided: The cost
of providing more accurate DLTWE estimates further into
the future can be tuned, both against the cost of rollbacks
caused by poor estimates and against achieving limited opti-
mism in contexts where rollbacks are relatively inexpensive.

In the paper, we also demonstrate the effect of a technique
to limit the cost or rollbacks by reversing only those pro-
cessed events that are causally dependent on the straggler
that caused the rollback in the first place. Less costly roll-
backs also allow more optimism in the simulation, thereby
limiting waiting and increasing overall simulation efficiency.

In our evaluation, we show how our implementation of the
DLTWE technique enables speedups in parallel simulation
of RDME models, which is superior to that obtained by
other works. In particular, we compare the DLTWE tech-
nique against other existing techniques for optimistic con-
trol, such as the Probabilistic Adaptive Direct Optimism by
Ferscha [10], and show that employing the DLTWE results
in at least a doubling of parallel efficiency. We support this
comparison by a detailed profiling of the simulator behav-
ior, which shows how DLTWE significantly reduces both the
cost of unnecessary blocking and of excessive rollbacks.

Outline. After reviewing related work in the next section,
we review the class of spatial stochastic simulation models
considered by our simulator in Section 3. A detailed descrip-
tion of our parallelization algorithm, including the DLTWE
technique, is given in Section 4. Section 5 contains a de-
tailed evaluation of the performance of our parallelization
technique, including a detailed breakdown of the simulation
effort, and a comparison with other techniques for optimism
control. Section 6 contains conclusions and directions for
future work.

2. RELATED WORK
Numerous methods for synchronization in PDES have been
proposed. Extensive surveys are provided in [11, 6, 14]; here
we can only review a selection.

Synchronization methods can be crudely classified into con-
servative [21] and optimistic [15, 20]. Each approach has

its drawbacks, which subsequently proposed techniques aim
to mitigate. For instance, conservative time windows [1]
are used to increase parallelism in a purely conservative ap-
proach: this assumes that there is always a guaranteed lower
bound on the delay until the next inter-LP event, which does
not exist in stochastic simulations that we consider.

Optimistic approaches [15, 20] have the potential to achieve
higher parallelism, but performance may be damaged by ex-
cessive rollbacks. Many techniques have been developed for
controlling the optimism and limiting the frequency of roll-
backs. One idea is to employ dynamically moving time win-
dows that bound how far each LP can advance its local
time (e.g., [27, 29]). Synchronization between time windows
typically assumes frequent calculation of global virtual time
(GVT), which is an expensive global calculation, for which
a special high-speed network is recommended. A further de-
velopment of these approaches is the class of “near-perfect”
state information (NPSI) protocols, including the elastic
time algorithm [28]. Here, the bound is based on (GVT)
and information about future messages to neighboring LPs,
which is computed and communicated over a special high-
speed network. Our DLTWE approach is also based on con-
trolling optimism by information propagated between LPs;
however, we show how such an idea can be realized on a
modern multicore without using a special high-speed net-
work.

There are also approaches where optimism control can be
performed by LPs based on locally available information,
not requiring a special high-speed network. In some of these
techniques, each LP autonomously regulates its event pro-
cessing speed against parameters, such as frequency of roll-
backs [25, 5]. Another approach is to use the pattern of
past incoming inter-LP messages [10] to predict the time of
the next incoming message by statistical techniques, thereby
obtaining a bound for advancement of local time. We com-
pare this approach to our technique in Section 5.5. A study
where model-specific information has been used to extract
additional synchronization information (in the form of an
extended lookahead) is presented in [19]. Here, up to three
model-dependent heuristics have been exploited to signif-
icantly increase parallel performance in the simulation of
wireless sensor networks.

Other performance-enhancing techniques in optimistic PDES
include to avoiding rollbacks due to out-of-timestamp-order
when this is possible. In [3] the authors introduce a “look-
back”, a limited history of recent events. When a straggler
event arrives, it is checked against the history, and if no
causality error is found, the event is processed as if arriv-
ing in order. In [18], the authors view the processes in the
simulator as objects of abstract data types, and messages
as operations being performed on the objects. Some of the
operations commute with each other, and hence rollbacks
can be avoided.

Recently, techniques for PDES that specifically target mul-
ticores have been developed. One approach is to allow each
subdomain to be accessed by several cores (e.g., [4, 23, 22]),
thereby achieving better load balancing. We conjecture that
for our work, this benefit would be more than outweighed
by the cost of the necessary synchronization.



Exact parallel simulation of RDME models was previously
addressed by [16, 30, 7]. The simulators are implemented in
the distributed environment, where an LP simulates either
a single subvolume [7, 30] or a larger subdomain [16]. In
the latter case, synchronization with neighbors occurs solely
at the domain boundaries, which increases the LP’s private
workload and reduces the communication cost per subvol-
ume. As discussed by [7], conservative simulation of RDME
models is infeasible due to the lack of lookahead. Hence,
simulators rely on optimistic protocols. A reduction of roll-
back cost was previously implemented by a static distance
from the GVT [16] or adaptive protocols, such as Breathing
Time Warp [30].

3. SPATIAL STOCHASTIC SIMULATION
In this section, we review the class of spatial stochastic sim-
ulation models considered by our simulator.

The reaction-diffusion master equation (RDME) can be re-
garded as a framework to describe the dynamics of spatially
extended Markovian processes of interacting entities. As
the name suggests, the RDME is a suitable model for chem-
ical reactions in a diffusive environment, but processes from
biology, epidemics, and many other applications may also
be successfully treated. In particular, the RDME is particu-
larly suitable for systems where discrete effects (due to small
populations) and thermal noise should not be neglected.

The spatial domain of interest is divided into subvolumes,
each of which maintains a copy number (discrete count) of
all participating species. The dynamics of the model is then
a continuous-time Markov chain over the state space con-
sisting of all copy numbers in all subvolumes. The state
transitions fall in one of two categories, (i) a reaction event
acts in a single subvolume by removing a combination of
species and replacing it with a different combination, (ii) a
diffusion event moves a single unit of one species from one
subvolume to a neighboring subvolume, and hence changes
the state of two subvolumes. The waiting time for each tran-
sition is exponentially distributed with an intensity that is
proportional to the product of the copy numbers of the in-
volved species.

As a concrete example, a reaction from the Lotka-Volterra
predator-prey model described in Section 5.1 reads

B + C
r−→ 2C, (1)

that is, in a particular subvolume one unit of B (prey) is
consumed and one unit of C (predator) is produced. The
intensity for this event is proportional to the product of the
number of B’s and C’s, where r is the constant of propor-
tionality, later referred to as the reaction rate. At any time
t, the waiting time to the next event is exponentially dis-
tributed with this intensity.

In a spatial context, prey in one subvolume can escape by
moving to another subvolume. If Bi and Bj denote the
population of preys in neighboring subvolumes i and j, then

Bi

qij−−→ Bj , (2)

expresses the event that one unit of prey in the ith subvol-
ume moves to the jth. The waiting time for this event is

equal to the product of Bi and the transport rate constant
qij . Depending on the scaling of this constant versus the
spatial units, different types of transport may in principle
be modeled. In this work we consider the diffusive scaling
regime, in which qij ∝ h−2, with h a length-scale (e.g., a ra-
dius) of the subvolumes. Notably, with a finer discretization
(i.e., h→ 0), the number of diffusion events will increasingly
dominate the Markov chain.

It was Gillespie [13] who first detected the feasibility of sim-
ulating independent samples from master equations in gen-
eral. For RDMEs one of the first practical sampling algo-
rithms was proposed in [8], the Next Subvolume Method
(NSM).

In this work we consider a related method, the All Events
Method (AEM) [Anonymous, 2015]. The algorithm gen-
erates next event times for each reaction and diffusion in
all subvolumes and stores them in an event queue. It pro-
ceeds by repeatedly selecting the event with the smallest
time from the event queue, processes it by updating the
state, and finally updates the event queue by sampling the
next time for the event just processed. Also, at this stage,
those rates which have changed due to the state update need
to be rescaled (see [Anonymous, 2015] for details).

Being essentially a spatial extension of the Common Reac-
tion Path method [24], the AEM has the benefit of being able
to produce coupled trajectories, thus defining a consistent
stochastic flow. Besides implying a much reduced variance
in statistical estimators, this is also required when evaluating
the effect of small perturbations or coefficient uncertainties
in a strong sense (e.g., root-mean-square, see [Anonymous,
2015] for a discussion). Furthermore the property is of use
for fitting of model parameters using numerical optimization
routines.

Of relevance to the current application, the AEM stores the
waiting times for the next instance of each reaction or dif-
fusion event such that it is possible to accurately predict
when specific events will happen, notably including diffusion
events between subvolumes. Another feature of more practi-
cal nature is that, by seeding the random number generators
in an identical way, the parallel simulations yield identical
results independently on the number of LPs, thus ensuring
correctness. These features come at a certain cost, however,
as the AEM requires to store more entries in the event queue
compared to, for example, the NSM.

4. PARALLEL IMPLEMENTATION
In this section we detail our parallelization of the All Events
Method (PAEM), which implements the DLTWE for a com-
pletely general class of RDME models.

In our parallel simulator, the subvolumes of the simulation
model are partitioned into subdomains, each of which is as-
signed to an LP. Each LP evolves the state of its subdomain
while maintaining three main data structures: (i) the subdo-
main state, i.e., for each subvolume, the number of entities
of each species as well as the timestamp of the last event
affecting the subvolume, (ii) a time-sorted event queue, con-
taining the next occurrence of each event type for each sub-
volume in its subdomain, and (iii) a rollback history, which



is a time-sorted sequence of events already processed by this
LP.

Each LP advances the simulation by processing events that
affect its subdomain. The LP repeatedly finds the next event
for processing, either in its event queue or in a message from
another LP, and processes it by (i) updating the states of
affected subvolumes, (ii) adding the event to its rollback
history, and (iii) adding the next event of the same type
and subvolume to its event queue. If the event is a diffusion
event which crosses a subdomain boundary, then a message
is transmitted to the neighboring LP; each pair of LPs is
connected by a FIFO channel in each direction.

Whenever an LP receives a diffusion message that causes a
causality violation (i.e., it is a straggler), it must perform a
rollback to the time immediately before the straggler’s time-
stamp, using its rollback history. We have implemented two
different versions of the rollback operation: a more costly
simple rollback and a less costly selective rollback. The se-
lective rollback is described further below. In the simple
rollback, the local time of the LP is reset to the time im-
mediately preceding the timestamp of the straggler, and the
events in the rollback history that occur after this timestamp
are processed “backwards”. All diffusion messages that had
been sent by the LP during the rollback interval must be
undone by sending corresponding anti-messages to the cor-
responding LPs. An anti-message cancels any event that
was sent earlier with the same or a later timestamp. The
receipt of an anti-message triggers rollbacks at the receiving
LPs if it cancels a message that has already been processed.

Since rollbacks triggered by stragglers hurt performance,
an LP should try not to advance its local simulation time
past the timestamp of any diffusion message that will be
received in the future. For this purpose, we have developed
the DLTWE (Dynamic Local Time Window Estimate) tech-
nique, whereby each LP communicates to each of its neigh-
boring LPs an estimate of the timestamp of the next dif-
fusion to respective LP; these estimates are obtained from
the current contents of the event queue. An LP does not
advance its local simulation past the time of the earliest in-
coming time estimate. Depending on the overall presence
of DLTWEs between LPs, the optimism of the simulation is
controlled.

To reduce the impact of rollbacks, we have developed a tech-
nique for selective rollback. An LP that receives a strag-
gler or an anti-message performs a refined analysis before
executing a rollback. Rather than merely comparing the
timestamp of the incoming diffusion message with its local
simulation time, the receiving LP traces the causality vio-
lations that are incurred by the incoming message. The LP
finds the processed events that are causally dependent on the
straggler or anti-message using the trace. Only these events
are rolled back. The cost of selective rollback is typically
significantly lower than the cost of simple rollback.

The simulator main loop. Algorithm 1 is a pseudocode
description of the main loop executed by each LP. Lines 2
through 6 define the main data structures. These are

EventQueue is a time-sorted priority queue containing the
scheduled local events;

SubvolumeState represents the state of each subvolume in
the subdomain, i.e., the number of entities of each
species in each subvolume, as well as the timestamp
of the last event affecting the subvolume,

History is a time-sorted sequence of events already processed
by th LP; old events are regularly removed from the
history by fossil collection, which we do not further
describe here,

Channels contains an incoming message channel for each
neighboring LP, and

Dltwei,j consists of a DLTWE estimate from LPi to LPj ,defined
for each pair of neighboring LPs.

For an event e, we let e.time denote its timestamp; for a
diffusion event e, we let e.dest denote its destination subvol-
ume. For a subvolume s, we let dom(s) denote the index of
the LP to which s belongs.

The main simulator loop consists of two phases. The first
phase (lines 8–18), finds the next event to be processed, as
follows. First, For each incoming channel, the first message
that is not canceled by a later anti-message in the channel,
is retrieved by means of the function RetrieveMsg. In-
tuitively, the retrieved message is the first one in the chan-
nel that should be processed after all rollbacks induced by
anti-messages have been performed. The earliest of these
messages is assigned to emsg. If emsg is a straggler which
violates causality in its destination subvolume (checked at
line 9) then a rollback is performed. Second, the earliest
event elocal in the event queue is read. If emsg is earlier than
elocal (line 12), then emsg is assigned to e for processing.
Otherwise, the event elocal is assigned to e for processing,
but only if no DLTWE estimate is violated (line 15). The
algorithm restarts the loop from line 8 if such a violation
would occur.

The second phase (lines 19–30) updates the subdomain state
of the LP by processing the event e that was selected in the
first phase. It starts by checking whether e is a “local strag-
gler”, i.e., a local diffusion event that would cause a local
causality error (line 19), in which case a rollback is nec-
essary. Thereafter, e is processed by adding it to the event
history (line 21), updating the states of affected subvolumes,
and updating the times of future events in the event queue
that are affected by the state change(s) (lines 22 through 26).
If e is a diffusion to another subdomain, a message is sent
(line 28) to the appropriate LP. After that, the DLTWEs
are updated (line 30) to inform the neighboring LPs of the
estimated times of the next diffusion events.

DLTWEs are computed based on outgoing diffusion events
that can be found in a prefix of the event queue, thus not
considering diffusion events that are scheduled far into the
future. If no relevant diffusion events for a specific LP are
found in the prefix, the corresponding DLTWE is set to
infinity. The length of the considered prefix is a tuneable
parameter of our approach. A short prefix induces less ef-
fort for DLTWE computation, but will generate DLTWE
estimates for only a small subset of neighboring LPs, induc-
ing more optimism in the simulation; too much optimism
may result in high cost for rollbacks. A long prefix, on the



Algorithm 1: Main loop of Parallel AEM Simulator, executed by each LP.

1: LPs are indexed 1 . . . N , Subvolumes of LPi are indexed 1 . . . ni.
2: EventQueue . Time-sorted priority queue of scheduled events
3: SubvolumeState[1 . . . ni] . Current state of subdomain
4: History . Event history, used for rollbacks
5: Channels[neighbor LPjs] . Incoming message channels, one for each neighboring LP
6: Dltwei,j . A DLTWE from LPi to LPj (defined for each pair of neighboring LPs)
7: while true do

. Earliest processable message in incoming channels
8: emsg ← earliest message in {ercv | chan ∈ Channels, ercv ∈ {RetrieveMsg(chan)}
9: if emsg.time < SubvolumeState[emsg.dest].time then . If emsg is a straggler.

10: SelectiveRollback(emsg) . Then a rollback must be performed.

11: elocal ← earliest event in EventQueue
12: if emsg.time ≤ elocal.time then . If m precedes any local event
13: e ← Pop emsg from its message channel . The event e to be processed is from the incoming channels
14: else
15: while ∃ neighboring LPj s.t. Dltwei,j ≤ elocal.time do . If next event is later than some DLTWE
16: if ∃enew ∈ Channels[LPj ] or

exists message in other channel earlier thanDltwei,j then
17: goto 8 . restart loop from line 8

18: e ← pop elocal from event queue . Otherwise the event to be processed is the next local one

. Second phase begins here
19: if e is a local diffusion event and SubvolumeState[e.dest].time > e.time then
20: SelectiveRollback(e)

21: Add e to History
22: Update state of SubvolumeState[e.subvol]
23: Update timestamps of affected future reactions/diffusions in EventQueue
24: if e is a diffusion then
25: if e.dest is local then
26: Update SubvolumeState[e.dest]
27: else
28: Send diffusion message to owner of e.dest

29: for each neighbor LPj do
30: Dltwej,i ← min ({ediff .time | ediff ∈ prefix(EventQueue) and ediff .dest is in the domain of LPj} ∪∞)

other hand, costs more effort for DLTWE computation, and
will avoid excessive cost of rollbacks, but may in some con-
text also induce too little optimism. How to tune the prefix
length to make this trade-off is examined in Section 5.4.

As an optimization, the updates of the DLTWEs at line 30
are performed only when necessary, i.e., when the estimated
time of some future inter-LP diffusion event is updated. The
DLTWE estimates are communicated using a single mem-
ory cell per direction and neighboring LP-pair, which is only
written to when this results in a new value, to avoid unnec-
essary coherence traffic.

The SelectiveRollback function:
The function SelectiveRollback(ecause), shown in Algo-
rithm 2, reverses the effect of all events processed by an LP
at or after time ecause.time, that are causally dependent on
ecause. Each subvolume may be rolled back to a distinct
timestamp. First, we let H contain the part of the history
that may be rolled back (line 2). After that we define a set
D of 〈subvolume, timestamp〉 pairs. Intuitively, D defines
the timestamp to which events has to be rolled back to for
each subvolume. Initially, if ecause is a straggler, D must
at least contain 〈ecause.dest, ecause.time〉 (line 4). If ecause

is an anti-message, D instead contains all destination sub-
volumes d of messages received from dom(ecause) after time
ecause.time, and their respective time (line 6). Thereafter,
D is completed to contain all 〈subvolume, timestamp〉 pairs
that are causally dependent on ecause, such that for every
diffusion event between any two subvolumes s, s′ at time t,
we have that if 〈s, t′〉 ∈ D and t > t′, and there is no diffu-
sion ediff such that t′ < ediff .time ≤ t, then 〈s′, t〉 ∈ D, or
vice versa (line 7). In the main while loop, the subset of
the history H is traversed backwards in time, event by event
(line 8). Each event being incident on some subvolume oc-
curring in D, after the corresponding time t, is rolled back.
An event e is reverted by reversing the state changes of the
affected subvolumes, and the rescheduling of affected events
in the event history. If the rollback was initiated by an anti-
message, and e is an incoming diffusion originating from a
neighbor LP that did not send this anti-message, then e will
be pushed back to the top of its originating message chan-
nel (checked at line 12). If one or more diffusion events have
been sent to a neighbor LPj during the rollback interval, a
single anti-message will be sent, containing the timestamp of
the earliest message sent to LPj after t (starting at line 14).



Algorithm 2: Rollback events at or after time t.

1: function SelectiveRollback(event ecause)
2: H ← {e | e ∈ History and e.time ≥ ecause.time}
3: if ecause is straggler then
4: D ← {〈ecause.dest, ecause.time〉}
5: else . ecause is an anti-message
6: D ← {〈e.dest, e.time〉 | e ∈ H, dom(e.subvol) =

dom(ecause.subvol)}
7: D ← extend D under causal dependence
8: while e← pop latest event in H do
9: if ∃〈s, t〉 ∈ D s.t.

e.subvol = s and e.time ≥ t then
10: revert e
11: Pop e from History
12: if e.subvol ∈ LPj and not (isanti(ecause) and

dom(ecause.subvol) = LPj) then
13: push e back to front of Channels[LPj ]

14: for each neighbor LPj do . send anti-messages
15: ediff ← earliest rollbacked diffusion to LPj

16: send anti-message with time ediff .time to LPj

The RetrieveMsg function:
The function RetrieveMsg(chan) returns the first message
in the incoming channel chan that can be meaningfully pro-
cessed, i.e., it is not undone by a corresponding anti-message
already present in the chan. The function starts by finding
the timestamp of the earliest anti-message in the channel
(line 3). Thereafter, messages are popped and discarded
from the channel, until either the first message preceding
the earliest anti-message is encountered, or until the anti-
message itself is encountered (lines 4–7). In the former case,
the function returns the message immediately without pop-
ping it from chan. In the latter case, a rollback correspond-
ing to the anti-message is performed (line 8) and the proce-
dure is repeated. Thus, there are two possible states of the
channel after the completion of the function: a) either there
are no anti-messages left in the channel, or b) the first mes-
sage in the channel is a diffusion event and has a time earlier
than the time of the earliest anti-message in the channel.

Algorithm 3: Locating the first processable message.

1: function RetrieveMsg(channel chan)
2: while chan contains anti-messages do
3: eanti ← earliest anti-message in chan
4: for e← first message in chan do
5: if e.time < eanti.time then return e

6: pop e from chan
7: if e = eanti then break

8: Rollback(eanti.event)

9: return first message in chan

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our paral-
lelization technique. The aim is to answer the following
questions.

How does our technique scale with the number of LPs? In Sec-
tion 5.2 we determine the speedup obtained on bench-

marks, and investigate the dependency on model pa-
rameters.

How does the parallelized simulator behave? In Section 5.3
we describe how the computation effort is spent on
different activities, exposing potential bottlenecks.

How should the DLTWE technique be tuned? In Section 5.4
we describe how to tune the cost for the computation
of the DLTWE estimate against the gain in reduced
rollback frequency

How does the DLTWE technique compare to other techniques?
In Section 5.5, we compare the DLTWE technique to
adaptive optimism control techniques based on local
history. In Section 5.6, we compare our parallel simu-
lator to other existing simulators for RDME models.

The performance was evaluated on three sets of benchmarks,
described in more detail in Section 5.1. All experiments were
run on a 4-socket Intel Sandy Bridge E5–4650 machine, each
socket having 8 cores and a 20 MB shared L3-cache. Hy-
perthreading was used, resulting in a total of 16 hardware
threads per processor. An LP is always assigned to a single
thread. Speedup is defined as the simulation time of the
sequential algorithm (AEM) over the (wall-clock) simula-
tion time of parallel algorithm (PAEM). Three-dimensional
geometries were constructed using Comsol Multiphysics 4.3
and converted to computational models using the URDME
framework [Anonymous, 2012]. The two-dimensional struc-
tured meshes used in the spatial predator and prey model
were constructed using custom Matlab scripts. The resulting
meshes were divided into subdomains using the multilevel k-
way partitioning method provided by the Metis library [17].
Metis optimizes the partitioning for minimal number of dif-
fusions crossing subdomain boundaries, while maintaining
an equal number of subvolumes in each subdomain.

5.1 Benchmarks
We investigated the behavior of our simulator on three bench-
marks. In the first benchmark we evaluated the scaling as
a function of the geometry and the ratio of diffusion to re-
action events (D:R). The D:R was measured during a se-
quential profiling run. The second benchmark is a spatial
predator and prey model in two dimensions, which was pre-
viously used for performance evaluation by others [30]. The
last benchmark is the simulation of the Min-protein system
in a three-dimensional model of the E. Coli bacterium.

Reversible isomerization. We created spatial models from
different three-dimensional geometries, namely a sphere, a
disc, and a rod, all of equal volume. The RDME model
considered consists of two freely diffusing species, A and B,
each with initial copy numbers of 1000 per subvolume. We
prescribed the simplest possible reversible isomerization

A
c−→ B, B

c−→ A, (3)

where the reaction rate c is selected such that the D:R is 1
when both species diffuse at a diffusion rate of 1. The dif-
fusion rates of both species were varied in {1, 100}, thereby
increasing the D:R. We also varied the volume of the geome-
tries in {1, 10, 100}. For the sphere and the disc we did this
by increasing the radius, keeping the height of the disc at the
constant value 0.2. For the rod, the radius was kept at the



value 0.2 while the length was increased. As all discretiza-
tion parameters remained the same for all model configu-
rations, the number of subvolumes in each model grew to
approximately {1500, 15000, 150000}. In the following, we
refer to the specific model configurations as [vx,dy], denot-
ing that the model has a volume of x and that the diffusion
rates for both species are y.

Spatial predator-prey model. This benchmark is the spa-
tial extension of the Lotka-Volterra model, proposed by Schi-
nazi [26]. We use the model parameters proposed by Wang
et al. [30]. The system contains three species, A, B, and
C, where the initial copy number for each is set to 1000 per
subvolume. The model reads

A + B
0.01−−→ A + 2B,

B + C
0.01−−→, 2C

C
1−→ ∅.

(4)

The geometry is a two-dimensional square with a varying
side of length {64, 200, 400} units and with square subvol-
umes of unit area. The diffusion rates of species B and C
are either d1

B = 2.5 and d1
C = 5, or d2

B = 5 and d2
C = 10,

while dA = 0 in all cases. In the first case, the D:R is ap-
proximately 1, and about 2 in the second.

A model of the Min-protein system. As a rather challeng-
ing benchmark we used a model of a Min-protein system in
a three-dimensional model of an E. Coli bacterium [9]. The
model contains five chemical species interacting in a system
of five reactions. The geometry is pill-shaped, resulting from
the union of a cylinder with two spheres (Figure 1). The
complete set of reaction- and diffusion-rates can be found
in [9], and the model is also available for download in the
current release of URDME [Anonymous, 2012].We simulated
the model at two different mesh resolutions, hence at two dif-
ferent ratios of reaction to diffusion events since the diffusion
rate is inversely proportional to the square of the subvolume
length. The coarse mesh (Figure 1A) contained 1555 subvol-
umes and the D:R was approximately 250. In the fine mesh
(Figure 1B) the system consisted of 13307 subvolumes, and
the D:R was about 1400.

Figure 1: The spatial discretization of the E. coli
bacterium geometry; coarse-grained (A) and fine-
grained (B) tetrahedral meshes.

5.2 Scalability
In this section, we evaluate how the simulator performance
scales with increasing LP count, and how the scaling de-

pends on the particular model. In order to relate the models
better to the measured performance we identify four poten-
tial performance indicators:

• Subvolume count : The number of subvolumes in the
model.

• The diffusion to reaction ratio (D:R): The ratio of sim-
ulated diffusion to reaction events.

• Average degree: The average number of neighbors of
each LP.

• Inter-LP diffusion ratio (Inter-LPD): The number of
diffusions crossing subdomain boundaries over the to-
tal number of diffusions. We also tried including the
reactions into the ratio, but this yielded a worse indi-
cator. We discuss the impact of reactions separately
under the D:R.

In Table 1 we present an overview of the benchmark con-
figurations together with the introduced indicators. As the
indicators inter-LP diffusion ratio and the average degree
depend on the number of partitions, the values are listed for
the partitioning to 16, 32 and 64 subdomains.

We furthermore list the sequential and parallel simulation
time measured for all model configurations. Note that to
measure the sequential time we used the sequential version
of the algorithm (AEM), thus no parallelization overhead
is included in the measurement. Moreover, the simulated
time range was freely varied for each configuration, thus no
direct relationship exists between simulation times shown in
different rows.

Lastly, we list the parallel efficiency for all experiments and
the same set of partitions. The parallel efficiency calculates
as T1(TN ∗N)−1, where T1 is the sequential simulation time
and TN the parallel simulation time using N LPs.

We investigated the relationship of the introduced indicators
to the measured parallel efficiency. To study the influence
of the inter-LP diffusion ratio (inter-LPD) we observe the
scaling of the rod, disc and sphere models at the [d1] con-
figuration shown in Figures 2a, 2b and 2c. We see that
large models (v100) scale significantly better than models of
medium (v10) and small size (v1). As shown in Table 1, a
large model size leads to a high private work-load per LP
and thus a low inter-LPD. Furthermore, large models with
a lower inter-LPD (e.g., rod) achieve a higher parallel effi-
ciency than models with a higher inter-LPD (e.g., sphere).
Hence, we find that the inter-LPD is an accurate indicator
for the parallel performance of our simulator.

To study the impact of an increasing diffusion to reaction
ratio (D:R) we present the scaling of the sphere model at
configurations [d1] and [d100] shown in Figure 4. Here we
find that the difference in parallel performance due to the
increased D:R is small (< 10%). Furthermore, for large
models (v100) we observe that the parallel performance is
independent of the D:R, as shown in Table 1. This is an un-
expected finding, as we assumed that the D:R has a stronger
influence on the scaling due to its effect on private workload.

To study how the parallel efficiency depends on the average
degree in isolation, we compare different configurations of



Model Conf. #Subvol. D:R Avg. Degree Inter-LPD.% Time [s] Efficiency
16 32 64 16 32 64 Seq. 16 32 64 16 32 64

[v1,d1] 1437 1 7.6 8.8 10.3 24 32 42 198.7 34.7 29.9 21.9 0.36 0.21 0.14
[v1,d100] 1437 105 7.6 8.8 10.3 24 32 42 216.4 45.5 40.5 37.9 0.3 0.17 0.09
[v10,d1] 13575 1 7.8 8.8 10.8 12 15 21 259.8 37.7 23.1 13.7 0.43 0.35 0.3
[v10,d100] 13575 107 7.8 8.8 10.8 12 15 21 293.7 43.3 28.2 17.1 0.42 0.33 0.27
[v100,d1] 135228 1 7.9 9.8 10.8 6 8 10 545.1 64.1 31.1 12.6 0.53 0.55 0.68

Sphere

[v100,d100] 135228 109 7.9 9.8 10.8 6 8 10 476.1 53.3 24.5 11.6 0.56 0.61 0.64

[v1,d1] 1555 1 4.1 5 5.7 15 22 33 186.9 31.3 23.7 23.1 0.37 0.25 0.13
[v1,d100] 1555 91 4.1 5 5.7 15 22 33 190.2 33.5 26.8 30 0.36 0.22 0.1
[v10,d1] 13452 1 4.4 4.7 5.2 5 8 11 203.4 27.3 14.9 8.8 0.47 0.43 0.36
[v10,d100] 13452 85 4.4 4.7 5.2 5 8 11 204.4 26.8 15.9 9.7 0.48 0.4 0.33
[v100,d1] 125537 1 4.2 4.6 5.1 2 3 4 376.9 45.7 20.1 7.4 0.52 0.59 0.8

Disc

[v100,d100] 125537 82 4.2 4.6 5.1 2 3 4 282.7 34.2 14.9 5.5 0.52 0.59 0.8

[v1,d1] 1429 1 1.9 1.9 2.8 13 27 54 174.7 27.1 22.9 27.1 0.4 0.24 0.1
[v1,d100] 1429 90 1.9 1.9 2.8 13 27 54 177.6 31.1 30.1 33.8 0.36 0.19 0.08
[v10,d1] 14000 1 1.9 1.9 2 1 2 5 224.2 28 14.7 8.3 0.5 0.48 0.42
[v10,d100] 14000 90 1.9 1.9 2 1 2 5 232.6 27.7 15.6 9.3 0.53 0.47 0.39
[v100,d1] 139139 1 1.9 1.9 2 0 0 0 325.5 40.1 18 6.4 0.51 0.56 0.79

Rod

[v100,d100] 139139 91 1.9 1.9 2 0 0 0 357 42.2 19.7 6.9 0.53 0.57 0.81

[n64,d1] 4096 1 4.1 4.7 4.9 6 10 14 203.5 29.2 22.8 12.2 0.44 0.28 0.26
[n64,d2] 4096 2 4.1 4.7 4.9 6 10 14 324.6 51.6 41.2 33.4 0.39 0.25 0.15
[n200,d1] 40000 1 4.1 4.6 5 2 3 5 371.2 44.2 22.7 11 0.53 0.51 0.53
[n200,d2] 40000 2 4.1 4.6 5 2 3 5 592.6 72.3 34.6 20.9 0.51 0.54 0.44
[n400,d1] 160000 1 4 4.6 5.1 1 2 2 286.1 31.5 13.8 5.8 0.57 0.65 0.78

Pred.-
Prey

[n400,d2] 160000 2 4 4.6 5.1 1 2 2 387.1 50.5 22.2 9.1 0.48 0.54 0.67

[coarse,–] 1555 304 5.2 7.5 8.7 20 27 38 126 29.7 23 24 0.27 0.17 0.08Min-
System [fine,–] 13307 1517 4.9 7.3 8.9 10 14 20 539.9 80.4 53.1 34.1 0.42 0.32 0.25

Table 1: Overview of benchmark characteristics and results.

geometries with the same Inter-LPD. Namely, the models
disc [v10,d1] and sphere [v100,d1], both of which have a
Inter-LPD of 8% at the partitioning on 32 LPs. We find
that the sphere model has a higher average degree than the
disc model and the parallel efficiency is likewise increased.
Nonetheless, as the models are of different subvolume sizes,
we can not rule out the influence of unknown factors that
correlate with the average degree.

Lastly, we observe the effect of the subvolume count indica-
tor. It can be seen in Table 1 that a correlation with the
Inter-LPD and thus the parallel efficiency exist. Further-
more, the efficiency for simulation of large models (v100)
increases at increasing LP-count, which is not the case for
small or medium size models. We suspect that this outcome
is attributable to cache effects, as the partitioned model may
fit better into core-local cache levels.

To visualize the correlation of the the inter-LP diffusion ra-
tio and subvolume count indicators to the parallel efficiency
we applied statistical curve fitting to the data for all [d1]
models simulated on 64 LPs, as shown in Table 1. In Fig-
ure 3 we see the inter-LPD to parallel efficiency data fitted
with a negative exponential function, and the subvolume
count to parallel efficiency correlation fitted by a log-linear
relationship.

5.3 Detailed Behavior

Inter-LP diffusion ratio
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Figure 3: Curve fitting of the LPD and subvolume-
count indicators to the parallel efficiency for all [d1]
models simulated on 64 threads.

In this section, we study in detail how the effort of the sim-
ulator is allocated. The DLTWEs were tuned to achieve
the best performance for each model; hence the degree of
optimism varies, and as a consequence the allocation of ef-
fort may be distributed differently. To measure the differ-
ent parts of the effort, a lightweight instrumentation of the
simulator was performed. The instrumentation allows us to
break down the execution time into six parts of interest (line
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(a) Rod[d1]
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(b) Disc[d1]
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(c) Sphere[d1]

Figure 2: Speedup for different configurations of the geometries rod, disc and sphere, the size is varied.
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Figure 4: Speedup for the sphere[v10] model, D:R
d1 and d100.

numbers refer to Algorithm 1):

Waiting Time spent on blocking due to DLTWEs. (lines 15–
17)

Rollbacks Time spent on processing anti-messages and roll-
backs. (lines 8,9 and 20).

Redo Time spent on redoing work that has been undone
by a preceding rollback. We estimate that the forward
processing time is roughly equal to the backward pro-
cessing time of an event, thus we estimate this value
to be the same as Rollbacks.

Local work Time spent on processing of local events, other
than events that could be attributed to Redo. (roughly
lines 21–28, when e originates from the local event
elocal at line 18)

Messaging Time spent on processing of diffusion messages
other than anti-messages and messages that could be
attributed to Redo. (roughly lines 21–28, when e orig-
inates from the message m at line 13)

DLTWE comp. Time spent on computing new DLTWEs,
including scanning of the event queue. (line 30)

Of the above, Local work and Messaging are considered use-
ful work, and the other parts are referred to as non-work.
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Figure 5: Breakdown of the execution time for the
rod, disc and sphere models, size v100 and D:R d1.

The results of the breakdown analysis for the rod[d1], disc[d1]
and sphere[d1] models, large size (v100), are shown in Fig-
ure 5. We see that the non-work part is completely domi-
nated by blocking due to DLTWEs. Only a lesser part of
the time is spent on rollbacks. Hence, the DLTWEs lead
to a largely conservative execution for these models. For
the sphere model, more time is spent on the processing of
messages, in relation to the other models. This difference is
explained by the increased connectivity of the sphere model,
whose average degree is the double of that of the disc model,
and five-fold in comparison to the rod.

In Figure 6, a corresponding breakdown analysis for the
small models (v1) is shown. Here we see that a much larger
portion of the non-work time is spent on rollbacks, for the
disc and the sphere models. Apparently, for sufficiently
small models, tuning the DLTWEs to allow for a more opti-
mistic simulation is better. We also see that even more time
is spent on processing messages, than in the case of the big
(v100) models. Overall, more time is spent on parallel over-
head, which is in line with our expectation, as the amount
of private work is very small.

5.4 DLTWE Computation
In this section, we discuss how to tune the DLTWE com-
putation, and we show how the selective rollback technique
affects the performance in comparison to using non-selective
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Figure 6: Breakdown of the execution time for the
rod, disc and sphere models, size v1 and D:R d1.

rollbacks.

In our implementation, diffusion events are stored in a sep-
arate diffusion queue. The DLTWEs are produced by scan-
ning the events in the diffusion queue (line 30 in Algo-
rithm 1). The length of the prefix being scanned is a tun-
able parameter of our simulator, that affect the number of
neighbors of each LP for which the DLTWEs are updated.
Scanning a longer prefix of the diffusion queue results in a
greater fraction of the DLTWEs being updated, and thus a
more conservative simulation; furthermore, it requires more
effort to update the DLTWEs. Scanning a shorter prefix
results in fewer DLTWEs being updated (and thus set to
infinity), and a more optimistic simulation.
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Figure 7: Total execution time for varying scan pre-
fix lengths and average percentage of DLTWEs com-
puted on the Predator-Prey[n200,d1] benchmark, on
64 threads.

We analyze how the performance depends on the length of
the prefix, and also how this dependency is affected by the
cost of rollbacks. For this, we run simulations under a range
of prefix lengths, on the Predator-prey[n200,d1] model, both
using the selective rollback technique and using the non-
selective rollbacks. The results are displayed in Figure 7.
On the x-axis above the plot, the performance is related to
the average percentage of DLTWEs being updated. On the
x-axis below, the performance is related to the scan prefix
length. The execution time of the simulation using selective
rollbacks and using non-selective rollbacks are shown for dif-
ferent lengths of the scan prefix. For decreasing length of

the scan prefix, the performance of the non-selective roll-
back starts to decline when the percentage of the DLTWEs
being updated passes below 50%. For the selective rollback,
the performance does not start to decline until 5%.

We see that in general the selective rollback technique al-
ways results in a superior or similar performance in compar-
ison to the non-selective rollbacks. The optimal length of
the scan prefix length for the two techniques are different,
using selective rollbacks it is substantially shorter. This is
because the effort of rollbacks is much smaller, and thus the
performance improves, as optimism increases, even though
the number of stragglers increase. We also see that in gen-
eral, the best performance is achieved when quite a modest
percentage of the DLTWEs between the LPs are known. A
too conservative simulation is clearly not a winning option.

5.5 Comparison to other techniques.
In this part we compare the DLTWE-synchronization tech-
nique to an adaptive protocol guided by the LP’s local his-
tory, namely the Probabilistic Adaptive Direct Optimism
Control (PADOC) proposed by Ferscha [10]. PADOC was
implemented in our simulator, replacing the DLTWE syn-
chronization. We have used non-selective rollbacks in this
comparison, since it was more efficient when using the PADOC
algorithm.

The PADOC algorithm relies on message arrival statistics
that are continuously collected on each LP. At each advance
of the local simulation time, the LP computes an estimate
of the next message arrival time based on the statistics and
the last arrival time. Depending on the distance from the
current simulation time to the estimate, the LP decides to
block for a constant amount of real time or or to proceed
with optimistic execution of local events. To be exact, the
decision is made by sampling of a sigmoidal probability den-
sity function described by a mean at the estimated future
arrival time. The steepness of the probability distribution
function is scaled with a constant in the range [0 1], where
a value closer to 1 implies a stronger confidence in the esti-
mator. In our experiments PADOC obtained the best per-
formance at a scaling constant of 0.1. This suggest a large
variance of the message arrival times in the simulations. We
used the arithmetic mean as the estimator of message arrival
statistics.

We evaluated PADOC on two benchmarks; the spatial preda-
tor and prey model at the [n400,d1] configuration, and the
Min-system at the [fine] configuration. The speedup for both
models simulated using the PADOC or DLTWE protocol is
shown in Figure 8a, 8c. For both models, the DLTWE out-
performs PADOC by a large margin. The breakdown of
the execution time is shown in Figure 8b and 8d. For each
LP count, the execution time is normalized to the DLTWE
time, the left bar. We see that in general, DLTWE keeps
the time spent on rollbacks at a very modest level. It should
be noted that in the breakdown figures, the relative portion
of the waiting time is slightly bigger for the DLTWE than
if selective rollbacks would have been used. For PADOC,
waiting for neighbors and performing rollbacks takes up a
greater part of the total execution time. As the number of
LPs increases, the failure to accurately predict arrivals of
messages carries an increasingly significant cost.
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Figure 8: Comparison of DLTWE and PADOC on the Predator-Prey[n400,d1] and Min-System[fine] models.
In (a) and (c) the speedup of the DLTWE and the PADOC method is shown. In (b) and (d) a breakdown of
how the time is spent is shown.

5.6 Relation to other works
In this section we discuss the performance of our simulator
using the DLTWE technique in relation to other works. We
would like to point out that it is difficult to make a fair
comparison to other approaches, as previously used simu-
lation algorithms and their implementations differ substan-
tially from our approach. The single previously published
RDME benchmark that can be found in the literature for
the amount of LPs considered by us was the spatial predator
and prey model presented by Wang et al. [30]. The parallel
simulator used in the study is the Abstract Next Subvolume
Method (ANSM), a distributed-memory implementation of
the NSM using the Breathing Time-Warp protocol for syn-
chronization. Our speedup and the ANSM speedup taken
from [30], Figure 2b, are shown in Table 2.

Simulator (Protocol) 8 LPs 16 LPs 32 LPs 64 LPs
ANSM (BTW) 4x 6x 11x 20x
PAEM (DLTWE) 4.5x 8.4x 16.4x 33.9x

Table 2: Speedups obtained on the spatial predator
prey model on a 200 x 200 grid using the ANSM
and PAEM simulators.

6. CONCLUSION
We have presented a new technique for inter-LP synchro-
nization in PDES. It is designed to be suitable when sim-
ulating models in which the time intervals between succes-
sive inter-LP events are highly variable and have no lower
bounds, as in the spatial stochastic simulation that we have

considered. Our DLTWE technique enables a detailed con-
trol of the amount of optimism in the simulation, which can
be tuned to achieve desired accuracy of information commu-
nicated between LPs. We have shown how using a technique
for selective rollbacks, the cost of optimism decreases, thus
making it beneficial to allow for more optimism in the sim-
ulation.

With our implementation we have shown that the DLTWE
technique is well suited to the setting of spatial stochastic
simulations, and that it performs well on realistic problems
in a shared memory environment. Notably, the DLTWE en-
ables a parallel scaling which compares favorably to other
inter-LP synchronization techniques described in the litera-
ture, as well as other parallelization efforts that have been
reported in the literature.
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