
Enhancing a Dependable Multiserver Operating System
with Temporal Protection via Resource Reservations

Antonio Mancina, Jorrit N. Herder, Ben Gras, Andrew S. Tanenbaum, Giuseppe Lipari

Abstract

MINIX 3 is a microkernel-based, multiserver operating
system for uniprocessors that is designed to be highly de-
pendable. Servers are restricted according to the principle
of least privilege. For example, access to resources such as
system memory and device I/O is fully protected. Although
MINIX 3 is a potential candidate for embedded platforms, it
currently cannot safeguard processes with stringent timing
requirements, such as real-time applications.

In this paper, we present the design and the implementa-
tion of a user-space resource-reservation framework (RRES)
in order to augment MINIX 3’s dependability infrastructure
with temporal protection. In particular, we implemented the
Constant Bandwidth Server (CBS), either in Soft or in Hard
Reservation (CBS-HR) mode and the Idle-time Reclaiming
Improved Server (IRIS) resource reservation algorithms. Im-
portant, practical applications of temporal protection in-
clude real-time computing as well as prevention of certain
denial of service (DoS) attacks that monopolize the CPU. Ex-
periments on a prototype implementation showed improved
dependability in the temporal domain.

1 INTRODUCTION
Modern computer users are increasingly concerned about

system dependability. While end-user requirements used to
represent a trade-off between performance and costs, devel-
opers nowadays have to meet the demand for hard safety
guarantees. This includes security and privacy, robustness
against failures, timeliness of operation, quality of service,
and so on. The dependability axis we explore in this work
concerns the temporal domain. One particularly important
problem in this domain is how to prevent applications from
using excessive CPU time, thereby disrupting timeliness of
operation and degrading quality of service.

A recent study [34] showed that common process schedul-
ing mechanisms can be subverted in a practical manner with-
out superuser privileges in order to monopolize the CPU.
This is a threat to not only timesharing systems, but also em-
bedded systems such as cell phones, PDAs, etc. The cheating
process effectively gains the maximum priority, performing
a denial of service (DoS) attack on other tasks. It was shown

that almost all current operating systems, including MINIX 3
according to our analysis, are affected by this problem.

Furthermore, timeliness of operation is important in many
application domains, including multimedia, VOIP, peer-to-
peer services, interactive computer games and so on. Each
of these domains has its own peculiarities, but all of them
share an equal need of a minimum guaranteed service level.
A best-effort service based on heuristic algorithms is usually
adopted in order to improve the end-user perception of the
overall quality, but this approach fails to provide minimum
service guarantees. For example, in an attempt to keep the
highest possible throughput, the performance of certain criti-
cal services may be heavily degraded under high-load condi-
tions, which may lead to a low quality of service as perceived
by the end user.

In order to improve the every-day user experience for
such time-sensitive applications, a real-time operating sys-
tem (RTOS) adapts the computational resources granted
to each application based on its quality-of-service require-
ments. To date much development has focused on adding
real-time features to commodity, monolithic, PC operating
systems, such as Linux [7, 18, 27]. In contrast, the work
in this paper provides real-time support on MINIX 3, a novel
microkernel-based, multiserver operating system. This focus
allowed for a highly modular design and implementation of
a reservation framework with only modest modifications to
the base system.

1.1 MINIX 3
MINIX 3 is a microkernel-based multiserver operating sys-

tem for uniprocessors that is designed to be extremely fault-
tolerant. All system services run as highly restricted user-
mode processes in order to isolate faults occurring in one
component and prevent the damage from spreading, so that
the rest of the system can continue to function normally. In
contrast, a bug in a kernel module in a classic monolithic
operating system could easily hang or crash the entire sys-
tem due to the lack of isolation. In addition, the extension
manager can detect certain error conditions, including fail-
ures relating to CPU or MMU exceptions, internal panics or
infinite loops, and restart faulty processes. These features
greatly improve the system’s dependability [16, 17].

In addition to dependability, MINIX 3’s highly modular



structure makes it a good candidate as a real-time operating
system for embedded platforms. Its code base is several or-
ders of magnitude smaller than Linux, it is easy to remove
unwanted components in order to get a minimal configura-
tion, and the simple structure results in a small memory foot-
print. Moreover, MINIX 3 already has good response times
due to the following design choices:

• the user-mode operating system servers and drivers
have short servicing times and are fully preemptible by
higher-priority processes,

• the kernel has very short interrupt latencies because its
generic interrupt handler only masks the IRQ line and
sends a notification message, whereas the actual inter-
rupt handling is done by a user-mode driver, and

• finally, the kernel has short atomic kernel calls, which
results in low stuck-in-kernel latencies.

However, MINIX 3 did not yet explicitly address other
real-time application requirements. Realizing real-time be-
havior is not straightforward, since standard MINIX 3 ver-
sions lack important real-time properties, including:

• a way to describe a task’s real-time constraints and
schedule it accordingly,

• a temporal profile of each component in the system in
order to achieve a complete system predictability, and

• typical resource access protocols, such as Priority In-
heritance [30] or Stack-Based Resource Protocol [10],
in order to avoid priority inversion phenomena.

1.2 Resource Reservations
In order to provide temporal protection on MINIX 3,

we have made several modifications to the scheduler and
designed and implemented a resource reservation (RRES)
framework. Resource reservations are a class of real-time
algorithms that grant Q resource units every period P [27].
In principle, the resource can be any system facility, includ-
ing CPU, memory, network and storage devices. However,
we are interested in CPU reservations, which have proven to
be an effective technique to serve time-sensitive applications
on general-purpose operating systems [8, 9].

To the best of our knowledge, we are the first to implement
resource reservations in MINIX 3. In particular, we have pro-
vided a complete implementation of CBS [7], CBS-HR and
IRIS [22], which are among the first and most effective ones.
The new resource reservation framework improves MINIX 3
in three important ways:

1. RRES brings soft real-time support, so that benefits can
be gained in many application domains, like the ones
mentioned above. Correct accounting is achieved under
the assumption of MINIX 3’s low-latency response times

discussed above. Moreover, infrequent deadline misses
are tolerable due to the nature of soft real-time applica-
tions; the end user will perceive a missed deadline as a
quality-of-service degradation rather than a fatal error.

2. Although our primary focus is soft real-time support,
the RRES framework also provides limited hard real-
time support for applications that do not rely on the
standard system servers and drivers, such as sensoring
applications using memory-mapped I/O. The only criti-
cal code is the kernel’s generic interrupt handler, which
has a short, strictly bounded execution time.

3. Our work improves dependability by enabling tempo-
rally isolated execution in order to prevent denial of ser-
vice attacks [34]. Reliable accounting is realized by us-
ing the TSC cycle counter independent from the pro-
grammable interrupt timer (PIT), as detailed in Sec. 4.4.

1.3 Paper Outline
The remainder of the paper is organized as follows. Sec. 2

briefly surveys related work. Sec. 3 introduce the CBS, CBS-
HR and IRIS resource reservation algorithms. Sec. 4 de-
scribe how we implemented the resource reservation (RRES)
framework. Secs. 5 and 6 present a case study and the results
of performance measurements on the introduced latency. Fi-
nally, Sec. 7 describes the current framework status and our
planned future work.

2 RELATED WORK
We distinguish different operating system structures,

since each structure leads to different real-time properties.

2.1 Monolithic Operating System Structure
In spite of significant research efforts, introducing real-

time support in monolithic systems, such as Linux, is still
considered an open problem. Real-time scheduling turned
out to be difficult, mainly due to the presence of many other
highly unpredictable system activities, such as interrupt han-
dling, paging and process management.

Two approaches have been adopted in order to minimize
latencies and improve response times. First, shortening non-
preemptible kernel code sections. This changes local code
sections, but keeps the same monolithic kernel structure. As
an example, Red Hat staff has contributed a series of ker-
nel low-latency patches to the Linux community [6]. The
patches have proven to be effective and are a substantial step
towards a real-time Linux.

Second, introducing an additional real-time layer between
the operating system and the real hardware in order to ac-
tively handle real hardware interrupts and mask them to the
operating system when needed. This results in an hybrid ar-
chitecture with a monolithic kernel running on top of a mi-
crokernel layer. The most important projects are RTAI [2],



RT-Linux [3] and Xenomai [5]. All these projects adopt a
similar approach to the problem: a new interrupt dispatcher
is added below the standard kernel which traps the periph-
eral interrupts and reroutes them to Linux whenever it is nec-
essary. However, this approach means that real-time tasks
cannot directly access standard Linux services and existing
device drivers due to potentially high and unpredictable de-
lays. For this reason, developers often have to (re)write their
own real-time drivers.

2.2 Multiserver Operating System Structure
Real-time work also has been done in the context of mul-

tiserver systems. Here, low interrupt latencies and good re-
sponse times are easier to achieve than in a monolithic sys-
tem, since all services are already scheduled independently.
Below, we discuss related work in three systems.

Resource reservations and temporal protection have been
tested before on Real-Time Mach (RT-Mach) [24, 23, 32].
RT-Mach enforced the concept of resource reservation us-
ing a fixed-priority schemes like RM [21], or, at most,
a dynamic-priority scheme based on old algorithms like
TBS [31], which cannot achieve full CPU utilization. In con-
trast, MINIX 3 implements the newer CBS, CBS-HR and IRIS
algorithms. Furthermore, RT-Mach seems to have fixed the
scheduling policy in the kernel, whereas we promote a mini-
mally invasive, modular design.

Real-time support in L4 [20] is based on the statisti-
cal approaches Quality-Assuring Scheduling (QAS) [14] and
Quality-Rate-Monotonic Scheduling (QRMS) [15]. By ex-
tracting task properties, the system can guarantee that the
deadlines of the mandatory part are met, while deadline
misses in the optional part are tolerated. However, in order to
enforce the mandatory-optional splitting principle, DROPS’
real-time applications require modifications at source code
level, whereas our framework can directly serve any exist-
ing applications in a real-time fashion. Furthermore, QAS
and QRMS can provide guarantees for only periodic tasks,
whereas CBS, CBS-HR and IRIS also support aperiodic
tasks with real-time requirements. We also believe that our
implementation can be simpler, since no complexity is intro-
duced at admission and reservation level, whereas QAS per-
forms these tasks using the distribution of execution times.

Finally, two projects based on earlier versions of
MINIX should be mentioned. First, Minix4RT [26] aims
to mimic the low-latency RT-Linux architecture in MINIX 2.
Second, RT-Minix [29, 28] consists of a set of system calls
added to MINIX 2 in order to explicitly invoke real-time ser-
vices provided by the kernel level. The former project has
been made obsolete by MINIX 3, since its generic interrupt
handler achieves low interrupt latencies in a much simpler
way. Furthermore, these approaches are too invasive with
respect to the base system and cannot be easily ported to
MINIX 3. Moreover, our work provides the first-ever imple-
mentation of resource reservations and temporal protection

based on CBS, CBS-HR and IRIS in the context of MINIX 3.

3 RESOURCE RESERVATIONS
Resource reservations are a powerful concept providing

temporal protection for time-sensitive applications. The un-
derlying idea is to reserve a fraction of the CPU in order
to ensure isolated execution. Resource reservations are typ-
ically used to run both periodic and aperiodic tasks, since
they allow the scheduler to enforce classical Earliest Dead-
line First (EDF) [21] scheduling decisions, even in presence
of misbehaving tasks that execute longer than expected or un-
expectedly introduced tasks that impose a temporary increase
on the global utilization.

Before we continue, we briefly introduce EDF, which is
the most widely adopted uniprocessor real-time scheduling
algorithms in the dynamic priorities field. The EDF algo-
rithm states: “for each t, the task with the earliest absolute
deadline is executed.” Despite a higher computational com-
plexity than Rate Monotonic (RM) [21], which is the indus-
trial standard for the fixed priorities field, EDF, in contrast
to RM, can always achieve full CPU utilization without any
deadline misses, which is an important goal in our work.

3.1 Achieving Temporal Protection
Temporal protection refers to the scheduler’s ability to

prevent one task from affecting the execution of other tasks
by executing longer than expected due to, for example, a
programming bug. Traditional real-time operating systems
do not protect against such schedule overruns, as depicted
in Fig. 1. Here, the overrunning task T2 that is scheduled ac-
cording to the EDF algorithm causes the other tasks to violate
their deadlines in a so-called domino effect.

Figure 1: Produced schedule with misbehaving task T2. The tasks’
computation times and deadlines are shown at the left.

In contrast, the use of resource reservations provides tem-
porally isolated execution environments in which all tasks
can complete within their deadlines despite of the overrun of
the faulty task. The mechanism that enforces the reservation
is referred to as a Virtual Resource (VRES) R that grants
a CPU budget Q for each period P . An overrunning task
can request additional CPU budget from its VRES, but this
causes its deadline to be postponed by one period—so that
other tasks with an earlier deadline are scheduled first. Fig. 2
shows how this happens three times for task T2. In the end,



T2 misses a deadline, but T1 and T3 run unaffected. We de-
scribe such an environment as compartmentalized from the
scheduling point of view.

Figure 2: Same schedule with temporal protection. The VRES’
timeline is shown below the task’s timeline.

3.2 Resource Reservation Algorithms
We now briefly introduce the resource reservation algo-

rithms that we implemented in MINIX 3: CBS [7], CBS-HR
and IRIS [22], which are among the most widely recognized
resource reservation algorithms. Other algorithms have also
been proposed, e.g. [11, 12, 13], but we chose CBS, CBS-HR
and IRIS because their simplicity and low overhead allowed
for a clean and minimally invasive implementation.

3.2.1 CBS

The Constant Bandwidth Server (CBS) [7] is a resource
reservations algorithm with dynamic priorities that uses the
EDF algorithm at the lowest level. CBS can achieve full
CPU utilization and solves many classic real-time schedul-
ing problems, such as managing unpredictable instances of
aperiodic tasks. We briefly recall the algorithm here:

1. each virtual resource (VRES) is assigned a maximum budget
Q, a period P , a current budget c and a current deadline d;

2. a virtual resource is active if its task is active, inactive other-
wise; initially, all virtual resources are inactive, and c = 0 and
d = 0;

3. when a task is activated:

• if d ≤ t or c > (d− t)Q
P

, then c = Q and d = t + P ,
• else, the current scheduling parameters are used

4. at each time t, the active virtual resource with the earliest cur-
rent deadline d is chosen, and its task gets executed;

5. as long as T runs, the budget c of the virtual resource de-
creases at a rate δc = −δt;

6. whenever the virtual resource budget is exhausted (c = 0), it is
immediately recharged (c = Q) and its deadline is postponed
(d = d + P ); as a consequence, rule 4 is applied and another
virtual resource might be scheduled.

Since the CBS algorithm is based on EDF, and the vir-
tual resources can be approximated as sporadic tasks with a

worst-case execution time Q and minimum interarrival time
P , it is possible to allocate 100% of the processor bandwidth.
In addition, the CBS reclamation scheme provides temporal
protection against overruning tasks. CBS rule 6 ensures that
the priority of a misbehaving task is decreased by postpon-
ing the deadline of its virtual resource. The task is kept in the
ready queue, but cannot execute if other tasks with an earlier
deadline exist, as shown in Fig. 2.

3.2.2 CBS-HR and IRIS

Due to its simple reclamation scheme, the CBS algorithm
suffers from a problem called deadline aging [22]. If a
CPU-bound, non-real-time task T1 (e.g. a compilation with
gcc) is the only active task in the system, CBS’ deadline-
postponement rule is continuously triggered for R1. Under
the assumption that T1 was granted only a fraction of the
CPU, its deadline will be somewhere in the far future after
consuming several budgets Q. If another task T2 (e.g. bun-
zip2) starts executing, it will have the highest EDF priority
for a long time, during which T1 cannot execute. Hence, the
end user will perceive T1 as a non-responsive task.

The problem of deadline aging has been addressed by
CBS-HR through a concept known as hard-reservation
mode. If the virtual resource’s budget is exhausted, replenish-
ment only happens at the beginning of the next period. This
ensures that the virtual resource’s deadline is not repeatedly
postponed and stays synchronized with respect to task execu-
tion. However, CPU cycles may be wasted while recharging,
which led to the notion of time warping in IRIS [22]. CBS-
HR extends the standard CBS policy with rule 7, whereas
IRIS extends CBS-HR with rule 8:

7. when budget c is exhausted, the task is suspended and the vir-
tual resource moved to the recharging state until the current
deadline d, when the the budget is replenished to c = Q and
the deadline postponed to d = d + P ;

8. if all virtual resources are in recharging state at time t and no
virtual resource is currently active, they can be all recharged
and their deadlines updated to d = t + P .

Figure 3: IRIS solves the deadline aging problem by having VRE-
Ses wait until the next deadline before replenishing their budget.
The replenishment can be instantaneous due to time warping.



These extensions result in a more responsive system and a
better reclamation policy, respectively. As an example, Fig. 3
shows how IRIS prevents deadline aging for the above sce-
nario of two aperiodic, CPU-bound tasks.

4 DESIGN AND IMPLEMENTATION
This section describes how we implemented a resource

reservation (RRES) framework in MINIX 3 with support for
the CBS, CBS-HR and IRIS resource reservation algorithms.
Three important design guidelines for the implementation of
the RRES framework were:

1. pluggable real-time support next to best effort;
2. minimizing the amount of intrusive kernel code;
3. maximizing the policy-mechanism separation.

First, we did not want to break the standard MINIX 3 distri-
bution for reasons of acceptance and backward compatibility.
Therefore, we designed the RRES framework as an optional
component that can be started at run-time to enhance the sys-
tem with real-time support when needed. Second, a general
dependability strategy in MINIX 3 is to move as much code
as possible out of the kernel into user space. Since kernel-
mode code runs with all privileges of the machine it must
be fully trusted, whereas user-mode bugs may be confined
to the process in which they occurred. Third, separating the
scheduling policies from mechanisms leads to a flexible, eas-
ily adaptable system. Fortunately, these guidelines go hand
in hand, as discussed below.

4.1 High-level Design Overview
Based on the above design criteria we decided to introduce

a separate user-space scheduler, called the RRES manager
or RRES for short, which is logically located at the MINIX 3
server level. RRES can be started through the MINIX 3 exten-
sion manager at run-time like all other extensions [17]. The
basic idea then is to let the kernel execute user-space schedul-
ing requests for real-time applications on behalf of RRES. In
particular, the kernel’s built-in best-effort scheduling policies
should be temporarily suspended, so that the real-time task is
not affected by the heuristics of the standard scheduler. In
other words, the scheduling policy is enforced in user-space,
but the kernel provides mechanisms for starting and stopping
a task and for accounting its execution. Logically, this leads
to a separate RRES scheduler next to the MINIX 3 scheduler.

As an aside, we provided three different implementations
of the RRES manager, one for each resource reservation al-
gorithm supported: CBS, CBS-HR, and IRIS. The algorithm
used is statically chosen with a compiler flag. It is currently
not possible to let different VRESes serve their task using
different algorithms, since the theoretical analysis to make
this possible is still in progress. The reason for supporting
CBS and CBS-HR next to IRIS is a matter of usability. With
IRIS’ time warping rule, all CPU cycles would be used for

real-time task and non-real-time applications would not get
a chance to execute. In such a scenario, every application
should be enclosed in a reservation, resulting in a system that
is harder to analyze and maintain.

In addition to the RRES manager, three helper utilities
were created in order to manage real-time applications. First,
rres create can be used to start a new real-time application by
passing the binary’s name its period P and budget Q. Sec-
ond, rres change can be used to change the scheduling pa-
rameters at run-time. Third, the rres destroy utility can be
used to stop a running real-time task. Fig. 4 gives a high-
level overview of the RRES framework.

START/STOP SCHEDULE
START/STOP RECHARGE

START/STOP RT_TASK
CALIBRATE TCS

GET MESSAGES

DESTROY
CHANGE
CREATE

Task
Clock

Task
System

Scheduler
MLFQ RRES

Scheduler

RRES
utilities

non−RT
App

RT
Task2Task1

RT

Separate processes

Kernel
mode

User
mode RRES

Manager

RRES EVENT

Figure 4: High-level architecture over the resource reservation
framework. Messages exchanged between the RRES helper utili-
ties, RRES manager and kernel are shown.

4.2 Implementation of the RRES Manager
The RRES manager has the same code structure as other

MINIX 3 servers. After the initialization of its data structures,
RRES starts a never-ending loop in which it accepts new re-
quests, processes them and sends back an answer.

4.2.1 RRES Data Structures

The main RRES data structure has three scheduling queues
for the virtual resources that are uniquely associated with the
real-time tasks. The queues are ordered by increasing current
VRES deadline, so that RRES can quickly decide which task
to schedule based on the underlying EDF policy.

• The ACTIVE queue keeps track of ready-to-run VRE-
Ses. The first VRES on this queue is the currently
scheduled one, that is, the associated task is the running
process in the system.

• The RECHARGING queue comprises all the VRE-
Ses which exhausted their budget and need it to be re-
plenished. This queue is only used for CBS-HR and
IRIS. With plain CBS it is always empty since hard-
reservation mode is not used. Conceptually, all VRESes
in this queue are recharging, but RRES only sets a single
alarm for the first recharging event.



• The BLOCKED queue, finally, contains the VRESes
that blocked during their execution, for example, be-
cause they have to wait for some event to happen.

4.2.2 RRES Interactions

As shown in Fig. 4, the RRES manager has several interac-
tions with both the RRES help utilities and the kernel tasks.
The exact messages that are exchanged are shown in Fig. 5.
First, the RRES helper utilities can request RRES to CRE-
ATE, CHANGE or DESTROY virtual resources. In order to
prevent random tasks from changing their scheduling policy
only the system administrator is allowed to send RRES re-
quests. RRES verifies this by asking the MINIX 3 process
manager for the requester’s user ID.

3. START/STOP_SCHEDULE
4. START/STOP_RECHARGE

2. START/STOP_RT_TASK

RRES Manager−>
Kernel task

1. RRES_EVENT

RRES Manager
Kernel task −>

− budget exhausted
− recharge time
− task blocked
− task unblocked
− task exited

RRES Manager

3. DESTROY

Helper Utility −>

2. CHANGE
1. CREATE

5. GET_MESSAGES

1. CALIBRATE_TCS

Figure 5: Messages exchanged within the RRES framework.

Second, although RRES is responsible for the scheduling
policy, it relies on kernel mechanisms to perform the actual
RRES scheduling. In particular, the following messages are
exchanged with the kernel’s system task:

• CALIBRATE TSC: used at RRES initialization time to
determine the number of CPU cycles per microsecond;
the kernel programs the timer to a known frequency,
reads the TSC cycle counter start value, waits 1000
timer ticks, and reads the TSC end value.

• START RT TASK: tell that a process now is a real-time
task and needs to be treated in a special manner.

• STOP RT TASK: inform the kernel that a real-time task
has been destroyed so that special events related to this
task are no longer forwarded to RRES.

• START SCHEDULE: tell the kernel to start scheduling
a real-time task using the RRES scheduler rather than
the standard scheduler.

• STOP SCHEDULE: issued whenever RRES needs to
stop the currently scheduled real-time task.

• START RECHARGE: if a VRES becomes the head of
the RECHARGING queue, RRES schedules an alarm
to be notified when the recharging time is reached.

• STOP RECHARGE: used to handle a time warping
event in IRIS and if the scheduling parameters of a cur-
rently recharging task are changed.

• GET MESSAGES: whenever the kernel’s mechanisms
encounter a special event, as shown in Fig. 5, the RRES
manager is notified with an RRES EVENT message;
the RRES manager then makes a callback to find out
which event triggered the notification.

While this modularity brings many benefits with respect to
flexibility, the message passing interactions between RRES
and the kernel introduces a small latency. Experiments on
a prototype implementation have shown, however, that the
incurred context-switching overhead is not at all prohibitive,
as discussed in Sec. 6.

4.3 Kernel and Scheduler Modifications
Scheduling in the standard MINIX 3 kernel is done on

best-effort basis using a multilevel-feedback-queue sched-
uler (MLFQ) [33]. Processes with the same priority reside
in the same queue and are scheduled round-robin. When a
process is scheduled, its quantum is decreased every clock
tick until it reaches zero and the scheduler gets to run again.
To prevent starvation of low-priority processes, a process’
priority is degraded whenever it consumes a full quantum.
Since CPU-bound processes are penalized more often, inter-
active applications have good response times. Periodically,
all process priorities are increased if not at their initial value.

As mentioned above, the kernel should bypass the stan-
dard scheduler for real-time tasks managed by RRES. There-
fore, the MINIX 3 kernel and scheduler were changed in two
ways. First, we added rres f flag to the process structure in
order to tell whether a task should be scheduled in the con-
text of MLFQ or RRES. This flag is set when RRES sends a
START SERVE request to the kernel. Second, the scheduler
data structure was extended with two new scheduling queues
at the highest priorities, as shown in Fig. 6.

• RRES PRIO: the highest priority in the system is now
used for the RRES manager, so that it can always imme-
diately react to the various kinds of events, such as bud-
get exhaustion and budget recharged events. Depend-
ing on the kind of event RRES may schedule another
real-time task. When RRES has processed the event, it
returns to its main loop and blocks waiting for the next
event—allowing a real-time task to run.

• RT PRIO: the second highest priority is reserved for
the real-time tasks served by the RRES manager. At
most a single task can be active at any given time. When
there is a task to schedule, it runs uninterrupted until
either its budget is exhausted or some other RRES event
makes a higher-priority task ready to run. In the latter
case, preemption occurs and RRES requests the kernel
to schedule the higher-priority task.

Third, we identified the points which needed change in
order to modify the default scheduler behavior. In particular,



New RRES
Scheduling

Queues

LOW_PRIO idle

Original
MLFQ

Queues

Head Pointer

HIGH_PRIO n non−RT tasks

RRES_PRIO

RT_PRIO

RRES Manager

0 or 1 RT tasksRT

RRES

Tail Pointer

AVG_PRIO nonRT nonRT
Scheduling

Figure 6: RRES-enhanced MINIX 3 scheduling queue data struc-
ture. Two new queues at the two highest priority levels were added
for the RRES manager and the current real-time task.

if a real-time task needs to be scheduled, that is, if a process’
rres f flag is set, the scheduler simply picks the queue with
priority level RT PRIO rather than its MLFQ priority. Also,
a task running in the RT PRIO queue is not affected by the
heuristics of the normal MLFQ algorithm, such as decreasing
the process priority of long-running processes and periodic
balancing of the scheduling queues.

Finally, we changed the scheduler to cope with blocking
and unblocking events. Whenever a real-time task blocks
the kernel sends an event notification to RRES, so that it can
schedule another task. Blocking can occur, for example, dur-
ing synchronous service requests or while waiting for an I/O
completion interrupt. We decided to consider a task’s block-
ing and unblocking events as job completion and activation
times respectively in order to be able to provide the classic
real-time properties previously described. The blocked task’s
VRES is put on RRES’ BLOCKED queue. When the kernel
notifies RRES that the task is unblocked, RRES moves the
corresponding VRES to the ACTIVE queue and may sched-
ule it depending on its current priority.

4.4 CPU Time Accounting

In order to serve real-time tasks the RRES framework re-
quires a reliable source of high-precision timing. Our imple-
mentation is based on the x86’s TSC cycle counter, but de-
pending on the system architecture, other timing sources may
also be available. The TSC cycle counter is convenient be-
cause it is accessible to both the user-space RRES manager
and the kernel’s scheduling code. However, since the TSC
cycle counter is read-only and cannot interrupt when a task’s
budget is exhausted or needs to be replenished, an interrupt-
based programmable timer is also needed. For this, we de-
cided to modify the standard MINIX 3 system timer, which
is based on the i8259 Programmable Interval Timer (PIT).
Another option would have been to use the CMOS ‘Real-
Time Clock’, but it is already in use for the MINIX 3 profiling
code [25] and having two sources of timer interrupts would
have complicated the kernel’s code.

4.4.1 Working of RRES Accounting

Although the PIT ticks come at a lower frequency than the
TSC cycle counter, the RRES framework can do its work
as follows. During initialization RRES calibrates the TSC
cycle counter using the CALIBRATE TSC in order to deter-
mine the number of cycles per microsecond. Budget exhaus-
tion and budget replenishment events are expressed in CPU
cycles rather than PIT ticks in order to prevent rounding er-
rors in the calculation. This number is reported to the kernel
on START SCHEDULE and START RECHARGE, respec-
tively, which stores the count in a global variable and com-
pares it to the current cycle counter value on each PIT tick.
If the current cycle counter value exceeds the exhaustion or
recharging time, the kernel deschedules the task (in the for-
mer case only) and sends an RRES EVENT notification to
the user-space RRES manager.

One important decision was at which frequency the TSC
counter should be read, that is, the PIT interrupt frequency—
since a higher frequency leads to a lower worst-case account-
ing error. The maximum usable frequency is limited, how-
ever, since each PIT interrupt requires reprogramming the
timer. After some experimentation we decided to use a PIT
frequency of 4000 Hz, which limits RRES accounting error
to at most 250 µs. Moreover, task overruns are taken into
account by the RRES manager by reading the TSC cycle
counter after the RRES EVENT notification, comparing it
with the original deadline, and reducing the task’s CPU bud-
get in its next execution frame.

Although RRES accounting works at 4000 Hz, we used
a frequency of 500 Hz for the system’s normal tick facility.
This distinction takes place in the clock task’s interrupt han-
dler, which scales the hardware PIT frequency into lower-
frequency system-wide ticks, that is, only 1 in every 8 inter-
rupts is transformed into a system tick.

4.4.2 Eliminating CPU Monopolization

An important benefit of our design is that denial of service
(DoS) attacks that monopolize the CPU [34] are structurally
eliminated. By basing accounting on the actual number of
CPU cycles used, independent of the PIT ticks, a task can
no longer cause another task to be billed by suspending ex-
ecution just before a PIT tick occurs. In contrast, whenever
a task served by RRES stops execution, the RRES manager
is informed and the current TSC cycle counter is read to de-
crease its remaining budget with the number of CPU cycles
consumed. Processes that use MINIX 3’s standard scheduling
facilities are still vulnerable, but real-time tasks and, in fact,
any application with stringent timing requirements can use
the new RRES framework for temporal protection.



5 RRES CASE STUDY

To better clarify how the framework works, we now dis-
cuss an example that shows the interactions of the RRES
framework, configured to use CBS with hard-reservation
mode (CBS-HR). We analyze the sequence of events for two
real-time tasks, T1 and T2, producing the schedule shown in
Fig. 7. Initially, the administrator starts the tasks using the
rres create utility. The command entered is

$ rres create <budget> <period> <binary>

where the request parameters are

<budget>: CPU budget given in each period (Q) in µs;
<period>: the VRES granularity (P ) in µs;
<binary>: the application to be managed by RRES.

This request has to be made for both task T1 and T2 with
parameter Q1 = 3000 µs, P1 = 9000 µs and Q2 = 2000 µs,
P2 = 3000 µs. The sum of the fractions Q

P gives the CPU
utilization and is 100% in this example.

For both tasks, the rres create utility forks a new process,
sends a CREATE message to the RRES manager to inform it
about the new real-time task’s parameters, and executes the
binary. RRES first checks if the user is authorized and then
performs an admission test. Since the CPU utilization does
not exceed 100%, RRES accepts the requests, creates two
virtual resources R1 and R2 with the required parameters,
and sends a START RT TASK message to the kernel to tell
that T1 and T2 are real-time tasks from now on. The virtual
resources, R1 and R2, will be enqueued in RRES’ ACTIVE
queue, with task T2 at the head of the queue, since T2’s initial
deadline is earlier than that of T1.

Figure 7: Schedule of the case study in milliseconds.

We will now analyze the interactions between the RRES
manager and kernel during the execution of tasks T1 and T2,
which produces the schedule shown in Fig. 7. As discussed
in Sec. 4.4, the RRES manager uses the TSC cycle counter
for accounting. For reasons of simplicity, however, all times
below are expressed in milliseconds.

At time T = 0, RRES issues a RRES SCHEDULE re-
quest to the kernel specifying the task to be scheduled, in
this case T2, and the amount of CPU budget, that is, how

long the task is allowed to execute, in this case 2. The ker-
nel accepts the RRES request, sets up the time at which the
budget is exhausted, and schedules the task in the queue with
priority level RT PRIO.

At time T = 2, the kernel notifies RRES about the budget
exhaustion of T2. RRES moves R2 from the ACTIVE to the
RECHARGING queue and, since hard-reservation mode is
used, asks the kernel to recharge R2’s budget until the abso-
lute time of R2’s deadline, T = 3. RRES also tells the kernel
to schedule task T1 with budget Q = 3

At time T = 3, the kernel notifies RRES about R2’s
budget being recharged, so that RRES moves it from the
RECHARGING queue back into the ACTIVE one. Since
R2 has the earliest deadline, T1 is preempted and RRES asks
the kernel to schedule task T2 with a budget of 2.

At time T = 4, task T2 experiences a blocking event.
The kernel notifies RRES, which in turn moves T2’s virtual
resource, R2, to the BLOCKED queue. Then RRES asks the
kernel to resume execution of T1 with a budget of 2.

At time T = 5, task T2 unblocks. RRES is notified by
the kernel and computes the test in CBS rule 3. Since the
remaining budget c = 1 ≥ (6 − 5) 2

3 = 2
3 a new deadline is

placed at T = 8 and the budget is recharged. R2 is moved to
the ACTIVE queue and task T1 is preempted by T2.

At time T = 7, R2’s budget is exhausted again. RRES
is notified by the kernel, moves R2 to the RECHARGING
queue, and tells the kernel to recharge until T = 8. RRES
also requests the kernel to resume execution of task T1 with
R1’s remaining budget of 1.

At time T = 8, two things happen: R1’s budget is ex-
hausted and R2’s budget is recharged. R1 is moved to the
RECHARGING queue and the kernel is told to recharge the
task until R1’s absolute deadline, T = 9. In addition, RRES
ask the kernel to schedule task T2 with a budget of 2.

This example shows how a user-space scheduler can do
all the work using a small number of interactions with the
kernel, obtaining the schedule produced in Fig. 7. In the fol-
lowing section we will see how these interactions impose a
very limited timing overhead on the system.

6 EXPERIMENTAL EVALUATION
In addition to the above case study, we ran several exper-

iments on a prototype implementation to evaluate the RRES
framework. The results are presented below.

6.1 Timing Measurements
As explained in Sec. 4.4, time accounting is done using

the TSC cycle counter. The TSC facility is available in both
kernel space and user space, allowing RRES to be kept syn-
chronized with the kernel time line. In addition, this enabled
precise timing measurements, depending on CPU speed only.
The tests were conducted on a Fujitsu-Siemens desktop PC
with a 2.8 GHz AMD Athlon64 CPU and 1 GB RAM. None



of the tests required to access the disk.
First, we measured the latency introduced by MINIX 3’s

message passing subsystem, which is independent from the
RRES framework. In particular, we measured the time
between issuing a request in a user process (just before
IPC SEND) and the moment that the kernel starts working
on it (just after IPC RECEIVE), that is, the time purely spent
on delivering the message from the user process to the SYS-
TEM task. We found a message delivery time of 1.5 µs.

Second, we measured the latency introduced by the RRES
framework. These tests were done in the context of the case
study discussed in Sec. 5. We ran several tests and computed
the mean result rounded to microsecond precision.

• Time between receiving a rres create command in the
RRES framework and the moment that the kernel sched-
ules the new real-time task: 192µs.

• Time between budget exhaustion in the kernel, causing
an RRES EVENT notification processed by the user-
space RRES framework, and the moment that the kernel
puts the VRES in the recharging state: 43µs.

• Time between detecting a budget-recharged event in the
kernel, notifying RRES, and the moment that the kernel
reschedules the corresponding task: 41µs.

These results clearly show a very limited overhead im-
posed by the RRES framework on the system in order to en-
force the CBS, CBS-HR and IRIS algorithms. It is important
to realize that these values are not dependent on the pres-
ence of other real-time tasks, because (1) the kernel’s inter-
rupt handler always preempts running tasks and (2) messages
that are exchanged upon RRES events are delivered and han-
dled at the highest priority, as shown in Fig. 6.

The measured values have to be compared with the resolu-
tion the system is able to grant to the framework. Since time
accounting is done at 4000 Hz, the minimum amount of bud-
get and period can, in principle, be 250µs. However, to pre-
vent compromising the requested parameters, they should be
at least an order of magnitude larger. Therefore, the budget
and period should be set starting from 5–10 ms in practice.

6.2 Impact on Kernel and User-Space Code
With help of the Source Code Line Counter [4] tool avail-

able on the Internet we collected data on the total engineering
effort required. The number of executable lines of code for
both the standard and modified version of the MINIX 3 kernel
are shown in Fig. 8. Similar statistics for the new user-space
RRES manager are shown in Fig. 9

6.3 RRES Tracer and Simulations
We also created a tool written in Ruby to trace the exe-

cution of RRES real-time tasks. The tool parses a log file
generated by the RRES server and produces a graphical rep-
resentation of the scheduling decisions taken.

Fig. 11 represents a piece of the scheduling of the task set
in Fig. 10 that is scheduled according to CBS-HR (CBS with
hard reservations); IRIS’ time warping is not used. The tasks
used are an infinite CPU-bound program (cpuload) that per-
forms calculations in a loop and a finite I/O-bound program
(interactive) that does some work, sleeps one second, and
continues calculating. The tracer output shows three aspects:

• cpuload continuously triggers CBS’ deadline postpone-
ment rule, as is clear in the first two task lines where
arcs connect consecutive deadlines;

• since interactive has a large budget, it can execute
whenever there is a free slot, unless it blocks on the
sleep() system call;

• at that point, the hard-reservation mode becomes evi-
dent, since the two cpuload utilities run without time
warping (the scheduling is not work-conserving).

Numerous other simulations have been run to verify the
behaviour of our implementation in few real cases, but we
refrained from including them here due to space limitations.

7 CONCLUSIONS AND FUTURE WORK
MINIX 3 is a dependable multiserver operating system for

uniprocessor systems. Its modular design makes it a likely
candidate for embedded systems, but MINIX 3 currently lacks
real-time support. Therefore, we have enhanced MINIX 3
with temporal protection via resource reservations. To the
best of our knowledge, this had not been done before. Long
latencies and slow response times caused by the message
passing mechanism were a potential bottleneck, but measure-
ments on a prototype implementation have shown that this
effect is very limited and can be mitigated by carefully de-
signing the framework interactions.

Our resource reservation framework (RRES) implements
the CBS, CBS-HR and IRIS resource reservation algorithms
and provides temporal protection in order to prevent ordi-
nary users from monopolizing the CPU. Our design enables
running soft real-time applications on MINIX 3. The current
status is that correct time accounting happens in presence of

File Standard RRES MINIX 3 Delta
proc.h 99 103 +4
proc.c 482 500 +18
clock.c 115 137 +22
system.c 314 327 +13
rres.h - 24 +24
rres.c - 197 +197
do resres.c - 131 +131
Total Changes +339

Figure 8: Lines of executable code (LoC) for the standard MINIX 3
kernel and the modified version with the RRES framework.



Header Files LoC
glo.h 42
inc.h 29
proto.h 51
rres.h 106
Header Total 156

Source Files LoC
main.c 158
rres.c 543
rres kernel.c 254
rres userspace.c 251
Source Total 1206

Figure 9: Lines of executable code (LoC) for the RRES server.

Task Type Budget (ms) Period (ms)
cpuload CPU-bound 100 400
cpuload CPU-bound 200 2000
interactive I/O-bound 10000 20000

Figure 10: Task set and reservation parameters used for tracer sim-
ulation. The execution is shown in Fig. 11.

Figure 11: Actual schedule executed for the task set of Fig. 10
produced by the RRES tracer based on RRES server logs.

nonblocking tasks. If blocking events occur, the framework
operates correctly under the assumption of short server and
driver execution times. Since kernel’s generic interrupt han-
dler has a short strictly bounded execution time, limited hard
real-time support is provided for tasks that do not rely on
the standard MINIX 3 services. In addition, the RRES frame-
work eliminates denial of service (DoS) attacks [34] targeting
the scheduler, because time accounting uses the TSC cycle
counter independent from the system tick facility.

Work in the context of FRESCOR [1] is in progress to
implement a microkernel equivalent of bandwidth inheri-
tance [19] algorithm so that the drivers and servers work-
ing on behalf of a real-time task can use its RRES param-
eters during the servicing time. This gives two important
benefits, namely, correct time accounting and a very sim-
ple resource-access protocol, priority inheritance, in order
to prevent priority-inversion phenomena. In addition, we in-
tend to analyze the possibility of reserving other resources
types, such as file system and network access, through the
RRES framework. Success in this area would result in a
completely compartmentalized and fully protected resource
environment, enabling full hard real-time support.

REFERENCES
[1] FRESCOR - Framework for Real-time Embedded Systems based on COntRacts.

http://www.frescor.org.
[2] RTAI home page. https://www.rtai.org/.
[3] RTLinux home page. http://www.rtlinux.org.
[4] Sclc.pl - the Source Code Line Counter. Available online.
[5] XENOMAI home page. http://www.xenomai.org.

[6] Ingo Molnar’s RT Tree. Available online.
[7] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time

systems. In Proc. IEEE Real-Time Systems Symposium, Madrid, Spain, 1998.
[8] L. Abeni and G. Lipari. Implementing resource reservations in linux. In Real-

Time Linux Workshop, 2002.
[9] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli. Qos management

through adaptive reservations. Real-Time Systems Journal, 29(2-3), March 2005.
[10] T. P. Baker. A stack-based allocation policy for realtime processes. In Proc. IEEE

Real Time Systems Symposium, 1990.
[11] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun control. In

Proc. 21st IEEE Real-Time Systems Symposium, pages 295–304, 2000.
[12] M. Caccamo, G. C. Buttazzo, and D. C. Thomas. Efficient reclaiming in

reservation-based real-time systems with variable execution times. IEEE Trans-
actions on Computers, 54(2):198–213, Feb. 2005.

[13] G.Lipari and S. Baruah. Greedy reclamation of unused bandwidth in constant
bandwidth servers. In Proc. 12th Euromicro Conf. on Real-Time Systems, 2000.

[14] C.-J. Hamann, L. Reuther, J. Wolter, and H.Härtig. Quality-Assuring Scheduling.
Technical report, TU Dresden, 2006.

[15] C.-J. Hamann, M. Roitzsch, L. Reuther, J. Wolter, and H. Härtig. Probabilistic
admission control to govern real-time systems under overload. In Proc. 19th
Euromicro Conf. on Real-Time Sys., 2007.

[16] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Construction
of a Highly Dependable Operating System. In Proc. 6th European Dependable
Computing Conf., 2006.

[17] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Failure re-
silience for Device Drivers. In Proc. 37th Int’l Conf. on Dependable Systems and
Networks, 2007.

[18] H. Kaneko, J. A. Stankovic, S. Sen, and K. Ramamritham. Integrated schedul-
ing of multimedia and hard real-time tasks. In Proc. IEEE Real-Time Systems
Symposium, 1996.

[19] G. Lamastra, G. Lipari, and L. Abeni. A bandwidth inheritance algorithm for
real-time task synchronization in open systems. In Proc. 22nd IEEE Real-Time
Systems Symposium, 2001.

[20] J. Liedtke. Toward real microkernels. CACM, 39(9):70–77, 1996.
[21] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a

hard real-time environment. Journal of the Association for Computing Machin-
ery, 20(1):46–61, Jan. 1973.

[22] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. Iris: A new reclaiming
algorithm for server-based real-time systems. In Proc. IEEE Real-Time and Em-
bedded Techn. and App. Symp., 2004.

[23] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves: An Ab-
straction for Managing Processor Usage. In Proc. 4th Workshop on Workstation
Operating Systems, 1993.

[24] C. W. Mercer, R. Rajkumar, and J. Zelenka. Temporal Protection in Real-Time
Operating Systems. In Proc. 11th IEEE Workshop on Real-Time Operating Sys-
tems and Software, 1994.

[25] R. Meurs. Building Performance Measurement Tools for the MINIX 3 OS. Mas-
ter’s thesis. Vrije Universiteit, Amsterdam, 2006.

[26] P. A. Pessolani. MINIX4RT: A Real-Time Operating System Based on MINIX.
Master’s thesis. Universidad Nacional de La Plata, 2006.

[27] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource Kernels: A
Resource-Centric Approach to Real-Time and Multimedia Systems. In Proc.
Conf. on Multimedia Comp. and Netw., 1998.

[28] P. Rogina and G. Wainer. Extending rt-minix with fault tolerance capabilities. In
Proc. Latin-American Conf. on Informatics, 2001.

[29] P. Rogina and G. Wainer. New real-time extensions to the minix operating system.
In Proc. of 5th Int. Conf. on Information Systems Analysis and Synthesis, 1999.

[30] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Transactions on Computers, 39(9):
1175–1185, Sept. 1990.

[31] M. Spuri and G. C. Buttazzo. Efficient aperiodic service under the earliest dead-
line scheduling. In Proc. IEEE Real-Time Systems Symposium, 1994.

[32] H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: Towards Predictable
Real-Time Systems. In Proc. USENIX Mach Workshop, 1990.

[33] L. A. Torrey, J. Coleman, and B. P. Miller. A comparison of interactivity in the
linux 2.6 scheduler and an mlfq scheduler. Softw. Pract. Exper., 37(4):347–364,
2007.

[34] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Secretly Monopolizing the CPU With-
out Superuser Privileges. In USENIX Security, 2007.


