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Abstract

Design patterns are well practices to share software development ex-
periences. These patterns allow enhancing reusability, readability and
maintainability of architecture and code of software applications. As
simulation applies computerized models to produce traces in order to
obtain results and conclusions, designers of simulation explored design pat-
terns to make the simulation code more reusable, more readable and easy
to maintain, in addition to design complex software oriented simulation
modeling.

In DEVS (Discrete Event System specification), the designers have
successfully designed simulations, frameworks, tools, etc. However, some
issues remain still open and should be explored like how a piece of code
that implements a set of states, events and transitions may be reused to
design a new DEVS model? How may a DEVS model be extended to a
new formalism? Etc.

In this paper, we address these issues and we propose a set of patterns
that may serve as guidelines to designers of DEVS models and its extensions
and may contribute to the design of an operational simulation framework.
These patterns are inspired partly by the available designs of DEVS
community and software engineering developers.

1 Introduction
The use of Modeling and Simulation (M&S) increases more and more in industry
and teaching. In order to give to this discipline strong foundations, scientists
and researchers defined and still define formalisms, methods, tools and theories.
One of the famous and popular theories in this discipline is that proposed by
Zeigler called Theory of Modeling and Simulation [ZMK18] and on which many

1

ar
X

iv
:2

00
8.

06
58

7v
1 

 [
cs

.S
E

] 
 1

4 
A

ug
 2

02
0

https://www.lis-lab.fr/mofed/


applications were developed [WM16]. The Discrete EVent System specification
(DEVS) formalism, that is the basis of this theory, allows the separation of the
modeling requirements from the simulation. In fact, the simulation algorithm
is reused for making behaviors of different models. However, models should be
redesigned each time the user requirements evolve using a rigorous syntax and a
concise operational semantics.

Another interesting feature of DEVS is its ability to propose a general
framework to design systems in different behavioral paradigms (continuous and
discrete systems). Thanks to the expressiveness of DEVS, this framework may
be customized allowing the definition of extensions to solve specific problems
at conceptual level. For example, DEV&DESS is an extension of DEVS where
continuous and discrete event models may be designed and accurate simulations
may be conducted in a unique framework [Zei06].

Often, in a DEVS extension, the modeling still remains independent from
the simulation core. Elements employed in model are those extended from the
classical DEVS: state, event, atomic model, coupled model, etc. but with a new
operational semantics: how a transition is fired, how time elapses, etc. The
new simulation core is built with the same building rules of DEVS: the root-
coordinator to manage time, for each coupled model its dedicated coordinator to
dispatch messages and for each atomic model its basic simulator in order to make
behaviors [ZPK00]. However, some modifications should be conducted in the
new simulation core to answer the requirements of the extension. For example,
in DynamicStructure-DEVS (DS-DEVS) [HZM05], the simulation core should
update its structure each time the model under simulation changes structure.

Reusability of DEVS simulations has been widely discussed at the conceptual
level. However, at design level, reusability of DEVS simulations still remain an
open issue of research. Reusability and composability are highly desirable goals
in design; which remain difficult to achieve because they require that components
work under a range of possible requirements and that can be validated under
a range of possible functional and logic requirements [SJB05]. In addition to
facilitate the achievement of such goals, the simulation code should be opened
for technical requirements of object composability and reusability.

On the other hand, all software tools employ the concept of reuse by providing
the design and implementation of basic models (code) then reuse them as black
box in order to design new models. The Object Oriented Paradigm (OOP)
which many programming languages are built, provides the reuse of runnable
models (code) by inheritance and composition of objects. Inheritance consists
of subtyping an object in order to add new attributes and methods to it and
composition consists of gathering objects to make a new object [Fow99].

Note that DEVS and its extensions reuse models (coupled and atomic) by
using composition and inheritance to design runnable models while staying in
the same framework (DEVS or an extension). Nevertheless, reusing existing
models to design other models in an DEVS extension is not common due to the
weakness of commonly used software design techniques. In addition, DEVS does
not propose ways to reuse behaviors from atomic models to design new ones and
to update them. All atomic models are often designed from scratch. In order to
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overcome this lack, we propose an extensible software framework for DEVS in
which models may be reused in two different ways:

1. reuse models as white boxes instead of black ones in order to update the
behavior of atomic models to design new models;

2. reuse models to define new ones in an extensible framework, ie., designed
models in DEVS may be specialized to design new models of the DEVS
extension.

Note that software engineering techniques should be emphasized in the M&S
cycle. According to [Rob06], a group of researchers of United Kingdom opera-
tional research society simulation workshop identified specific areas for discussion.
One of them is the use of software engineering techniques to conduct conceptual
modeling and simulation. The survey of [WLBF09] showed that techniques
like design by contract based on OOP, Object Constraint Language (OCL),
assertions, etc. contribute efficiently to the success of software development. On
the other hand, the use of design patterns make the design of programs more
flexible, modular, reusable and understable [ACS13] [SM16] [MRY17] [KG18] .

In order to make DEVS runnable models flexible, reusable and maintainable,
we explore these different techniques of design in OOP. According to software
engineering, reusability of code is the likelihood that a segment of source code
can be used again to add new functionalities with a slight or no modification
[Fow99][Wik14]. This criterion joins perfectly our requirement for which we
attempt to make simulation models more reusable and easy to maintain.

2 Motivation
The DEVS community made and is making a serious effort for standardizing
DEVS model representation by allowing specification of DEVS models indepen-
dent from programming languages [WAZD+10]. This allows re-use of models
into different simulation frameworks. However our initiative focuses on proposing
designs of DEVS in OOP, so close to the programming languages, in order to
have executable models wholly or partially reusable from DEVS to DEVS or to
any extension. This starts by separating the structure of a DEVS model (ports
ensuring encapsulation) from its behavior (functions ensuring the evolution of
state variables and computing outputs) in order to make code maintainable for
further re-uses.

Let us consider the class Model designing DEVS atomic models shown in
Figure 1.

The use of the class atomic as a basis of design of more specialized DEVS,
will oblige the subclasses to behave like the basis class. Such a design can
not support designing DEVS extensions as DS-DEVS in which the behavior of
atomic models evolves in runtime. In fact, this basic design which consists of
only one class does not provide any flexibility to be updated in runtime. On the
other hand, the subclasses inherited from class atomic are reused as they are.
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Atomic
- etime : double
+ init()
+ deltExt()
+ deltaInt()
+ output()
+ ta()

Model

Diagramme : « Diagramme de classes » page 1

Figure 1: Basic design of DEVS atomic models.

For example, for a given model, if its default state changes, the designer must
override the method init() in a new subclass of the considerate class. This
must be for the other methods, any new behavior to add into a given class should
reuse wholly the behavior of designed methods or overwrite them. Unfortunately,
we can not reuse such behaviors due to the atomicity of the expressed behavior.

In OOP, the inheritance, a fundamental principle, allows reusing of code
from designed classes. However, it can make maintainability and design difficult
[Bar15]. For that reason, designers who use OOP, privilege composition and
delegation instead of inheritance. In fact, inheritance induces a strong coupling
between classes, so reduces maintainability and consequently limit reusability.
Stein [Ste87] noted that delegation and inheritance are duals and can be used
for definition and sharing in software. Consequently, the use of delegation in
the proposed framework will contribute efficiently in reusing and maintaining
simulation code, without no loss of the power of inheritance.

On our side, in [HB10], we discussed the advantages of using design pat-
terns by the DEVS community in developing simulations. Furthermore, we
enhanced the state patterns to objectify events in addition to states of object
[HMF13][HMF14]. These ideas and designs will constitutes the core of our
framework in which new designs and implementation of DEVS models may be
made and different from those existing.

3 State of the art
The reusability and maintainability of DEVS simulations were pointed out by
many scientists and engineers. They proposed plug-ins, frameworks, tools and
guidelines to enhance the process of developing DEVS simulations. A list of
most useful and popular DEVS simulators may be found in [RPAL+14] [VTV17]
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[GBK18] where comparison studies were conducted among cited simulators
according to end-user criteria. However, few of these works were interested on
how DEVS simulation code may be reused, structured, maintained, etc. In
the following, we highlight these works related to our subject by showing their
advantages and disadvantages.

A first attempt to introduce design patterns in DEVS modeling and simulation
software, was conducted by [FS07]. They noted that the modeling capabilities of
system theory do not support some important software design techniques and so
without these kinds of software abstractions it is difficult to specify simulation
models of complex software that include design patterns and explicit supports
for the design of specific simulation modeling. The inclusion of design patterns
in modeling and simulation environments such as DEVSJava for specific domains
helps modelers and designers to develop software design specifications with key
benefits: reduce cost and time of coding, enhance testing, etc. In [SAL15],
Sarjoughian et al. proposed a DEVS metamodel in order to structure and
organize the modeling activity of developers based on Model Driven Architecture
(MDA). The proposed Unified Modeling Language (UML) artifacts make easy
the implementation of concrete models. However, we did not find how concrete
models are mapped into runnable models.

James II is a DEVS software based on plug-in scheme, called the concept
plug’n simulate [HU07][HEU08]. The plug’n simulate architecture provides exten-
sibility at two levels : (1) plug-ins types that define types of plug-ins by proposing
an interface as an extension point and allowing concrete implementation and (2)
plug-ins that provide different implementations of a given service (flatten versus
hierarchical simulation, random number generators, etc.). This architecture
allows any framework to integrate available and future plug-ins in a flexible
and automatic process without modification of the existing code, based on the
factory pattern. However, this solution imposes that each plug-in type should
have an XML (eXtensible Markup Language) file defining some attributes useful
for the factory.

Dalle and Wainer [DW07] proposed modeling patterns for sharing compo-
nents in a DEVS simulation. They developed the following patterns: the proxy,
shortcut and matriochka patterns. The proxy pattern allows the modeler to share
a component without creating new copies. So this pattern makes plugging of
components in DEVS models possible. The second pattern shortcut allows build-
ing interactions between components. These interactions may be used to define
bridges between components and may reduce the coupling complexity that DEVS
often faces. Note that this pattern is useful in case of a layered architecture to
create additional paths between layers and to comfort the traditional hierarchical
interaction. The last pattern matriochka guarantees a safe interaction between
the hierarchical DEVS components and enforces encapsulation.

Santucci and Cappochi [SC12] used design patterns to develop the extensible
framework DEVSimPy. This framework claims extensibility by using the design
pattern strategy to choose the best simulation algorithm at runtime, and using
specific plug-ins based on the model view controller paradigm to start activity
tracking during simulation. DEVSimPy provides other functionalities like ex-
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tending a set of models with new behaviors as the blink plug-in which allows
blinking a model making a transition during simulation, and updating the code
of a model during the simulation runtime. This last operation needs that the
modeler stops the simulation, changes the code of a given model and restarts
the simulation.

At first glance, the reader may believe that these works address the same goal
of this work, ie., reusability and maintainability of DEVS simulation. However,
by analysing these works, we are sure that they are not addressing the same
problems and neither proposing the same solutions that we highlight in this
paper. In fact, we attempt to provide patterns to how design and code DEVS
models and do not tackle modeling problems that a modeler may meet in [DW07].
In addition, the technical solutions that support with the modeling patterns
do not show how DEVS models may be designed except the fact the DEVS
simulation may be designed through the Fractal architecture which can’t answer
our design requirements.

The Plug’n simulate concept that has been widely used by the simulation
community allows uploading plug-ins in dynamic way. Consequently, simulation
software such as James II are more flexible and extensible for further requirements.
However, we did not find how this concept may be used to structure, design
and code DEVS models. Unfortunately, James II does not provide inherent
support for any modeling nor for any modeling paradigm because all formalisms
supported by this tool must inherit from the base classes of James II [HU07].

In the rest of the paper, we propose to introduce design patterns for designing
DEVS modeling requirements in order to reuse and maintain code of models.
Note that due to the informal description of design pattern, we introduce OCL
(Object Constraint Language) to the proposed patterns in order to make clear
their interpretation.

4 Definitions and recalls
4.1 DEVS Formalism
According to the literature on DEVS [ZMK18], the specification of a discrete
event model is a structure given by:
M = (X,S, Y, δint, δext, λ,D), where

• X is the set of the external input events,

• S the set of states,

• Y the set of the output events,

• δint : S → S is the internal transition function that defines the state
changes caused by internal events,

• δext : Q×X → S is the external transition function that specifies the state
changes due to external events,

6



• λ : S → Y is the output function, and

• D : S → R+ ∪∞ represents the maximum length or the lifetime function
of a state. Thus, for a given state s, D(s) represents the time during which
the model will remain in state s if no external event has occurred.

Zeigler [Zei76] introduced the concept of the total states of a system: Q =
{(s, e), s ∈ S ∧ e ∈ R+, 0 ≤ e ≤ D(s)}, where e represents the elapsed time in
state s. The concept of total state is fundamental in that it permits one to
specify a future state as a function of the time elapsed e in the present state.
There are potential benefits may lie in its ability to implement event filtering,
wherein a planned change of state will be realized by a model only when the
time interval that separates two key events exceeds a predefined value, and to
encapsulate an otherwise mechanical event filtering at the conceptual level.

Thanks to the closure under coupling property of DEVS, atomic models are
reusable using a DEVS coupled formalism that includes the specification of the
DEVS components and their couplings. The obtained model is defined by the
following structure:
MC = (XMC , YMC , DMC ,Md‖d∈D, EIC,EOC, IC, Select) where

• XMC : set of external events.

• YMC : set of output events.

• DMC : set of component names.

• Md: DEVS model named d.

• EIC: External Input Coupling relations.

• EOC: External Output Coupling relations.

• IC: Internal Coupling relations.

• Select: defines a priority between simultaneous events intended for different
components.

4.2 Object Oriented Design of DEVS Models
In order to get a clear idea of existing design of DEVS models in OOP, we
examined in research articles, technical documentation for DEVS software tools
and packages, and the given code examples, to highlight their designs in the
form of class diagrams.

One of the well-known software in DEVS M&S is DEVSJava. Its simulation
kernel is based on Parallel-DEVS, so it is expected to design Parallel-DEVS mod-
els but can also simulate classic DEVS by customizing the method deltext().
The design of both Parallel- and classic DEVS models is done in a recursive
way. Firstly, the designer extends an abstract class called atomic to define for
each DEVS atomic model its own class. Then, he extends the class digraph
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to create the instances of these new models which will be stored in a com-
ponent set; the designer defines the coupling between these instances using
the method addCoupling(devs d1, String p1, devs d2, String p2). The
method deltext(double e, message x) provides to the model instance all
external events that occur from the simulator. However, while the designer
motivation is DEVS models, he should extend the class classic to design his
atomic models and should override the method deltext() to handle one event
at once; or a specific class siso if the DEVS atomic model has only one input
and one output ports and events are processed as reals. The class diagram of
this description is shown in Figure 2.

Figure 2: The DEVSJava class hierarchy and main methods [DEV05].

PythonDEVS [BV02] provides an interesting DEVS modeling package in
which the designer should extend the classes AtomicDEVS and CoupledDEVS in
order to design DEVS atomic and coupled models respectively. These classes
specialize a common abstract class BaseDEVS which holds the lists of input
and output ports. The class Port may have the responsibility to conduct type
checking when a coupling is made by verifying if the event sent out from the port
sender is accepted by the port receiver. The class AtomicDEVS acts as an interface
that the designer extends to implement the different functions δint, δext, λ, and
D through the methods intTransition(), extTransition(), outputFnc()
and timeAdvance() respectively. In this class, there is a specific attribute state
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used as a state variable. The designer may add other state variables in the
inherited class to design the new atomic model. The class CoupledDEVS allows
designing new DEVS coupled models by inheritance. These new classes have the
responsibility to store the instances of classes for their submodels D using the
method addSubmodel(model: BaseDEVS) and making the different coupling
EIC,EOC, IC using the method connectPorts(p1: Port, p2: Port). The
priority function select that identifies the imminent model to handle when
simultaneous events occur for a given coupled model, is specified by implementing
the method select(immlist:list): BaseDEVS. This package is shown on
Figure 3.

Figure 3: The modeling archicture of PythonDEVS.

The analysis of the DEVSJava and PythonDEVS class hierarchy diagrams (cf.
Figures 2 and 3 respectively) shows that there is a strong likeness to well-known
design pattern: the composite pattern [GHJV95]. The use of design patterns
in software development was justified in the literature on object programming
through numerous research works and articles. Consequently, we believe more
and more since our papers [HB10][HMF13] that some design patterns can be
useful for efficiently designing simulations and especially DEVS which in turn
may enrich the design pattern library thanks to the coding experiences of DEVS
designers.
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5 Design of DEVS Models
5.1 Designing DEVS atomic
5.1.1 Separating Structure from Behavior

As noted above, a very simple and efficient way to design an atomic model
is to extend a class and implement the suitable behavior. In order to avoid
such a design which is hard to maintain and update due to the use of the
inheritance relationship, we can use delegation to replace inheritance in order
to extract the behavior from structure then proceed in its implementation.
Fundamentally inheritance and delegation are dual [Ste87]. Consequently we
can favour inheritance or delegation according to our design requirements. Let
us consider the design shown in Figure 4.

BehaviorDEVS

+ deltaExt()
+ deltaInt()
+ output()
+ timelife()

AtomicDEVS

+ deltaExt()
+ deltaInt()
+ output()
+ timelife()

devs

1

Diagram: class diagram Page 1

Figure 4: Object design of atomic model.

From Figure 4, the class AtomicDEVS delegates each received message from
the simulation to the attribute devs: BehaviorDEVS which is responsible for
updating the state variable and computing outputs. An example of delegation
of the external transition function deltaExt() is shown below:
void deltaExt(Port p, Object ev, double etime){

assert p.check(ev) // check optionally the recevability of ev by
p

devs.deltaExt(ev, etime);
}

About checking port type, Sarjoughian and Markid [SM12] noted that the
well-formedeness of port couplings between DEVS models is often ignored by
DEVS simulation software; they proposed the use of EMF-Metamodeling to
check such a compatibility. However, we propose the use of object delegation
to the class Port to check whether an event may pass on a given port (inport
or outport). Otherwise a runtime exception is thrown and the simulation is
interrupted. The body of the method check() depends on the type of events that
a given port handles and for which the designer should code once the modeling
requirements are known. Note that, the static and dynamic typing casts should
be used carefully for checking receivability of events on a port. Indeed, the static
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and dynamic casts may convert a specific type into a common one and vice
versa. In programming languages like Java and C++, many kinds of conversion
are allowed for primitive types and classes. Considering primitives types, two
kinds of conversion are possible widening and narrowing. Because, in DEVS, two
interpretations of the couplings are given : 1) coupling in static way to connect
DEVS models among them to transmit events as such. In this case, the widening
cast is advised; and 2) the coupling transforms events initially with a given type
into another one. The designer should use or define the useful functions and
methods in order to carry out the transformation and check whether the result
is correct, in the case of coupling using functions.

On the other hand, when the set of events transiting a port is finite, we advise
the use of enumerated sets allowing the definition of enumeration of events and
making more safe the typing of events to their ports.

The interface of the class BeahviorDEVS (it can be designed with an interface
instead of a class) defines all methods that a given behavior should implement. It
is a contract1 that the designer should respect for any concrete DEVS behavior.

Note that using such a design, the designer may reuse the structure of
DEVS atomic, ie., the class Atomic to specialize it by adding new constraints
and functionalities to the structure (add or delete a port); and may reuse the
behavior through the classes implementing the interface DEVS in other structures,
i.e., other classes subtyping the class Atomic.

5.1.2 Designing DEVS Behavior

Different designs may be conducted by designer according to the modeling and
design requirements. However, we distinguish two main designs:

• Classical design: A simple way to code a DEVS behavior consists of using
the primitive types or enumerated sets to type events and states; and
the conditional statement if-else or switch case to code state changes and
compute output events. The logic of the conditional statement is well
suited to the behavioral logic of DEVS, as shown through many examples
found in the literature. Conditional statements using primitives types or
enumerated sets also allows conducting fast simulations.

• Object design: If the use of OOP to design DEVS coupled is simple, in order
to insure modularity and encapsulation of the code; it is not the case for
designing behavior. A designer who wants to enhance reusability of DEVS
behavior code, should objectify states, events and/or transitions. The object
design is an alternative to the classical design in which the DEVS behavior
is described via a compact block based on the conditional statement. In
addition, such a design allows extending the objectified elements with new
properties and operations using inheritance. Consequently, the passage
from a DEVS design to an extended one with a new operational semantics

1The design by contract was introduced by Bertrand Meyer in his book Object-Oriented
Software Construction, in 1988. This approach defines a set of fundamentals for formal and
precise specifications of software components.
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(Parallel-DEVS, GDEVS, etc.), is guaranteed and simplified thanks to the
object abstraction made on some DEVS elements.

5.2 Designing DEVS coupled
A DEVS model may be coupled or atomic; and a coupled model is composed of
at least one model. In addition, a model has a finite list of ports decomposed
into two sets inports and outports. Bolduc and Vangheluwe [BV02] proposed an
interesting design of DEVS which can be easily reused to design an extension of
DEVS (see Figure 3). In fact, for an extension of DEVS which defines atomic
and coupled models, the designer may makes its classes with the same structure.
Consequently, we propose a design of coupled models shown in Figure 5 inspired
by [BV02] with slight modifications.

*

EOC

*
1..*

OutPort

EIC

Port

+ check()

ModelDEVS

CoupledDEVS

+ select()
Inport

*
AtomicDEVS

* *

IC

 IC={}

Diagram: class diagram_0 Page 1

Figure 5: Object design of coupled model.

Note that this design is closer to the design pattern composite [GHJV95]
which proposes to design hierarchical structure for a given object. This shows that
some experiences in design patterns in general may be reused by DEVS designers.
The next section highlights techniques coming from software engineering and
gives original solutions to design DEVS behaviors in OOP.

A designer may note that the design shown on Figure 5 suffers from incon-
sistency regarding DEVS semantics. For example, based on the aggregation
between the classes CoupledDEVS and ModelDEVS, an instance of CoupledDEVS
may contain itself, a port may reference to itself, an output port belonging
to an instance of AtomicDEVS may reference an input port belonging to the
same instance, etc. In order to remedy this within the semantics of UML class
diagrams, we propose the use of OCL (Object Constraint Language) to complete
this class diagram, even if notes are placed on summarizing constraints that the
designer should respect.

An interesting feature of this class diagram is that extensions of DEVS are
feasible from classes ModelDEVS, CoupledDEVS and AtomicDEVS. Consequently,
these classes may have a lot of subtypings (instances in DEVS and its extension).
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In order to guarantee the homogeneity of submodels to the same formalism
(DEVS or a given extension and not both), a verification on type of the submodel
should be conducted before adding it to coupled model. Unfortunately, OOP
does not provides mechanisms to guarantee such a constraint but it could be
added to the design.

6 Object Design of DEVS Behaviors
Designing DEVS behaviors using object oriented paradigm and getting an object-
oriented code requires a particular attention on designing discrete event models
in general. People proposed a lot of designs for statecharts, Petri-nets, DEVS, etc.
Most of them propose to objectify states and transitions. However, the dynamics
between states and transitions uses conditional statements or structures like
tables. On the other hand, events are often typed with primitive types. Such
designs lead to some disadvantages (that we try to remedy in our framework)
listed below:

• the dynamics expressed using conditional statements is hard to maintain
and is impossible to update at run time.

• the no objectifying of events leads to code less abstract. In fact designing
events with objects (when it is necessary) allows redefining the event
concept easily (for example, assign to the time occurrence a temporal
window instead of a unique value).

The next subsections discuss some solutions that may be helpful for the designers
of DEVS behaviors.

6.1 State Design Pattern
The state design pattern [GHJV95] and its variants [DP98][Ada04][CM10] [GCGP13]
allows designing dynamic objects in which the behavior depends on the state.
The state pattern consist of an abstract class State holding all events acting on
the object (finite state machine) as public abstract methods. For each state of
the object a subclass is created and event methods are implemented which act
as transitions and return the future state (or update it directly). The object to
design holds a reference on the current state and all received events are delegated
to this reference in order to make a transition and update its current state.

Using the state pattern, to design a DEVS behavior (see Figure 6), requires
identifying for each state the possible handled events, and expressing the com-
putation of the next state using conditional statement over the possible events.
The second solution consists of identifying by the class BehaviorDEVS which
method to invoke of the current state, by using reflection. Note that, the state
object is responsible for updating the current state. From this fact, the state
pattern is a partial solution to make code more abstract and reusable because
the designed behavior remains compact without objectifying events, even if it
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BehaviorDEVS

State1 State2
 currentSt.deltaInt(this)

State3

currentSt
State

- timelife : double
+ deltaExt()
+ deltaInt()
+ output()
+ timelife()

BehaviorStDEVS

+ deltaExt()
+ deltaInt()
+ output()
+ timelife()
+ setState()

setState()

 return this.timelife;

 currentSt.deltaExt(this,event,etime)

Diagram: statepatternDEVS Page 1

Figure 6: Design of DEVS behavior using the state pattern.

is divided and dispatched on different state objects. The following subsections
discuss more elaborated solutions.

6.2 State Event Design Pattern
Some design patterns of behavioral objects attempt to objectify events in addition
to states [Fow99] [Ada04]. However, the given solutions are not completely
satisfactory. [Fow99] solution consists of designing event communication between
objects. On the other hand, [Ada04] solution, even if states and events are
objectified, the dynamics through state changes is expressed using conditional
statements. This causes a loss of maintainability through the use of conditional
statement and a loss of performances due to objectifying events and states.

In the state event pattern [HMF14] 2, we proposed to objectify events in
addition to states and we used delegation to event objects in order to design state
changes. The state event pattern designs DEVS behaviors expressed with a finite
set of events. State objects may be declared from the class State or a subclass
for each one extending this class. On the other hand, events are designed by
extending the class Event. Note that for each received event, the atomic model
which holds a reference on its current state, delegates the state change to the
occurred event; and each event object holds all its state changes through the
attribute transitions: HashMap(State, State). A specific event subclass
INTEVENT is designed a priori in order to hold internal transitions caused by
autonomous changes of the system. The body of the method deltaExt()
belonging to the class DEVSBehavior which is not responsible for updating the
current state is as follows:
void deltaExt(Object event, double etime){

2For a complete documentation of the state event pattern, the reader may accede to the
author article available on ACM digital library (DOI: 10.1145/2721956.2721987)
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((Event)event).setChange(this);
}

However, this way of designing transitions supposes that only one fire-
able transition exists for a given current state and for the occurred event.
In case of stochastic models, an event may have different transitions for a given
state, so the attribute should be rewritten as transitions: HashMap(State,
List<State>) to hold a list of possible future states for a given event.

The discussed solution is summarized through the following class diagram
shown on Figure 7, after having adapted the state event pattern to DEVS.

Event2
# transitions : Map

1..*

BehaviorDEVS

BehaviorStEvDEVS

+ deltaExt()
+ deltaInt()
+ output()
+ timelife()

Event1
# transitions : Map

event
Event

+ getTargetState()

INTEVENT
# transitions : Map

State
- timelife : double

 event.getTargetState(currentSt)

 INTEVENT.getTargetState(currentSt)

Diagram: stateeventpattern Page 1

Figure 7: Extension of the state event pattern to DEVS behavior.

Moreover state objects should be declared as unique to get a unique reference
for each state. This constraint may be insured by the class DEVSBehavior or by
using the Singleton pattern when state objects are subclasses of the class State.
Note that in UML, a static attribute is shared between all objects assigned
directly from a given class or its subclass. In order to avoid event objects sharing
the same transitions, the attribute transition is declared inside each subclass
Event as static and not a common attribute in the class Event. A serious
constraint of the OOP to make design more clear and synthetic.

6.3 State Event Transition Design Pattern
This pattern (Figure 8) is an extension of the state event one, in which we
objectify the element transition of DEVS using the class Transition. We use
delegation to identify the fireable transition from the occurred event object
and the current state of the model. So, this transition returns the next state
of the model (futureState) allowing to set a new state. From the abstract
class Transition are defined two classes ExtTransition and IntTransition
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to design external and internal transitions respectively. Instances from both
classes are stored in each event class to hold its own possible transitions. Note
that the use of delegation leads to a fair coupling between used objects (state,
event and transition objects).

1..*

Event3
# transitions : Map

11

BehaviorDEVS

BehaviorStEvTr
+ deltaExt()
+ deltaInt()
+ output()
+ timelife()

State
- timelife : double

Transition
- futureState : State

ExtTransition IntTransition
- OutEvent : Event

Event1
# transitions : Map

Event2
# transitions : Map

Event
+ getTargetState() state

Diagramme : « stateeventtransitionpattern » page 1

Figure 8: State event transition pattern extended to DEVS behavior.

One of benefits of this pattern is that the class Transition may be overridden
with new data and methods. In fact, it is easy to design a transition with a
condition that should be checked to make a given state change and an action to
update some state variables; always thanks to the OOP which allows preserving
the other classes (State, Event, etc.).

7 Formalizing DEVS designs to Get Consistent
Models

DEVS class diagrams shown on Figures 4–8 are incomplete because the UML
language is not formal and ambiguous. Zinoviev [Zin05] proposed a set of
formalized rules to map DEVS into UML. However these rules are specific to
Parallel-DEVS and should be rewritten to be integrated directly in an executable
framework. On the other hand, the given object-oriented designs of DEVS enrich
that discussed in [Zin05] leading us to describe other rules.

OCL3 (Object Constraint Language) [WK03] is a standard language of UML
to describe constraints on objects showing how they should behave and for which
a given class diagram can not explicit such constraints. In other terms, OCL
allows describing a semantics for class diagrams. In addition, OCL is supported
by many software tools allowing an automatic translation of OCL constraints
to compilable code (Java, C++, etc.) and so adopting clearly and formally the
well-known concept of design by contract.

3OCL does not support describe constraints on multiple inheritance and infinite sets of
object like Intger.allInstance()
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Now let us consider the following OCL constraints for DEVS:

1. Avoiding feedback loop couplings in DEVS atomic.
context ModelDEVS
inv : self.outports→forAll( p : Port, p.influencee
→intersection(self.inports)→isEmpty())

this constraint allows a given atomic model influencing only another port
belonging to a different model.

2. Distinguishable inport and outport sets.
context ModelDEVS
inv : self.inports→intersection(self.outports)→isEmpty()
this constraint guarantees that a port for a given DEVS model can not be
both an inport and an outport.

3. Defining a correct set of submodels for a DEVS coupled.
context CoupledDEVS
-- a coupled model reuses at least one submodel
inv : self.submodels→notEmpty()
-- a coupled model does not be a part of its submodels
inv : self.submodels→excludes(self)

these two constraints defines that a given DEVS coupled model contains
at least one DEVS model (atomic or coupled) and the model itself will not
be part of its submodels respectively.

4. Checking compatibility between states, transitions and lifetimes.
According to the design chosen for DEVS, a set of constraints should be
defined. The object design that objectifies only states leads to the following
constraints:
context State
inv: self.isTypeOf(ActiveState) ≡ self.timeLife() < ∞
inv: self.isTypeOf(activeState) ≡ not self.isTypeOf(passiveState)

However, for the use of a classical design of DEVS, consider the following
constraint:
context BehaviorClassicDEVS
inv: self.isPassive() ≡ self.timelife() =∞
inv: self.isPassive() ≡ not self.isActive()

OCL allows also defining other constraints on objects in addition to in-
variants like init attributes, pre- and post-conditions of methods, etc. So,
the designer may apply these constraints to DEVS while updating state
variables of the model, as:
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5. Guaranteeing the lifetime of any state is positive with the following con-
straint post-condition.
context BehaviorDEVS::timelife()
post : result ≥ 0

With these DEVS OCL constraints, we guarantee that the design of a given
model has a correct syntax and is consistent. The framework can check, in run
mode, whether the constraints are respected or violated if they are incorporated
into the final code.

Note that these constraints are specific to DEVS. In case of DEVS extension,
other constraints may be described according to the new extension requirements
that should not violate the OCL constraints of DEVS. In fact the DEVS con-
straints should be respected in the new formalism, otherwise it is not considered
as an extension.

On the other hand, OCL constraints may be used to define assertions for
modeling requirements of a given system. In DEVS counter example [ZPK00],
the following constraint insures that the counter value has always a positive or a
null value:
context Counter
inv: self.Counter ≥ 0

In general, OCL rules should be defined at formalism and model levels in
order to guarantee a well formedness of models and implementations to DEVS
(see Figure 9).

The different OCL rules written above are given to the designer who may
reuse, extend or restrict for customizing them and check the consistency of
extensions or designed models. Let us consider Real Time DEVS (RT-DEVS)
[HSKP97] an extension to DEVS in which the lifetime of each state is an interval.
Checking whether the lifetime of any state in RT-DEVS has a positive time
interval can be inferred from the OCL rule (5) of DEVS as follows:
∀s ∈ Srt−devs∃α, β ∈ R
→ tart−devs(s) = [α, β] tart−devs

extend−−−−→ tadevs

→ tart−devs(s) = [α, β] tart−devs
extend−−−−→ tadevs post tadevs() ≥ 0

→ tart−devs(s) = [α, β] post tart−devs() ≥ 0
→ 0 ≤ α ≤ tart−devs(s) ≤ β → α ∈ R+ β ∈ R+

which corresponds to the lifetime function definition in RT-DEVS.
Moreover, this shows that any state in RT-DEVS has a positive time interval

based on the definition of DEVS lifetime function. Note that other properties of
the extension may be checked from DEVS using logics and inferences.

8 Reusability and Maintainability of DEVS Mod-
els

Few studies on the maintainability of DEVS models are published. Perhaps, the
main reason is that DEVS community is not interested on maintaining simulation
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Figure 9: OCL framework compliant to DEVS.

models and this is viewed as software engineering requirement and challenge.
Note that in DEVS, reusability is explored only through the simulation engine
and libraries of models. So what about adding new behaviors to atomic models?
What about specializing a library of DEVS models to a new extension? The
following subsections give answers to these two questions (even if we answer the
second question succinctly).

Essentially, reusability of DEVS (extensions) models consists of reusing both
atomic and coupled models to create new models. This supposes that once the
atomic model produces an acceptable behavior, it will be encapsulated in a
box with ports and reused such as to design new models. In some cases, a new
model is made from an existing one by adding and/or deleting its submodels,
ports, states, etc. and both models are saved (two models will exist). Even if
at the conceptual level that is feasible but how it can be done at code? This
requires extending the classes of a given model to create new classes according
to the requirements of the new model and overriding methods yet implemented
to express new behaviors of δext, δint, etc. Note that we can reuse these methods
but we can’t update their bodies. Recall that in OOP reusability is favored
by using inheritance and delegation, and encapsulating each part of the object
subject to change in class.

In simulation, DEVS models are manipulated through object instances made
from classes describing behaviors verified and validated by the designer. Consider
a designer formulates new modeling requirements for existing models. Conse-
quently, new classes should be designed either from scratch (this is a bad solution
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from software engineering view); or from existing DEVS classes (that is we are
considering). In fact, reusing existing DEVS classes to design new classes, i.e,
new models is possible only if the preliminary (basic) DEVS classes are main-
tainable, i.e, ready for easy modifications. Otherwise the basic DEVS classes are
inflexible and less reusable.

Now let us consider two different light lamps (see Figure 10). The first one
has a static light, the second one provides a progressing and decreasing light
before switching on and off respectively.

LightOn

LightOff

?on ?off

LightOn

LightOff

LightProgress

?off

?on

LightDecrease
10 10

Figure 10: DEVS behaviors of lamp : static (on the left) vs variable (on the
right) light.

Comparing the two states models shown on Figure 10. The lamp with light
variation reuses the classic lamp behavior. In fact, we add to the first model two
actives states (LightProgress and LightDecrease) and two internal transitions
(LightProgress 7→ LightOn and LightDecrease 7→ LightOff); and we update its
external transitions (LightOff 7→ LightProgress and LightOn 7→ LightDecrease).
Is it possible to do that on the executable code of the classic lamp model? If
the model is coded with one class in which the behavior is a bloc of switch case
statements, the answer is no.

However, by objectifying the states and events of the classic lamp model,
the modeler can easily design the lamp with light variation by adding two state
classes LightProgress and LightDecrease and two event classes On1 and Off1
to redesign the event on and off by inheritance from the old classes On and Off .
Figure 11 shows the classes invoked in the design of two lamps with a static and
variable light.

Note that, the structure of the classic lamp model is reused to design the
structure of the new lamp, i.e., the class LampVariation inherits the class
LampStatic. In addition two state classes are reused LightOn and LightOff,
and two event classes are extended to design the event classes On1 and Off1 from
the existing event classes On and Off. The class INTEVENT is added to design
autonomous changes

An interesting feature of such a design is that the review of the executable
code is easily conducted. Thanks to the reification of states and events the
designer may easily deduce how each object should behaves according to the
described model.
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BehaviorDEVS
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LampStatic

LampVariation

State
- timelife : double

Event
+ getTargetState()

On Off

On1 Off1

LightOn LightOff

LightProgress LightDecrease

Diagramme : « Lamp » page 1

Figure 11: Class diagram of the lamps: static and variable lights.

However, such a design suffers from a lot of classes to design and manage,
unlike a classical design in which there is only one class in order to design a DEVS
behavior but this the cost of enhancing reusability and maintainability of code.
In any case, separating structure of DEVS from its behavior and objectifying
states, events and transitions are based on the OOP principle which consists of
encapsulating data subject to modification in independent classes.

9 Comparison of Performance of Different DEVS
Designs

9.1 Using System Performances and Resources
In this experimental study, we are interested in two parameters: time of execution
and size of memory heap for each design applied to a modelM made automatically
that consists of n states, m events and n×m transitions. Every one knows a
priori that an event-driven design using a conditional statement is faster than
the object-oriented one. In fact, in the classic and popular design there is
no push-pop memory to carry out a state change. However, the state, state
event and state event transition patterns carry out one, two and three push-pop
memory respectively, to make one state change (cf. the transition methods of
each design). Obviously, this needs some more memory bytes and slows down
the simulation. For a seek of simplicity, we limit this study to a small set of
states (n = 2..5) and events (m = 2..10).

This study is conducted on personal computer DELL with CPU Intel Core2
Duo CPU E8400 - 3.00GHz × 2 where is set Ubuntu 14.04. In order to carry
out such simulations on different code according to the proposed DEVS designs,
we programmed a module to instantiate randomly the behavior of the model M
and we developed a system to generate the source code of the given model M
according to each DEVS design pattern. In all given object designs, reflection
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is used to map random events to objects. Finally simulations are run and the
runtime mean of each design is given on Table 1.

Table 1: Mean runtime in millisecond of the model M .
DEVS
design

Switch case State pat-
tern

State event pat-
tern

State event tran-
sition pattern

Mean run-
time

0.025 0.315 0.953 1.159

The shown results in Table 1 confirm that faster discrete event simulations are
those designed with the switch case statement. The cost of objectifying state,
event and transition increases with the number of elements to objectify. The
state pattern provides an execution time lower than the state event pattern,
which in turn provides an execution time lower than the state event transition
pattern. In any case, the execution time of simulation designed with object
pattern remains less than few milliseconds.

In return, the given object design patterns are able to design event-driven
behavior with a large size of events and states than the classic design. In object-
oriented programming like Java and C++, the file size for a given class should
not exceed the maximum configured. Consequently, in this experiment, the
classic design exceeds first the file size authorized for a Java class, then the state
pattern and finally the state event and state event transition patterns. In fact,
these patterns provide a systematic approach to dispatch code through different
classes.

Recall that the different designs given in this work produce the same behavior.
This reinforces that object designs of DEVS simulation are able to conduct correct
simulations.

In conclusion, the need of quick simulation pushes the designers to use the
conditional statement to design event-driven behaviors. However, the given
object patterns enhance the reusability and maintainability of such behaviors.
Unintentionally, the proposed patterns design behaviors with a large size of
states and events.

9.2 Experimenting the DEVS patterns in Simulation
The core of this work consists of proposing object-oriented designs for DEVS
modeler. Thus, it is necessary to measure the reusability and maintainability
using metrics for each design. Well-known object-oriented metrics is proposed
by [CK94] [CAQIS14], called C&K metrics, and that were created in order to
reinforce such measurements and consolidate decisions from this metrics.

The C&K metrics consists of six measurements: weighted methods per class
(WMC), depth of inheritance tree (DIT), number of children (NOC), coupling
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between object classes (CBO), response for classes (RFC) and lack of cohesion in
methods (LCOM) for each class. Moreover this metrics, we add two additional
measurements: the number of classes (NOCl) and the total line of code (TLOC)
which allows us to compare efficiently the proposed DEVS designs.

Now, let us consider the game Pacman which is used in different research
works for two decade to study fields like robotics, biology, sociology, psychology
and the most active field computational intelligence [RLPLL18]. In DEVS, some
works used Pacman as a case study to validate a given approach or some results
[Gor15, SV13]. From us, we want to check whether or not the described behavior
for Pacman is correct. We consider Pacman with 4 movements (left, right, up
and down) useful to travel inside the labyrinth and to eat all pac-dots met; and
two kinds of collisions, one with the walls of labyrinth and a second with the
enemies. If Pacman eats a super pac-dot, then it will activate its super power to
beat the enemies and will move more quickly for a given time. The corresponding
DEVS model is shown on Figure 12.

Wait

Move

Died

SuperWait

SuperMove?collide

?collide

?collide

?right ..?down ?right ..?down

?collide

timepower

timepower

?right ..?down?right ..?down

!endpower

!endpower

?superpower

?superpower

?superpower

Figure 12: DEVS behavior of Pacman.

Consider the behavior of Pacman designed in the four designs: switch-case
(1), state pattern (2), event pattern (3) and state event transition pattern (4).
The different simulations of the Pacman based on these designs were carried out
successfully and produced the expected behavior, i.e., all the simulations fired
the right state change at the right time. Consequently, we may assume that the
designs of Pacman are valid, they produce the same behavior and a priori they
are free from errors.

In order to evaluate the reusability and maintainability of the different designs
for the Pacman entity, we use the plug-in metrics 1.3.6 © for eclipse © projects.
So, let us consider a significant subset of measurements selected from those
provided by the plug-in, shown in Table 2.
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Table 2: Metrics of the Pacman DEVS designs.
Metrics (1) (2) (3) (4)

NOC 5 11 20 34
Abstractness avg. 0 0.087 0.093 0.087

max 0 0.167 0.167 0.167
TLOC 234 415 353 515

DIT avg. 2.6 2.182 20.5 2
max 3 3 3 3

Num. of Packages 1 2 3 4
LCOM avg. 0.092 0.076 0.042 0.042

max 0.333 0.5 0.5 0.5
NOCh 0 5 13 26

WMC avg. 12.2 8.909 2.8 2.382
max 46 15 8 10

Instability 1 0.5 0.568 0.568
MCCC avg. 7.667 2.5 1.333 1.667

max 34 10 3 3

According to the interpretation of object-oriented metrics given in the liter-
ature, we make the following remarks and conclusions: the number of classes
(NOC) increases from a less object-oriented design until a full object-oriented
one thanks to the objectifying of states, events and transitions. This is a good
thing for the readability criteria of the code. The measurement Total Line Of
Code (TLOC) increases significantly from the design (1) to (4), this is due to
the additional methods as the setters and getters of classes. The measurement
Deep Inheritance Tree (DIT) is stable for each design, this is due to use of the
composite design pattern and the separation of the behavior from the structure
of DEVS atomic models. The measurement Lines Code Of Methods decreases
from the design (1) to (4), this shows formally that the attributes and methods
of classes in object-oriented design are more cohesive i.e., more unified. The
measurement Weighted Method Class (WMC) decreases substantially in the
designs (3) and (4), this shows clearly that the design patterns event and state
event transition decrease the complexity of classes.

On the other hand, the important measurement, the Mac Caby Cyclomatic
Complexity (MCCC) which measures the readability, debugging and maintain-
ability of code [MB89], decreases significantly from the design (1) to (4). Based
on these measurements, we conclude that object-oriented designs for DEVS are
useful for designers to make easy the reusability, readability, test and maintain-
ability of code of models.
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9.3 Desgining Functions with Patterns
Functions are a simple way to express complex operations on finite and infinite
spaces. In addition they are easy to design using conditional statements. However,
it is not obvious to design them in object paradigm without making abstractions.

Many programming languages like Java provides representing numbers using
objects. Even if using objects consumes more memory and slows down computa-
tion comparing to primitive types, it has some advantages like allowing the use
of the NULL constant to note that a number is not initialized instead of a default
value or declaring collections of numbers which is impossible using primitive
types.

Typically, the counter shown in Figure 13 may be designed easily using
conditional statements. However, designing this model using patterns has some
advantages that we recall at the end of this section.

This counter of numbers increases by 1 each time the event inc (increment)
occurs. Then, it decreases by 1 after α u.t from the last event occurred, until the
counter reaches the value 0. The following DEVS model may define such a counter:
δext() : n = n+ 1, δint() : n = n− 1 if n > 0 and d() : α if n > 0 ∞ otherwise .

0


1

inc


2

inc


n-1

inc


n

inc



inc

n+1

inc



inc

Figure 13: The state model of a counter.

At first glance, it is impossible to propose an object oriented design of this
counter using the patterns given in this paper. In fact,

the model presents an infinity set of states and transitions as shown in
Figure 13. Consequently, it is impossible to design such a model using a finite
set of classes without gathering states and transitions that share same properties.
We remark that for any state n > 0 has an internal and external transitions.
However the state n = 0 has only one external transition. Based on that, we
propose to design two state classes that represent the counter states 0 and
n > 0 respectively. Then an external transition class to design the change state
from any value to its next value when the event inc occurs ; and two internal
transitions classes, each one decreases the counter by 1 separately when an
internal state change occurs. Moreover these classes hold a method boolean
condition() allowing to check whether the corresponding transition is fireable
or not, defining when the model remains in a state with a positive value or it
transients to the state with the null value.

Note that assertions may guarantee that the given design simulates correctly
the counter, that we insert in different points of the code.

The power of this object-oriented design consists on dispatching the code
of the model in several classes, making easy its readability, reusability and
maintainability. For example, it is easy to define a new function that reset the
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counter to 0 from any state, or extends its values to negative ones by reusing
some classes and by inheritance of others to construct new ones.

10 Conclusion
In this work, we addressed a set of designs based on OOP useful for implementing
DEVS models. The benefits of such designs are separating of behavior from
structure and enhancing the reusability and maintainability of code in order to
make easy the correction of bugs and the update of requirements that occur
often after the implementation step. The different designs are supported with
OCL rules constructed according to DEVS semantics except the legacy of models
which needs other techniques like theorem proving or model checking. These
rules provide to the programmer a clear and unique interpretation of the given
designs. The reusability and maintainability of the simulation based on the
discussed designs are shown by carrying out a set of metrics. Recall that the
given design patterns implement and interpret correctly the DEVS models. The
analysis of simulation traces showed that the different designs give the same
behavior.

However, this work has been conducted with compromises due to a lack of
some concepts from OOP. For example, there is no way to rewrite the visibility
of attributes and methods (modifiers) like declaring the set of submodels of
a given model unchanged for DEVS then change it for DS-DEVS. Another
inconvenient is the lack of declaring class attributes and methods in a given a
class and its subclasses. This fact makes the proposed event and state event
transition patterns less abstract from this view. In addition, the designer should
use inheritance to design new concepts of DEVS and its instances which may
create confusion.

This study revealed that the OOP has some lacks to well design DEVS
extensions from existing models. Consequently, we believe that a specific oriented
language should be defined to DEVS and a special metrics should be identified to
measure simulation code according to this language. Then, a formal framework
should be designed to support this new language. This, however, doesn’t negate
the contribution of our work but will constitute a great challenge and for which
we hope that with the DEVS community will explore.
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