
Bioinformatics, YYYY, 0–0

doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY

Manuscript Category

Subject Section

ACCORDION: Clustering and Selecting Relevant Data
for Guided Network Extension and Query Answering

Yasmine Ahmed1, *, Cheryl Telmer2 and Natasa Miskov-Zivanov1,3, *

1Electrical and Computer Engineering Department, 3Bioengineering, Computational and Systems Biology, University of

Pittsburgh, 2Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Querying new information from knowledge sources, in general, and published literature, in particular, aims to provide

precise and quick answers to questions raised about a system under study. In this paper, we present ACCORDION

(Automated Clustering Conditional On Relating Data of Interactions tO a Network), a novel tool and a methodology

to enable efficient answering of biological questions by automatically assembling new or expanding existing models

using published literature. Our approach integrates information extraction and clustering with simulation and formal

analysis to allow for automated iterative process that includes assembling, testing and selecting most relevant models,

given a set of desired system properties. We demonstrate our methodology on a model of the circuitry that controls T

cell differentiation. To evaluate our approach, we compare the model that we obtained, using our automated model

extension approach, with the previously published manually extended T cell model. Besides being able to automatically

and rapidly reconstruct the manually extended model, ACCORDION can provide multiple viable extended model

versions. As such, it replaces large number of tedious or even impractical manual experiments and guides alternative

interventions in real biological systems.

Contact: {yaa38, nmzivanov}@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

While modeling helps explain complex systems, guides data collection

and generates new challenges and questions [1], it is still largely

dependent on human intervention. For example, in biology, model

creation requires reading hundreds of papers, extracting useful

information manually, incorporating background and common-sense

knowledge of domain experts, and conducting wet-lab experiments. These

time-consuming steps make the creation and the development of models a

slow, laborious and error-prone process. In addition to that, as the amount

of biological data in the public domain is constantly growing, the growth

further augments the issues of data inconsistency and fragmentation [2].

Therefore, the automation of model building, and even more, of model

extension, when new information becomes available, or when the domain

knowledge advances, is a critical next step for computational modeling.

Such automation will not only lead to more efficient modeling due to

reducing the amount of slow human interventions, but will also allow for

more consistent, comprehensive and robust modeling process.

In the last few decades, computer models have been used to explain

how biomolecular signaling pathways regulate cell functions. Usually,

modelers start with a few seed components and their interactions, a

baseline model, which is most often found in curated public model

databases such as Reactome[3], STRING[4], KEGG[5], or in published

literature. Depending on the questions to be answered with modeling, the

baseline model is usually further extended with the information extracted

from published literature or obtained from domain experts [6]. The

literature information extraction starts with a formal search query, which

is defined according to a question posed about the modeled system. The

search query guides automated selection of articles that contain relevant

information from published literature databases. As the biomedical

literature mining tools are becoming essential for the high throughput

extraction of knowledge from scientific papers, we use in our work

existing machine reading engines. We then use the extracted information

to extend or assemble models and answer questions about the studied

system [7].

In [8], the authors proposed a method that starts with a baseline model

and selects interactions automatically extracted from published work. The

goal of [8] was to build a model that satisfies pre-defined requirements or

to identify new therapeutic targets, formally expressed as existing or

desired system properties. As results in [8] demonstrate, automatic model

extension is a promising approach for accelerating modeling, and

consequently, disease treatment design. The authors in [8] organize the

information extracted from literature into layers, based on their proximity

to the baseline model. Recently, another extension method that uses

Genetic Algorithm (GA) was proposed in [9]. The GA-based approach

was able to extract a set of extensions that led to the desired behavior of

the final expanded model. The disadvantages of the GA-based approach

include non-determinism, as the solution may vary across multiple

algorithm executions on the same inputs, as well as issues with scalability.

In this work, we propose ACCORDION (Automated Clustering

Conditional On Relating Data of Interactions tO a Network), a tool that

automatically and efficiently assembles the information extracted from

available literature into models, tests the newly assembled models, and

selects the most suitable model to address user questions. In contrast to

[8], our approach focuses on identifying clusters of strongly connected

elements in the newly extracted information, which is necessary for these

additions to the model to have a measurable impact. Once the interactions

extracted from literature are clustered, we score their performance on a

selected set of system properties, using statistical model checking [10] and

stochastic simulation methods [11]. The scoring helps determine which

clusters to add to the baseline model. Therefore, ACCORDION takes at

most a few hours to execute thousands of experiments in silico, which

would take days, or months, or would be impractical to conduct in vivo or

in vitro.

While ACCORDION is not limited to any particular model, and it can

be used for extending many different models, in order to demonstrate its

accuracy, efficiency, and utility, we used a computational model of T cell

differentiation, published in [12]. Our main goal with this case study is to

demonstrate that ACCORDION can automatically expand an existing

published model into another published model, using new elements and

new interactions automatically extracted from published literature. As the

final golden model, we used the T cell model published in [13] and the set

of desired system properties discussed in [12][13]. The golden model and

the properties are used to evaluate the ACCORDION output. To this end,

the contributions of this work include: (i) a new method to extend models

by combining clustering and path finding that is more efficient than

existing methods; (ii) an evaluation of the effect of published literature

and machine reading on automatically reproducing a manually built

model; (iii) several new candidate models of the circuitry controlling naïve

T cell differentiation, assembled automatically, satisfying the same set of

desired properties as existing manually built models, and thus, enabling

exploration of redundancies or discovering alternative pathways of

regulation.

2 Background

We provide in this section an overview of several tools and background

concepts that are used by ACCORDION. We start with the description of

the tools that we have used to automatically find and read published papers

relevant for user queries (Section 2.1). Next, in order to use the extracted

information in models, while retaining all the useful information, a

suitable representation format for model components is critical (Section

2.2). Additionally, we also provide here a brief overview of the model

analysis techniques. These existing techniques and tools are used by

ACCORDION to evaluate the models that are expanded with the new

extracted information, and to select the best model to address user

questions [11][14] (Section 2.3).

2.1 Information extraction from literature

We rewrite user questions in the form of logical expressions. These

formally written queries (Figure 1(a)(left)) are used to search public

literature databases (e.g., PubMed [15]) as illustrated in Figure

1(a)(middle). Once the relevant papers are selected, they are sent to

machine reading engines for automated extraction of information (Figure

1(a)(middle)).

The machine reading approaches and tools are usually categorized

into Information Retrieval (IR) tools, with the main goal of finding papers

that pertain to a certain topic, and Entity Recognition (ER) tools, used to

identify the biological entities within a text [7][16][17]. The state-of-the-

art automated reading engines [18][19] are capable of finding hundreds of

thousands of events in cellular signaling pathways from thousands of

papers, in a few hours. In the context of biomedical literature, entities

represent elements of a biochemical reaction, which can be of various

types, such as proteins, chemicals, genes or even biological processes. For

each extracted element, reading engines provide its name, the database

where it is characterized, and the database identifier for the element.

Events in the machine reading output represent the interactions between

biochemical elements, which can also be of different types, such as post-

translational modifications (e.g., binding, phosphorylation, ubiquitination,

etc.), transcription, translation, translocation, and increase or decrease of

amount or activity. Machine reading also collects the evidence, usually a

sentence from which the information was extracted. In this work, we use

an open-source reading engine, REACH [19], to quickly obtain

information from literature. In Figure 1(a)(right), we show two example

sentences. The REACH reading engine extracts events into an

interactions-based format shown in the table in Figure 1(b). In the rest of

the paper, we will refer to the list of interactions retrieved from literature,

in this format as reading output.

2.2 Model representation and executable models

The three rows listed in the table in Figure 1(b) can be automatically

translated into the element-based BioRECIPES format [20], which is then

used as input to the executable model generation (see Section 2.3). The

BioRECIPES tabular model representation format is illustrated in Figure

1(c) with several examples of molecules and interactions in T cells [12].

In the examples, PTEN is positively regulated by Foxp3, and negatively

regulated by TCR. Ras has one positive regulator, TCR, and no negative

regulators. IL-2 has both positive and negative regulators, Ras and Foxp3,

respectively, while TCR is an input to the model without any regulators.

The BioRECIPES representation format includes, for each model

element: (i) name, (ii) type (protein, gene or a chemical), (iii) identifier

from a database (e.g., UniProt [21]), (iv) variable that represents state, and

(v) set of regulators. While the BioRECIPES format is a sufficient

representation for all the relevant element and interaction information, all

interactions in a model can also be represented as a directed graph G(V,

E), with a set of nodes V and a set of edges E. Each node v ∈ V corresponds

to one model element, and each edge e(vi, vj) ∈ E represents an interaction

in which element vi regulates element vj. The graphical representation of

all model interactions is often referred to as an influence map, and it is

especially useful for the methods that are used in ACCORDION, as will

be discussed in Section 3.2. Next to the table in Figure 1(c), we show a

graph with element interactions listed in the table. As can be seen in the

graph, we include the information about the polarity of the interaction in

the form of arrow type, that is, a pointed arrow represents positive

regulation, while a blunt arrow represents negative regulation.

Article short title

We will refer to the set of regulators of an element as its influence set,

distinguishing between positive and negative regulators. Additionally, we

can define a vector of all variables representing states of model elements

as x = (x1,., xN), where N is the total number of model elements. If we use

Boolean variables, then xi ∈ {0, 1}, where i=1..N. Next, we can assign a

state transition function to any model element, which defines a state

change of the element, given the states of its regulators. We will refer to

these functions as element update rules and to the model with update rules

as an executable model. In the case of Boolean variables representing

element states, the basic operations are AND (*), OR (+) and NOT (!). For

example, one version of update rules for the small graph in Figure 1(c)

can be: PTEN = Foxp3 *!TCR, Ras = TCR, and IL-2 = Ras *!Foxp3. The

choice between AND and OR operation depends on the available

information about interactions and element regulations. For example, for

an element to be “activated”, all necessary regulators are combined with

an AND operation, and all sufficient regulators with an OR operation.

2.1 Model analysis

Here, we describe two methods, simulation and formal analysis, that we

will use to evaluate the models that were assembled or extended with the

newly obtained information and data.

2.3.1 Stochastic simulation. We use DiSH simulator [11] to observe

dynamic behavior of the baseline model and the extended models. DiSH

can simulate networks with multi-valued elements in both deterministic

and stochastic manner, and we utilize both these features in our analysis,

as shown later in Section 5. Each simulation run starts with a specified

initial model state, where initial values are assigned to all model elements

to represent a particular system state (e.g., naïve cell, regulatory T cell,

etc.). Next, we use element update rules to determine element state

transitions. We track element changes for a pre-defined number of

simulations steps, or until a steady state is reached [11].

A trajectory of values is obtained for each element in a single simulation

run, that is, if we assume that a run has M steps, we define the trajectory

of element xi in the kth run as Tk(xi)= (xi0k, xi1k…, xiMk). When the simulator

is in the stochastic mode, in each simulation step, only one element is

randomly chosen, and its new value is computed according to its update

rule. Depending on the information available, the rates at which elements

are updated can be different across model elements; when there is limited

information about elements in the BioRECIPES model file, we choose to

use the same rate for all elements. In either case, due to the randomness in

element update order, multiple runs that start with the same initial state

may result in different trajectories. DiSH simulations output a file that

includes all the simulated trajectories for all model elements, in other

words, for K runs, for each model element xi, we obtain its simulated

trajectories T(xi)=(T1(xi), T2(xi)…, TK(xi)). Additionally, we compute

average trajectories for model elements (by averaging element values in

each step across all trajectories) and use these averaged trajectories to plot

and visualize element behavior over time.

2.3.2 Statistical model checking. In this work, we use statistical model

checking [10][14] to test our models against formally defined properties.

Model checking, in general, has been used to verify whether a model of a

system, or a system design, satisfies a set of properties describing expected

behavior of the system. Each property is encoded into Bounded Linear

Temporal Logic (BLTL) [14]. Here, we choose statistical model checking

since the state transitions are not necessarily deterministic, and we follow

the simulation approach described in Section 2.3.1. The simulation

approach that we use is similar to the discrete-time Markov chain approach

[22], thus the verification problem can be mapped to computing the

probability of whether a given temporal logic formula is satisfied by the

system. We can presumably use numerical methods to compute the exact

probability; however, this straightforward implementation suffers from

the state explosion problem [23]. Statistical model checking, on the other

hand, provides a probability estimate using simulation and avoids a full

Figure 1. ACCORDION inputs and methodology overview: (a) Left: example query used to select relevant papers. Middle: main components of

information extraction from relevant papers. Right: two example sentences with highlighted entities and events that are extracted by machine readers. (b)

Top: tabular outputs from REACH engine when reading example sentences from (a). Bottom: graphical representation of REACH outputs. (c) Left:
tabular representation of several elements and their influence sets (positive and negative regulators) in BioRECIPES format. Right: graphical

representation of elements and influence sets. (d) The flow diagram of the ACCORDION processing steps, inputs, and outputs. (e) Toy example of a

baseline model and connected clusters: blue edges highlight a return path within one cluster, and red edges show a return path connecting two clusters.

state space search. The input to the model checker is a system property

expressed as a BLTL formula and the output is a probability estimate of

the model satisfying that property. Statistical model checking uses

randomized sampling to generate simulation trajectories from the system

model, and then performs statistical analysis on those trajectories. For

instance, let us assume that we would like to test a property that, at any

point within the first s1 time steps, element v0 becomes 1 and element v1

becomes 0, and they both keep those values for at least s2 time steps. We

would then write the formula: 𝐹𝑠1 𝐺𝑠2(𝑣0 = 1 ∧ 𝑣1 = 0), where

𝐹𝑠1 stands for “any time in the future s1 steps”, and 𝐺𝑠2 stands for

“globally for s2 steps”.

3 Proposed methodology

The steps and components within ACCORDION are outlined in Figure

1(d). The first step of our proposed methodology is creating an input for

ACCORDION, which includes extracting new event information from

literature by machine reading engines, followed by filtering, scoring and

classifying these events. Once the new input is created, the three main

steps within ACCORDION are performed, and they include (1) clustering

of new events, (2) assembly of the clustered event data into models, and

(3) selection of the most suitable and useful events. In the following

subsections, we discuss each of these steps in detail.

3.1 Extraction and classification of new event information

To query for new information from paper databases, we write questions as

search terms in the form of logical expressions, which can be used by

literature search engines, either internet based tool (e.g., Google), or

Medline search tools (e.g., PubMed [15], Ovid [24]). The search engines

return a list of papers most relevant to these search terms. The selected

papers are then used as an input for machine reading engines, which

extract entities and events from the papers. Once the event data is

extracted, it is forwarded to the event classification tool, to identify

potential extensions for the existing model. However, it is important to

note that the output of machine reading engines is often inconsistent and

even inaccurate.

Therefore, extracted event information needs to be filtered before it can

be used in models. First, we select from the reading output only the

protein-protein interactions and remove any biological processes. The

rationale behind this is the lack of the context a biological process has been

mentioned in, which will affect the interpretation of a given interaction if

one of its members contains a biological process. The extracted

interactions are further filtered using public protein interaction databases

[21][4][25], which increases the confidence in the interactions that will be

used as potential extensions for models. To classify the remaining

interactions, we use an interaction classification tool. As described in

Section 1, we assume that, in order to answer a query, we would most

often start from an existing baseline model, and thus, the extracted

interactions are classified according to their relationship with the baseline

model. We classify interactions into three groups: (a) corroborations –

when the interaction from the reading output matches an interaction that

already exists in the model; (b) contradictions – when the interaction from

the reading output represents a contradicting regulatory mechanism from

the one that exists between the same elements in the model; (c) extensions

– when the interaction from the reading output is not in the model.

As corroborations confirm what is already in the baseline model, we do

not use them in extending the baseline model. In our future work, we plan

to include a confidence measure for the interactions in the model, and the

corroborations found in literature would contribute to computing the

confidence. Additionally, ACCORDION currently does not examine and

utilize the information within the extracted contradictions, although they

may hold useful information about the modeled system. In some cases,

contradictions could be even considered as model extensions. For

example, in the reading output, we often come across interactions stated

as “A positively regulates B” or just “A regulates B”, while the model

includes interaction “A inhibits B” or “B inhibits A” or “B regulates A”.

Given that extracted contradictions can be further explored and the

information within contradictions can sometimes lead to model

improvements, we will explore them more carefully in our future work.

To extend the baseline model, only the interactions that are classified as

extensions form an input for ACCORDION, and in the rest of the paper,

we will refer to these interactions as Candidate Extension Interactions

(CEIs).

3.2 Clustering of new extracted interactions

The method used to identify clusters of extracted, filtered and classified

CEIs is formally outlined in Algorithm 1 (see Supplementary material)

and described in detail here.

The set of CEIs can be represented as a set of candidate extension edges

Eext, and the source and target nodes of these edges that are not already in

the baseline model graph, GBM(VBM, EBM), will be members of the set of

candidate extension nodes Vext. We then create a new graph Gnew(Vnew,

Enew), where Vnew = VBM ∪ Vext, and Enew = EBM ∪ Eext. Figure 1(e) shows a

toy example graph Gnew, where grey nodes belong to the baseline model,

while yellow and green nodes belong to the CEIs obtained from machine

reading. We further classify the edges e(vS,vT) from the set Eext, where vS

is the source node and vT is the target node, into the following categories:

(a) edges in which both the source node vS and the target node vT belong

to the baseline model: {vS,vT}∈VBM; (b) edges in which either a source

node or a target node belongs to the baseline model: (vS∈VBM and vT∉VBM)

or (vS∉VBM and vT∈VBM); (c) edges in which neither the source node nor

the target node belongs to the baseline model: {vS,vT}∉VBM.

Adding the CEIs to the baseline model all at once usually does not result

in a useful and accurate model. Alternatively, we can add one interaction

at a time and test each model version, which is time consuming, or even

impractical, given that the number of models increases exponentially with

the number of CEIs. Moreover, adding individual interactions does not

have an effect on the model when the interaction belongs to category (iii),

and most often when it belongs to category (ii). It proves much more

useful to add paths of connected interactions, which are at the same time

connected to the baseline model in at least two elements. Therefore, our

approach for finding the most useful subset of the CEIs includes finding

connected interactions, that is, a set of edges in the graph Gnew that form a

return path. Formally, we say that a path of connected edges {ei1(vS1,vT1),

ei2(vS2=vT1,vT2), ei3(vS3=vT2,vT3), …, eij(vSj=vTj1,vTj)} is a return path, if

{vS1,vTj}∈ VBM. In Figure 1(e), we highlight one such return path in blue.

To find these return paths formed by CEIs, we conduct clustering of the

whole graph Gnew that includes both the baseline model and the CEIs. We

use Markov Clustering algorithm (MCL) [26] to cluster the CEIs. MCL is

an unsupervised graph clustering algorithm, commonly used in

bioinformatics. For example, MCL has been applied on protein-protein

interaction networks [27][28]. In [29], the authors showed that the MCL

algorithm is tolerant to noise, while identifying meaningful clusters.

Additionally, in [29], MCL is compared with another clustering algorithm,

Affinity Propagation (AP) algorithm, proposed in [30], and it is

demonstrated that the MCL algorithm outperforms the AP algorithm.

Moreover, the analysis in [27] supported the superiority of MCL over

other clustering techniques [31][32][33] in identifying protein complexes

from interaction networks.

MCL simulates random walks on an underlying interaction network, by

alternating two operations, expansion and inflation. First, self-loops are

Article short title

added to the input graph representing biological interactions (e.g., network

of extensions, or joint network of baseline model and CEIs), and this graph

is then translated into a stochastic Markov matrix [34]. This matrix

represents the transition probabilities between all pairs of the graph nodes,

and the probability of a random walk of length p between any two nodes

can be calculated by raising this matrix to the exponent p, a process called

expansion. As longer paths are more common between nodes within the

same cluster than between nodes across different clusters, the transition

probabilities between nodes in the same cluster will typically be higher in

these newly obtained expanded matrices. MCL further amplifies this

effect by computing entry wise exponents of the expanded matrix, a

process called inflation [26], which raises each element of the matrix to

the power r, called inflation parameter (IP). Clusters are determined by

alternating expansion and inflation, until the graph is partitioned into

subsets such that there are no paths between these subsets.

3.3 Assembly of new interaction data into models

After generating clusters, the next step is to add them to the model. Similar

to the discussion about individual extensions in Section 3.2, we can add

clusters one at a time, or in groups. The more cluster or cluster groups we

generate, the more models we need to assemble and test. Moreover, the

number of possible cluster combinations grows with the total number of

generated clusters, and the number of clusters depends on the inflation

parameter r, as it directly influences cluster granularity [26]. To alleviate

the problem of the large number of cluster combinations, we propose a

method for combining the clusters found by the MCL algorithm. Formally,

if the clusters we generated in the previous step are C1,…,Cn, and we find

a subset of clusters Ci1,..,Cij, where j>1, for which at least one return path

exists that goes through all the clusters, then we merge these clusters into

a single cluster that will be added to the model. An example of a multi-

cluster path is highlighted in red in Figure 1(e), starting at the Baseline

model, connecting to Cluster 1, then connecting to Cluster 2, and from

Cluster 2 connecting back to the Baseline model. Therefore, we extend the

baseline model with multiple clusters simultaneously, based on how

clusters are connected to the model. The cluster merging procedure is

outlined in Algorithm 2 (see Supplementary material). Finally, we rank

and score the final list of candidate clusters, based on the existence of

return path, in order to choose the ones that will be incorporated in

extension.

Next, we can select one or more clusters from the set of ranked and

scored clusters to generate multiple Candidate Executable Models

(CEMs). Each CEM contains elements from both the baseline model and

the selected cluster(s). Both procedures, the assembly of interaction lists,

and the generation of executable models are fully automated. However,

element update rules are not necessarily unique, as previously discussed

in [8]. For example, if the original rule is “A = B + C”, and the candidate

extension states that “D positively regulates A”, then the new update rule

for A can be either “A= (B + C) * D”, or ”A= B + C + D”. We will

investigate the effect of adding a new regulatory element in both cases,

when AND (*) operation is used, and when OR (+) operation is used.

3.4 Selection of final extended model

In order to find which of the CEMs is most suitable for answering user

questions, we can test all the CEMs on a set of known or desired system

properties. We use both simulation and formal analysis to evaluate the

CEMs. In order to simulate a model, all model elements need to be

assigned a starting state (i.e., initial value). The initial values for the

baseline model elements (nodes in the set VBM) are typically already

known, however, the newly added elements (nodes in the set Vext) need to

be assigned initial values as well. Unfortunately, machine reading does

not usually provide this information. In this work, we assume that all

elements within the same cluster have the same initial value. In Section 6,

we will compare models with different initializations of the newly added

elements to evaluate the effect of initialization on the behavior of the

CEMs.

To obtain dynamic traces of the baseline model and the CEMs, we use

the DiSH simulator (Section 2.3.1). We test each candidate model using

the statistical model checking approach (Section 2.3.2), that is, for each

candidate model, we compute a probability of satisfying a set of system

properties written as BLTL formulas. As discussed in Section 2.3.2, the

statistical model checker calls the simulator in order to obtain element

trajectories for a defined number of steps. Finally, we select the model that

has the highest probability of satisfying the selected properties as our final

extended executable model. The procedure for selecting this final

extended model is summarized in Algorithm 3 (see Supplementary

material).

4 Case study: T cell differentiation

Naïve peripheral T cells are stimulated via antigen presentation to T cell

receptor (TCR) and with co-stimulation at CD28 receptor. This

stimulation results in the activation of several downstream pathways,

feedback and feedforward loops between pathway elements, which then

lead to the differentiation of naïve T cells into helper (Th) or regulatory

(Treg) phenotypes. The distribution between Th and Treg cells within the

T cell population depends on antigen dose; for instance, high antigen dose

results in prevalence of Th cells, while low antigen dose leads to a mixed

population of Th and Treg cells. The key markers that are commonly used

to measure the outcomes of the naïve T cell differentiation into Th and

Treg cells are IL2 and Foxp3, respectively. In other words, Th cells are

characterized by high expression of IL-2 and low expression of Foxp3,

and Treg cells are characterized by high expression of Foxp3 and low

expression of IL-2. To demonstrate our model extension procedure, we

use two existing models of T cell differentiation, from [12] [13].

4.1 Baseline model and golden model

In [12], the authors proposed a model where most of the elements are

assumed to have two main levels of activity, and are therefore represented

with Boolean variables, and their update rules are logic functions.

Additionally, the stimulation through TCR is assumed to have three

different levels, no stimulation (0), low dose (1), and high dose (2), and it

is implemented using two Boolean variables. We used the model from [12]

to create the baseline model for our case study. The interaction map of this

model is provided in [12] (also included in Supplementary material).

In [13], the authors have proposed an extension of the original T cell

model from [12], a new model that improved the behavior of the original

model. Specifically, in the new model in [13], Foxp3 is present in almost

70% of the differentiated population after the stimulation with low antigen

dose, while there is a brief transient induction of Foxp3 after the

stimulation with high antigen dose. These results recapitulate

experimental observations closer than the results in [12]. We will refer to

this model from [13] as the golden model. For the baseline, we used the

original model from [12], without several interactions overlapping with

the golden model from [13] (TCR activates PIP3, PIP3 activates Akt, Akt

activates mTORC2 and mTORC2 inhibits Akt). While the model from

[12] satisfied a large number of system properties, except for a few that

are satisfied by the model in [13] only, the baseline model in its reduced

shape does not satisfy a larger set of system properties. Our aim is to use

ACCORDION to automatically expand this baseline model in order to

recapitulate the behavior of the golden model, that is, fulfill all the system

properties.

4.2 Derivation of properties

From the golden model in [13] and the results of its studies, we define a

set of properties that our final automatically extended model needs to

satisfy. The properties describe the observed responses of the system

components to three scenarios: (1) no stimulation (TCR=0), (2)

stimulation with low antigen dose (TCR=1), and (3) stimulations with

high antigen dose (TCR=2). The properties measure the behavior of the

key system components, Foxp3, IL-2, PTEN, CD25, STAT5, AKT,

mTOR, mTORC2 and FoxO1. The complete list of 27 properties is shown

in Figure S4 in the Supplementary material.

5 Results

We conducted two sets of experiments. First, we evaluated our approach

for automating model extension on the T cell model example, with data

and information from published literature databases. Second, we

compared our method of clustering and selecting the information and data

extracted from literature with the method that was previously proposed

and described in [8].

5.1 Experimental setup

All models that we use or create are written in the BioRECIPES

representation format, which was briefly discussed in Section 2.2 and

outlined in [20]. From this format, the executable models are generated

automatically with the DiSH simulator, which is described in detail in [11]

and publicly available at [35].

In the experiments discussed here, we used the PubMed database [15].

The PubMed search was conducted using Entrez [36], an integrated

database retrieval system that allows access to a diverse set of databases

at the National Center for Biotechnology Information (NCBI) [37]

website. The published articles that were obtained through search of

PubMed are read using the REACH engine [19], which extracted a list of

events and the corresponding information (see Section 2.1). The REACH

reading engine is available online and can be run through the Integrated

Network and Dynamical Reasoning Assembler (INDRA) [38]. We

conducted our analysis on three different sets of event data, which were

obtained using varying levels of automation and manual intervention. For

each set, the list of events, with associated entities, is automatically

translated from the reading output into BioRECIPES tabular format.

In the fully automated (FA) approach, both the PubMed database search

for relevant articles and the extraction of structured event data from the

selected articles were automated. Specifically, in the FA experiment, we

used search query “T-cell and (PTEN or AKT or FOXO)” and selected

top 11 from the best matched papers, by the PubMed search engine. In the

semi-automated (SA) approach, we selected papers that are cited by [13]

and used the event information that REACH extracted from those papers.

Finally, in the semi-manual approach (SM), we rely the most on human

intervention, we manually excluded from the SA reading output those

interactions that violate any assumptions made by the authors originally

in [12]. For instance, the authors in [12] consider element TCR to be an

input to the network, and therefore, TCR should not have any regulators

in the T cell model. Therefore, if REACH retrieves an interaction in which

TCR is a regulated element, we manually remove these interactions and

keep only the interactions having TCR as a regulator.

Model extension algorithms are written in Python. The statistical model

checker is written in C++ and it was used to test all candidate models on

a set of properties listed in Figure S4 in the Supplementary material. The

properties are written as BLTL formulas. The overall iterative model

extension tool is written in Python, and it was run on a 3.3 GHz Intel Core

i5 processor. For the clustering algorithm, we used the MCL package from

[26], and for the visualization of the graphs we used Cytoscape [35].

5.2 Effect of selected literature and machine reading output

Figure 2. T cell model extension results. (a) Networks obtained when combining baseline model with the CEI set for each of the three cases, FA, SA, and

SM. Gray nodes are the baseline model nodes and white nodes are the new nodes that are part of the CEIs. Table: Common graph features measured for
the CEI sets in the FA, SA, and SM cases. (b) The network graph for all three sets of CEIs (FA, SA, and SM), highlighting the common nodes. (c) Top:

different degree D values and corresponding number of nodes; Bottom: different average path length APL values and the corresponding number of paths.

(d) Two clusters that form a return path with the baseline T cell model, shown as directed graphs (yellow node is a common node for both clusters). (e)

Overall probability of satisfying desired system properties of each candidate extension model (CEM) that ACCORDION assembled for each of the three

reading output sets, FA, SA, and SM (27, 22, and 16 CEMs, respectively).

Article short title

The events we obtained in all three cases (FA, SA, and SM) include new

elements that are not in the baseline model, as well as the baseline model

elements. In Figure 2(a), we show the network of events (undirected

interaction map, for easier visualization) extracted from literature using

the FA, SM, and SA approaches. The white nodes are the new elements

obtained from automated reading (denoted with suffix “_ext”) and the

grey nodes are the baseline model elements. Following our Algorithm 1,

we form a joint network that includes both the interactions from the

baseline model and all the interactions extracted from literature, and then

cluster these networks. We obtained 22 clusters using the FA set, 11

clusters using the SA set, and 9 clusters using the SM set.

We were interested in further exploring the structure and emerging

properties of the three sets (FA, SA, and SM) of extracted events. This

will provide a prior knowledge about the main characteristics of the

network constructed from the reading output in order to facilitate mining

such networks. Moreover, when applying our proposed method on any

new case study, modelers will have a clear overview about the network

that should be generated. Therefore, for each network, we computed three

main graph parameters as follows.

Average path length (APL) [40] is defined as the average number of

steps along the shortest paths for all possible pairs of nodes:

𝐴𝑃𝐿 =
1

𝑛 ∙ (𝑛−1)
∙ ∑ 𝑑(𝑣𝑖 , 𝑣𝑗)𝑖≠𝑗

where n is the number of nodes in the graph. The clustering coefficient

(Coeff) [40] is computed for each node in a directed graph as:

𝐶𝑜𝑒𝑓𝑓 =
𝑇(𝑢)

𝑑𝑒𝑔𝑟𝑒𝑒𝑡𝑜𝑡(𝑢)(𝑑𝑒𝑔𝑟𝑒𝑒𝑡𝑜𝑡(𝑢)−1) −2𝑑𝑒𝑔𝑟𝑒𝑒↔(𝑢)

where T(u) is the number of triangles in the graph that contain node u,

degreetot is the sum of the in degree (the number of incoming edges) and

the out degree (the number of outgoing edges) of u, and degree↔(u) is the

reciprocal of degreetot of u. Coeff is a number between 0 and 1, and when

Coeff approaches 0, the graph is more likely to contain stars, while the

Coeff approaching 1 means the graph is a clique. The graph density D [40]

is defined for a directed graph as:

𝐷 =
E

|𝑉|(|𝑉|−1)

where E is the number of edges and V is the number of nodes. A graph is

considered to be dense if the number of edges is close to the maximum

number of possible edges, therefore, the graph density is close to 1 for a

dense graph and close to 0 for a sparse graph.

We list in the table in Figure 2(a) the main graph parameters for the

FA, SA, and SM networks. As can be seen from the table, the FA network

has the largest number of nodes and edges, and it results in the largest

number of clusters. On the other hand, SA and SM have smaller number

of edges and nodes. Moreover, SM is considered a subset of SA, after the

removal of many edges and nodes of specific types (Section 5.1). In

Figure 2(b), we highlight the difference between the three networks: FA

is highlighted in green, SA in blue, and SM, which is a subset of SA, in

orange. In addition, we show the overlapping nodes between the three

networks in cyan.

Interestingly, it was observed that despite network diversity, FA, SA

and SM share prominent structural features: they have small APL, small

Coeff, and small D, and thus, large degrees are unlikely. This similarity is

even better illustrated in Figure 2(c), showing the degree histogram for

the nodes in each network that follows a power law, and the distribution

of the average path length centered around a value of approximately 4. As

can be noticed, both network parameters have similar patterns but with

different count numbers for each reading output set in proportion to the

size of its network. Moreover, the density graph suggests that the networks

constructed from the information extracted by machine readers are less

dense, and the average path length is small, even with varying network

size. These results also suggest that the difference in size of reading output

sets did not affect the characteristics of networks constructed from CEIs

and the baseline model of our case study. Specifically, the inspection of

obtained clusters shows that they are less dense and star-like networks

(two examples shown in Figure 2(d)). Moreover, computing these

network parameters will predict whether our method will work properly

or not. For instance, if the APL is large, we will expect to extract a fewer

number of return paths from the constructed network, and therefore, in our

analysis we will lack the connectivity of the CEIs to the baseline model.

Additionally, the less dense graphs will reduce the computation time, and

computing this parameter helps determine in advance the expected

execution time of our algorithm.

5.3 Return path and best candidate model

To extend the baseline model, we first test the connectivity of each cluster

to the model by searching for a return path (starts and ends in the baseline

model) between an individual cluster and the model. In Figure 2(d), we

highlight in blue a return path that exists between cluster C1 and the

baseline model (TCR → AKT → MTORC2), and a return path that exists

between cluster C2 and the baseline model (TCR → NEDD4_ext →

PTEN), where clusters C1 and C2 are two of the nine clusters generated

from the SM set. Furthermore, we explored multiple cluster connectivity

with respect to return paths and created 5, 11, and 7 additional CEMs by

merging two clusters together from the clusters obtained using FA, SA,

and SM sets, respectively. Therefore, the total number of CEMs resulting

from the FM set is 27, from the SA set is 22, and from the SM set 16. We

also highlight in red in Figure 2(d) a return path that exists between the

baseline model, and clusters C1 and C2 (PI3K → PIP3 → AKT →

Foxo1_ext → PTEN).

The final list of CEMs includes the baseline model extended by one or

two of the clusters generated by MCL for each network. For several

candidate models, and for all the 27 properties, we show in Figure 2(e)

the global probability estimates for all candidate models, in the FA, SA,

and SM cases. The highest peak per graph represents the best candidate

model when compared to the golden model. Assuming independence, we

computed the global probability estimate for each candidate model by

multiplying all the probability estimates for all properties. From the

morphology of the generated network, we expect a cluster to affect the

behavior of the model if it contains the key elements included in system

properties. As a consequence, the probability estimates for satisfying

properties will vary for those clusters. However, clusters lacking those key

elements will most probably not affect the behavior of the model, and thus,

larger number of properties will not be satisfied. In our case study, we

found that the CEMs that include two clusters with key elements satisfy a

larger number of properties. Merging clusters helped increase the

probabilities, however, the 70% steady-state level of Foxp3 in the low-

dose scenario observed in [13] is not achieved. The best performance is

obtained for the model that combines two clusters C1 and C2, (Figure

2(d)) obtained from the SM set, which satisfies almost all properties (24

out of 27), (Figure 2(e)). Additionally, these two clusters together restored

all the missing interactions removed from the golden model (Section 4.1).

The network of the best candidate model for the SM reading output is

shown in the supplementary material (Figure S5).

5.4 Comparison with existing model

We tested the effectiveness of the previously proposed model extension

method from [8] when applied to our case study. This is achieved by

replacing our model extension method by the method introduced in [8],

using the same baseline T cell model (described in Section 4.1) and the

three reading output sets (FA, SA, and SM). In [8], the authors described

an automated extension method that considers only the extensions that are

related to the baseline model. They first identify a set of baseline model

elements of interest, and then, they add the extensions based on their

proximity to the elements of interest in single or multiple steps. Next, they

introduce several extension configurations depending on the approach that

the user is interested in. For example, the focus of model extension can be

including the regulation of a certain element or a set of elements,

regardless of the number of extension layers this would require. Another

approach discussed in [8] focuses on reducing the number of layers while

tracking the effect of adding new extensions to the baseline model. In this

work, we focus on studying the effect of adding new extensions to the

baseline model, therefore, we used the latter approach described above,

which is less time consuming, and we applied it on our case study.

Figure 3(a) highlights the difference between the results of our method

and the method from [8], when tested using statistical model checking. We

compared the probability estimate for each property and each candidate

model using our method and the method from [8]. As can be observed, our

method outperforms the method from [8] in the case of the FA and SA

reading outputs. However, in the SM case, the method from [8] shows

slightly better results. These results indicate that the layer-based approach

is less effective when used on a large set of CEIs and without any human

intervention. The visualization of the topology of the sets of extensions

extracted by each method is shown in Figure 3(b). Our method provides

concise groups of connected CEIs, that are at the same time connected to

the baseline model through return paths. On the other hand, the networks

generated by the method from [8], show disconnected components having

several interactions not connected to the model (Figure 3(b)). Thus, the

comparisons we conducted suggest that the Liang et al. method [8] has

two major drawbacks: it is subjective and prone to human judgment

variation in selecting the number of elements of interest and the number

of layers, and it becomes impractical with the large number of layers.

5.5 Guided extension of executable models

A model created automatically with ACCORDION, using the information

from the papers available in public databases, which satisfies most of the

desired properties, may not necessarily be the same as the golden model.

The differences can be found in both network structure and element update

functions. Using our extension methodology, we sometimes obtain

multiple models that satisfy the same number of properties. This variety

helps us examine redundancies or discover alternative pathways

regulating the same target element.

Adding new elements to the baseline model is a threefold challenge.

First, when using MCL to cluster our directed networks, the principal

handle for changing cluster granularity is the inflation parameter described

in Section 3.2. An increase in the inflation parameter causes an increase

in the cluster granularity. Therefore, there should be a reasonable way to

choose this parameter in order to obtain a meaningful set of clusters for

each reading output network. In [26], the authors determined a good set to

choose from (e.g., 1.1 to 10.0), however, the range of suitable values will

certainly depend on the input graph. For our case study and the different

reading output sets, we found that 1.1 will be too low, and 6.0 or above is

too high. We have therefore chosen 4 as the inflation parameter in our

studies and conducted experiments based on this value (Figure 3(c)).

Moreover, several issues may result from the fact that we use directed

networks, while MCL works better with undirected networks. If there is

an edge from node vi to node vj, with similarity s(i,j), for a directed graph,

this implies s(j,i) = 0. Therefore, to solve this issue, we make s(j,i) equal

to s(i,j), which seems to ignore an important information (directionality).

However, the information that has been ignored is not informative with

respect to the existence of cluster structure [26]. Finally, the time required

by the extension is proportional to the number of properties that we need

to test against. In other words, if we have M clusters and P properties, the

time required for the extension algorithm is at the order of O(M*P).

However, the time complexity can be reduced to O(M) if testing for all the

clusters is carried out in parallel.

The second challenge is in deciding which operation to use (e.g., AND

or OR), when adding new regulators through CEIs. We investigated

element update rules, and the difference between our final model and the

golden model. The update rules of some elements will be removed, and

the goal is to restore the correct rules from the clusters. For instance, the

PTEN update rule from the reduced model in [13] is PTEN = (FOXO1*

MEK1) and (!CK2 + !NEDD4). We can remove the interaction (!CK2 +

!NEDD4), and the rule becomes PTEN = (FOXO1 * MEK1), which

means the removed interaction should be found in the set of CEIs. In the

process of adding new element regulators, if the information about the

regulation type or the importance of the regulator (e.g., necessary vs.

sufficient) is available, it will guide the choice of the operation.

Finally, the third challenge is in deciding elements’ initial values (e.g.,

0 or 1 in the Boolean models) when simulating CEMs and testing their

behavior against the desired system properties. We found that assigning

Figure 3. (a) Probability estimate for each tested property (27 properties overall), for the golden model, and for the best models obtained from the three

reading outputs (FA, SA, SM) for ACCORDION and the method from [8]. (b) CEIs that were included in the final model for each FA, SA, and SM output,

for ACCORDION and [8]. (c) Several cluster characteristics measured as functions of inflation parameter (IP), for FA, SA, and SM reading outputs

(IP1=0.5, IP2=2, IP3=4, IP4=6).

Article short title

different initial values to source and target elements of CEIs that were not

in the original baseline model have quite similar results. This emphasizes

the robustness of the baseline model and that the final extended model is

influenced by the values of elements in the baseline model. These findings

are mostly in agreement with what has been shown in [8]. It is likely that

these results are influenced by our choice of the case study, and the fact

that we defined system properties (Figure S4 in Supplementary material)

in terms of the steady states of the key model elements. As our next steps,

we will further explore effects of initialization, as well as expand system

properties to incorporate more complicated temporal relationships

between elements.,

6 Conclusion and future work

In this paper, we have described a novel methodology and a tool,

ACCORDION, that can be used to automatically assemble the data

extracted from literature into models. Our proposed approach combines

machine reading with clustering, simulation, and model checking, to

create an automated framework for rapid model assembly and testing.

Furthermore, by automatically extending models with the information

published in literature, our methodology allows for efficient collection of

the existing information in a consistent and comprehensive way, while

also facilitating information reuse and data reproducibility, and replacing

hundreds or thousands of manual experiments, thereby reducing the time

needed for the advancement of knowledge. As our future work, we will

apply ACCORDION on large scale case studies, including more complex

systems and larger reading output sets.

Acknowledgements

Funding

References

[1] J. Epstein, “Why Model?,” Cybern. Syst., vol. 35, no. 2–3, pp. 117–128, 2008.

[2] M. A. Valenzuela-Escárcega, G. Hahn-Powell, T. Hicks, and M. Surdeanu, “A

Domain-independent Rule-based Framework for Event Extraction,” Proc. ACL-

IJCNLP 2015 Syst. Demonstr., pp. 127–132, 2015.

[3] A. Fabregat et al., “The Reactome Pathway Knowledgebase,” vol. 46, no.

November 2017, pp. 649–655, 2018.

[4] C. Von Mering et al., “STRING : known and predicted protein – protein

associations , integrated and transferred across organisms,” vol. 33, pp. 433–437,

2005.

[5] K. Encyclopedia, “Using the KEGG Database Resource,” pp. 1–54, 2005.

[6] N. Miskov-Zivanov, “Automation of Biological Model Learning, Design and

Analysis,” Proc. 25th Ed. Gt. Lakes Symp. VLSI - GLSVLSI ’15, pp. 327–329,

2015.

[7] O. Etzioni, M. Banko, and M. J. Cafarella, “Machine Reading,” Ameri, pp. 1517–

1519, 2006.

[8] K. Liang, Q. Wang, C. Telmer, and D. Ravichandran, “Methods to Expand Cell

Signaling Models using Automated Reading and Model Checking,” pp. 1–15.

[9] K. Sayed, K. N. Bocan, and N. Miskov-Zivanov, “Automated Extension of Cell

Signaling Models with Genetic Algorithm,” Proc. Annu. Int. Conf. IEEE Eng.

Med. Biol. Soc. EMBS, vol. 2018-July, no. 1, pp. 5030–5033, 2018.

[10] Q. Wang, N. Miskov-Zivanov, B. Liu, J. R. Faeder, M. Lotze, and E. M. Clarke,

“Formal modeling and analysis of pancreatic cancer microenvironment,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9859 LNCS, pp. 289–305, 2016.

[11] K. Sayed, Y. H. Kuo, A. Kulkarni, and N. Miskov-Zivanov, “DiSH simulator:

Capturing dynamics of cellular signaling with heterogeneous knowledge,” Proc.

- Winter Simul. Conf., pp. 896–907, 2018.

[12] N. Miskov-Zivanov, M. S. Turner, L. P. Kane, P. A. Morel, and J. R. Faeder,

“The duration of T cell stimulation is a critical determinant of cell fate and

plasticity,” Sci. Signal., vol. 6, no. 300, pp. 1–16, 2013.

[13] W. F. Hawse et al., “ Cutting Edge: Differential Regulation of PTEN by TCR,

Akt, and FoxO1 Controls CD4 + T Cell Fate Decisions,” J. Immunol., vol. 194,

no. 10, pp. 4615–4619, 2015.

[14] S. Kumar-Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and P.

Zuliani, “A Bayesian Approach to Model Checking Biological Systems,” Cmsb,

no. 2005, pp. 218–234, 2009.

[15] R. J. Roberts, “PubMed Central : The GenBank of the published literature,” vol.

98, no. 2, pp. 381–382, 2001.

[16] S. Ananiadou, S. Pyysalo, J. Tsujii, and D. B. Kell, “Event extraction for

systems biology by text mining the literature,” Trends Biotechnol., vol. 28, no.

7, pp. 381–390, 2010.

[17] R. B. Altman et al., “Text mining for biology - The way forward: Opinions from

leading scientists,” Genome Biol., vol. 9, no. SUPPL. 2, 2008.

[18] G. A. P. C. Burns, P. Dasigi, A. de Waard, and E. H. Hovy, “Automated

detection of discourse segment and experimental types from the text of cancer

pathway results sections,” Database (Oxford)., vol. 2016, pp. 1–12, 2016.

[19] M. A. Valenzuela-escárcega et al., “Large-scale Automated Reading of

Scientific Cancer Literature Discovers New Cancer Driving Mechanisms,” pp.

3–5, 2017.

[20] K. Sayed, C. A. Telmer, A. A. Butchy, and N. Miskov-Zivanov, “Recipes for

translating big data machine reading to executable cellular signaling models,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 10710 LNCS, pp. 1–15, 2018.

[21] A. Bateman et al., “UniProt: The universal protein knowledgebase,” Nucleic

Acids Res., vol. 45, no. D1, pp. D158–D169, 2017.

[22] M. Y. Vardi, “Automatic Verification of Probabilistic Concurrent Finite-State

Systems,” 26th Annu. Symp. Found. Comput. Sci. (FOCS ’85), pp. 327–338,

1985.

[23] R. G. Simmons, “Probabilistic Verification of Discrete Event Systems Using

Acceptance Sampling.”

[24] “https://www.ovid.com.” [Online]. Available: https://www.ovid.com.

[25] T. Gene and O. Consortium, “Gene Ontology : tool for the,” vol. 25, no. may,

pp. 25–29, 2000.

[26] S. Van Dongen, “Graph clustering by flow simulation,” Comput. Sci. Rev., vol.

1, no. september 1969, pp. 27–64, 2007.

[27] S. Brohée and J. Van Helden, “Evaluation of clustering algorithms for protein-

protein interaction networks,” BMC Bioinformatics, vol. 19, 2006.

[28] X. Lei, F. Wang, F. X. Wu, A. Zhang, and W. Pedrycz, “Protein complex

identification through Markov clustering with firefly algorithm on dynamic

protein-protein interaction networks,” Inf. Sci. (Ny)., vol. 329, pp. 303–316,

2016.

[29] J. Vlasblom and S. J. Wodak, “Markov clustering versus affinity propagation

for the partitioning of protein interaction graphs,” BMC Bioinformatics, vol. 10,

pp. 1–14, 2009.

[30] F. B. J and D. D, “Clustering by passing messages between data points,” Science

(80-.)., vol. 315, no. February, pp. 972–976, 2007.

[31] A. D. King, N. Pržulj, and I. Jurisica, “Protein complex prediction via cost-

based clustering,” vol. 20, no. 17, pp. 3013–3020, 2004.

[32] M. Blatt, S. Wiseman, and E. Domany, “Superparamagnetic Clustering of

Data,” 1996.

[33] G. D. Bader and C. W. V Hogue, “An automated method for finding molecular

complexes in large protein interaction networks,” BMC Bioinformatics, vol. 27,

pp. 1–27, 2003.

[34] P. A. Gagniuc, Markov Chains: From Theory to Implementation and

Experimentation. .

[35] “https://bitbucket.org/biodesignlab/ ramework/Simulation/Simulator_Python.”

[36] K. J. Schuler GD, Epstein JA, Ohkawa H, “Entrez,” Methods Enzym., vol. 266,

pp. 141–162, 1996.

[37] L. Y. Geer et al., “The NCBI BioSystems database,” vol. 38, no. October 2009,

pp. 492–496, 2010.

[38] B. M. Gyori, J. A. Bachman, P. K. Sorger, K. Subramanian, and J. L. Muhlich,

“From word models to executable models of signaling networks using automated

assembly,” pp. 1–26, 2017.

[39] P. Shannon et al., “Cytoscape: a software environment for integrated models of

biomolecular interaction networks,” Genome Res., no. 13, pp. 2498–2504, 2003.

[40] M. E. J. Newman, “The Structure and Function of Complex Networks ∗,” vol.

45, no. 2, pp. 167–256, 2003.

	1 Introduction
	2 Background
	2.1 Information extraction from literature
	2.2 Model representation and executable models

	3 Proposed methodology
	3.1 Extraction and classification of new event information
	3.2 Clustering of new extracted interactions
	3.3 Assembly of new interaction data into models
	3.4 Selection of final extended model

	4 Case study: T cell differentiation
	4.1 Baseline model and golden model
	4.2 Derivation of properties

	5 Results
	5.1 Experimental setup
	5.2 Effect of selected literature and machine reading output
	5.3 Return path and best candidate model
	5.4 Comparison with existing model
	5.5 Guided extension of executable models

	6 Conclusion and future work
	Acknowledgements
	Funding
	References

