
Implementation-Oriented DEVS Conventions
Name of Author(s)
And Affiliations(s)

(Use Upper and Lower Case)
Include email address, preferably as a live hyperlink

If multiple author affiliations, you can use multiple columns

Keywords: simulation tools, time resolution, encapsulation

Abstract
The mathematical modeling conventions known collectively
as the Discrete Event System Specification (DEVS) can be
used to specify models of essentially any system that varies
in time. But when DEVS is used for implementation, as op-
posed to specification, practical considerations such as conve-
nience, efficiency, and repeatability motivate various changes
to the original conventions. Here we discuss a selection of
these changes found in existing DEVS-based software. We
then provide a set of implementation-oriented DEVS conven-
tions to guide the development of future simulation tools. The
proposed conventions comply with DEVS principles by im-
proving a user’s control over the timing of events, and sup-
porting the encapsulation of a model’s state or composition.

1. INTRODUCTION
Developers of general-purpose simulation tools strive to

choose reasonably small sets of modeling conventions that
allow users to implement, integrate, and test a wide range of
models for different applications. The Discrete Event Sys-
tem Specification (DEVS) has to a large extent addressed
this challenge by providing a way to represent essentially
any time-varying system as an atomic model consisting of
seven elements: three mathematical sets and four pure func-
tions (Zeigler et al., 2000). A system can also be represented
as a coupled model defining a network of other models.

True to its name, DEVS in its original form is meant for
specifying, not implementing, atomic and coupled models.
It is therefore unsurprising that when DEVS is used for im-
plementation, various practical considerations require tool
developers to deviate from the original conventions. Some
of these deviations are a matter of necessity. For example,
atomic model specifications include three purely mathemati-
cal sets that cannot be represented in a typical programming
language. But most changes are made for the sake of con-
venience, efficiency, repeatability, or other practical benefits.
Examples include the merging of two atomic model functions
to improve efficiency, and the omission of an inconvenient
coupled model function that orders simultaneous events. De-
viations like these can be found in all existing DEVS-based
tools; a selection of them are described in Section 2.

Our main purpose here is to provide a set of DEVS con-
ventions for implementing atomic and coupled models, as
well as configuring and reporting on simulation runs. These
implementation-oriented DEVS conventions may guide the
development of future simulation tools exhibiting a range of
programming languages and types of user interfaces. The pro-
posed conventions are listed, and compared with the original
specification-oriented conventions, in Section 3.

Counterintuitively, the use of an alternative set of DEVS
conventions may help simulation tools comply with the
underlying principles of DEVS. For example, although a
floating-point time representation seems consistent with the
original conventions, an integer-based representation reduces
round-off errors and gives simulation software users greater
control over the timing of events. By requiring a time reso-
lution for every model and simulation run, our conventions
support integer-based time values over a wide range of time
scales. Time resolution is discussed in Section 4.

We also discuss the principle of encapsulation. In theory,
the state of an atomic model and the composition of a cou-
pled model can be considered encapsulated, as neither need
be referenced by a simulation run or another coupled model.
What complicates matters in practice is the need to control
a model’s initial state and extract information from its final
state without exposing any state variables. Parameters, statis-
tics, constants, and initialization and finalization functions
help address this issue, as explained in Section 5.

2. DEVS CONVENTIONS IN PRACTICE
There are many different types of DEVS-based simula-

tion tools. PythonDEVS (Bolduc and Vangheluwe, 2002) is
simply a library of DEVS-related classes one imports into
their own Python program. PowerDEVS (Bergero and Kof-
man, 2011), by contrast, comprises several graphical user
interfaces for coding atomic models in C++, editing cou-
pled models visually, and running simulations. A number of
implementation-related issues involving the original DEVS
conventions arise in all such tools, regardless of the type of
user interface or the supported programming language. Here
we describe these issues and observe how they are handled
in existing DEVS-based tools. We also point out tested ap-
proaches that have influenced the implementation-oriented
DEVS conventions proposed in Section 3.

In the original DEVS conventions, both atomic and cou-
pled models include sets X and Y to define the possible inputs
and outputs. Since mathematical sets cannot be represented in
a typical programming language, it is common practice to re-
place them with lists of input and output ports. PythonDEVS,
for example, provides addInPort and addOutPort meth-
ods to construct these lists.

Port lists address only a part of X and Y , the other part be-
ing the set of values permitted on each port. Here there is an
entire spectrum of possible approaches. One can simply ig-
nore the issue and permit any value on any port. One can also
assign each port an informal description, or a predicate indi-
cating whether an encountered value is acceptable. Although
we include port lists in our implementation-oriented conven-
tions, we offer no recommendation on how to restrict the as-
sociated values. The reason is that many solutions are only
appropriate for certain programming languages. With C++,
for instance, one may use templates to associate each model
with a datatype for its inputs and outputs (Nutaro, 2011).

Turning our attention from sets to functions, consider the
following internal transition function δint of an atomic model.
The function takes a model’s current state, s, and yields the
new state, in this case s+1.

δint(s) = s+1

When such a function is implemented, the question arises
as to whether the current state and new state should share
memory. The C/C++ code below illustrates both options.

state delta_int(const state& s)
{ return s+1; }

void delta_int(state& s)
{ s = s+1; }

The first version of delta_int is more consistent with
the original DEVS conventions, and mathematical notation
in general, since the current state s cannot be modified and
the new state s+1 is a distinct value. However, by allowing
the current state to be modified to produce the new state, the
approach demonstrated in the second version reduces mem-
ory use and alleviates the need to populate the entire state
if only a small part of it is to change. The first approach is
used in SC-DEVS (Madlener et al., 2009), but the majority of
existing DEVS-based tools opt for efficiency and allow mod-
ifications to one or more state variables. In our conventions,
we describe both internal and external transition functions as
modifying, not replacing, the state.

The internal transition function δint mentioned above is al-
ways invoked after the output function λ, and as demonstrated
by DEVS++ (Hwang, 2009) it is possible to merge the two
functions into one. The motivation for this change is the ob-
servation that λ and δint often involve same intermediate cal-
culations. If the two functions are kept separate, as they are

in most existing DEVS-based tools, these calculations must
be performed twice instead of once. Alternatively, the inter-
mediate results may be stored by λ and retrieved by δint , but
permitting what is essentially a state change in λ would ren-
der δint unnecessary. Our conventions omit λ and allow δint to
provide an output in addition to changing the state. Actually,
as explained shortly, our convention is that the internal tran-
sition function provide not one optional output, but a list of
zero or more outputs.

It is worth noting that the changes we propose are not,
in general, applicable to the many mathematical variants of
DEVS. Consider Parallel DEVS (Chow and Zeigler, 1994),
which exploits parallel computing technology by dispensing
with the ordering of simultaneous events. In Parallel DEVS,
an invocation of λ is only sometimes followed by δint , so
merging the two functions would be complicated at best.

A set of implementation-oriented conventions for Parallel
DEVS is beyond the scope of this paper. However, the list
of outputs provided by our version of the internal transition
function is somewhat similar to the bag of outputs found in
software implementing Parallel DEVS. In DEVSJava (Zei-
gler and Sarjoughian, 2005), for example, a model may use
repeated calls of the form makeContent(port, value) to
produce simultaneous outputs. The difference in our case is
that the outputs are propagated in the order they are listed. If a
model produces two outputs and the first is to be received by
another component, the recipient’s external transition func-
tion δext is invoked before the second output is propagated.

If δint is to provide a list of outputs instead of one optional
output, it seems intuitive that δext take a list of inputs instead
of a single input. But other than symmetry, we do not see any
practical benefit to altering δext in this way. In most cases, re-
ceiving inputs one at a time conveniently alleviates the need
to iterate over a list. In cases where a list of inputs is neces-
sary, it is not difficult to have δext queue incoming values for
subsequent processing.

Turning our attention from atomic models to coupled mod-
els, the tie-breaking function Select determines which com-
ponent first undergoes an internal transition should there be
a tie. In CD++ (Wainer, 2009), the order of simultaneous in-
ternal transitions adheres to the order in which the compo-
nent names are listed, rendering Select unnecessary. We adopt
this convention for the sake of convenience, and use the same
ordering of components to determine which external transi-
tion occurs first should multiple components receive an input
from a common source. The order of such external transi-
tions is irrelevant from a mathematical perspective. But from
a technological point of view, the presence of side effects and
pseudorandom numbers, combined with the importance of re-
peatable simulation runs, motivates a deterministic order for
all events. Ordering components is a convenient way to break
ties for both internal and external transitions.

3. PROPOSED CONVENTIONS
The six tables presented in this section list the elements

of the original, specification-oriented DEVS conventions and
the proposed, implementation-oriented DEVS conventions
for atomic models, coupled models, and simulation runs.

3.1. Atomic Model Conventions
The original atomic model conventions in Table 1 and the

proposed conventions in Table 2 include a number of corre-
sponding elements. The Input Set X and Output Set Y have
been replaced with Input and Output Port Lists, as was men-
tioned in Section 2. We did not yet mention that the State
Set S would be replaced by a State Variable List, but it is
common practice to represent a model’s state with multiple
variables. Observe that each implementation-oriented transi-
tion function “reads” and “modifies” these state variables, as
we assume current states and new states share memory. Aside
from that difference, the external transition function is simi-
lar in both sets of conventions. The time advance function is
similar as well, but the proposed internal transition function
absorbs the output function by providing an output list.

Table 1. Specification-Oriented Atomic Models
Element Description
Input Set (X) Set of all possible inputs
Output Set (Y) Set of all possible outputs
State Set (S) Set of all possible states
Time Advance Function that...
(ta : S→ R+

0 ∪{∞})∗ ...takes the current state
...results in the time delay

External Transition Function that...
(δext : Q×X → S)∗∗ ...takes the current state

...takes the elapsed time

...takes an input value

...results in the new state
Output Function that...
(λ : S→ Y ∪{∅}) ...takes the current state

...results in an output value
Internal Transition Function that...
(δint : S→ S) ...takes the current state

...results in the new state
∗ R+

0 is the set of non-negative real numbers
∗∗ Q =

{
(s,∆te) ∈ S× (R+

0 ∪{∞}) : ∆te < ta(s)
}

Several new elements are included in the implementation-
oriented conventions of Table 2. Starting from the top, it is
standard practice that every model have some sort of ID,
whether it be a filename or the name of an object-oriented
class. We include the ID for the sake of completeness. Also
deserving of inclusion is a model’s informal description, be it
a set of comments associated with an object-oriented class, a
text field in a graphical user interface, or an elaborate combi-

Table 2. Implementation-Oriented Atomic Models
Element Description
Model ID Model name or identifier
Description Informal model description
Time Resolution Bound on time value resolution
Input Port List List of input port names
Output Port List List of output port names
Parameter List List of parameter names
Statistic List List of statistic names
Constant List List of constant names
State Variable List List of state variable names
Constant Initialization Function that...

...reads parameter values

...initializes constants

...acquires computer resources
State Initialization Function that...

...reads constants

...initializes state variables
Time Advance Function that...

...reads constants

...reads state variables

...provides the time delay
External Transition Function that...

...reads constants

...reads/modifies state variables

...reads the elapsed time

...reads an input
Internal Transition Function that...

...reads constants

...reads/modifies state variables

...reads the elapsed time

...provides an output list
Finalization Function that...

...reads constants

...reads/modifies state variables

...reads the elapsed time

...provides statistic values

...releases computer resources

nation of marked-up text and diagrams. The time resolution
element is explained in detail in Section 4. The parameter,
statistic, and constant lists, as well as both initialization func-
tions and the finalization function, help encapsulate the state
of an atomic model. They are described in Section 5.

The original conventions are explicit about the form of
each element. For example, the transition functions conform
with the equations s′ = δext(s,∆te,x) and s′ = δint(s), where s′

is the new state, s is the current state, ∆te is the time elapsed
since the previous event, and x is the input. In the proposed
conventions, the form of each element is considerably more
open to interpretation. This is done to accommodate different

types of programming languages and user interfaces. With an
object-oriented language, for example, the state variables that
constitute s would probably not be provided as arguments to
the transition functions. Instead they would be accessed as
member variables of a class that incorporates the transition
functions as methods.

Consider another example of how the form of each pro-
posed element is open to interpretation. In the original con-
ventions it is clear that δext takes the elapsed time ∆te as an
argument, whereas δint does not. One may still reference the
elapsed time in δint , but this is done using the expression
ta(s). Instead of using an argument in one transition and a
function call with potential side effects in the other, we rec-
ommend that DEVS-based software provide a single mecha-
nism to read the elapsed time in both transition functions as
well as in the new finalization function. The form of each of
these functions depends on whether the elapsed time is sup-
plied by an argument, by a built-in function, or by some other
mechanism.

3.2. Coupled Model Conventions
Shown in Tables 3 and 4 are the original and proposed con-

ventions for coupled models. A number of elements in these
tables can be considered part of the interface to any model,
be it atomic or coupled. The specification-oriented model in-
terface consists of the first two elements in Tables 1 and 3
(X and Y), while the implementation-oriented model interface
consists of the first seven elements in Tables 2 and 4 (Model
ID, Description, ..., Statistic List). Simulation tool develop-
ers should exploit the fact that these seven implementation-
oriented elements are common to all models.

Table 3. Specification-Oriented Coupled Models
Element Description
Input Set (X) Set of all possible inputs
Output Set (Y) Set of all possible outputs
Component Set (D) Set of component names
Component Models Atomic and/or coupled models
({Md : d ∈ D}) (one model per component)
External Input Set of links connecting...
Coupling (EIC) ...input ports to components
External Output Set of links connecting...
Coupling (EOC) ...components to output ports
Internal Coupling Set of links connecting ...
(IC) ...components to components
Tie-Breaking Function that...
(Select : 2D→ D) ...takes a set of component names

...results in a selected name

Let us now clarify the terns “set” and “list” in the con-
text of our proposed conventions for both atomic and coupled
models. When we describe an implementation-oriented ele-

Table 4. Implementation-Oriented Coupled Models
Element Description
Model ID Model name or identifier
Description Informal model description
Time Resolution Bound on time value resolution
Input Port List List of input port names
Output Port List List of output port names
Parameter List List of parameter names
Statistic List List of statistic names
Constant List List of constant names
Component List List of component names
Component Models Mapping that...

...takes any component name

...provides the model ID

...associated with the component
Coupling Set of links connecting...

...input ports to components

...components to output ports

...components to components
Initialization Function that...

...reads parameter values

...initializes constants

...provides parameter values to

...components

...acquires computer resources
Finalization Function that...

...reads constants

...reads the elapsed time

...reads the total elapsed time

...reads the remaining time

...reads statistic values from

...components

...provides statistic values

...releases computer resources

ment as a list, we are recommending that the software user
be given control over the order of the items. Admittedly, the
ordering of output ports, parameters, statistics, constants, and
state variables should have no effect on a simulation run. The
main reason for these items to be ordered is to promote con-
sistency throughout a simulation tool; if length appears be-
fore width in one part of a user interface, width ought not
precede length in a different part of the interface. There are
two lists, however, that do impact simulation runs according
to our conventions. The list of component names in Table 4
implies an ordering of components that may take the place
of the Select function, as explained in Section 2. Recall that
Select only orders internal transitions, whereas we would use
the order of components to also select the first external transi-
tion when multiple components receive an input from a com-
mon source. By ordering simultaneous events of either type,

our policy helps ensure that simulation runs are repeatable.
However, there is one more source of simultaneous events to
consider. It is rare but possible for multiple ports of a single
component to receive an input from a common source. In that
case, we recommend that the ordering implied by the receiv-
ing model’s list of input ports be used to break the tie.

The distinction between sets and lists may affect the design
of a simulation tool’s user interface. Given a purely textual
interface, one can argue that any set of items has at least one
implied ordering: the order in which each item appears. How-
ever, many DEVS-based tools provide a visual editor for cou-
pled models. Users prepare diagrams of ports, components,
and couplings, and in these diagrams the ordering of items
may be ambiguous. To comply with our conventions, devel-
opers of visual coupled model editors must provide some
mechanism for users to order ports and components. The cou-
plings need not be ordered, as they are described as sets in
both Tables 3 and 4.

The proposed constant list, initialization function, and fi-
nalization function serve a similar purpose for coupled mod-
els as the similarly named elements do for atomic models,
except that they help encapsulate composition-related infor-
mation instead of state. This is explained in Section 5.

3.3. Simulation Run Conventions
While the original modeling conventions have been de-

scribed in numerous books and papers on DEVS, less atten-
tion has been paid to the additional elements required to con-
figure and report on simulation runs. Yet for every model, one
must be able to record multiple simulation configurations and
the associated results. Here we compare the plausible set of
simulation run conventions in Table 5 to the proposed set of
conventions in Table 6.

Table 5. Specification-Oriented Simulation Runs
Element Description
Model Model to be simulated
Initial State(s) Initial state(s) of model (components)
Input Series List of time values and inputs
Output Series List of time values and outputs
Final State(s) Final state(s) of model (components)

We admit that the specification-oriented conventions in Ta-
ble 5 may not appear elsewhere in the literature. However, we
imagine that these are the conventions a simulation tool devel-
oper would attempt to adhere to if deviations from the original
modeling conventions were somehow disallowed. The first
three elements constitute the simulation configuration, and
first among them is the model to be simulated. If the model
is atomic, the second element is its initial state. If the model
is coupled, the second element is a mathematical structure
that associates every component of the model, including com-

Table 6. Implementation-Oriented Simulation Runs
Element Description
Simulation ID Simulation name or identifier
Model ID ID of model to be simulated
Description Informal simulation description
Time Resolution Resolution of all time values
Random Seed Random number generator seed
End Time Bound on simulated time
Parameter Value List List of parameter values
Input Series List of time values and inputs
Output Series List of time values and outputs
Statistic Value List List of statistic values

ponents nested within other components, with its own initial
state. The third and last configuration element is the input se-
ries. It provides a list of inputs, where each input is paired
with the simulated time at which it triggers an external transi-
tion. The last two elements constitute the simulation results.
The first of these is the output series, which becomes pop-
ulated with outputs and associated internal transition times.
The other is either the final state of an atomic model, or the
final states of the components of a coupled model.

A developer who adopts our implementation-oriented con-
ventions for atomic and coupled models will want to consider
Table 6 for their simulation runs. This set of simulation con-
ventions is similar to the specification-oriented list in that it
includes an input series and an output series, as well as a ref-
erence to the model being simulated. One key difference is
the replacement of the initial and final state(s) with lists of pa-
rameter and statistic values, which are discussed in Section 5.
The output series and the list of statistic values constitute the
simulation results, whereas the first eight elements in Table 6
are part of the simulation configuration.

There are five elements in Table 6 we have yet to mention.
The ID of the simulation run is important, though a filename
would suffice. The informal description would ideally be used
to relate the simulation run to a broader experiment. The time
resolution is explained in Section 4. The random seed is in-
cluded so that a single pseudorandom number generator, to
be shared by all components, can be seeded at the beginning
of a simulation run. Finally, the end time provides a means to
terminate a simulation run despite the presence of inputs that
have yet to be processed, or scheduled internal transitions that
have yet to be reached. Only external and internal transitions
which occur strictly prior to the end time are to be executed.

Note that the elements in Table 6 are sufficient for only
the most basic type of simulation: a single run, executed by a
single thread of computation, for which all configuration data
is provided at the outset. Simulation tool developers may in-
clude additional elements to accommodate parallelism, inter-
activity, or experiments involving multiple simulation runs.

4. TIME RESOLUTION
A key advantage of DEVS is the control it gives model-

ers over the timing of events. Unfortunately, if a simulation
tool adopts the intuitive and common approach of represent-
ing time values with floating-point numbers, the round-off er-
rors that occur when time values are added and subtracted
may shift events slightly forwards or backwards in time. The
practical consequences of imprecise event times are threefold.
First, they complicate the simulation process, as events sched-
uled for slightly different times may be treated as simultane-
ous. Second, they can lead to unexpected conditions, such as
an elapsed time ∆te that is slightly greater than a state vari-
able ∆tr representing the time remaining between the previous
event and the next scheduled internal transition. When updat-
ing the remaining time, one must consider that ∆tr−∆te may
be negative. Third, imprecise event times may annoy users
who find themselves unable to implement conceptually sim-
ple models, such as one that generates outputs at a fixed time
interval of exactly 0.1 time units.

CD++ is unusual among existing DEVS-based tools in
that all times values are represented by integers. Actually,
time values are represented using an object-oriented class
named Time, but the class encapsulates an integral number of
milliseconds. This approach eliminates round-off errors pro-
duced by the addition and subtraction of floating-point time
values. On the other hand, having a fixed time resolution may
render a simulation tool impractical for models involving ex-
treme time scales. A millisecond resolution may be too coarse
for simulations of certain chemical and biological processes,
though a considerably finer resolution might lack the range
needed for geological or cosmological processes.

Our solution is to have all time values represented with in-
tegers encapsulated in a class or custom data type, as is done
in CD++. However, to support a wide range of time scales,
the resolution common to all time values is specified as part
of the configuration of a simulation run. This is the role of
the time resolution element in Table 6. As indicated in Ta-
bles 2 and Tables 4, each model also has a time resolution,
the purpose of which is to ensure that the time resolution of a
simulation run is sufficiently fine. We present two approaches
for selecting a model’s time resolution, starting with a math-
ematical approach that extends DEVS theory.

We consider a positive rational number ∆tsim to be a valid
simulation time resolution so long as it divides every duration
value ∆tval that can possibly separate events during a simula-
tion. Equation (1) defines the notation ∆tsim|∆tval , meaning
“∆tsim divides ∆tval” or “∆tval is divisible by ∆tsim”.

∆tsim|∆tval =

(
∆tval

∆tsim
∈ N+

0 ∪{∞}
)

(1)

Every DEVS model specification M has an optimal time
resolution tr(M), the greatest duration that, if positive, is di-
visible only by valid simulation time resolutions. A model’s

optimal time resolution is also the supremum over all finite
∆t such that, for n = 1,2,3, . . ., a simulation time resolution
of ∆t

n is valid and hence divides any result of the model’s time
advance function ta. The formal definition of tr(M) for an
atomic model is given by (2), where S∆t/n is the set of reach-
able states subject to the condition that the initial state s0 and
every elapsed time ∆te satisfy ∆t

n |ta(s0) and ∆t
n |∆te.

tr(M) = sup
∆t∈Q+

(
∀n ∈ N+,∀s ∈ S∆t/n,

∆t
n

∣∣∣∣ ta(s)) (2)

One can often identify the optimal time resolution of a
model without formally evaluating (2). To demonstrate, we
analyze the simple DEVS models specified in Table 7, start-
ing with the Counting Generator. This model outputs an in-
crementing number every 480 seconds, or 8 minutes, and
unsurprisingly this interval turns out to be the optimal time
resolution. Looking at the formula, 8 minutes is the great-
est ∆t in the set of positive rational numbers Q+ for which
∆t, ∆t

2 ,
∆t
3 , . . . all divide every possible result of ta. The analy-

sis is trivial since this ta always yields the same duration.
The Simple Processor model is just slightly more complex.

It receives the number n as an input, waits 45 seconds or 1
minute depending on whether n is odd or even, then outputs
n. Here ta yields ∞, 45, or 60 seconds. According to (1), a
duration of ∞ is divisible by any time resolution, so we focus
instead on 45 and 60 seconds. The optimal time resolution is
15 seconds, the greatest common divisor of these durations.

The Loyal Processor is similar to the Simple Processor, ex-
cept that it ignores any input it receives while processing the
previous input. In addition to ∞, 45, and 60 seconds, ta may
now yield ∆tr−∆te, the difference between the previous re-
maining time and the elapsed time. Note that ∆tr−∆te is not
always divisible by 15 seconds. However, ∆tr−∆te is divisi-
ble by a fraction of 15 seconds so long as that fraction divides
all possible ∆te. This is all that (2) requires, so tr(M) is again
15 seconds. In general, because a model has no influence on
the ∆te values it receives, subtracting ∆te to produce the result
of ta has no effect on the model’s optimal time resolution.

The Ideal Processor outputs whatever number it receives
without delay. Here ta yields either 0 or ∞, which are both
divisible by any time resolution according to (1). The opti-
mal time resolution is thus the supremum over all finite ∆t,
which is ∞, and this means that the model should impose no
constraint on the time resolution of a simulation.

The Random Generator is similar to the Counting Gener-
ator, except that the time intervals between outputs are ran-
domly sampled from an exponential distribution. The real
numbers resulting from ta are not generally divisible by any
rational number. Hence tr(M) is the supremum of an empty
set of positive rationale numbers, which we interpret as 0. If
a model has an optimal time resolution of 0, it is theoretically
impossible to choose a valid simulation time resolution.

Table 7. Simple DEVS Model Specifications
Model Time Advance External Transition Internal Transition

Counting
Generator ta(n) = 480 undefined δint(n) = n+1

Simple
Processor ta(n) =

 ∞ if n =∅
45 if n

2 /∈ N
60 if n

2 ∈ N
δext(n,∆te,x) = x δint(n) =∅

Loyal
Processor ta(n,∆tr) = ∆tr

δext(n,∆tr,∆te,x)

=

 (x,45) if (n =∅)∧ (x
2 /∈ N)

(x,60) if (n =∅)∧ (x
2 ∈ N)

(n,∆tr−∆te) if n ∈ N

δint(n,∆tr) = (∅,∞)

Ideal
Processor ta(n) =

{
∞ if n =∅
0 if n ∈ N δext(n,∆te,x) = x δint(n) =∅

Random
Generator ta(n,∆tr) = ∆tr undefined

δint(n,∆tr) = (n+1,∆tr ′)
∆tr ′ r.s.f. Exponential(1

480)
X = {} and Y = N (Counting G. & Random G.); X = Y = N (Simple P. & Loyal P. & Ideal P.)
S = N (Counting G.); S = N∪{∅} (Simple P. & Ideal P.); S = (N∪{∅})× (R+

0 ∪{∞}) (Loyal P.); S = N×R+ (Random G.)
λ(n) = n (Counting G. & Simple P. & Ideal P.); λ(n,∆tr) = n (Loyal P. & Random G.)

As given by (3), the optimal time resolution of a coupled
model depends on its components. The resolution is 0 if any
component has an optimal resolution of 0. Otherwise it is the
greatest common divisor of the component resolutions.

tr(M) = sup
∆t∈Q+

(∀d ∈ D,(tr(Md)> 0)∧ (∆t|tr(Md))) (3)

With the theory established, we consider a more practical
approach for selecting time resolutions in a simulation tool
with integer-based time values. In this context, the time res-
olution assigned to a model must be sufficiently fine, but it
need not be optimal. It is reasonable to allow simulation soft-
ware users to choose time resolutions from a geometric se-
quence of predefined values. Below is one such sequence.

106 years,103 years,years,days,hours,minutes,seconds,
10−3 seconds,10−6 seconds, . . . ,10−36 seconds

Let us revisit the models in Table 7. The Counting Gener-
ator has an optimal time resolution of 8 minutes, so from the
list a user would choose “minutes”. The optimal resolution of
both Simple and Loyal processors is 15 seconds, so “seconds”
is the practical choice. For models with infinite optimal time
resolutions, like the Ideal Processor, a “N/A” option should
be available. Users must exercise their judgment for models
with optimal time resolutions of 0. The Random Generator
has a mean interval of 8 minutes, so a 1-minute resolution is
perhaps too coarse, a 1-microsecond resolution may be overly
conservative, but seconds or milliseconds seem reasonable.

Since every resolution in the sequence is divisible by its
successor, a coupled model can be assigned the finest time
resolution of all of its components. The time resolution of a
simulation run may be no coarser than that of the model or
that of the time values in the input series.

5. ENCAPSULATION
A model’s interface includes all information that may need

to be referenced by a simulation run which depends on the
model, or by a coupled model that includes it as a component.
Information that is not part of the interface may be consid-
ered encapsulated. In the original conventions, the interface
consists of only the input and output sets X and Y , so the state
of an atomic model and the composition of a coupled model
are both encapsulated.

The challenge is how to ensure model states and composi-
tions remain encapsulated as the task shifts from specifying
models to running simulations. Directly or indirectly, simula-
tion runs must be configured with initial model states. Also,
there is often a need to report on statistical information re-
siding in a model’s final state. If an atomic model’s initial and
final states are exposed in the simulation configuration and re-
sults, as they are in the specification-oriented conventions in
Table 5, the model’s state can not be considered encapsulated.
If the initial and final states of the components of a coupled
model are exposed, its composition is not encapsulated.

Our solution begins with the inclusion of a list of param-
eters in every model, as well as a corresponding list of pa-
rameter values in every simulation run. In an atomic model,
the parameters are used to derive the initial state, allowing
the state variables to be hidden from the encompassing sim-
ulation or coupled model. This is common practice, as most
object-oriented DEVS libraries feature initialization methods
or class constructors that read parameter values.

Parameters not only control the initial state of an atomic
model, they also customize its subsequent behavior by in-
fluencing the model’s functions. Having all functions read
parameter values directly could be inefficient, however, as
the same parameter-dependent calculations might be required

in multiple functions or in repeated invocations of the same
function. Our implementation-oriented atomic model con-
ventions therefore include a list of constants, parameter-
dependent variables that never change once a simulation is
underway. We also propose that atomic models have two ini-
tialization functions. The first to be invoked is the constant
initialization function, the only function in which parameters
can be accessed and constants can be modified. The ability to
modify constants in this function is important for populating
arrays and data structures that will later be immutable. The
second initialization function is the state initialization func-
tion, kept separate from the first so that modifications to the
constants can be disallowed before the state variables acquire
their initial values.

As mentioned above, our conventions require every model
to include a parameter list, as well as an initialization func-
tion that reads parameter values at the beginning of a simu-
lation. We propose that every model also include a statistic
list, as well as a finalization function that produces statistic
values at the end of a simulation. In an atomic model, the
finalization function extracts information from the state vari-
ables without exposing them, thereby keeping the state of the
model encapsulated. It also provides a place to release any
computer resources acquired during initialization. We recom-
mend that state changes be permitted in the finalization func-
tion, and that the elapsed time be made available to inform
these changes. This makes it convenient to account for any
continuous change in a system over the time period between
the last transition time and the end time of a simulation run.

A simple way to derive the parameter and statistic lists of
a coupled model is to concatenate the parameter and statis-
tic lists of its components. Unfortunately, a simulation tool
that does this automatically would expose information about
a coupled model’s composition. It would also furnish a cou-
pled model with redundant parameters in cases where multi-
ple components require the same parameter value. Our con-
ventions require a coupled model’s parameters and statistics
to be listed independently of those of its components. At the
beginning of a simulation run, a coupled model’s initializa-
tion function reads its parameter values and prepares a sepa-
rate list of parameter values for each component. Afterwards,
the initialization function of each component is invoked with
the appropriate list. At the end of a simulation run, the final-
ization function of each component produces a separate list
of statistic values. Afterwards, the coupled model’s finaliza-
tion function is invoked to read each list and produce its own
statistic values. The finalization function of a coupled model
may read parameter-dependent constants populated in the ini-
tialization function. It may also read the time elapsed since
the latest component-level event, the time elapsed since the
beginning of the simulation, and the time remaining until the
next component-level internal transition.

6. CONCLUSION
Convenience, efficiency, repeatability, and other practical

considerations motivate the implementation-oriented DEVS
conventions proposed in this paper. Although our conven-
tions differ in appearance from the original mathematical
conventions, they remain similar in principle by keeping a
model’s state or composition encapsulated and by allow-
ing fine control over the timing of events. Depending on
the specific requirements of future simulation tools, the pro-
posed conventions may be adopted in part or in their en-
tirety. In either case, the developers of these tools will be-
gin their projects with a greater awareness of the technolog-
ical issues they will inevitably face, and at least one practi-
cal solution for many of these issues. We encourage others
to propose implementation-oriented conventions for Parallel
DEVS, Real Time DEVS, and other DEVS variants.

REFERENCES
Bergero, F. and E. Kofman (2011). PowerDEVS: A Tool for

Hybrid System Modeling and Real-Time Simulation. Sim-
ulation 87(1-2), 113–132.

Bolduc, J.-S. and H. Vangheluwe (2002). A Modeling and
Simulation Package for Classic Hierarchical DEVS. Tech-
nical report, School of Computer Science, McGill Univer-
sity.

Chow, A. C. H. and B. P. Zeigler (1994). Parallel DEVS:
A Parallel, Hierarchical, Modular Modeling Formalism. In
Proceedings of the Winter Simulation Conference, pp. 716–
722.

Hwang, M. H. (2009). DEVS++: C++ Open Source Library
of DEVS Formalism (v.1.4.2 ed.).

Madlener, F., H. G. Molter, and H. Sorin A (2009). SC-
DEVS: An efficient SystemC Extension for the DEVS
Model of Computation. In Proceedings of the Design, Au-
tomation, and Test in Europe Conference, pp. 1518–1523.

Nutaro, J. J. (2011). Building Software for Simulation: The-
ory and Algorithms with Applications in C++. Hoboken,
NJ, USA: John Wiley & Sons.

Wainer, G. A. (2009). Discrete-Event Modeling and Simula-
tion. Boca Raton, FL, USA: CRC Press.

Zeigler, B. P., H. Praehofer, and T. G. Kim (2000). Theory of
Modeling and Simulation (2nd ed.). San Diego, CA, USA:
Academic Press.

Zeigler, B. P. and H. S. Sarjoughian (2005). Introduction to
DEVS Modeling and Simulation with JAVA: Developing
Component-Based Simulation Models. Technical report,
Arizona Center for Integrative Modeling and Simulation,
University of Arizona.

