
Systematic DEVS Development: A Software Engineering Approach

Shafagh Jafer

Department of Electrical Computer Systems and Software Engineering

Embry-Riddle Aeronautical University, Daytona Beach, FL

jafers@erau.edu

Keywords: DEVS design, DEVS development, SDLC.

Abstract

 This work attempts to present a software engineering

approach towards DEVS development. By borrowing the

Software Development Life Cycle (SDLC) concept, we map

the five SDLC phases (i.e. Analysis, Design,

Implementation, Testing, and Maintenance) to DEVS model

construction. The idea is to introduce a systematic

development approach that can be adapted by the DEVS

community. Many researchers have proposed different

strategies and tools to aid developing DEVS models. This

work aims at standardizing this process by presenting a

unified series of steps and phases that provide a model for

the development and lifecycle management of a DEVS

system. Aiming at focusing on the inherent model

reusability feature of DEVS, we present an approach for the

development, acquisition, and configuration of DEVS

systems. This work serves as the “go-to” place for first-time

DEVS developers.

1. INTRODUCTION

Component-based DEVS development has many attributes

in common with object-oriented software development.

They both require understanding the requirement

specifications, then designing the overall architecture of the

system, afterwards, providing the detailed specifications of

system’s components, then, implementing the system,

testing its operation by validating and verifying each

component as well as the overall system, and finally

deploying it. These steps have been already studied and

investigated by the software engineering community. Since

its first introduction in 1960 [1], Software Development

Life Cycle (SDLC) has been the most common development

model used in software engineering. Advanced software

engineering methods were developed since then to improve

developer productivity by setting guidelines for activities to

be performed at each software development phase. SDLC

imposes the standard that defines all the tasks required for

developing and maintaining a software product. These

include a number of clearly defined and distinct work

phases used by a software developer/engineer to plan for,

design, implement, test, and deliver the software product to

the customer.

 SDLC defines two approaches to system development:

traditional approach, and object-oriented approach. The

first method, also referred to as structured system

development [2], is a systems engineering and software

engineering methodology for describing systems as a

hierarchy of functions. With the introduction of high-level

programming languages and the rapid advancements in

software engineering tools and practices, the latter approach,

object-oriented method, has achieved a lot of attention from

systems designers and developers. Object-oriented (OO)

techniques [3] view systems as collection of interacting

objects working together to accomplish tasks. OO approach

maps SDLC into analysis (OO Analysis), design (OO

Design), and programming (OO Programming), allowing

for defining and construing a complete software system

based on collaborating objects.

 Similar to OO techniques, the Discrete-Event System

Specification (DEVS) [4] allows defining an entire system

through collaborative and interacting components. A DEVS-

based system is composed of coupled (structural) and

atomic (behavioral) entities. Atomic components can be

viewed as objects communicating with each other by

sending/receiving messages via ports. Given such

architecture, it is straightforward to map SDLC to DEVS

development. The purpose of this work is to demonstrate the

one-to-one mapping of software development steps to

DEVS modeling. We aim to demonstrate DEVS

development within the SDLC framework, benefiting from

advanced tools and techniques being introduced in software

engineering every day. Concepts such as module-based

design and implementation, component reuse, and unit and

integrated testing can be easily adapted and well-mapped to

DEVS modeling. This work takes a software engineering

approach towards DEVS model development by presenting

various OO techniques, with special focus on UML [7]

technologies. The author has used this effort to teach third

year software engineering students to develop DEVS

systems as part of a Formal Modeling and Simulation

undergraduate course.

 The paper is organized as follows: Section 2 provides

background information on SDLC concepts and techniques

and introduces the DEVS theory. Section 3 provides a quick

overview of existing DEVS development tools. Section 4

presents mapping of SDLC phases to DEVS development

journey. A sample system is designed and implemented in

mailto:jafers@erau.edu

Section 5. Finally, Section 6 concludes the paper and

summarizes the effort presented here.

2. BACKGROUND

2.1. SDLC

Software Development Life Cycle (SDLC) provides the

overall framework for managing software development

process. Throughout its development lifecycle, a software

product goes through SDLC phases. SDLC defines five

distinctive phases as shown in Figure 1:

Figure 1. SDLC phases.

Requirement Analysis: This phase deals with gathering

information to learn the problem domain, extracting data

from system’s description, and discovering requirements

from the client. Once general requirements are gathered, an

analysis of the scope of the project is conducted to clearly

identify the set of functionalities that need to be developed.

Requirements are then prioritized and alternatives are

proposed and evaluated.

Design: The overall architecture of the software system is

defined at this phase. High-level structure and detailed-level

solutions are outlined based on requirements decisions made

during the previous phase.

Implementation: The actual development takes place at this

phase by constructing software components. Software

engineers program the code according to the design given at

the prior phase. As a result, a fully-functional software

system is implemented at the end of this phase.

Testing: Validation and verification is performed at this

phase to ensure correctness and quality of software system.

Defects are recognized and removed, software units are

tested individually and in an incrementally integrated

fashion.

Deployment: The last SDLC phase starts directly after the

code is properly tested, approved for release, and handled to

client. This phase typically includes software installation,

customization, maintenance, enhancement, and an extended

period of user support.

 SDLC is a repeating cycle since after the software is

deployed, maintenance and additional support is required to

address any undiscovered faults or requirements. In return

this leads to possible redesign and updates of the software

system. It is worth mentioning that phases are not always

sequential; they can overlap, implying simultaneous

activities being performed from two phases at the same

time. Various software development models have been

proposed to guide software engineers to carry on SDLC

activities. Waterfall, spiral, incremental, prototyping, and

iterative are examples of SDLC models [8]. The collection

of software models, tools and techniques, referred to as

software engineering methodologies, provide

comprehensive guidelines to follow for completing every

SDLC activity. Figure 2 illustrates the relationship among

software methodologies components. In this paper we focus

on tools and techniques for developing a software system.

The following sections discuss software modeling

techniques and Computer-Aided Software Engineering

(CASE) tools.

Figure 2. Software development methodology

2.1.1. SDLC Techniques

 Among all object-oriented modeling techniques, the

Unified Modeling Language (UML) [9] is the most

commonly used specification. Proposed by the “three

amigos” of the object-oriented world, James Rumbaugh,

Grady Booch, and Ivar Jacobson, UML allows modeling an

entire software system statically and dynamically. The

various UML diagrams enable software engineers to model

different aspects of the system through its SDLC phases.

UML not only allows modeling the structure of the system,

but also adds ability to describe the behavior of each object

class/entity.

 UML diagrams are mostly used during the

Requirement, Design, and Implementation phase. UML Use

Case diagram, implemented at the Requirement Analysis

phase, greatly helps with requirement elicitation and

analysis. It simply provides a representation of the system’s

interaction with outside world (i.e. system’s users). Use

cases focus on the “what” and not the “how” by providing a

graphical representation of what the system must actually

do.

 UML diagrams that assist with the Design phase

provide a high-level and a detailed-level representation of

the system. The first high-level diagram used at the Design

phase is the Domain Model. The Domain Model represents

a conceptual model of all the entities related to a specific

problem. In UML, a Class Diagram is used to represent the

domain model. The first Class diagram constructed at the

Design phase, provides a high-level overview of the

system’s components. These components are discovered

from the project description or the Needs Statement (from

Requirement phase). The class diagram maps vocabulary

and key concepts of the problem domain to classes, and

identifies the relationships among them within the scope of

the project. Towards the end of the Design phase, a more

detailed class diagram is implemented, providing additional

design decisions such as class attributes and methods

associated with object-oriented models. Given the structural

view of the problem domain in a class diagram, a UML

Communication Diagram can help visualizing interaction

among elements. On the other hand, a Sequence Diagram

provides a more detailed view of objects interactions by also

providing the order at which interactions take place. Both

communication and sequence diagrams provide detailed

design aspects that can be reflected back on the high-level

class diagram to include much more design details.

 In order to study and analyze the behavior of the

system, UML provides the State Diagram. Towards the end

of the Design phase, a state diagram helps understanding

and verifying the behavior of the system. System’s

dynamics are translated into states and transitions depicting

the internal behavior of the system, given different initial

states and input values.

2.1.2. SDLC CASE Tools

 Computer-Aided Software Engineering (CASE) tools

are software tools designed to help software engineers

complete development tasks. CASE tools assist software

developers to organize and control the development of

software, especially when projects are large, complex, and

involve many software components and people. Various

CASE tools have been produced for use at different stages

of SDLC. A CASE tool may support developers through the

requirement phase by serving as a repository of documents

and program libraries containing the project's business

plans, or allow constructing visual representation of the

project's design, provide detailed code specification, assist

with coding and testing, provide configuration management

resources, and even support marketing and maintenance.

2.2. DEVS

Recent advances in computer technology have influenced

modeling and simulation (M&S) techniques to become an

effective approach for analyzing and designing a broad

array of complex systems where a mathematical analysis is

intractable. Just like software engineering SDLC, M&S

takes similar approach in defining phases and activities to

build and simulate a system. The simulation process begins

with a problem to solve. First, the real system is observed

(SDLC Requirements Analysis), its entities are identified

(SDLC Design phase), and a model is constructed (SDLC

Implementation phase). Then, the model is executed using a

simulator consisting of a computer system, which executes

the model’s instructions and generates relevant output.

These outputs are compared with the real system to verify

the correctness of the model (SDLC Testing phase). Among

the existing modeling and simulation techniques, the DEVS

(Discrete Event System Specification) formalism [4] is

regarded as one of the most developed general-purpose

M&S frameworks for Discrete Event Dynamic Systems

(DEDS). In DEVS, a real system is decomposed into

behavioral (atomic) and structural (coupled) components.

The system under study is modeled as a top coupled

component encapsulating atomic or other internal coupled

components. Components are linked through their

input/output ports and interact with each other by

sending/receiving event messages. Events can arrive at any

time through input ports, but due to the discrete-event nature

of DEVS, acceptable data can only be processed in a

discrete fashion. The behavior of an atomic component is

given by a state machine. Through their life time, atomic

entities go through various states when transitions are

triggered by incoming events. Figure 3 illustrates a DEVS

system composed of one coupled (B) and two atomic (A and

D) components.

Figure 3. A DEVS system composed of atomic A and D,

and coupled B components.

3. EXIISTING DEVS TOOLS

Many DEVS tools have been proposed so far assisting

DEVS developers in creating and implementing their DEVS

systems. ADEVS, DEVS-C++, DEVS-Scheme,

DEVS/CORBA, DEVS/HLA, DEVS/Grid, DEVSCluster,

DEVSJAVA, JAMES, PyDEVS, PowerDEVS, SimBeans,

DEVS/P2P, DEVS/RMI, and CD++ are some examples. A

brief description of each of these tools is given in [13]. This

paper takes an easy-to-follow approach to describe DEVS

model development in CD++ toolkit. The steps discussed

are tool-independent, meaning that they can be applied to

any of the DEVS tools mentioned above. This paper serves

as the “go-to” place for any beginner DEVS developer. The

procedures discussed in the next section have been

successfully used in an undergraduate course on Formal

Modeling and Simulation with third year software

engineering students. Students quickly understood and

adapted the DEVS concept and developed individual DEVS

projects using this approach. They fully comprehended the

DEVS theory and were able to map their initial system

design to a completely functional DEVS product.

4. MAPPING SDLC TO DEVS DEVELOPMENT

Here we present how SDLC approach can be applied to

construct and implement a DEVS system. We take a step-

by-step approach to define DEVS development steps as they

map to SDLC phases.

4.1. DEVS Requirements Analysis

As in any software development project, the first step

towards DEVS modeling is gathering requirements and

understanding the system functionalities. This phase starts

with a needs statement or a system’s description document.

Given such document, the desired system is discussed and

the “must-have” and “nice-to-have” functionalities are

extracted. Such information is referred to as functional and

non-functional requirements, which outline the structure,

operational constraints, and the overall behavior of the

system understudy. It is also at this stage that the boundaries

of the system are defined and specifications on how the

system interacts with external environment are provided.

4.2. DEVS Design

With the boundaries of the system defined at the

requirements phase, the Design starts with first sketching

the overall conceptual design diagram. This is a high-level

structural representation, visualizing the system boundaries

and all sub-systems. The conceptual diagram can then be

refined to include more details such as ports and

connections among coupled and atomic components. Then,

the DEVS coupled and atomic formalism specifications are

defined, detailing information about input and output ports,

as well as ports and components couplings. The atomic

formalism specification would also include details regarding

states and their duration, internal and external transition

behavior, and output generation.

 Then, a state diagram is created for each atomic

component to clearly illustrate its various states, state

transitions, input events triggering state change, output

events generated at the end of the states, and states time

durations.

4.3. DEVS Implementation

This phase involves implementing the internal behavior of

the DEVS atomic components complying with the system’s

conceptual design and the state diagrams. Each state

diagram is translated into a separate atomic DEVS

implementation. According to the atomic component’s state

diagram, the algorithms for internal and external transitions

are first implemented. Then, output generation and state

duration are implemented. A structural script is written to

define the system’s decomposition and connections among

coupled and atomic components.

 A DEVS development environment is used at this phase

to assist developers to easily implement their system’s

details. For demonstration purposes, the CD++ toolkit [5]

was used to implement the sample model defined in this

paper (to be discussed in Section 5).

4.4. DEVS Testing

DEVS testing is conducted by analyzing events handling,

output generation, and states timing. Each atomic

component is tested individually (Unit Testing) by injecting

events at different times and observing the behavior of the

component in response to events arrivals. The state change

and output generation timing are then compared against the

model’s specification (defined on the state diagram),

confirming test acceptance or rejection. With compliance to

the system’s conceptual design, atomic and coupled

components are incrementally integrated to perform

Integrated and System testing. Acceptance of all unit and

integrated tests yield the overall system acceptance

concluding the test phase.

4.5. DEVS Deployment

A fully functional and tested DEVS system is ready for

deployment. With its component-based infrastructure,

DEVS provides an ideal solution to model-continuity and

component-reusability. DEVS models can be easily

integrated and extended to accommodate larger Systems

developments. Additional functionalities and behavior can

also be easily added to existing models.

5. SAMPLE MODELS

This section describes developing a simplified ATM

machine system with CASE (UML and java) and DEVS

(CD++ tool). The goal is to illustrate one-to-one mapping of

software engineering SDLC to DEVS development by

taking a step-by-step approach where the same model is

developed using the two technologies. This section provides

an excellent guide to instructors and first-time DEVS

developers to understand how a DEVS system is modeled

and implemented. The system description is provided first.

Then the five SDLC phases are implemented under both

CASE and DEVS.

5.1. System Specification

An ATM Machine consists of a User Interface (UI) and a

Cash Dispenser (CD) unit. A user interacts with the system

through the UI by swiping their bank card. The system only

allows cash withdrawal. Once the user’s card is in, the cash

amount to be withdrawn must be entered via the UI. The

system will forward the amount information to the CD unit.

The CD verifies that the amount requested is within

acceptable limit and dispenses the cash.

The following functional requirements are to be addressed:

 It takes the UI exactly one minute to verify card

information (assume all cards entered into the system

are verifiable);

 Once the card is verified, the user has five minutes to

enter the withdraw amount. If the amount is not entered

within five minutes, the UI sends out an error message

and the ATM machine goes back to Idle;

 The CD handles the dispense action in exactly one

minute, and then dispenses the requested amount

(assume there is no limit on withdrawal amount).

5.2. System Requirements Analysis

Based on the system’s description, the functional

requirements, and the assumptions provided, the following

functionalities are identified:

 User interaction with the system through UI

 Cash withdrawal request submitted by user through

UI

 System dispensing cash through CD

 Timing constraints on card verification, arrival of

withdrawal amount request, and cash dispensing

activity

To outline the boundaries of the system, a UML Use Case

diagram is created as in Figure 4.

Figure 4. ATM system Use Case diagram.

5.3. System Design

The ATM system design starts with a conceptual diagram

outlining system decomposition. Figure 5 illustrates the two

entities of the ATM machine. This diagram serves as the

high-level design diagram which will be refined and

revisited differently in CASE and DEVS development

approach.

Figure 5. System's conceptual design.

5.3.1. CASE high-level and low-level design

Based on the conceptual design of the system, with the aid

of a CASE tool (Enterprise Architect by SparxSystems [10])

and UML, a Class Diagram is created serving as the high-

level design. The first version of the class diagram only

demonstrates the System structure composing of classes and

their relationships. This class diagram will be incrementally

refined adding more details such as attributes and methods

encapsulated by each class. Low-level design starts by

creating communication and sequence diagrams to present

objects interactions. Such diagrams will be used to add

details to the original class diagram. Figure 6 demonstrates

the detailed low-level class diagram.

Figure 6. System Class diagram.

At this stage, a State diagram is generated to model the

behavior of the controller (main processing unit of the

system, i.e. the ATM Class). The behavior presented by the

State diagram illustrated in Figure 7 is translated into actual

source code during the implementation phase.

Figure 7. System State diagram.

5.3.1. DEVS high-level and low-level design

As illustrated in Figure 8, first the System’s Block Diagram

(Conceptual Model) is created defining all coupled and

atomic components and their connections (input/output

ports linkage).

Figure 8. DEVS system Block diagram.

The next step is writing the formalism definitions for all the

coupled and atomic components as follows [4]:

 The next design diagram is the detailed modeling of the

atomic components’ behaviors. To get this step done, a state

diagram needs to be created for each atomic component.

Note that state diagrams cannot be generated for coupled

components as coupled DEVS only defines the hierarchy

and structural decomposition of the DEVS system. The User

Interface (UI) state diagram is presented in Figure 9.

Figure 9. UI State diagram.

At the beginning the UI is in state waitForCardInfo. It

remains in this state until an input event arrives through its

inCardInfo with a value of cardInfo. Arrival of this event

will trigger transition to Authorization state. The UI is in

this state for exactly one minute (time required to process

card information), after which it transits to WaitForAmount.

While in this state, if an input arrives from inAmount port

holding the requested withdrawal amount within five

minutes, the UI accepts the input and transits to a new state

(SendAmount) to dispense the cash. However, if the UI did

not receive an input within the specified time frame of five

minutes, an error message is generated as an output event

and sent out through outMsg port, and then the UI transits to

WaitForCardInfo and the cycle is repeated over. On the

other hand, when the UI is in SendAmount state because the

withdrawal request arrived within the correct time frame,

immediately an output is generated depicting cash dispense,

and a state transition to WaitForCardInfo occurs. Having

the state diagram modeled, it is then possible to provide the

UI DEVS definition as following:

 Similarly, a state diagram is defined for the

CashDispenser (CD) atomic component (refer to Figure 10).

Figure 10. Cash Dispenser tate diagram.

 The CD behavior is very simple. There are only two

states: WaitForAmount and DispenseCash. Initially the CD

is in state WaitForAmount. It remains in this state until an

input event arrives at inAmount port holding the withdrawal

amount requested, causing a transition to the DispenseCash

state. This state is timed, meaning that, when the state

duration expires, an output event is generated representing

the cash withdrawal action through the ATM machine. The

CD DEVS definition is then given according to its state

diagram as follows:

5.4. System Implementation

5.4.1. CASE Implementation

One of the approaches to start the implementation phase in a

CASE project is to use the Forward Engineering process

where using a CASE tool, the initial code skeleton of the

system is automatically generated. Enterprise Architect

provides this mechanism where with a click of a button,

skeletons for all the classes with their attributes and

methods, and their relationships are implemented in an easy

and quick step. Once the source code initial skeleton is

generated, it is then a straight forward process to translate

the state diagrams behavior into lines of code using an

integrated development environment like Eclipse Java. The

implementation phase takes a good amount of time as the

core development takes place during this stage. Due to

space limitations, code snippets are not presented in the

paper.

5.4.2. DEVS Implementation

With the coupled and atomic components definitions, and

the state diagrams at hand, the next step is to choose a

DEVS modeling tool. The CD++ toolkit provides an easy-

to-use framework to implement DEVS models in C++. First

a model file (ATM.MA) is implemented defining the top

ATM coupled component and the decomposition of the

system into the two internal atomic entities. The ATM

system model file is defined as follows:
[top]

components : CD@CashDispenser

UI@UserInterface

out : outCash outMsg

in : inCardInfo inAmount

Link : inCardInfo inCardInfo@UI

Link : inAmount inAmount@UI

Link : outAmount@UI inAmount@CD

Link : outMsg@UI outMsg

Link : outCash@CD outCash

 Next, a “.cpp” and a corresponding “.h” file are created

for every atomic component to implement its behavior. The

CD++ tool provides a template for these two files, making it

a very simple and quick step. The “.h” file includes

definition of that atomic component’s states, the time

duration for each state, and declarations for the four core

DEVS methods: initial, internal transition, external

transition, and output function. A DEVS developer provides

the implementation for these functions by mapping the

DEVS atomic definition and behavior (as defined on the

state diagram) to source code. The UI code snippet mapping

the state diagram algorithm is presented in Figure 11 and

Figure 12.

Figure 11. Implementing "UI.h" file.

Figure 12. Implementing "UI.cpp" file.

5.5. System Testing

“Trying to improve the quality of software by doing more

testing is like trying to lose weight by weighing yourself

more often” [11]. Software testing represents the ultimate

review of the requirements specification, the design, and the

code. Quality software must be free of defects or as close to

it as possible. Software quality is typically assessed through

Validation (did we build the right product?), and

Verification (did we build the product right?). Testing is the

most widely used approach to manage software quality.

Through testing, we try to prove a program is correct and

uncover any undiscovered defects. Many organizations

spend 40-50% of development time in testing.

5.5.1. CASE Testing

To date, many software testing strategies have been

proposed. The two general categories of testing are: Unit

Testing, and Integrated Testing. Unit testing checks that an

individual program unit (subprogram, object, package,

module) behaves correctly. On the other hand, the integrated

testing ensures that when program modules are

incrementally integrated they would still perform as

expected. Many CASE tools and techniques have been

introduced to assist software developers conduct unit and

integrated testing. Among these, the java unit testing

framework, JUnit [12]has been widely used among Java

developers. It allows developers to write and run repeatable

tests. Built into Eclipse IDE, it automatically calls methods

and compares the results they return against expected

results. Junit can be easily used to test each class of the

ATM system.

5.5.2. DEVS Testing

DEVS unit testing can be performed by analyzing the

behavior of each atomic unit separately. For this purpose, an

atomic component is injected with various inputs and timing

sets, and the corresponding outputs and their timing are

verified against the model specification as outlined on the

state diagram. Let’s take the Cash Dispenser atomic

component and apply unit testing to it. First an event file is

created specifying the value, the port, and the time at which

an input event is injected into the CD component. Figure 13

illustrates the content of the event file (“.ev”). The event file

has the following format:
eventTime port_name eventValue

Figure 13. “in.ev” file for testing the Cash Dispenser unit

Given this input, from the CD state diagram, the correctness

of the unit can be verified when a $100 cash value is

withdrawn through the CD outAmount port at time

00:02:00:000 (it takes the CD unit one minute to process a

withdraw event). The output file demonstrated in Figure 14

shows the result of the unit test written to a “.out” file.

Figure 14. “out.out” file generated at the end of Cash

Dispenser unit test

Once all atomic units are tested separately, then their

corresponding coupled components are tested (incremental

integrated testing). By grouping integrated tests, finally an

overall system integrated test can be conducting verifying

that the system works as a whole.

5.6. System Deployment

DEVS unit and coupled components can be easily reused

and expanded to allow continuous system improvement and

adaptivity. With its component-oriented and model-driven

architecture, any DEVS system can be reused to build other

system, making DEVS a powerful technology that can be

easily maintained and adapted for complex systems

development.

6. CONCLUSION

A software engineering approach is taken to present the

DEVS theory and teach DEVS development. This work

presented a DEVS development endeavor in the framework

of Software Development Life Cycle. Each SDLC phase is

mapped to a DEVS construction stage to allow usage of

software engineering concepts and practices. The procedure

presented here was in fact applied to teach first-time DEVS

developer group of students in their third year of a software

engineering curriculum. DEVS theory and development

process was easily picked up by students and fully

functional DEVS systems were built using the CD++

toolkit. The effort presented here serves as the “go-to” place

to introduce DEVS modeling and development to first-time

DEVS users.

7. REFERENCE

[1] Elliott, G., Strachan, J. “Global Business Information

Technology”. 2004.

[2] Davis, W. “Tools and Techniques for Structured

Systems Analysis and Design”. Addison-Wesley. ISBN

0-201-10274-9. 1992.

[3] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and

Lorensen, W. “Object-Oriented Modeling and Design”.

Prentice-Hall, Englewood Cliffs, NJ, 1991.

[4] Zeigler, B., Praehofer, P. H., and Kim, T. G. “Theory of

Modeling and Simulation”. Academic Press. 2000.

[5] G. Wainer, “CD++: A Toolkit to Develop DEVS

Models”, Software – Practice and Experience, 32(13),

pp. 1261-1306, 2002.

[6] G. Wainer, “Discrete-Event Modeling and Simulation:

a Practitioner’s approach”. CRC Press. Taylor and

Francis. 2009.

[7] Fowler, M. “UML Distilled: A Brief Guide to the

Standard Object Modeling Language”. Addison-Wesley

Professional. 2004.

[8] Pressman, R. “Software Engineering: A Practitioner's

Approach”. McGraw-Hill Inc., New York, NY. 2007.

[9] Jacobson, I., Booch, G., Rumbaugh, J. “The unified

software development process”. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA. 1999.

[10] Sparx Systems. Available at:

http://www.sparxsystems.com. [Last accessed: October

2013]

[11] McConnell, S. “Code complete”. O'Reilly Media, Inc.,

2004.

[12] Massol, V. “Junit in action”. Dreamtech Press, 2004.

[13] Jafer, S. “New Algorithms for the Parallel CD++

Simulation Environment”. M.A.Sc Thesis, Carleton

University, Ottawa, Canada. 2007.

