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Abstract 

 We propose a unified modeling framework for discrete 

event simulation. Our approach aims to provide a generic 

framework to simplify construction of simulation models, 

and at the same time provide the capability to capture the 

dynamic, static, and functional aspects of a system under 

study. We adopt a graphical modeling technique that 

integrates best practices from several powerful modeling 

paradigms and unify them in a consistent framework. The 

model when defined using this framework would be 

amenable to formal analysis. We also provide a graphical 

editor that makes these models easy to construct, reuse, and 

extend.  

 

1. INTRODUCTION 

 

1.1. Motivation 

 Building simulation models have become a very 

complex activity as a result of the wide variability between 

modeling activities and simulation activities. The primary 

issue in modeling is to develop multiple abstractions of a 

real/imagined system and capture these abstractions with 

algorithms that represent the static, dynamic and functional 

aspects of the system under study. These models have to be 

transformed into a simulation semantic which involves with 

the identification of timing aspects, data preparation and 

time management. Hence, there is a need to bridge advanced 

modeling techniques and generic simulation methodologies. 

This implies that modeling, software engineering, and 

simulation expertise should be integrated seamlessly into 

the modeling and simulation process. 

 Our proposed modeling framework satisfies these 

requirements. We adopt an intermediate level of abstraction, 

which is simple enough to be generalized (understandable 

by a wide community of modelers and users) and low 

enough to reduce the complexity of code synthesis for 

simulation purposes. At the same time, we can capture the 

functional, dynamic, and static aspects of a system under 

study. The underlying modeling paradigm is Discrete Event 

Simulation (DEVS) formalism. 

 

1.2. Why DEVS? 

 [Zeigler et al. 2000] describes DEVS as a ―unique form 

of representation that underlies any system with discrete 

event behavior‖. Models expressed using the Discrete Event 

System Specification (DEVS) represent a class of systems 

theoretic models that permit parallel event-based behavior to 

be expressed concisely and in a manner that lend themselves 

to formal verification. Although many different simulation 

formalisms have been advanced over the years, the DEVS 

formalism has emerged as the preferred formalism due to 

the fact that other formalisms have been proven to have an 

equivalent DEVS representation. DEVS support full range 

of dynamic system representation. In particular, a 

Differential Equation System Specification (DESS) can 

have an approximate Discrete Time System Specification 

(DTSS) by selection of a sufficiently small constant time 

interval (discretization). A DTSS model, in turn has an 

equivalent DEVS representation. Also, quantization of 

events in a DESS system can result in an approximate 

DEVS model. As such DEVS approach can be used to 

model discrete systems, continuous systems (approximate), 

and hybrid systems.  

 DEVS approach to modeling is appealing also because 

it separates modeling, simulation, and the experimental 

frame (EF). It eases verification. Its simulation approach 

allows parallel, distributed, or real-time execution of models 

thereby enhancing speed. DEVS promotes a user-oriented 

approach (incremental approach) to modeling and 

simulation. 

 Due to its generality, DEVS does not propose a means 

to specify systems in details. The mathematical foundations 

are defined but the specification details are left to the 

modeler. Hence, we propose a DEVS-Driven Modeling 

Language (DDML) to fill this void. DDML uses notations 

that unify C-DEVS and P-DEVS (two formalisms as the 

foundational frameworks for DEVS). DDML uses graphs 

that are amenable to formal analysis to define DEVS 

models. 

 

1.3. Structure of Paper 

 In the following section, we present DDML and show 

how its graphical notations map to the DEVS formalism. In 

section 3, we present our Eclipse-DDML tool with 
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illustrative examples. In section 4, we conclude and suggest 

the future direction for our unified modeling framework.  

 

2. DEVS-DRIVEN MODELING LANGUAGE 

(DDML) 

 DDML makes DEVS accessible to wide community of 

users and modelers by providing a means for defining 

DEVS-based models graphically. It uses a set of graphical 

notations to specify, visualize, analyse, verify, and 

document the characteristics and behaviour of some real or 

imagined system under development.  

 DDML uses processes to define the functional aspects 

of a system and this is described graphically using 

flowcharts with input and output ports. Dynamic aspects of 

a system are captured by using notations similar to 

state/activity diagrams. The static aspects are described 

using abstract structure graphs. The static aspects are 

automatically derived from the functional and dynamic 

aspects thereby clearing all ambiguities that might result if a 

modeller uses different diagrams to represent different 

views. 

 

2.1. DDML Processes 

 A simulation model is analogous to a business process 

that interacts with its environment through input and output 

ports. It receives messages via its input ports and sends out 

messages via its output ports. In DDML, the processes are 

instance of classes and the ports have to be defined by the 

domain or a set of allowable signals.  

 A process which cannot be decomposed is said to be 

atomic. Processes that have sub-processes are coupled. 

Processes communicate with each other via couplings 

(constraints are usually attached to these couplings to 

provide more prescriptions about data that are transferred). 

These process couplings can either couple two input ports 

(from a process and a sub-process), two output ports (from a 

sub-process and a process), or an input port and an output 

port (from two distinct processes). These couplings are 

termed External Input Coupling (EIC), External Output 

Coupling (EOC), and Internal Coupling (IC) respectively.

 
  

Figure 1: DDML Coupled Model and Atomic Model 

 

 Figure 1 above shows a coupled process (m0) with 

three sub-processes (m1, m2, m3). Process m0 has input 

ports (A and B) and output ports (C and D). Each port has a 

port type which specifies the domain or set of allowed 

variables. The External Input Coupling (EIC) (represented 

by a line-dot-dotted style line) is any connection between 

the parent’s input port and a child’s’ input port. There are 

two EIC connections in the diagram above. They include 

{(A—E) and (B—I)}. The External Output Coupling 

(EOC) (represented by a dashed style line) is any 

connection between the parent’s output port and a child’s 

output port). There are two EOC connections in the diagram 

above. They include: {(H—C) and (J—D)}. Internal 

Coupling (IC) (represented by a solid line) is any connection 

between two processes. There only one IC connections in 

the diagram. It is {(F—G)}. 

 Processes usually occur concurrently, but in the case of 

a mutual exclusion, a flag is used to determine priorities. A 



paradox could occur when determining priorities. Figure 1 

has a compartment for specifying the tie breakers (Select 

Flags). From the figure, if m1, m2, and m3 are concurrently 

activated, then m1 is selected to be processed. But if only 

m3 and m2 are activated, then m3 is selected. This kind of 

situation is known as Condorcet's paradox (or voting 

paradox). Several flags can be added to indicate paradoxes. 

Flows are also asynchronous and instantaneous.  

 

2.1.1. Relation to Classical DEVS Theory 

 According to the DEVS theory, a coupled model can be 

defined in classic DEVS as  

 CM = <X, Y, D, {Md│d ɛ D}, EIC, EOC, IC, select> 

Where X and Y are input and output ports respectively. D 

refers to atomic models, EIC, EOC, IC are couplings as 

defined earlier. Select refers to the select function. 

This model is represented in the coupled model DDML 

diagram (Figure 1) as follows: 

 The coupled model corresponds to the DDML 

coupled model diagram 

 Each input port p of X (e.g. A or B) of the CM is 

an input port of the DDML coupled model 

 Each output port p of Y (e.g. C or D) of the CM is 

an output port of the DDML coupled model 

 Each sub-model d of D (e.g. m1, m2, or m3) is a 

sub-process of the CM (Comments can be used to 

give additional details about the class to which the 

sub-process belongs). 

 Each element in EIC (e.g. (A—E) and (B—I)), 

EOC (e.g. (H—C) and (J—D)), or IC (e.g. (F—G)) 

is a DDML port-to-port connection as shown 

above.  

 The select function is translated into flags. A 

paradox may occur and there are as many lines as 

there are paradoxes.  

 

2.1.2. Relation to Parallel DEVS Theory 

 Recall that a coupled model can be defined in parallel 

DEVS as 

 CM = <X, Y, D, {Md│d ɛ D}, EIC, EOC, IC> 
The DDML representation of such a model is done like with 

C-DEVS, but with the following changes: 

 Inputs (and outputs) are all synchronized 

 There is no flag (hence the compartment for the 

select flag is left empty) 

According to the closure property, every coupled model can 

be regarded to be a DEVS atomic model. The closure 

property guarantees that the coupling of several class 

instances results in a model of a particular class, allowing 

hierarchical construction. This implies that we can have a 

coupled model (child) within another coupled model 

(parent). 

 

2.2. DDML States and States Transition 

 At any given time, a process is in a particular state. A 

moderately sized system can have an unimaginable size of 

state spaces. Hence the size of the state space can become 

infinite leading to a problem of state explosion. We solve 

this problem by using a finite number of state variables to 

partition the infinite number of states into a finite number of 

state classes. Hence, we define a ―state‖ here to be an 

equivalence class of states. Multiple individual states are 

said to be in the same equivalence class (―state‖ in DDML) 

if and only if they are equivalent under the given relation, 

which is defined by a configuration of state variables. For 

example, if we define a process by two state variables, X 

and Y, we can say that the individual states defined by 

{X=4, Y=10}, {X=7, Y=9}, and {X=8, Y=11}, are 

equivalent under the relation {X>3, 7<Y<12}. Hence, the 

configuration {X>3, 7<Y<12} is a state in DDML. 

 We classify states in DDML based on the duration of a 

state, configuration of state variables, and state activities. 

We have Finite State (to represent a state with a definite 

duration); Passive State (to represent a state with an infinite 

duration); and Transient State (to represent a state that 

transits instantaneously).  

 We use rectangles to represent these states in DDML 

(see Figure 2). The rectangle has four compartments: the 

upper part is for the name of the state, the second part is for 

the values of the state variables (which defines the state), 

and the third part is for the activities performed whenever 

the process enters the state, and the lower part is for the time 

advance for the given state. 

 The Initial state represents the first state for a process. 

This state is used to define all the state variables and to 

define the subroutines that are used in other states. Variables 

creation and initialization activities are specified (in a global 

way, any internal activity which is not a call to a subroutine 

can be specified in a ―do‖ block). The modeler can use any 

language to express data structures and algorithms. Figure 2 

also shows the graphical notation for an initial state. The 

state variables are defined in the second compartment; and 

functions (method definitions) of a process are defined in 

the last compartment. 

 A state can be composite. Such a state is composed of 

sub-states that have common properties (every property of 

the composite state stands also for each of its sub-states, but 

sub-states can have their specific additional properties, and 

these can be specified in the sub-state graph). The duration 

of a composite state can be explicit or not (in the later case, 

sub-states have their own durations). We call this a state 

cluster. Figure 2 illustrates a state cluster in DDML. 

 State transitions occur between states in a process. As a 

result of grouping of states using state variables, these 

transitions should be seen as a transition between state 

groups rather than transitions between definite states. 



 
 

Figure 2: State Notations in DDML 

 

 The internal state transition is represented by a solid 

line with an arrow at the end as shown in Figure 3 (S5—

S6). An internal state transition occurs automatically at the 

end of a definite state or an intermediate state. An action 

(usually sending an output signal, e.g. Board^.Red) is 

performed at the beginning of the transition and a 

computation (e.g. Y=”OFF”) is done at the end (just before 

it enters the new state). Such a transition always goes from 

the right hand side of a state to the left hand side of another 

one. Infinite states do not undergo internal transitions. 

 
  

Figure 3: External and Internal State Transitions 



 The external state transition is represented by a 

broken line with an arrow at the end as shown in Figure 3 

(S1—S5). An external state transition occurs when a system 

receives an external input or disturbance that forces it to 

change its state (in the diagram, Control port receives a 

signal with value 3, depicted as Control.3). Such transition 

can occur at a time (elapse time, e (0 ≤ e ≤ ta)). A 

computation is done at the end of the transition (just before 

it enters the new state e.g. (Y=”ON”) as shown in Figure 3. 

In DDML notation, external transitions go from the upper or 

the lower side of a state to the left hand side of another one. 

 The Conflict transition, which is a transition that goes 

from one of the right hand side corners of a state, showing 

that two situations occur simultaneously: the life-time of the 

state has expired while an external event occurs. This is 

illustrated in Figure 4. A conflict transition also has an 

action and computation. 

 

 
 

Figure 4: Conflict Transition 

 

 DDML also has notation to define a conditional 

transition. The diamond shaped figure (Figure 5) is used to 

represent a decision node which indicates a conditional 

transition.  A test is carried out before decision is made on 

which state to transit to. In the figure shown, the system 

transits to state C if Y ≠5 or transits to state B if Y == 5. 

Conditional transitions could also apply to external state 

transitions. 

 
Figure 5: Conditional Transition 

2.2.1. Relation to Classical DEVS Theory 

Recall, an atomic model is defined in C-DEVS as follows: 

 M = <X, Y, S, δint, δext, λ, ta> 

Where X, Y are input ports and output ports respectively. S 

is the set of states. δint, δext are internal and external states 

transitions respectively. λ is the output function and ta is the 

time advance function. 

 The DDML representation of the model is an atomic 

process built as follows: 

 X and Y are defined as defined in section 3.1.4. 

 An initial state is defined, with declarations: v ε Sv. 

All other states are defined and their corresponding 

configurations of values for the variables specified. 

Also the value returned by the time advance (ta) is 

indicated for each state at the bottom of the 

corresponding rectangle. Transient states are states 

with ta(s) = 0 and infinite states are states with ta(s) 

= +∞. 

 δint (s) is defined in the DDML representation as an 

internal transition from State A to state B, which 

carries λ (s) (output), by indicating how it is 

distributed among output ports. Stochastic 

situations are depicted using decision nodes. 

 δint (s) is defined in DDML representation as an 

external transition, which carries the input received 

and shows how this value is distributed among 

input ports. The associated guard (if mentioned) 

indicates the value of the elapsed time. 

 

2.2.2. Relation to Parallel DEVS Theory 

An atomic model is defined in P-DEVS as:  

 M = <X
b
, Y

b
, S, δint, δext, δcon, λ, ta> 

Where,  

 X
b
 and Y

b
 are bags of inputs and outputs.  

 S, δint, δext, λ, and ta are defined as in C-DEVS.  

 δcon:Q x X
b
→ S is the conflict function; 

 The DDML representation is done here like in C-

DEVS, with the following changes:  

 Inputs (and outputs) are synchronized.  

 Each relation δcon defines in the conflict transition 

(Figure 4), which carries X and λ (s). 

 

3. DDML MODELING TOOL 

 In this section, we present our graphical modeling 

software for constructing DDML models. Our software has 

two editors, the DDML Coupled Model Editor (Figure 6) 

and the DDML Atomic Model Editor (Figure 7). The former 

is used to define DDML processes and sub-processes 

whereas the latter is used to further define the structure and 

behaviour of a process by constructing states and states 

transitions. Both editors are Eclipse plug-ins and they 

provide powerful and intuitive graphical capabilities for 

constructing DDML models. The domain information for a 

model is saved as an XML file.  



 
Figure 6: DDML Coupled Model Editor 

 

Figure 7: DDML Atomic Model Editor 



4.  CONCLUSION  

  

 In this paper, we proposed a generic approach to bridge 

advanced modeling and generic simulation methodologies. 

Our approach involves unifying all aspects of simulation 

modeling into one unique framework. DEVS has provided 

the underlying formalism for this.  

 Similar works have proposed using familiar 

methodologies to glue modeling and simulation. [Mooney 

2008] proposes a framework capable of simulating a DEVS 

model via Unified Modeling Language (UML) state 

machines. A set of rules is enumerated for the creation of 

UML models. Adherence to these rules results in models 

that are both DEVS and UML compliant. Resultant UML 

models are executable within DEVS simulation frameworks 

such as [Sarjoughian and Zeigler 2008]’s DEVSJAVA. 

While this approach is beneficial, it requires additional 

efforts to map the modeling paradigm (UML) to the DEVS 

simulation framework. 

 Other proposals are based on state-based notation. 

[Christen et al. 2004] proposes State-Based DEVS models 

for CD++. [Risco et al. 2007] uses UML state diagrams to 

construct models and transforms these diagrams to DEVS 

state machines using XML.   

 Recently, [Song and Kim 2010] revised DEVS 

Diagram, a structured diagram form of the DEVS formalism 

(C-DEVS) with many similarities with our earlier work 

[Traore 2009]. DEVS Diagram uses the concepts of ports 

and messages for structuring sequential events and it 

introduces the concepts of phase transition diagram to 

simply represent state transitions. It does not however 

provide a means to represent P-DEVS models.  

 DDML does not require advanced mapping to DEVS as 

it is purely based on DEVS. This also makes it amenable to 

formal analysis and automatic code generation for several 

DEVS libraries. DDML provides a unifying framework for 

both C-DEVS and P-DEVS using the same graphical 

notations as we have shown in this paper.  

 DDML has the following goals: 

 To provide a unified modeling framework for 

discrete event simulation. 

 To provide users with a ready-to-use, expressive 

visual modeling language for building simulation 

models. 

 To provide a basis of communicating via DEVS 

models. 

 To be independent of any particular programming 

language and development process 

 To provide a formal basis for understanding the 

DEVS formalism and to make DEVS accessible to 

the entire computer simulation community 

 To support higher-level development concepts such 

as collaborations, frameworks, patterns and 

components. 

 To integrate best practices from various powerful 

modeling paradigms.  

 We also presented a graphical editing tool to further 

simplify the construction of DDML models. Our editor is 

integrated into Eclipse, hence it leverages Eclipse’s 

powerful development environment. Eclipse also provides 

additional advantages of extensibility, easy installation and 

updates, and integrated software development environment.  

 Next steps would involve integrating methods of formal 

analysis into the Eclipse-DDML editor and generation of 

simulation codes from DDML models for DEVS libraries. 

This would be integrated into SimStudio (a collaborative 

simulation infrastructure) proposed by [Touraille et al. 

2009]. 
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