
A Unified Modeling Framework for Discrete Event Simulation

Ufuoma Bright Ighoroje

Computer Science Stream

African University Of Science and Technology,

Abuja, Nigeria.

E-mail: b.ufuoma@gmail.com

Mamadou Kaba Traoré

LIMOS, CNRS UMR 6158

Université Blaise Pascal, Clermont-Ferrand 2

Campus des Cézeaux, 63173 Aubière, France

E-mail: traore@isima.fr

Keywords: Modeling, DEVS, Discrete event simulation,

DDML.

Abstract

 We propose a unified modeling framework for discrete

event simulation. Our approach aims to provide a generic

framework to simplify construction of simulation models,

and at the same time provide the capability to capture the

dynamic, static, and functional aspects of a system under

study. We adopt a graphical modeling technique that

integrates best practices from several powerful modeling

paradigms and unify them in a consistent framework. The

model when defined using this framework would be

amenable to formal analysis. We also provide a graphical

editor that makes these models easy to construct, reuse, and

extend.

1. INTRODUCTION

1.1. Motivation

 Building simulation models have become a very

complex activity as a result of the wide variability between

modeling activities and simulation activities. The primary

issue in modeling is to develop multiple abstractions of a

real/imagined system and capture these abstractions with

algorithms that represent the static, dynamic and functional

aspects of the system under study. These models have to be

transformed into a simulation semantic which involves with

the identification of timing aspects, data preparation and

time management. Hence, there is a need to bridge advanced

modeling techniques and generic simulation methodologies.

This implies that modeling, software engineering, and

simulation expertise should be integrated seamlessly into

the modeling and simulation process.

 Our proposed modeling framework satisfies these

requirements. We adopt an intermediate level of abstraction,

which is simple enough to be generalized (understandable

by a wide community of modelers and users) and low

enough to reduce the complexity of code synthesis for

simulation purposes. At the same time, we can capture the

functional, dynamic, and static aspects of a system under

study. The underlying modeling paradigm is Discrete Event

Simulation (DEVS) formalism.

1.2. Why DEVS?

 [Zeigler et al. 2000] describes DEVS as a ―unique form

of representation that underlies any system with discrete

event behavior‖. Models expressed using the Discrete Event

System Specification (DEVS) represent a class of systems

theoretic models that permit parallel event-based behavior to

be expressed concisely and in a manner that lend themselves

to formal verification. Although many different simulation

formalisms have been advanced over the years, the DEVS

formalism has emerged as the preferred formalism due to

the fact that other formalisms have been proven to have an

equivalent DEVS representation. DEVS support full range

of dynamic system representation. In particular, a

Differential Equation System Specification (DESS) can

have an approximate Discrete Time System Specification

(DTSS) by selection of a sufficiently small constant time

interval (discretization). A DTSS model, in turn has an

equivalent DEVS representation. Also, quantization of

events in a DESS system can result in an approximate

DEVS model. As such DEVS approach can be used to

model discrete systems, continuous systems (approximate),

and hybrid systems.

 DEVS approach to modeling is appealing also because

it separates modeling, simulation, and the experimental

frame (EF). It eases verification. Its simulation approach

allows parallel, distributed, or real-time execution of models

thereby enhancing speed. DEVS promotes a user-oriented

approach (incremental approach) to modeling and

simulation.

 Due to its generality, DEVS does not propose a means

to specify systems in details. The mathematical foundations

are defined but the specification details are left to the

modeler. Hence, we propose a DEVS-Driven Modeling

Language (DDML) to fill this void. DDML uses notations

that unify C-DEVS and P-DEVS (two formalisms as the

foundational frameworks for DEVS). DDML uses graphs

that are amenable to formal analysis to define DEVS

models.

1.3. Structure of Paper

 In the following section, we present DDML and show

how its graphical notations map to the DEVS formalism. In

section 3, we present our Eclipse-DDML tool with

mailto:b.ufuoma@gmail.com
mailto:traore@isima.fr

illustrative examples. In section 4, we conclude and suggest

the future direction for our unified modeling framework.

2. DEVS-DRIVEN MODELING LANGUAGE

(DDML)

 DDML makes DEVS accessible to wide community of

users and modelers by providing a means for defining

DEVS-based models graphically. It uses a set of graphical

notations to specify, visualize, analyse, verify, and

document the characteristics and behaviour of some real or

imagined system under development.

 DDML uses processes to define the functional aspects

of a system and this is described graphically using

flowcharts with input and output ports. Dynamic aspects of

a system are captured by using notations similar to

state/activity diagrams. The static aspects are described

using abstract structure graphs. The static aspects are

automatically derived from the functional and dynamic

aspects thereby clearing all ambiguities that might result if a

modeller uses different diagrams to represent different

views.

2.1. DDML Processes

 A simulation model is analogous to a business process

that interacts with its environment through input and output

ports. It receives messages via its input ports and sends out

messages via its output ports. In DDML, the processes are

instance of classes and the ports have to be defined by the

domain or a set of allowable signals.

 A process which cannot be decomposed is said to be

atomic. Processes that have sub-processes are coupled.

Processes communicate with each other via couplings

(constraints are usually attached to these couplings to

provide more prescriptions about data that are transferred).

These process couplings can either couple two input ports

(from a process and a sub-process), two output ports (from a

sub-process and a process), or an input port and an output

port (from two distinct processes). These couplings are

termed External Input Coupling (EIC), External Output

Coupling (EOC), and Internal Coupling (IC) respectively.

Figure 1: DDML Coupled Model and Atomic Model

 Figure 1 above shows a coupled process (m0) with

three sub-processes (m1, m2, m3). Process m0 has input

ports (A and B) and output ports (C and D). Each port has a

port type which specifies the domain or set of allowed

variables. The External Input Coupling (EIC) (represented

by a line-dot-dotted style line) is any connection between

the parent’s input port and a child’s’ input port. There are

two EIC connections in the diagram above. They include

{(A—E) and (B—I)}. The External Output Coupling

(EOC) (represented by a dashed style line) is any

connection between the parent’s output port and a child’s

output port). There are two EOC connections in the diagram

above. They include: {(H—C) and (J—D)}. Internal

Coupling (IC) (represented by a solid line) is any connection

between two processes. There only one IC connections in

the diagram. It is {(F—G)}.

 Processes usually occur concurrently, but in the case of

a mutual exclusion, a flag is used to determine priorities. A

paradox could occur when determining priorities. Figure 1

has a compartment for specifying the tie breakers (Select

Flags). From the figure, if m1, m2, and m3 are concurrently

activated, then m1 is selected to be processed. But if only

m3 and m2 are activated, then m3 is selected. This kind of

situation is known as Condorcet's paradox (or voting

paradox). Several flags can be added to indicate paradoxes.

Flows are also asynchronous and instantaneous.

2.1.1. Relation to Classical DEVS Theory

 According to the DEVS theory, a coupled model can be

defined in classic DEVS as

 CM = <X, Y, D, {Md│d ɛ D}, EIC, EOC, IC, select>

Where X and Y are input and output ports respectively. D

refers to atomic models, EIC, EOC, IC are couplings as

defined earlier. Select refers to the select function.

This model is represented in the coupled model DDML

diagram (Figure 1) as follows:

 The coupled model corresponds to the DDML

coupled model diagram

 Each input port p of X (e.g. A or B) of the CM is

an input port of the DDML coupled model

 Each output port p of Y (e.g. C or D) of the CM is

an output port of the DDML coupled model

 Each sub-model d of D (e.g. m1, m2, or m3) is a

sub-process of the CM (Comments can be used to

give additional details about the class to which the

sub-process belongs).

 Each element in EIC (e.g. (A—E) and (B—I)),

EOC (e.g. (H—C) and (J—D)), or IC (e.g. (F—G))

is a DDML port-to-port connection as shown

above.

 The select function is translated into flags. A

paradox may occur and there are as many lines as

there are paradoxes.

2.1.2. Relation to Parallel DEVS Theory

 Recall that a coupled model can be defined in parallel

DEVS as

 CM = <X, Y, D, {Md│d ɛ D}, EIC, EOC, IC>
The DDML representation of such a model is done like with

C-DEVS, but with the following changes:

 Inputs (and outputs) are all synchronized

 There is no flag (hence the compartment for the

select flag is left empty)

According to the closure property, every coupled model can

be regarded to be a DEVS atomic model. The closure

property guarantees that the coupling of several class

instances results in a model of a particular class, allowing

hierarchical construction. This implies that we can have a

coupled model (child) within another coupled model

(parent).

2.2. DDML States and States Transition

 At any given time, a process is in a particular state. A

moderately sized system can have an unimaginable size of

state spaces. Hence the size of the state space can become

infinite leading to a problem of state explosion. We solve

this problem by using a finite number of state variables to

partition the infinite number of states into a finite number of

state classes. Hence, we define a ―state‖ here to be an

equivalence class of states. Multiple individual states are

said to be in the same equivalence class (―state‖ in DDML)

if and only if they are equivalent under the given relation,

which is defined by a configuration of state variables. For

example, if we define a process by two state variables, X

and Y, we can say that the individual states defined by

{X=4, Y=10}, {X=7, Y=9}, and {X=8, Y=11}, are

equivalent under the relation {X>3, 7<Y<12}. Hence, the

configuration {X>3, 7<Y<12} is a state in DDML.

 We classify states in DDML based on the duration of a

state, configuration of state variables, and state activities.

We have Finite State (to represent a state with a definite

duration); Passive State (to represent a state with an infinite

duration); and Transient State (to represent a state that

transits instantaneously).

 We use rectangles to represent these states in DDML

(see Figure 2). The rectangle has four compartments: the

upper part is for the name of the state, the second part is for

the values of the state variables (which defines the state),

and the third part is for the activities performed whenever

the process enters the state, and the lower part is for the time

advance for the given state.

 The Initial state represents the first state for a process.

This state is used to define all the state variables and to

define the subroutines that are used in other states. Variables

creation and initialization activities are specified (in a global

way, any internal activity which is not a call to a subroutine

can be specified in a ―do‖ block). The modeler can use any

language to express data structures and algorithms. Figure 2

also shows the graphical notation for an initial state. The

state variables are defined in the second compartment; and

functions (method definitions) of a process are defined in

the last compartment.

 A state can be composite. Such a state is composed of

sub-states that have common properties (every property of

the composite state stands also for each of its sub-states, but

sub-states can have their specific additional properties, and

these can be specified in the sub-state graph). The duration

of a composite state can be explicit or not (in the later case,

sub-states have their own durations). We call this a state

cluster. Figure 2 illustrates a state cluster in DDML.

 State transitions occur between states in a process. As a

result of grouping of states using state variables, these

transitions should be seen as a transition between state

groups rather than transitions between definite states.

Figure 2: State Notations in DDML

 The internal state transition is represented by a solid

line with an arrow at the end as shown in Figure 3 (S5—

S6). An internal state transition occurs automatically at the

end of a definite state or an intermediate state. An action

(usually sending an output signal, e.g. Board^.Red) is

performed at the beginning of the transition and a

computation (e.g. Y=”OFF”) is done at the end (just before

it enters the new state). Such a transition always goes from

the right hand side of a state to the left hand side of another

one. Infinite states do not undergo internal transitions.

Figure 3: External and Internal State Transitions

 The external state transition is represented by a

broken line with an arrow at the end as shown in Figure 3

(S1—S5). An external state transition occurs when a system

receives an external input or disturbance that forces it to

change its state (in the diagram, Control port receives a

signal with value 3, depicted as Control.3). Such transition

can occur at a time (elapse time, e (0 ≤ e ≤ ta)). A

computation is done at the end of the transition (just before

it enters the new state e.g. (Y=”ON”) as shown in Figure 3.

In DDML notation, external transitions go from the upper or

the lower side of a state to the left hand side of another one.

 The Conflict transition, which is a transition that goes

from one of the right hand side corners of a state, showing

that two situations occur simultaneously: the life-time of the

state has expired while an external event occurs. This is

illustrated in Figure 4. A conflict transition also has an

action and computation.

Figure 4: Conflict Transition

 DDML also has notation to define a conditional

transition. The diamond shaped figure (Figure 5) is used to

represent a decision node which indicates a conditional

transition. A test is carried out before decision is made on

which state to transit to. In the figure shown, the system

transits to state C if Y ≠5 or transits to state B if Y == 5.

Conditional transitions could also apply to external state

transitions.

Figure 5: Conditional Transition

2.2.1. Relation to Classical DEVS Theory

Recall, an atomic model is defined in C-DEVS as follows:

 M = <X, Y, S, δint, δext, λ, ta>

Where X, Y are input ports and output ports respectively. S

is the set of states. δint, δext are internal and external states

transitions respectively. λ is the output function and ta is the

time advance function.

 The DDML representation of the model is an atomic

process built as follows:

 X and Y are defined as defined in section 3.1.4.

 An initial state is defined, with declarations: v ε Sv.

All other states are defined and their corresponding

configurations of values for the variables specified.

Also the value returned by the time advance (ta) is

indicated for each state at the bottom of the

corresponding rectangle. Transient states are states

with ta(s) = 0 and infinite states are states with ta(s)

= +∞.

 δint (s) is defined in the DDML representation as an

internal transition from State A to state B, which

carries λ (s) (output), by indicating how it is

distributed among output ports. Stochastic

situations are depicted using decision nodes.

 δint (s) is defined in DDML representation as an

external transition, which carries the input received

and shows how this value is distributed among

input ports. The associated guard (if mentioned)

indicates the value of the elapsed time.

2.2.2. Relation to Parallel DEVS Theory

An atomic model is defined in P-DEVS as:

 M = <X
b
, Y

b
, S, δint, δext, δcon, λ, ta>

Where,

 X
b
 and Y

b
 are bags of inputs and outputs.

 S, δint, δext, λ, and ta are defined as in C-DEVS.

 δcon:Q x X
b
→ S is the conflict function;

 The DDML representation is done here like in C-

DEVS, with the following changes:

 Inputs (and outputs) are synchronized.

 Each relation δcon defines in the conflict transition

(Figure 4), which carries X and λ (s).

3. DDML MODELING TOOL

 In this section, we present our graphical modeling

software for constructing DDML models. Our software has

two editors, the DDML Coupled Model Editor (Figure 6)

and the DDML Atomic Model Editor (Figure 7). The former

is used to define DDML processes and sub-processes

whereas the latter is used to further define the structure and

behaviour of a process by constructing states and states

transitions. Both editors are Eclipse plug-ins and they

provide powerful and intuitive graphical capabilities for

constructing DDML models. The domain information for a

model is saved as an XML file.

Figure 6: DDML Coupled Model Editor

Figure 7: DDML Atomic Model Editor

4. CONCLUSION

 In this paper, we proposed a generic approach to bridge

advanced modeling and generic simulation methodologies.

Our approach involves unifying all aspects of simulation

modeling into one unique framework. DEVS has provided

the underlying formalism for this.

 Similar works have proposed using familiar

methodologies to glue modeling and simulation. [Mooney

2008] proposes a framework capable of simulating a DEVS

model via Unified Modeling Language (UML) state

machines. A set of rules is enumerated for the creation of

UML models. Adherence to these rules results in models

that are both DEVS and UML compliant. Resultant UML

models are executable within DEVS simulation frameworks

such as [Sarjoughian and Zeigler 2008]’s DEVSJAVA.

While this approach is beneficial, it requires additional

efforts to map the modeling paradigm (UML) to the DEVS

simulation framework.

 Other proposals are based on state-based notation.

[Christen et al. 2004] proposes State-Based DEVS models

for CD++. [Risco et al. 2007] uses UML state diagrams to

construct models and transforms these diagrams to DEVS

state machines using XML.

 Recently, [Song and Kim 2010] revised DEVS

Diagram, a structured diagram form of the DEVS formalism

(C-DEVS) with many similarities with our earlier work

[Traore 2009]. DEVS Diagram uses the concepts of ports

and messages for structuring sequential events and it

introduces the concepts of phase transition diagram to

simply represent state transitions. It does not however

provide a means to represent P-DEVS models.

 DDML does not require advanced mapping to DEVS as

it is purely based on DEVS. This also makes it amenable to

formal analysis and automatic code generation for several

DEVS libraries. DDML provides a unifying framework for

both C-DEVS and P-DEVS using the same graphical

notations as we have shown in this paper.

 DDML has the following goals:

 To provide a unified modeling framework for

discrete event simulation.

 To provide users with a ready-to-use, expressive

visual modeling language for building simulation

models.

 To provide a basis of communicating via DEVS

models.

 To be independent of any particular programming

language and development process

 To provide a formal basis for understanding the

DEVS formalism and to make DEVS accessible to

the entire computer simulation community

 To support higher-level development concepts such

as collaborations, frameworks, patterns and

components.

 To integrate best practices from various powerful

modeling paradigms.

 We also presented a graphical editing tool to further

simplify the construction of DDML models. Our editor is

integrated into Eclipse, hence it leverages Eclipse’s

powerful development environment. Eclipse also provides

additional advantages of extensibility, easy installation and

updates, and integrated software development environment.

 Next steps would involve integrating methods of formal

analysis into the Eclipse-DDML editor and generation of

simulation codes from DDML models for DEVS libraries.

This would be integrated into SimStudio (a collaborative

simulation infrastructure) proposed by [Touraille et al.

2009].

References

[Christen et al. 2004] Christen G., Dobniewski A. & Wainer

G. Modeling State-Based DEVS Models in CD++.

Proceedings of MGA, Advanced Simulation Technologies

Conference (ASTC'04). Arlington, VA. U.S.A.

[Mooney 2008] Mooney J. DEVS/UML – A Framework for

Simulatable UML Models. M.S. Thesis, Computer Science

and Engineering Dept., Arizona State University, Tempe,

AZ, USA.

[Risco et al. 2007] Risco-Martín J.L., Mittal S. & Zeigler

B.P. From UML Statecharts to DEVS State Machines Using

XML. Multi-paradigm Modeling, IEEE/ACM International

Conference on Modeling Languages and System, Nashville,

Sept.

[Sarjoughian and Zeigler 2008] Sarjoughian, H; Zeigler, B.

1998. ―DEVSJAVA: Basis for DEVS-based collaborative

M&S environment‖. Proceedings of the International

Conference on Web-based Modeling and Simulation, San

Diego, CA.

[Song and Kim 2010] Song H. S., Kim T. G. ―DEVS

Diagram Revised: A Structured Approach for DEVS

Modeling. Proceedings from European Simulation

Conference, ESM ’10.

[Touraille et al. 2009] Touraille L., Traoré M.K. and Hill

D.R.C. 2009. SimStudio: Proposition d’une Infrastructure

Collaborative de Modélisation, Simulation et Analyse de

Systèmes Dynamiques Complexes. 13ème JSED SPI, ISSN

0249-7042. Modélisation de systèmes

[Traore 2009] Traore, M. K. 2009. ―A Graphical Notation

for DEVS‖. Proceedings from the Spring Simulation

Multiconference.

[Zeigler et al. 2000] Zeigler B.P., Praehofer H. & Kim T.G.

Theory of Modeling and Simulation. Integrating Discrete

Event and Continuous Complex Dynamic Systems.

Academic Press.

BIOGRAPHY

Ufuoma B. Ighoroje is a graduate (M.Sc) student in

Computer Science at the African University of Science and

Technology, Abuja (Nigeria). His research interests are in

computer modeling and simulation, discrete event systtems,

software engineering, and formal specification.

Mamadou K. Traore is Associate Professor in Computer

Science at the Blaise Pascal University of Clermont-Ferrand

(France). His research focuses on formal specification,

symbolic manipulation and automatic code generation of

simulation models.

